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Abstract 

Battery switching stations (BSS) provide a service that enables extending the traveling range of 

electric vehicles. Such stations may be the future equivalent of gas stations and they are currently being 

deployed in several countries. A BSS is a closed loop system that renews its inventory by recharging the 

batteries. We study the problem of scheduling the charging process in a BSS with the objective of 

optimizing a weighted measure of service level and cost.  

 

1. Introduction and Problem Definition 
In this paper, we introduce a new scheduling and inventory management problem motivated by the 

business model of Better Place Ltd. (http://www.betterplace.com/). The company sells electric 

cars with replaceable Lithium Ion batteries and provides battery replacement services in Battery 

Switching Stations (BSS) scattered around the country. A BSS is equipped with cells where 

batteries are charged and stored. A robotic arm is used to carry out the battery replacements 

within a short time. This business model is an attempt to overcome the two main (interrelated) 

shortcomings of electric cars, namely short travel range and long battery charging times. Should 

Better Place succeed in penetrating the electric vehicles (EVs) market, it is likely that other car 

manufacturers will follow their model and that regulatory authorities will step in to impose 

universal standards for vehicles with replaceable batteries. Hence, in the future, BSSs may 

become a sustainable substitute for fueling stations.  

The successes of EVs is largely depends on the ability of the electricity network and 

generation facilities to support a significant increase in the consumption. While the electricity 

networks worldwide are already nearly fully utilized at peak times, there is a significant residual 

capacity during off peak periods. It is possible to use this capacity to fulfill the additional demand 

expected from EVs [1]. Diversion of the demand to the of peak hours can be achieved by an 

appropriate pricing mechanism. Therefore, a new large-scale electricity consumer such as Better 

Place Ltd. needs to design its operations in such a manner that allows it to exploit the lower 

electricity fares during off peak hours. Ideally, all the charging effort should be done at the times 

of the lowest fares (typically during the night). However, such a policy may require a large stock 

of batteries in the station and this stock may be very expensive to hold. Indeed, in a typical EV, 

the battery accounts for more than a third of the total cost [2]. 

The Battery Switching Station Scheduling Problem (BSSSP) is defined as follows: during a 

time interval      , referred to as the planning horizon, there are   requests for battery 

replacements. The BSS must fulfill these requests. Serving a request involves dismantling an 

http://www.betterplace.com/
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empty battery
1
 from the car and installing a charged one instead. This operation is assumed to be 

instantaneous. Later on, the dismantled batteries can be fully recharged in   time units and used 

to fulfill future requests. Each request  , is characterized by its occurrence time   . The BSS is a 

closed loop system; hence, the total number of batteries in the stations is constant. We denote this 

number by  .  

The supplied battery is preferably fully charged, but a partly charged battery can be provided 

at a penalty cost that depends on the charging level of the battery. This level is measured by the 

total charging time that the battery gained. The penalty incurred by a provision of a partially 

charged battery is a decreasing function            with  ( )   . It is reasonable to assume 

that  ( ) is convex since this results in a fair allocation of the charging effort among customers 

when the total penalty is minimized, e.g., the system is better off with two customers who 

obtained a 50% charge battery compared to one customer that obtains an empty battery and one 

that obtains a fully charged battery.  

Throughout this paper we assume that the penalty function is continuous  -piecewise linear. 

While this assumption is not necessarily accurate, it provides sufficient flexibility to represent 

approximately any reasonable penalty function. We explicitly express it as  

 ( )  {

               
             

 
      

 
           

 

Where convexity implies           , continuity implies                    . 

Also,  ( )    implies       . For the computational complexity analysis below we assume 

that constants         ,          and           are part of the input.  

We assume without loss of generality that the charging process consumes one unit of 

electrical energy per time unit. During the charging process, energy is consumed and accumulated 

in the battery at a constant rate
2
. The maximal number of batteries that can be charged 

simultaneously at time   (referred to as the station capacity) is denoted by the step function  ( ). 

Clearly,  ( )   ; in some cases the inequality holds strictly due to limitations of the electricity 

grid. The electricity price varies over time. The price for time   is denoted by the step function 

 ( ). Since the charging process is controlled electronically and the batteries are charged in their 

cabinets, preemptions can be carried out at no cost. The Lithium Ion battery technology allows 

resuming the charging process from the same point later on. The initial charging level of the 

batteries at the beginning of the planning horizon is denoted by (          ).The goal is to 

schedule the charging process of the batteries in the system and to decide which battery should be 

used to meet each request so as to minimize total electricity and penalty costs.  

In practice, the demand for batteries is stochastic rather than deterministic. That is, the 

amount and timing of requests is unknown in advance and an online algorithm that responds to 

                                                      
1
 In practice, the batteries dismantled from the cars are not completely empty. We shall revisit this 

simplifying assumption in Section ‎3. 

  
2
 This is not necessarily the case for the charging process of Lithium Ion batteries. We shall revisit this 

simplifying assumption in Section ‎3. 



3 

 

the actual demand is needed. One possible strategy toward this online problem is to solve the 

deterministic model repeatedly based on the actual state of the system and the forecasted demand 

and to role the horizon after each point of demand. Indeed, Einy [3] shows that this is a successful 

heuristic when applied with a reasonable level of safety stock. Our main contribution in this paper 

is in presenting an efficient algorithm that allows solving the deterministic sub-problem of such a 

heuristic quickly enough to be used on-line. 

The BSSSP is closely related to previously studied scheduling problems of parallel machines 

with preemption, release times and due dates. See for example Lawler and Labetoulle [4], 

Gonzalez and Sahni [5], Federgruen and Groenevelt [6], and Sheen and Liao [7]. However, the 

BSSSP is complicated by the fact that release times are not specified; instead, the planner needs 

to decide which battery should be used to serve each future request. The variable electricity costs 

and the opportunity to supply semi-finished jobs (i.e., partially charged batteries) further enrich 

this scheduling model. 

The rest of this paper is organized as follows: in Section 2, we present a strongly polynomial 

time algorithm for the BSSSP. In Section 3, we remove some of the simplifying assumptions and 

introduce an extended version of the problem. We present an effective Mixed Integer Formulation 

for the problem and identify conditions under which the problem is solvable in pseudo 

polynomial time. In Section 4, we present the result of a numerical experiment with our 

formulation, using data inspired from an actual BSS, and demonstrate its suitability for an online 

setting. We conclude with some remarks and directions for further research in Section 5. 

2. Polynomial Time Algorithm for the BSSSP 
In this section, we present a strongly polynomial time algorithm for the BSSSP as defined above. 

We first identify useful properties of some optimal solutions of the problem. For a given schedule 

and a request, let us define the occupancy interval of a request (for battery replacement) as the 

time interval in which the system carries the battery that fulfills the request. We denote the 

starting time of the occupancy interval of request   by   . Obviously, the interval ends when the 

request is fulfilled at time   . If request   is fulfilled with a battery that was initially available in 

the system, then     . The starting of the occupancy intervals of the rest of the requests must be 

equal to the time   , of some previous request   (where    ). Each request time is associated 

with at most one starting time of an occupancy interval of a subsequent request. 

Let            be the set of time intervals in which the battery used to fulfill request   was 

actually being charged. Since preemptions in the charging process are allowed,    is not 

necessarily a single continuous interval. Note that the values of           together with the 

identity of the battery used to fulfill each request uniquely define a solution of the BSSSP. In this 

case, identity is designated by the arrival time of the battery to the system or in the case of a 

battery that is available at time 0, its initial charging level. A schedule is said to be feasible if the 

number of batteries that are charged simultaneously never exceeds the charging capacity of the 

station. That is, ∑           ( ) for all        , where      is an indicator function. 
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We define the FIFO fulfillment policy as follows: whenever a request is received in the 

system, it is fulfilled by a battery whose arrival time at the system is the oldest or in the case of 

batteries with     , by the battery with the highest initial charging level. Ties are broken in 

favor of batteries with the smallest remaining charging time at the time of the request. This policy 

can be described alternatively as follows: the first   requests are fulfilled by the   batteries that 

were already in the system at the beginning of the planning horizon in non-increasing order of 

their initial charging levels,   . For          , the     request is served using a battery that 

was returned by the (   )   request. That is, 

   {
    

       
 

 

Proposition 1: If the penalty for fulfillment of a request with partially charged batteries is a 

convex function of the charging level, an optimal schedule that admits the FIFO fulfillment 

policy always exists. 

Proof: We prove the proposition by contradiction, showing that any feasible solution of the 

problem can be modified to one that admits FIFO fulfillment policy while satisfying the capacity 

constraint with smaller or equal electricity and penalty costs. Consider a feasible schedule, and let 

requests   and   be the first pair of requests that violate the FIFO policy. That is, in this schedule 

      but      . Later on in this proof, we fix the values of    and    even though their 

meaning is swapped.  

Let us denote the set of times allocated for charging the battery that fulfills request   during 

the interval       ) by     that is             ) . Similarly             ) and       

      ). See Figure 1 for an example. 

 

 
Figure 1: Original schedule (Case 1) 

 

We consider two cases, namely, Case 1: |     |       and Case 2, otherwise. In Case 1, 

let   be a subset of       such that         . In such a case, it is possible to modify the 

occupancy interval of request   to         , the charging periods to   
            and 

𝑠𝑗   𝑡𝑗 𝑡𝑖 𝑠𝑖 

Original Occupancy Interval of  𝑗 

Original Occupancy Interval of 𝑖 

𝑄𝑗 

𝑄𝑖 

𝐴  𝐴  𝐴  
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reschedule the charging of the battery that fulfill request   such that the occupancy interval is 

        and charging time   
         . See Figure 2.   

Note that in this case the total charging time allocated to the batteries that were provided for 

each of the requests   and   as well as all other requests, was left unchanged so there is no change 

in the penalty cost. In addition, the total electricity consumption at each moment was left 

unchanged and thus the total electricity cost is unaffected. 

In Case 2 (see for example Figure 3), when |     |       it must be the case that |  |  

          and therefore|  |      . It is possible to reschedule the charging of the batteries that 

fulfill the two requests as follow.   
        and   

       . See Figure 4. Again, in this 

new feasible schedule, the total electricity consumption at each moment as well as the total 

charging efforts allocated to both batteries, are left unchanged. However, the total charging time 

allocated for request   is increased and the total charging time allocated for request   is decreased 

by the same amount. Now the total penalty incurred by both batteries is  

 (   
  )   (|  

 |)   (|  |      )   (         )   (|  |)   (              )

  (    )   (|  |) 

The inequality is due to the convexity of  ( ) and the fact that |  |     
      

       . 

Intuitively speaking, dividing the charging effort between the two requests more evenly reduced 

the total penalty.    

 

An important consequence of Proposition 1 is that it is possible to determine the occupancy 

intervals of all the requests in an optimal solution merely by sorting the requests according to 

their times.   

 
Figure 2: Modification of the schedule (Case 1) 

 

𝑠𝑗   𝑡𝑗 𝑡𝑖 𝑠𝑖 

New Occupancy Interval of  𝑗 

New Occupancy Interval of 𝑖 

New Charging Period  𝑄𝑗
  

New Charging Period  𝑄𝑖
  

𝐴  

𝐴  𝐴  

𝐵 
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Figure 3: Original schedule (Case 2) 

 

 
Figure 4: Modification of the schedule (Case 2) 

 

Let us define an event in the system as a point in time in which one or more of the following 

occurs: a request is accepted, the electricity cost is changed, or the charging capacity of the 

system is changed. The planning horizon is divided into epochs, where each event marks the end 

of one epoch and the beginning of the next. The first epoch starts at time 0. Clearly, each 

occupancy interval is a union of several epochs. Let    denote the set of epochs that constitute the 

occupancy interval of request  .  

Based on the result of Proposition 1 we can construct an optimal solution for the BSSSP 

using a three steps algorithm as follows: 

Step 1: Construct the sets of epochs            for all requests according to FIFO 

fulfillment policy. 

Step 2: Decide upon the charging time allocated to each request during each epoch so as to 

minimize total electricity and penalty costs while satisfying the charging capacity 

constraint. That is, the total charging time during the epoch is no greater than the 

𝑠𝑗   𝑡𝑗 𝑡𝑖 𝑠𝑖 

Original Occupancy Interval of  𝑗 

Original Occupancy Interval of 𝑖 

𝑄𝑗 

𝑄𝑖 

𝐴  𝐴  𝐴  

𝑠𝑗   𝑡𝑗 𝑡𝑖 𝑠𝑖 

New Occupancy Interval of  𝑗 

New Occupancy Interval of 𝑖 

New Charging Period  𝑄𝑗
  

New Charging Period  𝑄𝑖
  

𝐴  𝐴  

𝐴  
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epoch length multiplied by the charging capacity available during the epoch.  

Step 3: Schedule the charging intervals of each request within each epoch, such that the 

capacity constraint is satisfied at throughout during the epoch. 

The implementation of step 1 follows directly from the definition of the FIFO policy and the 

epochs above. Step 2 can be accomplished by a reduction of the problem to a minimum cost flow 

problem, as described below. Solving the problems of step 3 for each epoch is equivalent to 

finding a feasible preemptive schedule for a set of jobs on identical parallel machines given a 

common due-date,                         ; a problem that can be solved in linear time by 

a greedy procedure, see [8]. 

 Let us denote the length of each epoch   by   , the charging capacity during the epoch by 

  , and the electricity price by   . In order to solve the problem of step 2, let us construct a 

network with a node   for each epoch; a node   for each request, one sink node,   penalty nodes - 

one for each piece of the piecewise linear penalty function. Let us index these nodes by  . The 

supply at each event node   is      . This represents the total charging time that can be 

allocated during the epoch to all the requests. The supply of each penalty node   is  (       ). 

The demand (negative supply) of each request node     is      and the demand of the rest of 

the request nodes is  . This represents the total charging time required by each request. Next, we 

create arcs from each epoch node   to each request node   that satisfies      . That is, the 

occupancy interval of the request covers the epoch. The capacity of each arc (   ) is    and its 

cost per unit of flow is   . In addition, each penalty node   is connected to each request node by 

an arc of capacity         and cost   . Finally, each event node and each penalty node is 

connected by an uncapacitated zero cost arc to the sink. The demand of the sink node is 

   ∑     

 

 ∑   

 

   
 (   )       ∑     

 

 ∑   

 

   
 

so it can absorb all the residual supply. An optimal solution of the minimum cost flow problem 

for this network prescribes an optimal solution for step 2. The flow on arc (   ) represents the 

total time allocated during the epoch  , for charging the battery that fulfills request  .  

Let us demonstrate the algorithm using a small numerical example. Consider an instance of 

the problem with:                        ( )    for all  ,  ( )    for     

and  ( )    for    . The request times are (           )  (       ). Let the penalty function 

be 

 ( )  {
           
          

  

That is                and          . 

It easy to check that the starting times of the occupancy intervals according to FIFO are 

(           )  (       ). There are five epochs, namely                              . In Figure 

5, we present the resulting minimum cost flow problem with the supply (and demand as negative 

supply) shown next to each node and with the capacities and the costs of the flows presented in 

parenthesis above some of the arcs or at the legend at the bottom right corner of the figure. 
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An example of a flow in this network is presented in Figure 6 where only the arcs with 

positive flow are drawn. The flow values are presented near the arcs. The width of the arcs is 

proportional to the cost of flow per unit in each arc. Thin dashed lines represent arcs with zero 

cost. The flow represents a solution in which request 1 is provided by a battery with initial 

charging level of 2 that is charged for some two units of time, during the interval [0,3] at 

electricity cost of 2. Request 2 is charged during the entire interval [0,3] at electricity cost of 3. 

Request 3 is charged during the period       at electricity cost of        . Request 4 is 

charged during the period       at electricity cost of 6. In addition, since the battery is provided 

with only 3 units of energy (out of 4). A penalty of 5 is charged. The total electricity and charging 

cost is             . It can be verified that this is equal to the total flow cost depicted 

in Figure 6. 

Note that the solution of Step 2 does not prescribe a concrete charging schedule. For 

example, the battery of request 1 is charged for some two time units during the first epoch that 

spans over the time interval [0,3] but we still do not know what is the exact timing of the charging 

operation. However, since the total time of the charging operations in the first epoch is       

and the charging capacity during this epoch is 2, it is always possible to schedule the operations 

(possibly with preemption) in a greedy manner. In this case, for example one can schedule the 

first request at time 0 and once it is completed at time 2, start with the second request, continue 

until the end of the epoch at time 3, preempt it and start again on the second capacity unit at time 

0 until time 2. The capacity constraints on the arcs guarantee that such a schedule will be feasible 

at each epoch.  

Let   denote the number of events, proportional to the size of the input of the problem. The 

number of nodes in the constructed bipartite network is  ( ) and the number of arcs is  (  ). 

Orlin [9] introduced the fastest algorithm yet for the minimum cost flow problem with a 

complexity of  (       (           )) for networks with n nodes and   arcs. This leads to a 

strongly polynomial time algorithm for the BSSSP with complexity of  (        (    

        ))   (       ). The complexities of steps 1 and 3 are clearly dominated by the 

complexity of step 2. 
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Figure 5: Example of the reduction of Step 2 into minimum cost flow problem 

 

 

 

Figure 6: Feasible solution for the min cost flow problem presented in Figure 5 

 

3. Extended BSSSP 
In this section, we present and discuss an extended version of the BSSSP model that removes two 

simplifying assumptions of the original model. We refer to this model as EBSSSP. In particular, 

we no longer assume that all the batteries are returned completely empty from the customer, and 

that the energy consumption is constant during the charging process of the batteries. We note that 
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the FIFO policy that we proved to be optimal for BSSSP is no longer optimal for this extended 

model; hence the problem may be essentially harder.  

The charging phase (hereafter, phase) of a battery represents the charging time equivalent 

energy that it contains. For examples, the phase of a completely charged battery is   and the 

phase of a battery that requires additional   time units to be charged completely is    . 

We formally describe the EBSSSP with an integer linear program (ILP) that assumes 

discretized time information. That is, we assume that all the events occur at discrete time units 

and that the residual charging time of the returned batteries is discrete. If the time units are fine 

enough, the solution of such a model can be applied with adequate accuracy to the actual 

continuous time problem. First, we present some additional notations to be used by the 

mathematical model 

 

  
   The number of requests at time   of customers that return batteries at phase   

   The power required to charge a phase   battery (until it reaches phase    ) in terms of 

Watts. 

   The station capacity at time  , as before, but now in terms of available electrical power 

(Watts) 

 

Our model uses the following decision variables 

  
   The number of batteries at phase   that are being charged during the interval       ). The 

values of   
  may be constants that represents decisions made in the last period before the 

planning horizon (e.g., in a rolling horizon setting) or can be omitted from the model if the 

system starts at period 1. 

  
  The number of batteries at phase   that are supplied to customers at time    

  
   The number of batteries at phase   in the station at time   just after the provision of 

batteries to the customers is carried out, at the beginning of the period. The value of this 

variable does not include batteries that are being charged during the period       ). The 

values of   
  are constants that represent the initial inventory. 

 

The problem can be now stated as, 

   ∑       
 

     

       

 ∑  ( )  
 

     

       

 

Subject to 

(1) 

∑     
 

   

   

             (2) 

  
    

        
      

    
    

                   (3) 

∑   
 

 

   

 ∑   
 

   

   

          (4) 

  
                                (5) 

  
    

                              (6) 
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The objective function (1) is the sum of electricity costs and the penalty costs due to delivery 

of partially charged batteries. Constraints (2) are capacity constraints to make sure that the 

electrical power consumed at each moment does not exceed the capacity of the station. Constraint 

(3) is an inventory balance constraint that relates the inventory level of the batteries at each phase 

with the inventory level at the previous period, the number of batteries supplied to customers, the 

number of batteries returned by customers and the charging decisions. Constraints (4) stipulate 

that the number of batteries provided to the customers at each period is equal to the number of 

requests. Constraints (5) and (6) require integrality and non-negativity of all the decision 

variables. Note that   
  is defined only for          . Therefore, constraints (3) omit the 

relevant terms at the boundaries. 

Unfortunately, we do not know what the complexity status of the extended problem is. It is 

impossible to derive conclusions about this question from the above MIP. However, our 

numerical experiment in Section 5 shows that it is possible to solve the model using a commercial 

solver within a short time and with satisfactory numerical accuracy (i.e., time units of five 

minutes).   

Next, consider the uncapacitated case of the problem where the electricity power at the 

station suffices to charge all the batteries simultaneously
3
. In terms of MIP (1)-(6), this special 

case is obtained by removing the capacity constraint (2). Note that without this constraint the MIP 

is reduced to a network flow model that can be solved in polynomial time with respect to the size 

of the input. This implies a pseudo polynomial algorithm for the uncapacitated EBSSSP since the 

number of nodes and arcs in this network depends on   and  . 

4. Numerical Experiment  
In order to test the effectiveness of the time indexed MILP formulation presented above we 

constructed a set of 72 benchmark instances. To this end we generated six sets of requests that 

occurred over a planning horizon of        minutes (20 hours) starting at 4:00 am and ending 

at midnight. The characteristic of these demand realizations are detailed in Table 1. 

 

Name Number of 

requests 

Description 

D1 1000 Morning and afternoon demand peaks, typical of regular 

working days. D2 1500 

D3 2000 

D4 1000 Single demand peak around noon time, typical of Saturdays (in 

Israel) D5 1500 

D6 1500 Requests are randomly spread along the planning horizon  

Table 1: Description of the six demand realizations used in the numerical experiment 

 

We created instances with two different electricity tariff patterns offered by the Israel 

Electric Company for high voltage business Clients during three different seasons on regular 

working days. Namely: Summer Tariff, Winter Tariff (see 

                                                      
3
 From private communication with Better Place Ltd. personal, we learnt that this is currently the 

situation in most of the stations. 
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http://www.iec.co.il/BusinessClients/Pages/UpperVoltage.aspx). Note that the “fall and spring” 

tariff currently offered by the company exhibits little variations throughout the day and thus has 

little opportunity for savings using a smart charging schedule. The total amount of energy 

required to fully charge a battery is about 30KWh. The process requires one hour
4
 (        ). 

The energy consumption rate during the charging process was assumed constant, which is 

approximately the case with the fast charging technology currently used by Better Place Ltd. 

Therefore, the power consumption during the charging process of a battery is 0.5KWh per 

minute. The charging phase of the returned batteries in our experiment was drawn from normal 

distribution with a mean of 15 minutes and standard deviation of 4 minutes, rounded to nearest 

integer and truncated at zero.  

We note that since the electricity price during the night is constant and minimal, it is always 

optimal to charge at full capacity during these hours. Moreover, since the expected demand at 

these hours is very small, the order in which the batteries are charged is unimportant. Therefore, 

we decided to omit these hours from the experiment. For this reason, we also assume that the 

initial state of all the batteries in the station, at 4:00 am, is “fully charged”. 

We tested three battery inventory levels at the stations, namely,              . The 

charging capacity of the station in our test is constant at either 50% or 75% of the number of 

slots. That is          for      ;           for      ; and            for 

     . The penalty function was set to  ( )  ((   )  )
 
 where the argument,    is the 

phase of the supplied battery in minutes. Recall that this function is approximated by a piecewise 

linear function in the model where the number of pieces equal to the number of periods in  . 

Overall, we created instances with 6 demand patterns   2 electricity tariffs   3 station 

capacities   2 charging capacities = 72 problem instances. The request times and remaining 

charging times are given in discrete number of minutes but a preliminary experimentation with 

this level of discretization indicates that the solution times at this level are too large. Recall that in 

practice the problem needs to be solved on-line with a rolling horizon in order make scheduling 

decisions in a stochastic environment. Hence, we decided to discretize the time to five minutes 

units. In these terms the time dimension of the benchmark problems are           . For a 

comprehensive report on the application of a similar deterministic model in realistic settings 

within a rolling horizon framework, see [3]. 

 Table 2 presents the optimal cost (in Shekels) and running time in seconds for the 72 

instances described above. The model was solved using IBM Ilog Cplex 12.2 with defualt settings 

on an Intel Core i7 (870) desktop. 

Several interesting observations can be made based on these results. First, it should be noted 

that all the 72 instances could be solved very quickly with an average solution time of 1.27 

seconds and about six seconds for the hardest instances. This implies that the integer 

programming formulaion with time descretization of five minutes and rolling horizon of twenty 

hours can be used to make scheduling decisions online in a BSS. It is also worth mentioning that 

62 out of the 72 instances were solved at the root node of the branch and bound tree, which 

implies that the time index formulation is pretty tight. 

It is clear that a longer horizon and finer time discretization will result in longer running 

times. Therefore, we checked the effect of other dimensions of the problem on the solution time. 

                                                      
4
 We note that it is technically possible to charge the batteries at various rates. The tradeoff between 

quick vs. slow charging rates is out of the scope of this paper. 

http://www.iec.co.il/BusinessClients/Pages/UpperVoltage.aspx
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To this end, we ran a linear regression on the 72 observations defining the solution time as a 

dependent variable. The independent variables were       and the ratio between number of slots 

and charging capacity    . It turned out that none of the independent variables except for     

is significant at        and the ajusted    of the regression was small ( ̅       )  This 

analysis implies that the effects of the number of requests, the number of slots and the charging 

capacity of the station on the solution time of our MILP formulation is negligible. Hence, the 

same solution approach is likely to scale up for larger and busier BSSs then those used in our 

benchmark instances.  

It is apparent from Table 2 that the optimal total cost is much higher for the summer 

electricity instances compared to those of the winter. This can be attributed to the fact that in the 

summer the daytime electricity tariff in Israel is higher as the demand soars due to the usage of air 

conditioners. Therefore, during the summer, the peak demand for batteries replacement coincides 

with the peak electricity prices hours. Finally, as expected, the total electricity and penalty cost at 

each demand level is reduced as the number of batteries and the charging capacity are increased.  

All the input of our experiment and an internally documented IBM Ilog Opl models can be 

obtained from the author upon request. 
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N M Demand I 
Winter Prices Summer Prices 

Cost Time Cost Time 

100 50  D1 1000 8681.6258 1.592 11749.901 0.546 

100 75  D1 1000 8465.0633 0.558 11649.013 0.445 

150 75  D1 1000 7322.3521 0.823 10540.92 0.37 

150 113  D1 1000 7322.3521 0.384 10540.92 0.343 

200 100  D1 1000 6394.8931 0.382 9433.8702 0.434 

200 150  D1 1000 6394.8931 0.337 9433.8702 0.349 

100 50  D2 1500 21309.492 1.275 24296.172 3.278 

100 75  D2 1500 14974.286 0.565 19451.455 0.519 

150 75  D2 1500 12739.294 6.004 17795.133 0.786 

150 113  D2 1500 12240.263 1.123 17178.881 0.633 

200 100  D2 1500 11051.505 1.893 16171.525 0.462 

200 150  D2 1500 11026.562 0.485 16063.747 0.387 

100 50  D3 2000 21309.492 1.258 24296.172 3.232 

100 75  D3 2000 14974.286 0.535 19451.455 0.536 

150 75  D3 2000 12739.294 5.823 17795.133 0.786 

150 113  D3 2000 12240.263 1.053 17178.881 0.626 

200 100  D3 2000 11051.505 1.811 16171.525 0.457 

200 150  D3 2000 11026.562 0.459 16063.747 0.387 

100 50  D4 1000 21309.492 1.255 24296.172 3.231 

100 75  D4 1000 14974.286 0.563 19451.455 0.517 

150 75  D4 1000 12739.294 5.785 17795.133 0.791 

150 113  D4 1000 12240.263 1.028 17178.881 0.619 

200 100  D4 1000 11051.505 1.841 16171.525 0.445 

200 150  D4 1000 11026.562 0.472 16063.747 0.372 

100 50  D5 1500 21309.492 1.258 24296.172 3.225 

100 75  D5 1500 14974.286 0.554 19451.455 0.525 

150 75  D5 1500 12739.294 5.842 17795.133 0.77 

150 113  D5 1500 12240.263 1.03 17178.881 0.622 

200 100  D5 1500 11051.505 1.814 16171.525 0.446 

200 150  D5 1500 11026.562 0.483 16063.747 0.386 

100 50  D6 1500 21309.492 1.258 24296.172 3.228 

100 75  D6 1500 14974.286 0.544 19451.455 0.512 

150 75  D6 1500 12739.294 5.777 17795.133 0.821 

150 113  D6 1500 12240.263 1.01 17178.881 0.637 

200 100  D6 1500 11051.505 1.82 16171.525 0.45 

200 150  D6 1500 11026.562 0.462 16063.747 0.376 

Table 2: Summary of the results of the numerical experiment 

5. Conclusions and Further Research 
This paper presents a mathematical model and effective solution method for a timely practical 

scheduling problem originating from an emerging technology of electric cars with replaceable 

batteries. The model, with simple modifications can be applied to various scheduling problems in 

environments with time varying production costs, e.g., due to a smart electricity grid.  

A strongly polynomial time algorithm for a simplified version of the problem (BSSSP) is 

presented. This version of the problem assumes that batteries are returned completely depleted 

and that the charging process consumes constant power. Both assumptions can be viewed as 

conservative assumptions that may provide adequate slack for implementation in a stochastic 

environment.   
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 The EBSSSP removes the above simplifying assumptions. We present an effective MIP 

formulation for this problem as well as a pseudo polynomial algorithm for its uncapacitated 

version. The ability of a commercial solver to deliver optimal solutions for large-scale instances 

of the problem within a few seconds using this formulation was demonstrated. Thus, it is 

sufficiently effective to be used as a subroutine of an on-line math heuristic solution approach for 

the underlying stochastic and dynamic problem. Such a heuristic is currently being devised in a 

thesis [3] and will be reported upon in a subsequent paper. Inquiry into the complexity status of 

EBSSSP was left for future research but we believe that the general problem is strongly NP-Hard. 
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