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The Consecutive Multiprocessor Job Scheduling Problem 

Abstract 

We study a variant of the multiprocessor job scheduling problem, where jobs are 

processed by several identical machines. The machines are ordered in a sequence, 

and each job is processed by several consecutive machines simultaneously. The 

jobs are characterized by their processing time, the number of required consecutive 

machines, and their ready time. The objective function is to minimize the sum of 

general functions defined over the completion time of each job. This study is 

motivated by a real problem in the semiconductor industry. We present a time-

indexed integer programming and a constraint programming formulations for the 

problem and demonstrate their applicability through an extensive numerical study 

and an industrial case study.   

Keywords: multiprocessor job scheduling, integer programming, constraint 

programming 

1. Introduction and preliminaries   

We study a scheduling problem that can be stated as follows: A system with an 

ordered set of 𝑚 identical machines, located one next to the other, is used to process a 

set of 𝑛 jobs. The processing of each job occupies a set of several consecutive machines 

simultaneously, while each machine can process at most one job at a time. Each job is 

characterized by its processing time, number of required consecutive machines, ready 

time, and, possibly, due date. For example, a job that requires three machines, with a 

time duration of five hours, may be processed simultaneously on machines 2, 3 and 4, 

starting at 𝑡 = 7 and ending at 𝑡 = 12. The objective function is to minimize the sum 

of general functions defined over the completion time of each job. This includes 

minimizing the number of tardy jobs, and minimizing the total tardiness, as special 

cases. The problem is named the Consecutive Multiprocessor Job Scheduling Problem. 

It is a generalization of some known NP-hard and inapproximable scheduling problems, 

including minimizing the number of tardy jobs on parallel machines, see for example 

(Pinedo, 2012). 

This study is motivated by a real-world application of allocating computing 

resources during the development of new integrated circuits in the semiconductors 

industry. The computing resources are hardware emulators that are being used to save 
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time and costs associated with the verification of new designs before beginning the 

manufacturing process. Each verification job needs to be processed by several 

consecutive emulators in the array for a given time. The developers in the various 

departments specify in advance the time by which each design will be ready for 

verification. The due dates are dictated by the production plans of the FABs and other 

managerial considerations. The emulators are expensive and scarce. Thus, it is 

important to utilize them efficiently. Similar problems arise in different applications, 

such as allocating berth space and cranes in a seaport. 

In this study, we present two formulations for the consecutive multiprocessor job 

scheduling problem: a time-indexed integer programming (IP) model and a constraint 

programming (CP) model. In an extensive numerical study, we compare these 

formulations with state-of-the-art formulations from the literature and demonstrate their 

effectiveness. Our time-indexed formulation can be viewed as a generalization of 

previous similar formulations for classic parallel machine scheduling problems, see for 

example (Sevaux & Thomin, 2001). In addition, we apply our method in a rolling 

horizon scheme for an Industrial case study and compare its performance with the 

current practice.  

The rest of this paper is organized as follows. In Section 2, we review the current 

literature and identify the gaps that need to be addressed. In Section 3, we the 

formulations for the consecutive multiprocessor job scheduling problem. The 

performance of these formulations are tested with commercial solvers in Section 4, and 

are compared with a previous formulation that is capable of solving some special cases 

of the problem. In Section 5, we present the results of an industrial case study where 

our algorithm is applied in a dynamic setting. Concluding remarks are given in Section 

6. 

2. Literature review   

The problem of scheduling jobs on multiple processors shares similar properties to 

well-studied problems such as scheduling jobs on parallel machines, the multiprocessor 

scheduling problem, strip packing and cutting problems, the berth allocation problem 

(BAP); however, the studied problem differs from the ones discussed in the literature 

either by the scheduling environment or by the objective function. 
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(Leonardi & Raz, 2007) studied the parallel processors for minimizing total flow 

time problem (known as 𝑃/𝑟𝑖/∑ 𝑐𝑖). They proved that the problem is not approximable 

within 𝑂 (𝑛
1

3
−𝜖) for any 𝜖 > 0. This problem is a special case of our problem since we 

consider jobs that require more than one machine at a time. We conclude that the 

Consecutive Multiprocessor Job Scheduling Problem is strongly NP-hard and is not 

approximable within a constant. Hence, the motivation for the solution methods 

presented in this paper. 

The general multiprocessor job scheduling has been studied in (Bianco, 

Blazewicz, Dell'Olmo, & Drozdowski, 1995) and (Chen & Lee, 1999). In the 

generalized problem, each job can be processed by multiple alternative sets of 

machines, not necessarily with identical cardinality. For example, job 𝑖 can be 

processed either by machines {2, 4} or by machines {3, 4, 5}. Hence, all alternatives 

have to be explicitly presented. In (Chen & Lee, 1999), a two phase heuristic is 

proposed for solving the problem of a general multiprocessor with the objective of 

minimizing the makespan, as follows: an assignment phase, in which alternatives are 

being chosen for each job, and a scheduling phase, in which the job ordering is being 

determined. (Baptiste, 2003) addresses a special case of the general multiprocessors 

scheduling problem, when all jobs have the same processing time and each job has its 

own ready time and size (required number of machines). He shows that both completion 

time and makespan minimization problems can be solved in polynomial time using a 

dynamic programming algorithm. (Huang, Chen, & Wang, 2007) present a linear time 

1.5 approximation algorithm for minimizing the makespan on four machines.  

Note that in our model, each job has its own size, which is the required number 

of consecutive machines, and hence, the problem can be expressed in a more concise 

manner. Cutting rectangular elements and strip packing problems, see for example, 

(Martello, Monaci, & Vigo, 2003) have similar structure to our problem but differ in 

their objective function, constraints and in the fact that the size of each job is not 

necessarily discrete. 

Some variations of the berth allocation problem (BAP) are highly related to the 

general multiprocessor scheduling problems. This problem deals with allocating berth 

space and cranes in seaports to arriving vessels that have to be loaded and unloaded. As 
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described in (Bierwirth & Meisel, 2010), there are three variations of this problem, as 

follows:  

1. Discrete case (BAP-D). The quay is divided into separate sections, where each 

section (berth) can serve one vessel at a time (Imai, Chia, Etsuko, & Papadimitriou, 

2008), (Imai, Nishimura, & Papadimitriou, 2001). 

2. Continuous case (BAP-C). In this case, a vessel can berth anywhere along the quay. 

Consequently, the quay can serve a number of vessels simultaneously (Park & Kim, 

2005) (Imai, Sun, Nishimura, & Papadimitriou, 2005). 

3. Hybrid case (BAP-H). The quay is divided into separate sections, as each section is 

continuous and may serve several vessels, and each vessel may occupy several 

sections (Umang, Bierlaire, & Vacca, 2013).  

The first case (BAP-D) is analogous to the classic parallel machine problem, as 

each vessel\job can be served by a single section (machine). The second case, (BAP-C) 

is analogous to our problem, if the size of the vessels (jobs) and the length of the quay 

(sequence of machines) are integers. Our problem is also a special case of the third case 

(BAP-H), where no two vessels are small enough to fit into one quay section. 

The similarity between our problem and BAP-C can also be explained 

graphically. Each vessel/job is represented by a rectangle, with dimensions of time and 

space (which is equivalent to multiple machines in the discrete case). These rectangles 

are then located on a two-dimensional space without overlapping, while considering 

some objective function. An example of such a solution is given in Figure 1.  

(Moon, 2000) suggests a MILP formulation and a heuristic method for the BAP-

C, which minimizes a cost function consisting of a vessel berth position relative to the 

requested and the cost of tardiness. The BAP-C problem with the criterion of 

minimizing the total flow time of the vessels is addressed in (Guan & Cheung, 2004). 

A relative position formulation (RPF) and position assignment formulation (PAF) are 

proposed for solving the problem. Additionally, a special tree search procedure is 

constructed to create an optimal solution. A comparison between the proposed tree 

search method and RPF is made, and while the tree search performs better than RPF, it 

is still highly dependent on the number of vessels (or jobs in our case). Two extensions 

of this berth allocation model are studied in (Ernst, Oguz, Singh, & Taherkhani, 2017) 
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and (Agra & Oliveira, 2018). The former considers high tide and the latter combines 

the crane assignment to vessels.   
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Figure 1. Schedule example 

The contribution of our study with respect to the state of the art of the equivalent 

BAP-C problem is as follows. First, we present new integer programming (IP) and 

constraint programming (CP) models, which perform well compared to the current 

existing formulation of (Guan & Cheung, 2004), when solved with a commercial solver 

(CPLEX in our case). Second, our model is more general in the objective function, as 

it is capable of optimizing any objective function that is separable in the completion 

time of the jobs, including nonlinear functions. Such objective functions may be found 

in various applications in both the contexts of machine and berth scheduling. For 

example, when the processing costs vary over the hours of the day due to time-of-use 

electricity tariffs or different labor costs at various hours of the day/week. Finally, we 

implement our model in a rolling horizon setting to simulate scheduling of test jobs on 

hardware emulators. Our simulation is based on real-life datasets obtained from a major 

semiconductor company. We show that our algorithm performs well for this real-world 

problem, and significantly outperforms the current policy.   

3. Mathematical formulations   

In this section, we present a time-indexed integer programming formulation and a 

constraint programming formulation for the consecutive multiprocessor job scheduling 

problem. In addition, a benchmark mixed integer formulation, inspired by the model of 

(Guan & Cheung, 2004), was developed and is presented in Appendix A. For each of 
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our modeling techniques, we start with an important special case, which is the 

minimization of the number of tardy jobs and continue to the general objective function 

that captures many well-studied scheduling problems with general ready times and due 

dates. Both objectives were inspired by the real-world case study, mentioned above. 

Let us first introduce some notation for the parameters of the problem. 

𝑛 number of jobs 

𝑚 number of machines 

𝑝𝑖 processing time of job 𝑖 = 1,… , 𝑛 

𝑠𝑖 number of consecutive machines required for the processing of job 𝑖 (aka 

size of job 𝑖) 
𝑟𝑖 ready time of job 𝑖, note that since the time periods are discrete and 

indexed from 1, 𝑟𝑖 = 𝑡 implies that the earliest period on which the jobs 

can start is 𝑡 + 1.   

𝑑𝑖 due date of job 𝑖 
𝑇 the length of the planning horizon.  

 

Throughout the paper, we assume that all the numerical parameters are integers. Based 

on this assumption, one can assume, without loss of generality, that the starting and 

completion times of the job are all integers. The planning horizon is divided into 𝑇 

discrete periods where Job 𝑖 becomes available at the end of period 𝑟𝑖 and is due by the 

end of period 𝑑𝑖. 

3.1. Time-indexed integer programming formulation 

We first introduce a time-indexed integer programming formulation, which minimizes 

the number of tardy jobs. To this end, we define the following decision variable:  

𝑥𝑖𝑗𝑡 A binary decision variable that equals one if job 𝑖 is scheduled to start on 

machines 𝑗, … , 𝑗 + 𝑠1 − 1 at time 𝑡. Both the periods and the machines are 

indexed from one. 

For the sake of compact presentation of the model we define the following parameters: 

𝛼𝑖𝑗 The lowest starting machine index possible for job 𝑖 given it occupies 

machine 𝑗.  𝛼𝑖𝑗 = 𝑚𝑎𝑥{1, 𝑗 − 𝑠𝑖 + 1}.   

𝛽𝑖𝑡 The earliest starting period for job 𝑖 given it is still being processed at 

period 𝑡. 𝛽𝑖𝑡 = 𝑚𝑎𝑥{𝑟𝑖 + 1, 𝑡 − 𝑝
𝑖
+ 1} 

𝛾𝑖𝑡 The latest starting period for job 𝑖 given that it is still being processed at 

period 𝑡. 𝛾𝑖𝑡 = min{𝑑𝑖 − 𝑝
𝑖
+ 1, 𝑡} 
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Model IP-U 

max {∑ ∑ ∑ 𝑥𝑖𝑗𝑡

𝑑𝑖−𝑝𝑖+1

𝑡=𝑟𝑖+1

𝑚−𝑠𝑖+1

𝑗=1

𝑛

𝑖=1

} 

 

 (1) 

Subject to: 

 
  

∑ ∑ 𝑥𝑖𝑗𝑡 ≤ 1

𝑑𝑖−𝑝𝑖+1

𝑡=𝑟𝑖+1

𝑚−𝑠𝑖+1

𝑗=1

 

 

𝑖 = 1, . . . , 𝑛 
 

(2) 

∑   ∑   ∑ 𝑥𝑖𝑗′𝑡′ ≤ 1

𝛾𝑖𝑡

𝑡′=𝛽𝑖𝑡

𝑗

𝑗′=𝛼𝑖𝑗

𝑛

𝑖=1

 

 

𝑗 = 1, . . . , 𝑚 

𝑡 = 1,… ,max
𝑖

𝑑𝑖 
(3) 

𝑥𝑖𝑗𝑡 ∈ {0,1} 
𝑖 = 1, . . . , 𝑛 

𝑗 = 1, . . . , 𝑚 − 𝑠𝑖 + 1, 
𝑡 = 𝑟𝑖 + 1,… , 𝑑𝑖 − 𝑝𝑖 + 1 

(4) 

The objective function (1) maximizes the total number of jobs that were completed 

before their due date. This objective is equivalent to minimizing the number of tardy 

jobs. Constraint (2) assures that each job is processed at most once; no scheduling 

decisions are made for jobs that cannot meet their due date. Constraint (3) is a non-

overlapping constraint, which eliminates the possibility of scheduling multiple jobs on 

the same machine at the same time. Note that only assignments of jobs to feasible 

machines and starting times that cover machine 𝑗 at times 𝑡 are summed at the left-hand 

side. Indeed, if 𝑡 > 𝑑𝑖 or 𝑡 < 𝑟𝑖 then 𝛽𝑖𝑡 > 𝛾𝑖𝑡. In such case the summation is empty.  

In (4), the binary decision variables are defined for all possible starting periods of jobs 

within their allowed period.  

A toy example, to demonstrate the non-overlapping constraint (3), is given in 

Figure 2. Assume that only two jobs are considered, job 1, with 𝑝1 = 5, and 𝑠1 = 2, 

and job 2, with 𝑝2 = 3, and 𝑠2 = 4. Let us consider the overlapping avoidance at 𝑡 =

6, 𝑗 = 5. In this case, job 1 will use machine 5 in time 6 only when 𝑥1𝑗𝑡 = 1 for any 

combination of 𝑗 ∈ {4, 5}, and 𝑡 ∈ {2,… ,6}. Similarly, job 2 will use the same slot 

(machine 5 in time 6) only when 𝑥2𝑗𝑡 = 1 for any combination of 𝑗 ∈ {2, … ,5}, and 𝑡 ∈

{4,… ,6}. Constraint (3) then sums over these ranges for the 𝑥 variables of the two jobs, 

bounding the summation by 1, i.e., ∑ ∑ 𝑥1𝑘𝑡′
6
𝑡′=2

5
𝑘=4 + ∑ ∑ 𝑥2𝑘𝑡′

6
𝑡′=4

5
𝑘=2 ≤ 1. 
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Figure 2. Example for constraint (3) 

Next, we extend the model to be useful for a variety of scenarios by assuming a 

more general objective function. In particular, a parameter 𝑐𝑖𝑡 (typically a cost) is 

associated with starting each job 𝑖 at each particular time 𝑡 (or completing the job at 

𝑡 + 𝑝𝑖. It is assumed now that jobs can be started and completed at any time after their 

ready time and not necessarily before their due dates (if exist), but some cost may be 

associated with each start time. The extended model is as follows: 

Model IP-G 

min {∑ ∑ ∑ 𝑐𝑖𝑡𝑥𝑖𝑗𝑡

𝑇−𝑝𝑖+1

𝑡=𝑟𝑖+1

𝑚−𝑠𝑖−1

𝑗=1

𝑛

𝑖=1

} 

 

 (5) 

Subject to: 

 
  

∑ ∑ 𝑥𝑖𝑗𝑡 = 1

𝑇−𝑝𝑖+1

𝑡=𝑟𝑖+1

𝑚−𝑠𝑖+1

𝑗=1

 

 

𝑖 = 1, . . . , 𝑛 
 

(6) 

∑   ∑   ∑ 𝑥𝑖𝑗′𝑡′ ≤ 1

min{𝑇−𝑝𝑖+1,𝑡}

𝑡′=𝛽𝑖𝑡

𝑗

𝑗′=𝛼𝑖𝑗

𝑛

𝑖=1

 

 

𝑗 = 1, . . . , 𝑚 

𝑡 = 1,… , 𝑇 
 

(7) 

𝑥𝑖𝑗𝑡 ∈ {0,1} 
𝑖 = 1, . . . , 𝑛 

𝑗 = 1, . . . , 𝑚 − 𝑠𝑖 + 1 

𝑡 = 𝑟𝑖 + 1,… , 𝑇 − 𝑝𝑖 + 1 

(8) 

 

The objective function (5) of the extended model is to minimize the total cost 

associated with the start time of all the jobs. Constraint (6) stipulates that each job starts 

at some time not before its ready time. Constraint (7) eliminates the overlapping of jobs 
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on the same machine similarly to (3), with a different time range in the summation. In 

(8), the ranges of the decision variables are defined.   

Note that model IP-G is general enough to represent various objective functions. 

Some examples include the sum of the completion times of all the jobs, the sum of 

functions of the completion times, as well as less studied variants, such as nonlinear 

tardiness costs and non-monotonous costs that may appear, for example, in the context 

of time-of-use electricity tariffs. In particular, the problem of minimizing the number 

of tardy job (as in model IP-U) is obtained by setting 𝑐𝑖𝑡 = 0 for all 𝑡 = 𝑟𝑖, … , 𝑑𝑖 − 𝑝𝑖 +

1 and 𝑐𝑖𝑡 = 1 for all 𝑡 > 𝑑𝑖 − 𝑝𝑖 + 1. Similarly, the problem of minimizing the total 

tardiness is obtained by letting 𝑐𝑖𝑡 = max{0, 𝑡 + 𝑝𝑖 − 𝑑𝑖}. However, the IP-U model 

presented above as a maximization problem is more compact and tractable since the 

starting time variables are defined only for the periods between the ready time and due 

date. Specifically, the number of binary variables in the IP-U (resp., IP-G) models is 

less than 𝑚∑ (𝑑𝑖 − 𝑟𝑖)
𝑛
𝑖=1  (resp., 𝑚𝑛𝑇). Note that in a typical situation 𝑛𝑇 ≫

∑ (𝑑𝑖 − 𝑟𝑖)
𝑛
𝑖=1 . For completeness the number of constraints in IP-U (resp., IP-G) model 

is 𝑛 +𝑚 ∙ max
𝑖

𝑑𝑖  (resp. 𝑛 +𝑚𝑇). 

A variant of the problem that is of interest in our motivating case-study is when 

the goal is to minimize a weighted sum of the number of tardy jobs and the total 

tardiness. The penalty associated with each job in this setting may be expressed as 

follows: 

𝑤𝑈 ⋅ 𝕀{𝑖𝑠𝑡ℎ𝑒𝑗𝑜𝑏𝑡𝑎𝑟𝑑𝑦} + 𝑤𝑇 ⋅ {𝑇𝑎𝑟𝑛𝑑𝑖𝑛𝑒𝑠𝑠}, (9) 

where 𝕀{𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛} is an indicator function that returns one if the condition holds and 

zero otherwise; 𝑤𝑈 is the cost for a tardy job and 𝑤𝑇 is the penalty for a unit of 

tardiness. The penalty associated with each job in this setting may be expressed as 

follows: 

𝑐𝑖𝑡 = 𝑤𝑈 ⋅ 𝕀{𝑡>𝑑𝑖−𝑝𝑖} + 𝑤𝑇 ⋅ max{0, 𝑡 − (𝑑𝑖 − 𝑝𝑖 + 1)}. (10) 

In particular, if our goal is to lexicographically minimize the number of tardy jobs 

as a primary objective and the total tardiness as a secondary one, we can set 𝑤𝑈 ≫𝑤𝑇. 

Recall that the length of the planning horizon, 𝑇, for model IP-G [(5)-(8)] is not 

bounded by max
𝑖∈{1,…,𝑛}

𝑑𝑖 as in the case of model IP-U [(1)-(4)] since in this model jobs 
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can be scheduled to be completed after their due date. The value of 𝑇 dictates the 

number of decision variables and hence the tractability of the model. If 𝑇 is externally 

given, the model does not necessarily admit a feasible solution. In case 𝑇 is to be 

determined internally, and the cost associated with the completion time is non-

decreasing over time, an upper bound of 𝑇 in an optimal solution is given by the 

following: 

𝑇′ = max
𝑖∈{1,…,𝑛}

𝑟𝑖 +∑𝑝𝑖

𝑛

𝑖=1

. (11) 

The upper bound, 𝑇′, is valid because any schedule that is ended after it must 

contain periods in which all the machine are idle and all the remaining jobs are ready. 

If the objective function is non-decreasing in the completion time of all the jobs, it is 

always possible to shift the jobs that are scheduled after the idle period to an earlier 

time without increasing the value of the objective function. 

However, such a bound may be loose and results in a large number of decision 

variables in the model. The following procedure can provide a tighter upper bound on 

𝑇, if our goal is to lexicographically minimize the number of tardy jobs and the total 

tardiness as a secondary objective. First, the minimal number of tardy jobs, 𝑈∗, is 

obtained by solving the minimization problem of the primary objective (say by solving 

IP-U). Then, an upper bound on the length of the planning horizon is computed, where 

𝑝[𝑖] denotes the processing time of the 𝑖𝑡ℎ longest job, by the following: 

𝑇′′ = max
𝑖∈{1,…,𝑛}

𝑑𝑖 +∑𝑝[𝑖]

𝑈∗

𝑖=1

. (12) 

Since neither of the above upper bounds dominates the other, one should use 𝑇 =

min(𝑇′, 𝑇′′). Note that the upper bound in (12) is valid even if we use an upper bound 

on 𝑈∗ rather than its exact value, i.e., if the number of tardy jobs is obtained by some 

heuristic. 

3.2. Constraint programming formulation 

Constraint programming (CP) is a solution approach that is based on formulating 

problems as constraint satisfaction models, and solves them by using domain-specific 

or general constraint propagation and branching methods (Apt, 2003). In this study, we 

focus on the modeling aspect and use a state-of-the-art commercial solver to 
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demonstrate the effectiveness of our formulation. Using a general solver (either 

commercial or open source) is a practical and attractive option because it enables very 

rapid implementation of solution methods for a diverse set of optimization problems.  

 CP has been successfully used to solve a variety of problems in the domains of 

vehicle routing, scheduling, timetabling and others. See, for example, (Shaw, 1998), 

(Baptiste, 2003) and (Bukchin & Raviv, 2018). A CP model resembles an IP model in 

terms of syntax. It contains a declaration of decision variables with their domains, a set 

of constraints, and possibly an objective function. However, the CP modeling paradigm 

is much more expressive. In fact, the language is a superset of the integer linear 

programming modeling language. In addition to equality and inequality constraints 

between linear mathematical expressions, a CP model can contain nonlinear 

expressions, logical expressions, use decision variables as indices to other vectors of 

decision variables, and can include global constraints that capture a relationship 

between large sets of decision variables. There is no agreeable syntax for describing a 

CP model, and each solver implements a different modeling language that is suitable to 

express the type of constraint that it can propagate. Here, we are using the syntax 

inspired by the OPL language used by the ILOG CP Solver, a commercial package that 

we used for our numerical experiments. Some CP modeling constructs, used in our CP 

formulations below, are demonstrated in Appendix B. 

Next, we present our CP model. As with the IP formulation, we will start with a 

model that minimizes the number of tardy jobs, which is equivalent to IP-U, and 

continue with a more general model that can optimize an arbitrary function over the 

completion times of the jobs. To this end, we introduce two sets of interval decision 

variables.  

𝐽𝑖 Represents the scheduled time of job 𝑖 - this is an optional interval with a 

predefined duration, minimal start time and maximal end time. 

𝐴𝑖𝑗 An auxiliary optional interval variable that is used to prevent jobs from 

overlapping on machines.  
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Model CP-U 

max∑presenceOf(𝐽𝑖)

𝑛

𝑖=1

  (13) 

Subject to:   

altenative(𝐽𝑖, {𝐴𝑖1, … , 𝐴𝑖,𝑚−𝑠𝑖+1
})  𝑖 = 1, … , 𝑛 (14) 

∑ ∑ pulse(𝐴𝑖𝑘, 1)
𝑗
𝑘=max(1,𝑗−𝑠𝑖+1)

𝑛
𝑖=1 ≤ 1  𝑗 = 1,… ,𝑚 (15) 

𝐽𝑖 interval, optional, length 𝑝𝑖 in 𝑟𝑖, …𝑑𝑖  𝑖 = 1, … , 𝑛 (16) 

𝐴𝑖𝑗 interval, optional   
𝑖 = 1, … , 𝑛,  

𝑗 = 1,… ,𝑚 
(17) 

 

The objective function (13) maximizes the number of scheduled jobs. Since the 

model allows jobs to be scheduled only if they satisfy their due date specifications, this 

objective function is equivalent to minimizing the number of tardy jobs. Constraint (14) 

states that if a job is scheduled (𝐽𝑖 is present), its respective auxiliary interval on one of 

the machines ({𝐴𝑖1, … , 𝐴𝑖,𝑚−𝑠𝑖+1
}) is also present and equal to 𝐽𝑖. Constraint (15) 

stipulates that the instantaneous load on each of the machines during the entire planning 

horizon never exceed one, which is to say that no two jobs overlap in terms of time and 

machines. The result of the summation on the left-hand side is a pulse that describes 

the utilization over time of each of the machines due to all the jobs. A job contributes 

to the utilization of a machine, 𝑗, at a given time if it is scheduled at this time and if its 

starting machine is one of the last 𝑠𝑖 machines before machine 𝑗 (and including it). In 

(16), the interval decision variable is defined as the optional interval of length 𝑝𝑖 and 

range 𝑟𝑖 to 𝑑𝑖, meaning that it can start no earlier than 𝑟𝑖 and end no later than 𝑑𝑖. Finally, 

in (17), the 𝐴𝑖𝑗 variables are defined as optional intervals without further specifications. 

Next, we present the generalized CP model, CP-G, which is equivalent to the IP-

G model, (5)-(8). We use the same notation and very similar constraints, so in our 

discussion below, we will focus on the differences that allow this generalization. 

Model CP-G 

min∑ 𝑓𝑖(𝐽𝑖)
𝑛
𝑖=1    (18) 

Subject to:   

altenative(𝐽𝑖, {𝐴𝑖1, … , 𝐴𝑖,𝑀−𝑠𝑖+1
})  𝑖 = 1. . 𝑛 (14)  
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∑ ∑ pulse(𝐴𝑖𝑘, 1)
𝑗
𝑘=max(1,𝑗−𝑠𝑖+1)

𝑛
𝑖=1 ≤ 1  𝑗 = 1. . 𝑚, (15) 

𝐽𝑖,    Interval, length 𝑝𝑖 in 𝑟𝑖, … 𝑇  𝑖 = 1. . 𝑛 (19) 

𝐴𝑖𝑗, Interval, optional   𝑖 = 1. . 𝑛, 𝑗 = 1. . 𝑚 (17) 

 

In the objective function, (18), we minimize the sum of a set of generic functions 

𝑓𝑖 over the properties of the interval of the jobs. In particular, the properties presenceOf 

and endOf are relevant. The function can be any expression that is available in the CP 

modeling language, including nonlinear ones, see an example below. In constraint (19), 

the definition of the interval is slightly different than in (16). Here, the jobs are not 

defined as optional (meaning they are mandatory) and their range is bounded from 

above by some upper bound on the length of the planning horizon, rather than by their 

due date. The upper bounds discussed for the IP-G model are valid here as well. This 

allows the generalization of scheduling a job after their due date (while bearing the 

implications in the objective function). Constraints (14), (15), and (17) have not 

changed. 

For example, minimizing a weighted sum of the number of tardy jobs and the 

total tardiness, as in (9), can be obtained by substituting 𝑓𝑖(𝐽𝑖) with the following: 

𝑊𝑈(𝑒𝑛𝑑𝑂𝑓(𝐽𝑖) > 𝑑𝑖) +𝑊𝑇(max(0, 𝑒𝑛𝑑𝑂𝑓(𝐽𝑖) − 𝑑𝑖)) 

Note that if our only goal is to minimize the number of tardy jobs, then model 

CP-U can be solved more efficiently, mainly since the domains that it specifies for the 

interval decision variables, 𝐽𝑖, are smaller. 

4. Numerical experiments and analysis   

In the previous section, the time-indexed integer programming (IP) and constraint 

programming (CP) formulations have been proposed for the consecutive 

multiprocessor job scheduling problem. Two variations were presented for each 

formulation, one for the objective of minimizing the number of tardy jobs (denoted as 

IP-U and CP-U) and the other for a more general setting (denoted as IP-G and CP-G). 

The general setting models were examined with a special case of lexicographically 

minimizing the number of tardy jobs and the total tardiness. This model, which is a 

special case of model G, is denoted in this section as model UT. 
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 In addition to the IP and CP formulation, we examine, as a benchmark, a 

modified version of the mixed integer programming formulation originally presented 

in (Guan & Cheung, 2004), denoted as GC. Since, to the best of our knowledge, the 

model proposed here has not been studied in the literature, we adapt the (Guan & 

Cheung, 2004) formulation, which is based on continuous variables for the position of 

the jobs and integer variables for non-overlapping constraints. Then, we modify the 

objective of the original formulation, first for minimizing the number of tardy jobs 

(denoted CG-U) and then for the lexicographic problem (denote as CG-UT). Note that 

this formulation is also similar to other formulations suggested for the facility layout 

problems, see (Heragu, 2008). Our adaptation is presented in Appendix A. 

Next, we compare the performance of the three formulations, for each of the 

problem types, presented above. Other than the general relative performance of the 

formulations, we study the effect of the problem parameters on the performance and 

identify the classes in which each formulation performs best. 

4.1. Experimental design 

A full factorial design experimentation was conducted. The instances for each of the 

two problems (denoted as U and G) were solved using the three formulations (GC, IP, 

and CP). The factors in our design are as follows:  

1. The number of machines, 𝑚, with two levels of 15 and 25;  

2. The number of jobs, 𝑛, with five levels of 10, 20, 30, 40, and 50;  

3. The time granulation of the job’s processing time. For each job 𝑖, a process time,𝑝𝑖, 

is drawn from a discrete uniform distribution 𝑈(
𝑝𝑚𝑎𝑥

5
, 𝑝𝑚𝑎𝑥), where 𝑝𝑚𝑎𝑥 is a 

parameter responsible for the time granulation. Five levels were given to this 

parameter: 5, 10, 20, 40 and 80. For example, 𝑝𝑚𝑎𝑥 = 5 indicates that the 

processing time is taken from a discrete distribution with possible discrete values 

of 1 to 5. When 𝑝𝑚𝑎𝑥 = 40, for example, a higher granulation processing time is 

considered, which is taken from a discrete distribution with possible discrete values 

of 8 to 40.  

4. The job size, namely, the number of consecutive machines it requires. The size of 

job 𝑖, 𝑠𝑖, is drawn from discrete uniform distribution 𝑈(1, ⌊𝑠 ⋅ 𝑚⌋), where ⌊𝑥⌋ is the 

largest integer that is smaller than or equal to 𝑥, and the factor 𝑠 has two levels of 

0.3 and 0.5.  
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5. Two tightness levels of the window between the ready time and the due dates as 

described below. 

The factors and their levels are depicted in Table 1. In summary, the full factorial 

experiment results in 2 × 5 × 5 × 2 × 2 = 200 instances for each of the six models, 

1200 runs in total. The solvers’ running time was limited to 10 minutes but in most of 

the instances the solution process was terminated with a provably optimal solution 

earlier. 

The ready times and due dates of the jobs were set to maintain two structures of the 

problems, with different levels of tightness. The values of the tightness parameters were 

determined via preliminary experiments, to avoid extreme cases of none or too many 

tardy jobs; cases that were found to be very easy to solve. Consequently, the structure 

with the high tightness resulted in an average of around 25% tardy jobs, while the 

structure with the low tightness resulted in an average of around 5% tardy jobs. The 

procedure of setting the corresponding parameters was done as follows. The ready time 

of each job 𝑖, 𝑟𝑖, was randomly drawn from the set {0,1, … , Δ𝑚𝑎𝑥} and the due date was 

taken from the set {𝑟𝑖 + 𝑝𝑖, 𝑟𝑖 + 𝑝𝑖 + 1,… , 𝑟𝑖 + 𝑝𝑖 + Δ𝑚𝑎𝑥}, while keeping the value of 

Δ𝑚𝑎𝑥 proportional to the capacity required by the scheduled jobs. Specifically, we set 

Δ𝑚𝑎𝑥 = 𝜁�̅� ∙ �̅� ∙ 𝑛/𝑚, where �̅� is the average processing time and �̅� is the average job 

size. The parameter 𝜁 represents the level of tightness, with values of 0.3 for the tight 

instances, and 0.6 for the loose ones.  

The length of the planning horizon in the UT problem was set based on the upper 

bound obtained from (11) and (12), using the best solution obtained for the equivalent 

U model. 

Table 1: Factors summary  

Factor Set of possible values 

𝑚 Number of machines {15, 25}  
𝑛 Number of jobs {10, 20, 30, 40, 50}  

𝑝𝑚𝑎𝑥 Max. process time (resolution) {5, 10, 20, 40, 80}  
𝑠 Job size factor {0.3, 0.5}  
𝜁 Tightness level of the instance {0.3, 0.6}  

 

The experiments were conducted on an Intel i7-6700K desktop with 64 GB Ram 

running under Windows 10. We use Cplex Studio 12.8 to formulate and solve all the 
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six models. The input files, the Python code that was used to generate it, and the OPL 

models are available upon request from the second author.  

4.2.  General results 

First, we present the general results based on the entire set of the instances. The results 

are given in Table 2. When comparing the formulations, we distinguish between 

instances for which an optimal solution was found and those that consumed the entire 

time limit, resulting in approximated solutions. The former cases are evaluated by their 

runtime, while the latter are evaluated by their solution value. Other than comparisons 

based on specific (solution and runtime) measures, we developed a general 

lexicographic comparison rule. A formulation X is said to lexicographically outperform 

formulation Y with respect to a given instance if (1) it provides a lower solution value. 

(2) In case of a tie in (1), it provides a lower runtime. (3) In case of ties in (1) and (2), 

it provides a lower optimality gap. In the rare cases of ties in all the three criteria the 

two formulations are said to lexicographically outperform each other, i.e., this is a weak 

relation. As a result, for some instances there may be more than one best formulation. 

For model U (minimizing the number of tardy jobs), we evaluate the performance 

of the three formulations, presented in columns CP-U, IP-U and GC-U. Based on the 

lexicographical preference, we can see that IP-U provides the best results for 131 

instances, CP-U for 42 instances and GC-U for 31 instances. Ties (four in this case) are 

counted twice, leading to a total number that exceed the number of instances. The same 

ranking of the three formulations is obtained when conducting the pair comparison with 

a superiority of the IP (better than CP in 140 cases, versus 59 cases in the opposite 

direction, and better than GC in 148 cases versus 51 cases in the opposite directions).  

When examining the solution values obtained within the time limit, we can see 

that CP-U and IP-U outperform GC-U, (with a slight difference between them), where 

they provide the best values in 181 instances and 178 instances, respectively, versus 

only 123 instances for the GC-U. The Pair comparison reveals the same pattern, as CP 

and IP outperform GC in 71 and 66 instances, respectively, while much smaller values, 

(2 and 16, respectively) are obtained in the opposite direction.  
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Table 2: Summary of the numerical experiment results 

Measure CP-U IP-U GC-U CP-UT IP-UT GC-UT 

L
ex

ico
g

rap
h

ic 

ran
k

in
g
 

Count rank 1st  42 131 31 91 63 46 

≻𝑙𝑒𝑥  CP (Count) == 140 56 == 79 74 

≻𝑙𝑒𝑥IP (Count )  59 == 51 121 == 106 

≻𝑙𝑒𝑥GC (Count )  133 148 == 126 94 == 

S
o

lu
tio

n
 v

alu
e 

Best solution 181 178 123 100 87 65 

Number optimal 151 161 117 80 76 72 

Optimal proven 103 147 87 70 76 60 

Avg. optimality gap 27.70% 12.86% 49.94% 65% 31.63% 57.2% 

Avg. regret 0.1 0.4 0.8 35  7979  898 

Max. regret 2 7 8 1108 162482 13616 

≻𝑠𝑜𝑙  CP (Count) == 17 2 == 34 20 

≻𝑠𝑜𝑙IP (Count) 22 == 16 90 == 71 

≻𝑠𝑜𝑙GC (Count) 71 66 == 102 61 == 

R
u

n
tim

e 

Avg. runtime (sec.) 315.0 194.1 350.2 407.5 579.2 408.7 

Median runtime (sec.) 311.5 147.7 600.0 600.0 600.0 600.0 

Avg. runtime (79/65 

mutually optimal) 
7.29 20.37 16.28 98.34 43.63 62.51 

Median runtime (79/65 

mutually optimal) 
1.35 0.24 0.78 11.42 4.11 1.62 

 

When the number of optimal solutions are examined, IP again performs better 

than the other two, as it solves 161 instances to optimality (147 proven optimal), versus 

151 (103) for CP and 117 (87) for GC. Not surprisingly, we can see that the average 

optimality gap of IP (12.86%) is much smaller than that of CP (27.70%) and GC 

(49.94%). For examining the robustness of the formulations’ performance, we define 

the regret of formulation X for some instance as the difference between its solution and 

the best solution obtained by any of the formulations. This measure represents the loss 

occurs from choosing a certain formulation rather than the best formulation for some 

instance. Clearly, a zero-regret value indicates that the formulation obtains the best 

solution for that instance. One can see that CP has the lowest average regret of 0.1 tardy 
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jobs, with a maximal value of 2. Namely, for all cases where CP trailed other 

formulations, the difference was at most two tardy jobs. IP and GC, on the other hand, 

have an average regret value of 0.4 and 0.8 tardy jobs, with a maximal value of 7 and 

8, respectively.  

To complete the analysis, we examine the runtime performance, where we 

distinguish between the runtime of all instances and the runtime of instances that were 

solved to optimality by all formulations (mutually optimal). For the U problem, 79 

mutually optimal instances were identified. When all instances are considered, one can 

see that IP-U outperforms the other two formulations providing a much smaller average 

runtime of 194.1 seconds, versus 315.0 for CP-U and 350.2 for GC-U. Same ranking is 

obtained for the median, however, where the median is smaller than the average for IP 

and CP, it is not the case for the GC, which provides a median of 600 second. This 

indicates that more than half of the problems solved by the GC used all the allotted 

runtime.  

When the lexicographic objective is considered (minimizing the number of tardy 

jobs and the total tardiness, as a primary and a secondary objective, respectively – see 

columns CP-UT, IP-UT, and GC-UT in the table), the CP performs much better, and 

outperforms IP and GC in most performance measures. Considering the lexicographic 

preference, the CP is counted first in 91 instances, versus 63 for the IP and 46 for the 

GC. In the pair comparison, the CP is much better than the other two formulations, 

while the GC is slightly better than the IP.  

When the solution value is examined, the same ranking is obtained, both for the 

number of best solution obtained in each formulation (100 for the CP, 87 for the IP and 

65 for the GC), and for the number of optimal solutions obtained for each formulation 

(80 for the CP, 76 for the IP and 72 for the GC). When only proven optimal solutions 

are considered, the IP performs better than the other two formulations, as all 76 optimal 

solutions are proven, versus 70 out of 80 for the CP and 60 out of 72 for the GC. This 

is probably since the IP provides better bounds than the other formulations, with an 

average optimality gap of 31.16% versus 57.2% for the GC and 65% for the CP. The 

last performance measure associated with the solution value is the average and max 

regret, explained above. As for the U formulations, the CP is significantly outperforms 

the other formulations also in UT, both for the average and maximal regret. This 
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measure is highly important, because it indicates that even when the CP does not 

provide the best solution, the amount of loss versus the best formulation for that 

instance is relatively low.  

When considering the runtime, we distinguish again between the whole set of 

instances and the set of mutually optimal instances. One can see that in the first case, 

the CP and GC outperforms IP with respect to the average runtime, however, all the 

formulation provide a median value of 600 second. This is because the UT problem is 

harder to solve than the U problem, and in many of the instances require the maximal 

runtime in all formulations. Interestingly, when the mutually optimal instances are 

considered (65 out of 200), the IP provides the lowest average runtime, while the GC 

has the lowest average median. This is probably because the CP requires in general 

large runtime when providing an optimal solution, due to the large optimality gap, 

versus the other formulations.  

To conclude the general results, we can see that the IP performs best when the U 

problems are considered. Still, when considering the robust performance, the CP is 

recommended, with a much smaller average and maximal regret. When considering the 

UT problems, the CP provides the best performance, both when the solution value, 

runtime and robustness measures are considered.  

4.3. The effect of the problem parameters on the performance 

In this section, we examine the effect of the problem parameters on the relative 

performance of the three formulations to design a recommended scheme for choosing 

the best formulation(s) to use for each combination of parameters. This problem is 

actually a classification problem, where the aim is to provide a prediction model to 

suggest the best formulation to use for each given instance. To this end, we have chosen 

to adopt a decision tree approach solve by CHAID (Chi-square automatic interaction 

detection) algorithm (Kass, 1980). The algorithm was executed on SPSS software.  

First, a decision tree was constructed to compare each formulation with the others. 

Hence, when examining a particular formulation, the purpose is to predict whether this 

formulation will provide the best solution (among the three formulations) for a given 

parameter combination, or not. The runtime limit was set to 10 minutes in this 

experiment. The results are shown in Figure 3, where the tree on the left refers to the 

IP model and the tree on the right to the GC model. Each inner node in the tree indicates 
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a split based on the values of some parameter, and each leaf refers to the recommended 

decision for this set of parameters (class); namely, whether to use the examined 

formulation (‘IP’ or ‘GC’) or not (‘Others’). In the parenthesis of each leaf, we can see 

the number of instances of this branch on the left and the number of classification 

mistakes on the right. The decision tree of the CP model was not presented here for the 

simple reason that it contains a single leaf; in 181 out of 200 instances, the CP provided 

the best solution (not necessarily alone), and no classification was identified for the 

rest. The decision tree of the IP shows that when the number of jobs is smaller than or 

equal to 40, IP is selected regardless of the values of the other factors (provides the best 

solution in 152 out of 160 instances). When the number of jobs is larger than 40, the 

selection of the IP depends on the granulation of the processing time, as it is selected 

when the granulation factor is smaller than or equal to 20 (best in 22 out of 24 

instances). This result is not surprising due to the discrete time periods of the IP.  When 

looking at the obtained decision tree of the GC, one can see that this approach provides 

the best solution only in relatively easy cases; namely, when the number of jobs is 

smaller than or equal to 20 (80 out of 80 instances), or when the problem is loose and 

the number of jobs is between 20 and 40 (31 out of 40). When the problems are tight or 

when the number of jobs exceeds 40, the other approaches outperform GC. 

 
 

(a) IP versus others (b) GC versus others 

Figure 3. Decision tree for comparison among formulations 

In the second analysis, a decision tree was constructed to examine the effect of the 

problem parameters on the solution quality. For each instance, we indicated whether a 

validated optimal solution was obtained, or not. The decision trees depicted in Figure 4 

show that IP outperforms the other two formulations, as it is expected to yield optimal 

solutions in cases including 136 instances (number of IP-Opt. in Figure 4b), versus only 

80 in the CP (number of CP-Opt. in Figure 4a) and 60 in the GC (number of GC-Opt. 

in Figure 4c). More specifically, the main factor affecting ability to provide validated 

optimal solution is the number of jobs, as CP, IP and GC mostly provide optimal 

No. of jobs

IP(160,8)

IP(24,2)

<=40 >40

<=20 >20

Others(16,4)

Processing time

No. of jobs

GC(80,0)

Others(40,9)

<=20
(20,40)

GC(40,9)

Tightness Others(40,3)

>40

<=.3 (tight) >.3(loose)
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solutions when this number is smaller than or equal to 20, 30 and 10, respectively. Note 

that the CP in this case is inferior to the IP due to its relatively poor lower bounds. 

While only the number of jobs affects the CP, the other formulations are affected by 

other factors. The IP is expected to provide optimal solutions also for instances of more 

than 30 jobs, if the number of machines is smaller than or equal to 15, and the 

processing time granulation factor does not exceed 10. The GC is more limited in 

providing optimal solutions, as it is not recommended when the number of jobs exceeds 

20, or even when this number is between 10 and 20 and the problem is tight. To 

conclude, when the number of jobs is relatively low, any of the formulations is expected 

to provide optimal solutions within the allotted time. When the number of jobs is 

between 20 and 30, only IP is expected to provide optimal solutions, regardless of the 

values of the other parameters. Even when the number of jobs exceeds 30, IP is 

expected to yield optimal solutions, still, subject to additional conditions. 

 

 

 
 

 

(a) CP proven optimal (b) IP proven optimal (c) GC proven optimal 

Figure 4. Decision tree for solution quality 

5. Case study 

In this section, we present a case study based on real data from a R&D lab of a large 

semiconductor company. This case study enables us to implement our approach in a 

dynamic environment, and compare its performance with the current practice. The lab 

uses emulators for testing new integrated circuit designs. Each emulator consists of five 

boards (i.e., machines), and five emulators are located in a sequence, constructing a 

structure of 25 consecutive boards. Each job requires one or more consecutive boards. 

The real-world problem is dynamic, where scheduling decisions are taken upon the 

arrival of new jobs to the system. Namely, each time a customer applies with a new job, 

this job is scheduled, and the customer is notified accordingly.  

 According to the current policy, each new arriving job is scheduled at the earliest 

possible start time. In case of multiple possible starting boards, the job is scheduled on 

No. of jobs

GC-Opt.(40,0)

No(20,7)

<=10
(10,20)

GC-Opt.(20,2)

Tightness No(120,22)

>20

<=.3 (tight) >.3(loose)
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the smallest indexed board. Once a schedule of a job is determined, this scheduled is 

final, and no rescheduling of this job is considered later on. 

 We propose integrating our IP and CP formulations in this dynamic environment, 

using a rolling horizon scheme. Namely, each time a customer applies to the system 

with a new job(s), the scheduling problem is solved by using one of our mathematical 

formulations, subject to the current state of the system, and commitments already made 

to previous customers. The formulation is solved each time with a lexicographic multi-

objective function, with the number of tardy jobs as the primary objective and the total 

tardiness as the secondary one. In cases of ties, jobs are scheduled at the earliest possible 

time. 

Once the model is solved, a commitment to the customer is made regarding the 

completion time. Two types of commitments are considered: (1) exact completion time 

of the newly scheduled job(s), as obtained by the model solution; and (2) satisfying the 

requested due date, if possible, or the completion time obtained from the model, 

otherwise. The former type is denoted by exact commitment (EC), and the latter by due-

date commitment (DC). Note that the due-date commitment is looser than the exact 

commitment since some slack may occur in this case between the obtained completion 

time and the requested due-date. This slack may be used later on in rescheduling the 

existing jobs upon the arrival of new jobs. Rescheduling is also possible in the exact 

commitment; however, it is limited to the identity of the machines assigned to the job.  

Our CP and IP models were modified to capture the nature of the dynamic 

environment. To this end, three types of jobs are defined upon the arrival of new jobs 

at the system, as follows: (1) jobs in progress (running jobs); (2) already scheduled jobs 

– not yet running; and (3) newly arriving job(s). The models are solved, starting from 

the current time with additional constraints that stipulate the schedule of the type 1 jobs 

and impose hard due-dates upon type 2 jobs, based on the commitment type (EC or 

DC). The type 3 jobs are freely scheduled. The two modified models are presented in 

Appendix C. 

Our case study was based on historical data obtained from the R&D lab. We 

created a simulation environment that allows for the examination of the current 

scheduling policy and the rolling horizon policy using our formulations. The numerical 

study was performed using three log files of customers’ requests. The log files contain 
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information on the arrival time, the requested processing time and the number of boards 

required by each job. The ready times were taken as the arrival times of the jobs. The 

due date property of the jobs was missing, so it was randomly generated in between the 

minimal possible completion time (𝑟𝑖 + 𝑝𝑖) and the end the current week. According to 

the lab manager, these assumptions are in line with the current practice in the lab. The 

processing times and due dates in the log file are specified in units of half hours and 

there are cases where several jobs became available simultaneously. Each log file 

contains 171-288 jobs to be processed within a horizon of 37-60 days (1776-2880 time 

units). The characteristics of the datasets are given in Table 3. 

Two runtime limits of 30 and 600 seconds were decided for each run. Each value 

may correspond to a different real-world situation, which is based on the urgency of the 

feedback to the customer. Note that applying the formulation in a rolling horizon 

scheme results in a myopic heuristic procedure, so their performance is not necessarily 

better than the existing greedy policy. Moreover, while increasing the runtime improves 

the accuracy of the obtained solution at each run, it does not necessarily improve the 

schedule. 

Table 3. Characteristics of the datasets. 

 No. of 

jobs  

Planning 

horizon 

Avg. (STD) 

process time 

(hours) 

Min (Max) 

process time 

(hours) 

Avg. (STD) 

job size 

(boards) 

Min (Max) 

job size 

(boards) 

Dataset 1 288 60 days 4.5 (9.9) 0.5 (168) 12 (4.6) 1 (25) 

Dataset 2 196 37 days 6.7 (5.2) 0.5 (24) 12 (5.5) 1 (25) 

Dataset 3 171 53 days 14.8 (5.2) 0.5 (72) 13 (5.3) 1 (25) 

 

Table 4 presents the number of tardy jobs and the total tardiness of the three 

datasets for the current policy as well as for the two formulation based algorithm (CP 

and IP) under the two commitment types (EC, DC). In general, one can see that even 

for the lower time limit of 30 seconds, the procedure using the CP formulation 

outperformed the current policy in all cases. Although a significant improvement was 

obtained for the cases of the EC commitment type, a much larger improvement was 

achieved when the DC commitment type was considered, due to the further flexibility 

in the rescheduling process. For example, the number of tardy jobs was reduced from 

22 to 8 in dataset 1, from 24 to 1 in dataset 2, and from 27 to 11 in dataset 3. When the 
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IP formulation was used, mixed results were obtained; although a significant 

improvement was achieved in three cases, inferior results were obtained for two cases 

(64 tardy jobs versus 27 in the current policy), and in one case, no feasible solution was 

reached. This leads to the conclusion that the CP is much more efficient for short 

runtimes. When the runtime of the formulation was increased to 600 seconds, the 

performance of the IP was improved, while the CP remained almost the same. As a 

result, both the CP and IP based procedures provided much better results (and 

comparable to each other) than the current policy.  

To conclude, we have shown that using optimization techniques in a rolling 

horizon framework enables a significant improvement over the current policy in terms 

of both tardy jobs and total tardiness. The improvement is mostly related to the fact that 

the optimization models plan better in advanced and exploit the flexibility once new 

information is available. Although both IP and CP were found superior to the current 

policy, when fast feedback is required, we would recommend using the CP, due to its 

robust performance under a tight time limit.    

We note that while in this simulation study it was assumed that the ready time of 

the jobs is known only upon arrival, allowing preorders of jobs, i.e., providing the ready 

time and due date information some time in advance, is desirable. The availability of 

this information may further increase the opportunity to plan ahead of time and improve 

the service provided by the system using the same resources. We recommend 

implementing preorders together with the implementation of the proposed scheduling 

mechanism. 

Table 4. Case study results: number of tardy jobs (total tardiness) 

 
Current  

Policy 

Commitment 

Type 

CP  

(30 Sec.) 

IP  

(30 Sec.) 

CP 

(600 Sec.) 

IP 

(600 Sec.) 

Dataset 1 22(2731) 
EC 17(2759) 17(2806) 17(2957) 17(2306) 

DC 8(621) N/A 8(621) 8(651) 

Dataset 2 24(1280) 
EC 8(829) 9(954) 8(712) 9(954) 

DC 1(12) 1(1) 1(12) 1(1) 

Dataset 3 27(3044) 
EC 16(2536) 64(34016) 16(2536) 14(1823) 

DC 11(1650) 64(34016) 11(1650) 12(1799) 
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6. Conclusion  

In this study, we introduced two effective optimization models for the consecutive 

multiprocessor job scheduling problem. We studied the objective function of 

minimizing the number of tardy jobs as well as minimizing a weighted sum of the 

number of tardy jobs and total tardiness. However, our model is amenable to a rich set 

of objective functions, including nonlinear and non-convex ones.  

The effectiveness of our model was demonstrated by an extensive numerical 

study, and its applicability to real-life problems was demonstrated by embedding a 

rolling horizon version of the algorithm in a simulation of an actual on-line production 

environment. We showed that both the number of tardy jobs and the total tardiness 

could be reduced significantly. 

 While both our time-indexed IP and CP models were shown to be more effective 

on average than our adaptation of the GC formulations known from the literature, none 

of the three tested methods completely dominates the others. The IP model is good for 

obtaining optimal solutions quickly when the time granularity is rough, which we 

believe is the case in many actual manufacturing environments. It also provides a strong 

lower bound for the solutions, which is a nice theoretical trait that is not necessarily 

important for practitioners. The CP models delivered the best solutions in most of our 

experiments and was found the most robust approach, while lags behind the other 

methods by a tiny gap in the few cases when it did not find the best solution. The GC 

models are insensitive to the time granularity and thus can be useful when the accuracy 

of the time input is high. However, the lower bounds established by the GC model are 

very weak.  

 There are several interesting directions for future research based on the results of 

this study. In particular, the effectiveness of time-indexed integer formulations and 

constraint programming formulations as practical solution methods for other variants 

of the multiprocessor job scheduling problem should be verified. Since time-indexed 

formulations are especially effective when the time granulation is low, this naturally 

leads to two step heuristic methods in which the sequence of the jobs is decided based 

on a model with a rough time granulation, after rounding the original input, and the 

schedule is then fine-tuned to respect the accurate times. The effect of rough time 
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granulation is of particular interest in an online situation when tentative decisions about 

the future need to be made quickly. 
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Appendix A - Relative position MILP formulation  

In this appendix, we present a relative position MILP formulation to our problem 

adopted from (Guan & Cheung, 2004) with minor modifications to reflect our objective 

function. The original formulation minimizes the weighted flow time. Similar relative 

position formulations were presented in (Moon, 2000) and (Imai, Sun, Nishimura, & 

Papadimitriou, 2005) for the berth allocation problem and in (Heragu, 2008) for the 
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facilities layout problem. It is presented here since we used it to benchmark our integer 

programming and CP formulation.  

We use the same notation for the model parameters as presented in Section 3 and 

introduce the following decision variables: 

𝑥𝑖 start time of job 𝑖 

𝑦𝑖 first machine occupied by job 𝑖 

𝜎𝑖𝑗 = {
1,  if job 𝑖 ends before job 𝑗 starts
0,  otherwise                                      

 

𝛿𝑖𝑗 = {
1,   if job 𝑖 ends on amachine withsmaller indexthan thefirst machineof job 𝑗
0,   otherwise                                                                                 

 

𝑈𝑖 = {
1,  if job 𝑖 istardy
0,  otherwise        

 

𝑇𝑖 The tardiness of job 𝑖 

The model presented below implements a special case of our general IP and CP 

models, where the objective is to minimize a weighted sum of the number of tardy jobs 

and the total tardiness. The model presented below captures the case of minimizing the 

number of tardy jobs. Note, however, that other interesting objective functions, such as 

a nonlinear penalty for tardiness, are not directly represented by this model. 

min {𝑊𝑈∑𝑈𝑖

𝑛

𝑖=1

+𝑊𝑇∑𝑇𝑖

𝑛

𝑖=1

} 
 

(20) 

Subject to:   

𝑈𝑖 × 𝑇 ≥ 𝑐𝑖 − 𝑑𝑖 ∀𝑖 = 1, … , 𝑛 (21) 

𝑥𝑗 ≥ 𝑐𝑖 − (1 − 𝜎𝑖𝑗)𝑇 ∀𝑖, 𝑗 = 1,… , 𝑛 (22) 

𝑦𝑗 ≥ 𝑦𝑖 + 𝑠𝑖 − (1 − 𝛿𝑖𝑗)𝑚 ∀𝑖, 𝑗 = 1,… , 𝑛 (23) 

𝜎𝑖𝑗 + 𝜎𝑗𝑖 + 𝛿𝑖𝑗 + 𝛿𝑗𝑖 ≥ 1 ∀𝑖, 𝑗 = 1,… , 𝑛 (24) 

𝜎𝑖𝑗 + 𝜎𝑗𝑖 ≤ 1 ∀𝑖, 𝑗 = 1,… , 𝑛 (25) 

𝛿𝑖𝑗 + 𝛿𝑗𝑖 ≤ 1 ∀𝑖, 𝑗 = 1,… , 𝑛 (26) 

𝑐𝑖 = 𝑝𝑖 + 𝑥𝑖 ∀𝑖 = 1,… , 𝑛 (27) 

𝑥𝑖 ≥ 𝑟𝑖 ∀𝑖 = 1, … , 𝑛 (28) 

𝑐𝑖 ≤ 𝑇 ∀𝑖 = 1, … , 𝑛 (29) 

𝑦𝑖 ≤ 𝑚 − 𝑠𝑖 ∀𝑖 = 1, … , 𝑛 (30) 

𝑇𝑖 ≥ 𝑐𝑖 − 𝑑𝑖 ∀𝑖 = 1, … , 𝑛 (31) 
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𝑇𝑖 ≥ 0 ∀𝑖 = 1, … , 𝑛 (32) 

𝑥𝑖 ≥ 0  ∀𝑖 = 1, … , 𝑛 (33) 

𝑦𝑖 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀𝑖 = 1, … , 𝑛 (34) 

𝜎𝑖𝑗 ∈ {0,1}, 𝛿𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 = 1,… , 𝑛 (35) 

𝑈𝑖 ∈ {0,1} ∀𝑖 = 1, … , 𝑛 (36) 

 

The objective function (20) minimizes the number of tardy jobs and the total 

tardiness. Constraint (21) enforces a value of one in the binary variable 𝑈𝑖 if job 𝑖 is 

tardy. Constraint (22) allows a value of one in 𝜎𝑖𝑗 only if job 𝑖 is completed before the 

beginning of job 𝑗. Similarly, Constraint (23) allows one in 𝛿𝑖𝑗 only if the index of the 

first machine of job 𝑖 is greater than the index of the last machine of job 𝑗. Constraint 

(24) eliminates overlapping of the processing of jobs on the machines. Constraints (25) 

and (26) state that jobs can either precede or succeed each other. These are valid 

inequalities that are not required for the definition of the feasible set of solutions but 

may tighten the formulation. Equality (27) is used to assign a value to the completion 

time. We could save both this constraint and variable by replacing 𝑐𝑖 with 𝑝𝑖 + 𝑥𝑖 but 

we kept it here to remain compatible with (Guan & Cheung, 2004). Equation (28) 

requires that the starting time of a job is not earlier than it ready time. Constraint (29) 

states that a job cannot be completed before the end of the predefined planning horizon 

(again presented here only for computability with the original formulation). Constraint 

(30) states that the index of the first machine of a job is such that the job can fit within 

the number of machines in the system. Constraints (31) and (32) enforce the correct 

value of tardiness for each job. The domains of the rest of the decision variables are 

specified in (33)-(36). In particular, the integrality of the first machine of a job is 

stipulated in (34), but we note that, even if this integrality requirement is omitted, the 

resulted solutions are integral. This is probably because, given the integral values of the 

parameters and the rest of the decision variables, the basic solutions of the relaxed 

model are all integers.   
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Appendix B – CP modeling constructs examples 

Here, we describe several CP modeling constructs that we use in our CP models. 

Reification – any valid logical expression including an equality or inequality may be 

used as an argument of an indicator function that returns a value of one if the expression 

is true and zero otherwise. For example, consider a vector of integer decision variables 

𝑥𝑖, 𝑖 = 1. . 𝑛. The requirement that at least two 𝑥′𝑠 equal 23, can be expressed by the 

following constraint.  

∑(𝑥𝑖 = 23) ≥ 2

𝑛

𝑖=1

 

Interval variable – an object that describes a continuous period in which a job of a 

given length is processed. It is useful for representing a solution to scheduling problems. 

An interval is characterized by its range and the length of the job to be scheduled in it. 

The solver assigns the start time of the job. An interval can be mandatory, meaning that 

the solver must assign a job to it, or optional. Several functions are defined to query 

information and to impose constraints on intervals. For example, given an interval 

variable 𝑎, the functions startOf(a) and endOf(a) return the start and end times of the 

job scheduled in interval 𝑎, respectively. The function presenceOf(a) returns one if a 

job is scheduled in the solution and zero otherwise. When defining an interval variable, 

it is possible to specify its domain.  

Pulse - The function 𝑝𝑢𝑙𝑠𝑒(𝑎, ℎ) obtains an interval 𝑎 and an integer ℎ as arguments. 

It returns a step function defined over the planning horizon (time). The value of the 

returned function is ℎ between the start and the end of the interval and zero otherwise. 

The language also defines the summation of pulse functions and it is possible to set a 

bound on the maximal level of the pulse. For example,  

pulse(𝑎, 1) + pulse(𝑏, 1) ≤ 1 

is a constraint that eliminates the possibility that the two intervals, 𝑎 and 𝑏, will overlap.   

Alternative - To instruct the solver to select one of several mutually exclusive optional 

intervals, {𝑎1, … , 𝑎𝑛}, as present and to set its start and end time to be identical to a 

mandatory interval, 𝑎, we can use the following statement. 

alternative(𝑎, {𝑎1,… , 𝑎𝑛}). 
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For additional information about the OPL language and its usage for the 

formulation of CP models, see (IBM, 2009). Note that while OPL and CPLEX CP 

solver are the propriety of IBM ILOG, other constraint programming packages support 

similar modeling tools. 

 

Appendix C – The mathematical models for the rolling 

horizon framework 

In this appendix, we present the models used in our case study to solve the problem in 

dynamic settings. These are adaptions of the IP-G and CP-G models. The models are 

repeatedly solved whenever new job(s) arrive at the system. In this version of the 

model, the beginning of the planning horizon is the current time, newly arrived jobs can 

be scheduled freely, and jobs that were previously scheduled but not started yet can be 

rescheduled subject to their due-date commitment. Jobs already in process are not 

considered directly, but their machine occupancy is represented by a ready-time 

parameter for each of the machines.  

The cost parameter 𝑐𝑖𝑡 was set such that the following objectives will be minimized 

lexicographically: (1) The number of tardy jobs; (2) Total tardiness; (3) Jobs start time; 

(4) Index of the first machine processing the job. 

The purpose of the last two components (with the smallest weight) is to schedule the 

jobs close to each other in time and space (machines) to make room for future jobs to 

arrive. 

The parameter 𝑑𝑖 has a slightly different meaning in the models presented here. For 

previously scheduled jobs, it represents the time already committed to the customer. Its 

value depends on the commitment type, i.e., typically smaller for the EC commitment 

type and larger for the DC commitment type.  

Next, we introduce some new notation to be used by the models: 

𝑁 Set of all the jobs that have not started yet, including the new ones. 

𝜌𝑗 Ready time of machine 𝑗, based on the schedules of jobs that have already 

started. 
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𝛿𝑖 The latest possible start time of job 𝑖, which is equal to 𝑇 − 𝑝𝑖 + 1, for jobs 

and 𝑑𝑖 − 𝑝𝑖 + 1, for jobs with previously committed due dates. 

   

min∑ ∑ ∑ 𝑐𝑖𝑡

𝛿𝑖

𝑡=max(𝑟𝑖,𝜌𝑗)+1

𝑥𝑖𝑗𝑡

𝑚−𝑠𝑖+1

𝑗=1𝑖∈𝑁

  (37) 

Subject to:   

∑ ∑ 𝑥𝑖𝑗𝑡

𝛿𝑖

𝑡=max(𝑟𝑖,𝜌𝑗)+1

𝑚−𝑠𝑖+1

𝑗=1

= 1 ∀𝑖 ∈ 𝑁 (38) 

∑   ∑   ∑ 𝑥𝑖𝑗′𝑡′ ≤ 1

min{𝛿𝑖,𝑡}

𝑡′=
max{𝑟𝑖+1,𝑡−𝑝𝑖+1}

𝑗

𝑗′=
max{1,𝑗−𝑠𝑖+1}

𝑖∈𝑁

 

𝑗 = 1, . . . , 𝑚, 𝑡 = 1,… , 𝑇 (39) 

𝑥𝑖𝑗𝑡 ∈ {0,1} 

∀𝑖 ∈ 𝑁, 

𝑗 = 1,… ,𝑚 − 𝑠𝑖 + 1, 

𝑡 = 1,… , 𝛿𝑖  

(40) 

The objective function (37) minimizes the total cost of the schedule. Constraint (2) 

stipulates that all the jobs be scheduled to start at a valid time. Constraint (7) assures 

that jobs do not overlap each other in time or space. Constraint (40) defines the domain 

of the decision variable. 

The CP-G model remains unchanged except for the domain of the interval decision 

variables that are now defined as follows: 

𝐽𝑖 , Interval, length 𝑝𝑖 in 𝑟𝑖, … 𝛿𝑖  𝑖 = 1, … , 𝑛 (41) 

𝐴𝑖𝑗, Interval, optional, in 𝜌𝑗 , … , 𝛿𝑖   𝑖 = 1, … , 𝑛, 𝑗 = 1,… ,𝑚 (42) 

 


