
Application of the Cross-Entropy Method to the Buffer

Allocation Problem in a Simulation-Based Environment

G. Allon, D.P. Kroese†, T. Raviv, R.Y. Rubinstein

Faculty of Industrial Engineering and Management, Technion, Haifa, Israel.

†(Author to which proofs should be sent.) Department of Mathematics, University of Queensland,

Brisbane 4072, Australia. Email: kroese@maths.uq.edu.au. Tel.: +61 733653287

1

Abstract

The buffer allocation problem (BAP) is a well-known difficult problem in the design of production lines.

We present a stochastic algorithm for solving the BAP, based on the cross-entropy method, a new paradigm

for stochastic optimization. The algorithm involves the following iterative steps: (a) the generation of buffer

allocations according to a certain random mechanism, followed by (b) the modification of this mechanism

on the basis of cross-entropy minimization. Through various numerical experiments we demonstrate the

efficiency of the proposed algorithm and show that the method can quickly generate (near-)optimal buffer

allocations for fairly large production lines.

Keywords: Buffer allocation, cross-entropy method, stochastic optimization, production lines.

2

The BAP is a well-known problem in the design of production lines. The objective is to allocate n

buffer spaces amongst the m − 1 “niches” (storage areas) between m machines in a serial production line,

so as to optimize some performance measure, such as the steady-state throughput. We will shortly give a

more detailed description of the BAP, but for general references on production lines we refer to Adan and

van der Wal (1989), Dallery et al. (1994), Glasserman and Yao (1996), Meester and Shanthikumar (1990)

and Shanthikumar and Yao (1989). Buzacott and Shanthikumar Buzacott and Shanthikumar (1993) provide

a good reference on stochastic modeling of manufacturing systems, while Gershwin and Schor Gershwin and

Schor (2000) present a comprehensive summary paper on optimization of buffer allocation models.

There are two reasons why the BAP is a difficult optimization problem. The first reason is that, for

a given buffer allocation, the exact value of the objective function – e.g., the steady-state throughput –

is often difficult or impossible to calculate. In fact, complete knowledge of the objective function is only

available for relatively small production lines in which the processing times have exponential or (simple)

phase-type distributions, Gershwin and Schor (2000), Heavey et al. (1993). So, in a more general setting the

BAP is typically a noisy or simulation-based optimization problem, i.e., an optimization problem in which

the objective function needs to be estimated, e.g., via discrete-event simulation, Papadopoulos and Vouros

(1997), Rubinstein and Melamed (1998).

The second reason why the BAP is difficult is that finding the optimum of the objective function, even

if this function were completely known, comprises a combinatorial optimization problem over a potentially

very large set with
(
n+m−2

m−2

)
elements.

In this paper we present a new simulation-oriented approach to the BAP, based on the CE method.

The CE method comprises a suite of techniques and algorithms for rare event simulation and combinatorial

optimization, built around the notion of cross-entropy minimization. The method was first introduced

in Rubinstein (1997) for the efficient estimation of rare event probabilities in stochastic networks, and

was originally based on variance minimization, rather than on cross-entropy minimization. It was soon

realized, Rubinstein (1999), that it could also be used for (approximately) solving complicated (e.g., NP-

hard) combinatorial optimization problems (COPs). We wish to demonstrate that the CE method is well-

suited for solving noisy optimization problems as well, and, in particular, that the CE method provides an

easy and effective way to tackle the BAP.

For additional references on CE for COP see Helvik and Wittner (2001), Keith and Kroese (2002),

Margolin (2002), Rubinstein (2002) - Rubinstein (2001) and the monograph Rubinstein and Kroese (2002),

and for an application of simulated annealing to the BAP see Spinellis and Papadopoulos (2000). Alternative

well-known heuristics for COP, capable of handling the BAP, are tabu search Glover and Laguna (1993),

genetic algorithms Goldberg (1989), nested partitioning Shi and Olafsson (2000), Shi et al. (1999) and the

Ant Colony Optimization (ACO) meta-heuristic of Dorigo and colleagues Caro and Dorigo (1998)-Dorigo

3

and Gambardella (1997), Gutjahr (2000b), Gutjahr (2000a).

The remainder of this paper is organized as follows. In Section 1 we give a detailed description of the

BAP, providing the necessary definitions and assumptions. In Section 2 we explain the main ideas behind

the CE method as a simulation-based tool for combinatorial optimization. Section 3 describes our main

algorithm for the BAP. In Section 4 we present the results of various numerical experiments and in Section 5

we discuss the merits of the approach and potential directions for further research.

1 The buffer allocation problem

The basic setting of the BAP is the following. Consider a production line consisting of m machines in

series, numbered 1, 2, . . . , m. Jobs are processed by all machines in consecutive order. The processing time

at machine i has a fixed distribution with rate µi (hence the mean processing time is 1/µi), i = 1, . . . ,m.

The machines are assumed to be unreliable, with exponential life- and repair times. Specifically, machine i

has failure rate βi and repair rate ri, i = 1, . . . , m. All life, repair and processing times are assumed to be

independent of each other.

The machines are separated by m− 1 storage areas, or niches, in which jobs can be stored. However, the

total number of storage places, or buffer places, is limited to n. When a machine breaks down, this can have

consequences for other machines up or down the production line. In particular, an up-stream machine could

become blocked (when it cannot pass a processed job on to the next machine or buffer) and a down-stream

machine could become starved (when no jobs are offered to this machine). We assume that a starved or

blocked machine has the same failure rate as a “busy” machine. The first machine in the line is never starved

and the last machine is never blocked.

The BAP deals with the question of how to optimally allocate the n buffer places amongst the m − 1

niches. Here “optimally” refers to some performance measure of the flowline. Typical performance measures

are the steady-state throughput and the expected amount of work-in-process. We shall only deal with the

steady-state throughput.

Note that there are
(
n+m−2

m−2

)
possible buffer allocations. An illustration of the definitions is given in

Figure 1.

[Figure 1 about here.]

We will use the following mathematical formulation of the BAP. Each possible buffer allocation (BA)

will be represented by a vector x = (x1, . . . , xm−1) in the set X := {(x1, . . . , xm−1) : xi ∈ {0, 1, . . . , n}, i =

1, . . . , m− 1,
∑m−1

i=1 xi = n}. Here, of course, xi represents the number of buffer spaces allocated to niche i,

i = 1, . . . , m− 1.

4

For each buffer allocation x let S(x) denote the steady-state throughput of the production line. Thus

the BAP can be formulated as the optimization problem:

(1) maximize S(x) over x ∈ X .

In case the steady-state output needs to be estimated, we have instead the noisy optimization problem:

(2) maximize Ŝ(x) over x ∈ X ,

where Ŝ(x) is an estimate of S(x).

2 Combinatorial Optimization via the CE-Method

Consider the following general maximization problem. Let X be a finite set of states, and let S be a real

function on X , the score. We wish to find the maximum of S over X , and the corresponding state(s) at

which this maximum is attained. For simplicity assume there is only one such state x∗. Let us denote the

maximum by γ∗. Thus,

(3) S(x∗) = γ∗ = max
x∈X

S(x) .

The starting point in the methodology of the CE method is to associate an estimation problem with the

optimization problem (3). We thereto define a collection of functions {H(·; γ)} on X , via

H(x; γ) =





1 if S(x) ≥ γ,

0 if S(x) < γ ,

for each x ∈ X and threshold γ ∈ R. Next, let {f(·;v)} be a family of probability mass functions (pmf’s) on

X , parameterized by a real-valued parameter (vector) v. We associate with (3) the problem of estimating

the number

(4) `v(γ) = Pv(S(X) ≥ γ) =
∑
x

H(x; γ)f(x; v) = EvH(X; γ),

where Pv is a probability measure under which the random state X has pmf f(·; v); and Ev denotes the

corresponding expectation operator. We will call the estimation problem (4) the associated stochastic problem

(ASP). To indicate how (4) is associated with (3), suppose for example that γ is equal to γ∗. In that case

`v = f(x∗; v), which typically would be a very small number. A well-known technique for estimating such

“rare-event” probabilities is Importance Sampling (IS), where we take a random sample X(1), . . . , X(N) from

a different pmf g on X , and evaluate

(5)
1
N

N∑

k=1

H(X(k); γ)
f(X(k);v)

g(X(k))
,

5

which is an (unbiased) estimator of `v(γ). In the special case where γ = γ∗ the best possible choice for g

is such that g assigns all its probability mass to x∗; the estimator then has zero variance. Similarly, if γ is

close to the optimal γ∗, it is plausible that the optimal g should assign most of its probability mass close

to x∗. At this point the CE method becomes relevant, since it was specifically developed as a fast adaptive

estimation method for finding the optimal IS “change of measure”, i.e, g.

To explain how the CE method works for the efficient estimation of (4), consider again the estimator (5).

It is well known (and not difficult to see) that the optimal (i.e., zero-variance) way to estimate `v(γ) is to

use the change of measure with pmf

(6) g∗(x) :=
H(x; γ)f(x; v)

`v(γ)
.

The obvious difficulty is of course that this g∗ depends on the unknown parameter `v. However, we can

still try to choose an “optimal” pmf f(·, ṽ) in the sense that the distance between this pmf and g∗ is minimal.

A particular convenient measure of “distance” between two pmf’s g and h is the Kullback-Leibler distance

or cross-entropy, which is defined as

K(g, h) = Eg log
g(X)
h(X)

=
∑
x

g(x) log g(x)−
∑
x

g(x) log h(x) .

For estimating (4) we choose the parameter ṽ such that K(g∗, f(·; ṽ)), with g∗ given in (6), is minimal. It

is easy to see that ṽ should be such that

(7) Ev H(X; γ) log f(X; ṽ)

is maximal. An important aspect of this approach (to find the “near-optimal” change of measure via CE

minimization) is that the parameter (vector) can often be calculated analytically. In particular, for discrete

random vectors X the components of ṽ will always be of the form

(8)
Ev H(X; γ)I{X∈A}
Ev H(X; γ)I{X∈B}

,

where I{X∈A} and I{X∈B} are indicator random variables and A ⊂ B ⊂ X . This number typically needs to

be estimated. For this we can use the estimator

(9)

∑N
k=1 H(X(k); γ) I{X(k)∈A}∑N
k=1 H(X(k); γ) I{X(k)∈B}

,

where X(1), . . . , X(N) is a random sample from the pmf f(·;v). However, it is important to note that the

estimator above is only of practical use when the numerator and the denominator in (9) are non-zero. This

means for example that when γ is close to γ∗, v needs to be such that Pv(S(X) ≥ γ) is not too small.

Thus, the choice of v and γ in (4) are closely related. On the one hand we would like to choose γ as close as

possible to γ∗, and find (an estimate) of ṽ via the procedure above, which assigns almost all mass to state(s)

6

close to the optimal state. On the other hand, we would like to keep γ relatively small in order to obtain a

viable estimator for ṽ.

The idea is now to construct a sequence of parameter (vectors) v0, v1, . . . , and thresholds γ0, γ1, . . . such

that {γk} converges to a value γ∞ close to the optimal γ∗ and {vk} converges to a parameter v∞ such that

the corresponding pmf assigns high probability mass to the collection of states that give a score.

This strategy is embodied in the following procedure, see e.g., Rubinstein (1999):

Algorithm 2.1 (CE algorithm for Combinatorial Optimization)

Start with some v0. Let k = 0.

Repeat

1. Draw a random sample x(1), . . . , x(N) from f(·, vk).

2. Calculate the scores S(x(i)) for all i, and order them from biggest to smallest, s1 ≥ . . . ≥ sN . Let [ρN]

be the integer part of ρN . Define γk = s[ρN].

3. Define vk+1 as the estimate of the optimal ṽ in (7) with v = vk. Thus, the components of vk+1 are

found from (9). Increase k by 1.

Until convergence is reached.

Note that the stopping criterion, the initial state v0, the sample size N and the number ρ (typically between

0.01 and 0.1) have to be specified in advance, but that for the rest the algorithm is “self-tuning”.

In many applications, the sequence of pmf’s f(·; v0), f(·; v1), . . . converges, or is numerically observed to

converge, to a degenerate measure (Dirac measure), assigning all probability mass to a single state x∞, for

which, by definition, the function value is greater than or equal to γ∞. For convergence results and proofs

we refer to Lieber (1998), Margolin (2002) and Rubinstein (1999).

The above procedure can, in principle, be applied to any maximization problem. However, for each

individual problem two essential ingredients need to be supplied.

1. We need to specify how the samples are generated. In other words, we need to specify the family of

pmf’s {f(·; v)}.

2. We need to provide explicit updating rules for the parameters, based on cross-entropy minimization.

In general there are many ways to generate samples from X , and it is not always immediately clear which

way of generating the sample will yield better results or easier updating formulas.

7

3 Main algorithm

In this section we specify the main algorithm for the buffer allocation problem, based on the CE algorithm.

Consider the BAP (1). In order to apply the CE algorithm we need to specify (a) how to generate

random buffer allocations, and (b) how to update the parameters at each iteration. The easiest way to

explain how the random buffer allocations are generated and how the parameters are updated is to relate

(1) to an equivalent maximization problem. Specifically, let X̃ = {(x1, . . . , xm−1) : xi ∈ {0, 1, . . . , n}}, and

define the function S̃ on X̃ such that S̃(x) = S(x), if x ∈ X and S̃(x) = −∞, otherwise. Then, obviously

(1) is equivalent to the maximization problem

(10) maximize S̃(x) over x ∈ X̃ .

A simple method to generate a random vector X = (X1, . . . , Xm−1) in X̃ is to independently draw

X1, X2, . . . , Xm−1 according to fixed distributions (pi0, . . . , pin), i = 1, . . . , m − 1. We can amalgamate the

pij into the (m− 1)× (n + 1)-matrix P := (pij). Note that the rows of P sum up to 1. The pmf f(·; P) of

X is thus parameterized by the matrix P and given by

f(x; P) =
m−1∏

i=1

n∑

j=0

pij 1{x∈X̃ij},

where X̃ij = {x ∈ X̃ : xi = j}. The updating rules for this modified optimization problem follow from the

maximization of (7) (where H refers to S̃ and not to S), under the condition that the rows of P sum up to

1. Using Lagrange multipliers u1, . . . , um−1 we obtain the maximization problem

max
P̃ ,u1,...,um−1


EP H(X; γ) log f(X; P̃) +

m−1∑

i=1

ui




n∑

j=0

p̃ij − 1





 .

Differentiating with respect to p̃ij , yields, for all j = 0, . . . , n,

EP

H(X; γ)I{X∈X̃ij}
p̃ij

+ ui = 0 .

Summing over j = 0, . . . , n gives EP H(X; γ) = −ui, so that

p̃ij =
EP H(X; γ)I{X∈X̃ij}

EP H(X; γ)
.

This is of the form (8). The corresponding estimator, as in (9), is

(11)

N∑

k=1

I{S̃(X(k))≥γ} I{X(k)∈X̃ij}

N∑

k=1

I{S̃(X(k))≥γ}

.

8

This has a very simple interpretation. We simply count how many of the X(i) have a function value greater

than γ and of those we count how many have their ith coordinate equal to j. Dividing this last number by

the former gives the updated value for pij .

This is how we could, in principle, carry out the sample generation and parameter updating for problem

(10). We first generate X1 from the first row of P , then independently generate X2 from the second row of P ,

etcetera. And, for a sample of size N , we use updating formula (11). However, in practice, we would never

generate the vectors in this way, since the majority of these vectors would be irrelevant (their components

would not sum up to n, and therefore their S̃ values would be −∞). In order to avoid the generation of

irrelevant vectors, we proceed as follows.

Algorithm 3.1 (Generation of buffer allocations) .

Generate a random permutation (π1, . . . , πm−1) of {1, . . . , m− 1}.
Let k = 0

For i = 1, . . . , m− 1

Let t =
∑n−k

j=0 pπi,j

For j = 0, . . . , n− k let pπi,j = pπi,j/t

For j = n− k + 1, . . . , n let pπi,j = 0

Generate Xπi according to (pπi,0, . . . , pπi,n).

Let k = k + Xπi

End

Algorithm 3.1 is further illustrated in Figure 2.

[Figure 2 about here.]

The updating formula remains the same, of course. But since we only generate vectors in X , the updated

value for pij can be estimated as

(12)

N∑

k=1

I{S(X(k))≥γ} I{X(k)∈Xij}

N∑

k=1

I{S(X(k))≥γ}

.

which has the same “natural” interpretation as discussed for (11).

To complete the algorithm, we need to specify the initialization and stopping conditions. For the initial

matrix P0 we simply take all elements equal to 1/(n+1). The stopping criterion is based on the convergence

of the sequence of matrices P0, P1, . . ., which (see also Section 2) is found to converge to a degenerate matrix

9

P∞, i.e., a matrix in which each row has exactly one 1 and n 0’s. Specifically, the algorithm is terminated

if for some integer c, e.g., c = 5,

(13) ξk(i) = ξk−1(i) = · · · = ξk−c(i), for all i = 1, . . . , m− 1 ,

where ξk(i) denotes the index of the maximal element of the ith row of Pk.

Summarizing the results above, the main algorithm can be written as follows.

Algorithm 3.2 (Main Algorithm for the BAP)

Start with P0 such that all elements are equal to 1/(n + 1). Let k = 0.

Repeat

1. Draw a random sample of buffer allocations x(1), . . . , x(N) according to Algorithm 3.1, with P = Pk.

2. Calculate the throughputs S(x(i)), i = 1, . . . , N , and order these from biggest to smallest, s1 ≥ . . . ≥ sN .

Let [ρN] be the integer part of ρN . Define γk = s[ρN].

3. Using the same sample, calculate Pk+1 = (Pk+1,ij) as

Pk+1,ij =

N∑

k=1

I{S(x(k))≥γ} I{x(k)∈Xij}

N∑

k=1

I{S(x(k))≥γ}

.

Increase k by 1.

Until ξk(i) = ξk−1(i) = · · · = ξk−c(i), for all i.

For fast generation of the buffer allocations one can use the well-known alias method, similar as it is used

in Rubinstein (1999). For the noisy BAP, i.e, problem (2), the only change in Algorithm 3.2 is that item 2.

is replaced by

2’. Find the estimates of the throughputs, Ŝ(x(i)), i = 1, . . . , N , and

It is intuitively clear that the noisy BAP converges in some sense to the “deterministic” BAP problem, if we

decrease the relative error of the estimated throughputs to 0. For more details on these convergence aspects

we refer to Rubinstein (1999).

For the parameter values ρ and N in the algorithm we choose 0.01 < ρ < 0.1 and N = 2mn. The

explanation for the latter being that we have to estimate the components of the (m− 1)× (n + 1) matrices

Pk, for which the number of replications is required to be in the order of nm.

10

Remark 3.1 Instead of updating the matrix Pk to Pk+1 via formula (12) we could use a smoothing update

procedure in which

(14) Pk+1 = α Qk+1 + (1− α) Pk,

where Qk+1 is the matrix derived via (12). Clearly for α = 1 we have the original updating rule in Al-

gorithm 3.2. We found empirically that a value of α between 0.7 ≤ α ≤ 0.9 gives the best results. The

main reason why the smoothing update procedure performs better than the non-smoothed version is that it

prevents the occurrences of 0’s and 1’s in the matrices Pk. In the non-smoothed version, once an entry of

Pk is 0 or 1, it will remain so for all P`, ` > k, which is not desirable, especially in the early iterations.

4 Numerical results

To evaluate the effectiveness of Algorithm 3.2 we applied it to various test problems. Specifically, we applied

Algorithm 3.2 to a suite of 70 test cases in Vouros and Papadopolous Vouros and Papadopoulos (1998). In

all these cases the machine processing times have exponential or Erlang2 distributions. Since, in addition,

the life- and repair times are assumed to be exponentially distributed, we can in principle calculate the exact

optimal buffer allocation and corresponding steady-state throughput for these systems, using Markov Chain

theory, as described in Heavey et al. (1993). It should be noted, however, that the solutions are in practice

only obtainable for relatively small n and m. In addition to the 70 test cases, we applied Algorithm 3.2 to

various relatively large systems for which the “solutions” were not available from Vouros and Papadopoulos

(1998). In this section we summarize the results on a selection of these test problems.

In all test cases below we set ρ = 0.1, took c = 5 in our stopping rule (13). We generated at each iteration

N = 2 mn random buffer allocations and updated the parameter matrices Pk according to the smoothed

updating rule (14), with α = 0.7. Similar results where obtained with 0.05 ≤ ρ ≤ 0.2 and 0.5 ≤ α ≤ 0.95.

The algorithm was implemented in Matlab 5.2 without compilation and ran on an Intel Pentium III 500MHz

processor. For a given buffer allocation we used the batch means method Rubinstein and Melamed (1998) to

estimate the steady-state throughput, each simulation run starting with a sufficiently long warm-up period.

For each test case we generated 10 independent solutions via Algorithm 3.2, say γ
(i)
∞ , i = 1, . . . , 10. These

were compared with either the optimal solution (steady-state output) γ∗, or with the best known solution γ†.

In the tables below, we use the following notation. The percentage average relative error of the 10 solutions

is defined either as

(15) ε̄ =
1
10

10∑

i=1

γ∗ − γ
(i)
∞

γ∗
× 100%, or as ε̄ =

1
10

10∑

i=1

γ† − γ
(i)
∞

γ†
× 100%,

11

depending on whether the true optimal solution is known or not. Also, the term γ̄∞ (which appears below)

denotes the average of the 10 generated solutions, and ε∗ and ε∗ denote the worst and the best percentage

relative error among the 10 generated solutions. Here, we take again γ† instead of γ∗ when the optimal

solution is not known. Finally, BA denotes the optimal buffer allocation and IT and CPU denote the average

total number of iterations needed before stopping and the average CPU time in seconds, respectively.

Tables 1, 2 and 3 present the results for a number of test cases in Vouros and Papadopoulos (1998).

In particular, in Tables 1 and 2 we consider systems with exponential processing times with rates µi, i =

1, . . . , m, and in Table 3 we consider systems with Erlang2 processing times, with rates µi, i = 1, . . . , m; thus,

for each machine i the processing time consists of two exponential phases with rates 2µi. We recall that the

machine life and repair times are assumed to be exponential with rates βi, i = 1, . . . , m and ri, i = 1, . . . ,m,

respectively. We see that the allocations found by the CE method are very close to the exact optimal ones

(γ∗) of Vouros and Papadopolous Vouros and Papadopoulos (1998).

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

Tables 4 and 5 present the performance of Algorithm 3.2 for m = 6 and m = 10, respectively, with

exponential processing times and different values of n. We could not compare the results of Tables 4 and 5

with any alternatives since to the best of our knowledge no case studies are available yet for such relatively

large systems. We argue, however, that our results are accurate and reliable and could serve as case studies to

compare different algorithms. Note also that γ† in Tables 4 and 5 corresponds to our best solution obtained

(on the basis of 10 different runs) for each fixed n.

We obtained similar accuracies for different processing time distributions (i.e., exponential, normal, Er-

lang, uniform and deterministic), provided 0.05 ≤ ρ ≤ 0.2 and 0.5 ≤ α ≤ 0.95.

[Table 4 about here.]

[Table 5 about here.]

Dynamics

We illustrate the dynamics of the matrices Pk for a benchmark problem with 4 niches, 10 buffer spaces,

normally distributed processing times with µ = 6, σ = 2 and N = 80.

12

P0 =




0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909

0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909

0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909

0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909




.

..

P4 =




0.0002 0.0013 0.0139 0.4484 0.5349 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

0.0002 0.0002 0.0303 0.8226 0.1432 0.0014 0.0013 0.0002 0.0002 0.0002 0.0002

0.0002 0.0483 0.9410 0.0089 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

0.0014 0.6007 0.3913 0.0051 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002




..

.

P9 =




0.0000 0.0000 0.0038 0.0179 0.9783 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0001 0.9996 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0001 0.9445 0.0554 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.9801 0.0199 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000




.

It follows from the results above that starting from P0 with the elements 1
n+1 = 1

11 = 0.0909 Algorithm

3.2 stopped after 9 iterations allocating 4, 3, 2, 1 buffer spaces to niches 1, 2, 3, 4, respectively.

5 Conclusions and directions for future research

This paper presents an application of the cross-entropy method to the buffer allocation problem. The

proposed algorithm involves the generation of buffer allocations according to an auxiliary random mechanism,

followed by an updating of the parameters of this mechanism, on the basis of the simulated performance of

these buffer allocations. The updating mechanism, derived via cross-entropy minimization, is very simple

and involves a sequence of (stochastic) matrices Pk which are (numerically) found to converge to a degenerate

matrix, from which the optimal or near optimal BA is directly found.

Our numerical studies suggest that the proposed algorithm is fast and typically performs well, in the

sense that in approximately 99% of the cases the relative error ε does not exceed 1%.

Further topics for investigation include (a) establishing convergence of Algorithm 3.2 for finite sampling

(i.e., N < ∞) with emphasis on the complexity and the speed of convergence under the suggested stopping

rules; (b) establishing confidence intervals (regions) for the optimal solution; (c) application of parallel

optimization techniques to the proposed methodology; and (d) investigations regarding a further speed-up of

the algorithm. With respect to (d), we note that initially the throughputs do not need to be estimated very

accurately, since the procedure just needs a rough idea which buffer allocations are good or not. However,

further-on in the procedure the accuracy needs to be increased to distinguish between competing “good”

solutions. In the present test cases the same accuracy was used for all iterations, since the goal of this

13

paper was to show that for the “noisy” BAP high accuracy could be achieved within a reasonable time. For

further studies it would be interesting to scrutize the role of and the relationship between the optimization

module, which includes the random mechanism of generating candidate vectors (buffer allocations) and the

corresponding updating rules, and the evaluation module, which determines the score or performance of each

generated solution. In some elementary combinatorial optimization problems such as traveling salesman

problem (TSP) and the min-cut problem the evaluation task is trivial; in more complex stochastic problems

such as the BAP, exact evaluation can be hard to accomplish. In this paper the performance evaluation

is simulation-based and is the main user of CPU time. Clearly the performances of our algorithm can be

dramatically improved using more sophisticated evaluation and/or simulation mechanisms. For example,

the well-known Gershwin’s decomposition method, Gershwin and Schor (2000), provides a fast and, in many

cases, accurate evaluation/approximation of the performances of serial production lines. Another example

is to abort the simulation of systems with less promising buffer allocation once strong enough statistical

evidence is gathered that the buffer allocation is sub-optimal.

The method presented in this paper can be adapted to non-serial production lines, such as assembly

lines. For such problems the optimization mechanism remains unchanged, while the evaluation method

(simulation) should be modified to reflect the new production configuration. A similar method could be

used to optimize the safety stocks to be used in a supply chain or a distribution network.

Although in all of our examples a unique optimal solution exists, a general BAP could have multiple

optimal solutions. Rubinstein Rubinstein (2001) addresses the issue of multiple optima for the TSP. The CE

method was found to be quite reliable in finding one of the optimal solutions in a finite number of iterations,

requiring a little more CPU time than in the case of a unique solution, due to “oscillation” effects, where

the solution fluctuates between various optima before settling down to a particular optimum. For further

reading on the cross-entropy method and noisy optimization we refer to the monograph Rubinstein and

Kroese (2002).

References

Adan, I. and van der Wal, J. (1989). Monotonicity of the throughput in single server production and assembly

networks with respect to the buffer sizes. In H. G. Perros and T. Altiok, editors, Queueing Networks with

Blocking, pages 345–356. Elsevier Science.

Buzacott, J. A. and Shanthikumar, J. G. (1993). Stochastic Models of Manufacturing Systems. Prentice-Hall.

Caro, G. D. and Dorigo, M. (1998). AntNet: distributed stigmergetic control for communications networks.

Journal of Artificial Intelligence Research, 9(317–365).

14

Dallery, Y., Liu, Z., and Towsley, D. (1994). Equivalence, reversibility, symmetry and concavity properties

in fork/join queueing networks with blocking. Journal of the ACM, 41(5), 903–942.

Dorigo, M. and Gambardella, L. M. (1997). Ant colony systems: A cooperative learning approach to the

travelling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66.

Gershwin, S. B. and Schor, J. E. (2000). Efficient algorithms for buffer space allocation. Annals of Operations

Research, 93, 117–144.

Glasserman, P. and Yao, D. D. (1996). Structured buffer-allocation problems. Journal of Discrete Event

Dynamic Systems, 6(9–42).

Glover, F. and Laguna, M. (1993). Modern Heuristic Techniques for Combinatorial Optimization, chapter

Chapter 3: Tabu search. Blackwell Scientific Publications.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley.

Gutjahr, W. J. (2000a). A generalized convergence result for the graph-based ant system meta-heuristic.

Technical Report 91-016, Dept. of Statistics and Decision Support Systems, University of Vienna, Austria.

Gutjahr, W. J. (2000b). A graph-based ant system and its convergence. Future Generations Computing, 16,

873–888.

Heavey, C., Papadopoulos, H. Y., and Browne, J. (1993). The throughput rate of multistation unreliable

production lines. European Journal of Operation Research, 68, 69–89.

Helvik, B. E. and Wittner, O. (2001). Using the cross-entropy method to guide/govern mobile agent’s path

finding in networks. In 3rd International Workshop on Mobile Agents for Telecommunication Applications

- MATA’01.

Keith, J. and Kroese, D. P. (2002). Sequence alignment by rare event simulation. In Proceedings of the 2002

Winter Simulation Conference, pages 320–327, San Diego.

Lieber, D. (1998). Rare-events estimation via cross-entropy and importance sampling. Ph.D. thesis, William

Davidson Faculty of Industrial Engineering and Management, Technion, Haifa, Israel.

Margolin, L. (2002). Cross-Entropy Method for Combinatorial Optimization. Master’s thesis, The Technion,

Israel Institute of Technology, Haifa.

Meester, L. E. and Shanthikumar, J. G. (1990). Concavity of the throughput of tandem queueing systems

with finite buffer storage space. Advances in Applied Probability, 22, 764–767.

15

Papadopoulos, H. T. and Vouros, G. A. (1997). A model management system (MMS) for the design and

operation of production lines. International Journal of production Research, 35(8), 2213–2236.

Rubinstein, R. Y. (1997). Optimization of computer simulation models with rare events. European Journal

of Operational Research, 99, 89–112.

Rubinstein, R. Y. (1999). The cross-entropy method for combinatorial and continuous optimization. Method-

ology and Computing in Applied Probability, 2, 127–190.

Rubinstein, R. Y. (2001). Combinatorial optimization, cross-entropy, ants and rare events. In S. Uryasev and

P. M. Pardalos, editors, Stochastic Optimization: Algorithms and Applications, pages 304–358. Kluwer.

Rubinstein, R. Y. (2002). The cross-entropy method and rare-events for maximal cut and bipartition prob-

lems. ACM Transactions on Modelling and Computer Simulation, 12(1), 27–53.

Rubinstein, R. Y. and Kroese, D. P. (2002). Lecture notes on the cross-entropy method. Manuscript.

Rubinstein, R. Y. and Melamed, B. (1998). Modern Simulation and Modeling. Wiley series in probability

and Statistics.

Shanthikumar, J. G. and Yao, D. D. (1989). Monotonicity and concavity properties in cyclic queueing

networks with finite buffers. In H. Perros and T. Altiok, editors, Queueing Networks with Blocking, pages

325–344. Elsevier Science.

Shi, L. and Olafsson, S. (2000). Nested partitioning method for global optimization. Operations Research,

48(3), 390–407.

Shi, L., Olafsson, S., and Sun, N. (1999). New parallel randomized algorithm for traveling salesman problem.

Computers and Operations Research, 26, 371–394.

Spinellis, D. D. and Papadopoulos, H. T. (2000). Production Line Buffer Allocation: Genetic Algorithms

Versus Simulated Annealing. Annals of OR, 93(1), 373–384.

Vouros, G. A. and Papadopoulos, H. T. (1998). Buffer allocation in unreliable production lines using a

knowledge based system. Computer & Operation Research, 25(12), 1055–1067.

16

List of Figures

1 A production line with m = 4 machines. The total available buffer space is n = 9. The
current buffer allocation is (3,2,4). Machine 1 has an infinite supply, but is currently blocked.
Machine 2 has failed and is under repair. Machine 3 is starved. Machine 4 is never blocked. . 18

2 Generation of the BA vector (2, 4, 2, 1), for the case m = 5, n = 9 and the permutation
π = (2, 3, 1, 4). For the second niche there are initially 9 possible buffer places; 4 buffer places
are allocated. This reduces the number of available buffer places for the third niche to 5; 2
buffer places are allocated. Etcetera. 19

17

M1 M3 M4M2

niche 2niche 1 niche 3

Figure 1: A production line with m = 4 machines. The total available buffer space is n = 9. The current
buffer allocation is (3,2,4). Machine 1 has an infinite supply, but is currently blocked. Machine 2 has failed
and is under repair. Machine 3 is starved. Machine 4 is never blocked.

18

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

� � �
� � �
� � �
� � �

	 	 	
	 	 	
	 	 	
	 	 	

0 1 2 3 4 5 6 7 8 9

4

N
ic

he

2

3

1

Figure 2: Generation of the BA vector (2, 4, 2, 1), for the case m = 5, n = 9 and the permutation π =
(2, 3, 1, 4). For the second niche there are initially 9 possible buffer places; 4 buffer places are allocated. This
reduces the number of available buffer places for the third niche to 5; 2 buffer places are allocated. Etcetera.

19

Table 1: Performance of Algorithm 3.2 for BAPs with m−1 = 2 niches and different values of n, exponential
processing times with rates µ1 = 1, µ2 = 1.2, µ3 = 1.4, failure rates βi = 0.05 and repair rates ri = 0.5, i =
1, . . . , 3.

n IT BA γ̄∞ γ∗ ε̄ ε∗ ε∗ CPU
1 2.0 (1,0) .6341 .6341 0 0 0 7
2 2.0 (1,1) .6715 .6744 0.44 0.88 0 8
3 2.6 (2,1) .6998 .7113 1.64 5.90 0 9
4 3.5 (3,1) .7349 .7361 0.16 0.54 0 14
5 3.8 (3,2) .7574 .7587 0.18 0.59 0 14
6 4.3 (4,2) .7688 .7777 0.37 2.11 0 16
7 6.2 (5,2) .7811 .7922 0.52 1.71 0 22
8 5.1 (5,3) .8040 .8060 0.25 0.84 0 20
9 9.1 (6,3) .8142 .8178 0.44 1.63 0 32

10 8.3 (7,3) .8255 .8274 0.24 0.95 0 30

20

Table 2: Performance of Algorithm 3.2 for m − 1 = 4 niches, different values of n, exponential processing
times with rates µ1 = 1, µ2 = 1.1, µ3 = 1.2, µ4 = 1.3, µ5 = 1.5, failure rates βi = 0.05 and repair rates
ri = 0.5, i = 1, . . . , 5.

n IT BA γ̄∞ γ∗ ε̄ ε∗ ε∗ CPU
1 2.6 (0,1,0,0) .5213 .5213 0 0 0 12
2 4.6 (1,1,0,0) .5479 .5514 0.60 1.10 0 32
3 3.6 (1,1,1,0) .5824 .5824 0 0 0 39
4 6.4 (1,2,1,0) .6015 .6027 0.20 0.85 0 67
5 9.0 (2,2,1,0) .6202 .6213 0.18 0.32 0 103
6 5.7 (2,2,1,1) .6420 .6422 0.03 0.31 0 89
7 7.7 (2,2,2,1) .6572 .6585 0.20 0.87 0 116
8 7.2 (3,2,2,1) .6731 .6744 0.20 1.20 0 132
9 9.1 (3,3,2,1) .6885 .6894 0.13 0.67 0 166
10 10.7 (3,3,3,1) .7004 .7005 0.02 0.03 0 197

21

Table 3: Performance of Algorithm 3.2 for m−1 = 4 niches, with Erlang2 processing times with rates µ1 = 1,
µ2 = 1.1, µ3 = 1.2, µ4 = 1.3, µ5 = 1.5, failure rates βi = 0.05 and repair rates ri = 0.5, i = 1, . . . , 5.

n IT BA γ̄∞ γ∗ ε̄ ε∗ ε∗ CPU
1 2.8 (0,1,0,0) .5968 .5968 0 0 0 23
2 3.5 (1,1,0,0) .6331 .6338 0.11 1.14 0 39
3 3.9 (1,1,1,0) .5824 .5824 0 0 0 55
4 5.8 (2,1,1,0) .6802 .6808 0.09 0.73 0 86
5 8.3 (2,2,1,0) .6985 .6996 0.16 0.28 0 159
6 6.9 (2,2,1,1) .7180 .7195 1.14 0.2 0 187
7 12.5 (3,2,2,1) .7335 .7341 0.18 0.07 0 202
8 9.8 (3,2,2,1) .7496 .7501 0.43 0.07 0 181
9 9.7 (3,3,2,1) .7620 .7627 0.68 0.09 0 177
10 13.6 (4,3,2,1) .7714 7740 1.24 .33 0 261

22

Table 4: Performance of Algorithm 3.2 for m − 1 = 5 niches and various n, exponential processing times
with rates µ1 = 8, µ2 = 11, µ3 = 14, µ4 = 14, µ5 = 11, µ6 = 8, failure rates βi = 0.05 and repair rates
ri = 0.5, i = 1, . . . , 6.

n IT BA γ̄∞ γ† ε̄ ε∗ ε∗ CPU
2 4.2 (1,0,0,0,1) 5.4935 5.5027 0.17 0.84 0 32.80
4 5.4 (1,0,0,0,1) 5.9245 5.9334 0.15 0.76 0 65.80
6 12 (1,1,0,1,1) 6.2443 6.2555 0.18 0.50 0 156.00
8 13.4 (2,1,0,1,2) 6.5197 6.5253 0.09 0.22 0 198.80
10 25.6 (3,1,1,1,2) 6.7510 6.7589 0.12 0.57 0 386.40
12 49 (4,2,1,2,3) 6.9316 6.9360 0.06 0.11 0 766.40
14 28.2 (4,2,1,2,5) 7.0684 7.0934 0.35 0.79 0 603.60
16 59.2 (5,2,2,2,5) 7.1783 7.1846 0.09 0.26 0 1128.60
18 92.6 (6,2,2,3,5) 7.4149 7.4291 0.19 0.36 0 2048.40

23

Table 5: Performance of Algorithm 3.2 for m−1 = 9 niches, exponential processing times with rates µ1 = 8,
µ2 = 8, µ3 = 11, µ4 = 14, µ5 = 14, µ6 = 11, µ7 = 8, µ8 = 8, µ9 = 6, µ10 = 6, failure rates βi = 0.05 and
repair rates ri = 0.5, i = 1, . . . , 10.

n IT BA γ̄∞ γ† ε̄ ε∗ ε∗ CPU
2 4.00 (0,0,0,0,0,0,0,1,1) 3.8281 3.8749 1.22 3.76 0 110.00
4 11.67 (0,0,0,0,0,0,1,1,2) 4.1160 4.1236 0.18 0.28 0 402.33
6 19.67 (0,1,0,0,0,0,1,2,2) 4.3220 4.3289 0.16 0.24 0 964.00
8 23.33 (0,1,0,0,0,1,1,2,3) 4.5325 4.5420 0.21 0.58 0 1199.67
10 12.67 (1,1,0,0,0,1,2,2,3) 4.6146 4.6426 0.60 1.84 0 1164.67
12 14.33 (1,1,0,0,0,1,2,3,4) 4.7814 4.7946 0.28 0.84 0 1718.67
14 37.00 (1,1,0,0,1,1,2,3,5) 4.8852 4.8895 0.08 0.20 0 3325.00
16 49.33 (1,1,0,1,0,2,2,4,5) 4.9832 4.9891 0.18 0.33 0 5117.00
18 186.67 (2,1,1,0,0,1,3,4,6) 5.0414 5.0638 0.45 1.17 0 20714.00

24

