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Bike Sharing Systems (BSSs) allow customers to rent bicycles at automatic rental stations distributed

throughout a city, use them for a short period of time, and return them to any station. One of the major

issues that BSS operators must address is non-homogeneous asymmetric demand processes. These demand

processes create an inherent imbalance, thus leading to shortages either of bicycles when users are attempting

to rent them and of vacant lockers when users are attempting to return them. The predominant approach

taken by operators to cope with this difficulty is to reposition bicycles to rebalance the inventory levels at the

different stations. Most repositioning studies assume that a target inventory level or range of inventory levels

is known for each station. In this paper, we focus on determining the correct target level for repositioning

according to a well-defined objective. This is a challenging task because of the nature of the user behavior

that creates the interactions among the inventory levels at different stations. For example, if bicycles are not

available at the user’s origin, the user may either abandon the system, use other means of transportation,

or look for available bicycles at a neighboring station. If in another case, a locker is not available at a user’s

destination, then that user is obliged to find a station with available space to return the bicycle to the system.

Thus, an empty/full station can create a spill-over of demand to nearby stations. In addition, stations are

related by origin-destination pairing. In this paper, we take this effect into consideration for the first time

when setting target inventory levels and develop a robust guided local search algorithm for that purpose.

We show that neglecting the interactions among stations leads to inferior decision-making.
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1. Introduction

Bike Sharing Systems (BSSs) allow customers to rent bicycles at automatic rental stations dis-

tributed throughout a city, use them for a short period of time, and then return them to any

station. This is an environmentally sustainable mode of transportation and one that can also be

integrated with traditional means of public transportation. A significant increase in the number of

BSSs and their popularity has recently been seen worldwide (Shaheen et al. (2010)). For a review

of the history of BSSs and prospects for their future, see DeMaio (2009) and Shaheen and Guzman

(2011).

One of the major aspects affecting the service quality of BSSs is the availability of bicycles and

lockers at the different stations, see for example Laporte et al. (2015). Developing an inventory

model for a BSS involves unique challenges because of the special features of these systems. A

BSS experiences two types of demand: a demand for bicycles, by customers who wish to enter the

system (renters), and a demand for lockers, by users who have finished their rides and wish to

leave the system (returners). Therefore, basic inventory logic that dictates that a higher inventory

level can satisfy more customers is not suitable for addressing this problem. Because each station

has a fix capacity, a larger quantity of bicycles at a given station implies a smaller quantity of

available lockers. Because of the non-homogeneous asymmetric demand processes that typically

characterize BSSs, an inherent imbalance is created, leading to shortages both of bicycles when

users are attempting to rent them and of vacant lockers when users are attempting to return them.

To prevent such shortage events, several studies have suggested regulation schemes and poli-

cies that influence customer demand to the benefit of the system. For instance, several authors

have presented pricing mechanisms that give customers incentives to change their origins and/or

destinations, e.g., Chemla et al. (2013b), Pfrommer et al. (2014) and Waserhole and Jost (2016).

Kaspi et al. (2014) and Kaspi et al. (2016) proposed a parking reservation policy in which a user

reserves a locker at the intended destination station before renting a bicycle, thereby diminishing

uncertainty and redirecting that user’s demand to an available station. A different kind of policy

was presented by Fricker and Gast (2016). Their policy encourages users to choose two destination

stations instead of one, and the system then directs them to the station with more vacant lockers.

In practice, the most common approach taken by operators to cope with the difficulties posed

by shortages of bicycles or lockers is to reposition bicycles to rebalance the inventory levels at the

different stations. This repositioning is typically performed using a fleet of trucks, each of which

carries several bicycles. Two types of repositioning can be distinguished: dynamic repositioning

and static repositioning. Dynamic repositioning is performed when the system is active to react

to the current system state and unexpected events; see Contardo et al. (2012), Kloimüllner et al.

(2014) and Pessach (2013). Static repositioning occurs during the night, when traffic is low and the
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BSS is idle. The various models and solution methods proposed to address the static repositioning

problem include Nair and Miller-Hooks (2011), Benchimol et al. (2011), Chemla et al. (2013a),

Raviv et al. (2013), Erdoğan et al. (2014), Angeloudis et al. (2014) and Forma et al. (2015).

Most static repositioning studies assume that a target inventory level or range of inventory

levels is known for each station. Only a few studies have addressed the issue of how to determine

these target levels for static repositioning. Nair and Miller-Hooks (2011) formulated the problem

as a stochastic MIP with the objective of minimizing the cost of the redistribution operation for

a required service level. They defined a shortage as a net difference between the total demand

over the planning horizon and the total inventory, ignoring the sequence of events occurring in

the system. Raviv and Kolka (2013) and Schuijbroek et al. (2017) presented a Markov-chain-

based model in which the inventory level is tracked continuously throughout the day. Renters who

arrive at an empty station and returners who arrive at a full station are assumed to abandon the

system and are considered to be lost sales. Raviv and Kolka (2013) suggested a user dissatisfaction

function that measures the performance of a station in terms of the expected penalty due to

abandonment by returners and renters as a function of the initial inventory at a single station.

Schuijbroek et al. (2017) used dual-bounded service level constraints presented by Nair and Miller-

Hooks (2011). Another study that addressed the issue of target inventory levels was conducted

by Leurent (2012), who modeled bike sharing stations as a dual Markovian waiting system and

assumed that unsatisfied customers would wait at a station rather than abandoning the system. All

of these studies considered models based on a single station, meaning that each station’s inventory

target level was calculated independently of the others and the interactions among stations were

neglected. In Vogel et al. (2014), the inventory levels of all stations were set simultaneously, but

these authors also ignored the influence of interaction on the system because they treated shortages

of bicycles and lockers as lost sales. They determined the stations’ inventory levels so as to minimize

the total expected operation costs of the system due to relocation while satisfying a minimal level

of service.

The interactions among the inventory levels at different stations are an inherent attribute of

a BSS. When a customer arrives at an empty station (or when she observes this status online),

she can choose between searching for an available bicycle at a neighboring station (referred to

as roaming) or abandoning the system to use other means of transportation. Thus, an empty

station can create a spill-over of demand to nearby stations. In addition, if the customer decides

not to use the system, a future demand for a locker at the destination station is eliminated. Such

interactions occur between stations that are not located close to one another. Moreover, when a

customer wishes to return her bicycle, she may arrive at a full station and then be obliged to find

an available space at another station nearby (also referred to as roaming), meaning that a full
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station will always create locker demand at neighboring stations. In accordance with this concept,

Rudloff and Lackner (2013) presented different count demand models for BSSs and demonstrated

that full/empty stations have an influence on neighboring stations’ demand. George and Xia (2011)

addressed the problem of determining the optimal fleet size for a vehicle rental company and derived

analytical results for its relationship to vehicle availability at each rental station in the network.

This paper is the first to consider the interactions among stations in BSS, for the purpose

of setting target inventory levels. Our contributions are as follows: First, we present a formal

definition and mathematical formulation of the BSS inventory problem with station interactions

(BSIP-SI). Second, we develop a guided local search algorithm to set the initial inventory level at

each station (the target level). This search uses a simulation model in which a user behavior model

is implemented. This model includes the roaming between stations (that is, seeking an alternative

station) that occurs upon a shortage of bicycles or lockers. Third, we use real data to test our

algorithm and compare our results with the common practice of operators and with the results of

the model presented in Raviv and Kolka (2013), which ignores these interactions. We show that our

algorithm results in a better quality of service for all of the different instances tested. Our results

indicate that the interactions among stations’ inventory levels cannot be neglected. Specifically,

they have an impact on the desired target inventory levels.

The remainder of the paper is organized as follows: in Section 2, we define the problem, the

user behavior model, and related assumptions. In Section 3 we present a mathematical formulation

of the problem. In Section 4, we characterize the influence of the initial inventory on the system

performance and develop our guided local search algorithm accordingly. Section 5 presents the

numerical study performed, the properties of the data used, the results and an analysis of the

robustness of the search algorithm. Section 6 presents a discussion and summary of the results.

2. Problem Definition

In this section, we provide a formal definition of the bike sharing system inventory problem with

station interactions (BSIP-SI). We start with a broad and general definition of the problem. Then,

we illustrate some of the more abstract ideas through a more specific formulation that will be used

in our numerical experiment in Section 5.

An instance of the problem is defined by the following:

• A set of bike sharing stations - Each station is characterized by its capacity, i.e., the number

of lockers/docking poles.

• A general stochastic demand process for desired rides for each origin-destination pair. That

is, a ride is a demand for a travel using a bicycle from a certain origin to a certain destination.

The origins and destinations are assumed to coincide with the geographic locations of the stations.
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The process is defined for a finite planning horizon (typically a working day) and may be non-

homogeneous in time and space.

• A journey dissatisfaction function (JDF) with respect to the user. We define a journey to be

the itinerary of the user, which brings her from her origin to her destination. A journey may include

up to two walking and up to one riding segments. The JDF function maps any combination of a

desired ride and a corresponding actual journey to a non-negative value. The ideal journey from

station A to B is always the one that proceeds via a direct bicycle ride from A to B, and therefore,

the JDF for this scenario is zero by definition. Otherwise, for example, if the user could not find a

bicycle at the desired origin and decided to abandon the system or roam to a neighboring station,

the JDF returns a larger value that represents the dissatisfaction or dis-utility of the user arising

from this occurrence. In our numerical study, we address a special case of the JDF, namely, excess

time, as will be described later.

• A user behavior model. This model characterizes the choices made by the users, particularly

when there are no bicycles at the desired origin station (referred to as a shortage) or when there are

no vacant lockers at the desired destination (referred to as a surplus). In general, the user behavior

model can be viewed as a decision model that maps a user action to each origin-destination pair

and state of the system. The decisions may include waiting for some amount of time at the origin or

destination, roaming to a nearby station before renting a bicycle and/or returning it, or abandoning

the system and using other modes of transportation. The state of the system at each moment is

described by the number of bicycles and (equivalently) the number of available lockers at each

station. It is safe to assume that users will strive to minimize their JDF. The general user behavior

model is depicted in Figure 1. A detailed example of such a concrete model is given below and

depicted in Figure 2.

Figure 1 User Behavior Model
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Given this input, the BSIP-SI is defined as follows: Set the initial inventory levels of the stations

to minimize the total JDF of all journeys over a given planning horizon, typically one day. This

problem definition is sufficiently general to capture many assumptions about the preferences and

behavior of the users and operators. The use of a given planning horizon is motivated by the

fact that in many systems, repositioning work is performed during the night with the intent of

preparing the system for the next day. Although (dynamic) repositioning is also performed, during

the day, and ideally one would consider the effect of static and dynamic repositioning on each

other, dynamic repositioning is out of the scope of this paper. Another underlying assumption of

the above problem definition is that the total number of bicycles in the system is not a binding

constraint. Indeed, since the cost of a bicycle is relatively low compared with other infrastructural

and operational costs of the system, in a well-run BSS, an adequate number of spare bicycles should

be available at the operators’ disposal at any time.

One example of a JDF, which we consider in the numerical study presented in this paper, is the

JDF introduced by Kaspi et al. (2014), i.e., the excess time. The excess time of a journey with

respect to a certain ride is defined as the difference between the actual time it takes to complete

the journey (the travel time) and the ideal time of the corresponding ride. The actual time of a

journey may include waiting and roaming times before and after (or instead of) riding, whereas the

ideal time of the corresponding ride refer to a direct bicycle ride between the origin and destination

stations. In other words, the excess time reflects any unnecessary time that the user was obliged to

spend to reach her desired destination from her origin. This definition of the JDF clearly satisfies

the requirement that a value of zero is assigned to ideal itineraries. In addition, it has the virtue

of reflecting the extent of the negative implications of each failure in providing the desired service.

Operators should take these implications into consideration when setting the inventory levels at

stations.

We also adopt the corresponding user behavior model of Kaspi et al. (2014), which is consistent

with the excess-time JDF. This user behavior model assumes that each user is independently

striving to minimize her own excess time. It also assumes that the users have full information about

the state of the system but that they are myopic, that is, at decision points, they do not account for

the implications of possible changes in the system state while roaming between neighboring stations

in search of available bicycles or vacant docking poles. Moreover, upon renting, they optimistically

assume that a vacant docking pole will be available for them at the time of their arrival at the

destination.

The following notation is necessary to implement the user behavior model described above:

Ci - Number of lockers at station i, i.e., its capacity

Tij - Travel time by bicycle, i.e., riding time, from station i to station j
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Wij - Walking time from station i to station j

Bi(t) - Number of bicycles at station i at time t

Note that Bi(t) is a state variable, unlike the other quantities, which are data parameters.

Figure 2 Excess-Time User Behavior Model, adopted from Kaspi et al. (2014)

The model, as depicted in Figure 2, dictates that a user who does not find an available bicycle

may choose to roam to a nearby station or walk directly to her destination (I). The user will prefer

to rent a bicycle if the total time to reach her destination when that option is chosen is shorter

than the walking time to the destination. The total journey time includes the walking time to a

non-empty nearby station (at time t) and the riding time from that station to the destination.

Here, k∗ = arg mink:Bk(t)>0(Wik + Tkj) is the non-empty station to which the user can roam that

will result in the shortest total journey time. If Wik∗ + Tk∗j <Wij, then roaming to station k∗ is

better than walking to the destination and the user will therefore choose to do so; otherwise, she

will walk directly to her destination.

Once a bicycle is rented, the user rides to her destination. If, upon arrival at the destination, she

finds an available locker, she returns the bicycle there and leaves the system. Otherwise, the user

rides to a nearby station with an available locker (at time t), leaves the bicycle there and walks back

to the desired destination. The station is chosen in a similar manner: k∗ = arg mink:Bk(t)<Ck
(Tjk +

Wkj). If by the time the user arrives at station k∗, say at time t′, it appears to be full, a new return

station k∗∗ is selected such that k∗∗ = arg mink:Bk(t
′)<Ck

(Tk∗k∗∗ +Wk∗∗j). This process is repeated

until a vacant locker is found. However, because the availability of vacant lockers is confirmed

before the user starts toward the alternative return station, it is most likely that a vacant locker

will be found on the first attempt.

The JDF and user behavior model described above abstract out certain considerations of users

and operators in BSSs. In particular, other sources of user dissatisfaction due to shortages may

exist in addition to excess time. However, these models are sufficiently rich to capture the complex
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structure of the interactions among stations and thus are useful for setting stations inventory levels.

We note that any other JDF that is monotonic and non-decreasing in its occurrences of shortage

and surplus events, along with a user behavior model that is consistent with it, can be incorporated

into the search algorithm introduced in the next section. For example, one may assume a user

behavior model that allows for waiting at the destination station (until a locker becomes available)

or using other modes of transportation in addition to walking and riding a bicycle. In such cases,

the JDF should reflect the dis-utility associated with these actions. It may include considerations

of the uncertainty regarding the total travel time associated with waiting or of the cost of using

other modes of transportation.

3. Mathematical formulations of the problem

In this section we provide mathematical formulations of the BSIP-SI when replacing the general

stochastic demand process for desired rides with a set of demand realizations that represent it.

First we formulate a simplified mixed integer linear programming (MILP) model in which a central

planner determines the journey that each user performs in each realization. In the sequel, we modify

this model to a bi-level formulation, to account for the decentralized decision making, which better

represents practice.

3.1. The centralized model

Input

S Set of stations, indexed by i

R Set of realizations, indexed by r

Qr Set of users in realization r; each user is represented by a tuple (i, j, t), which means that the

user wants to rent a bicycle from station i at time t and ride to station j

Jqr Set of possible journeys for user q in realization r, including the possibility of walking from

the desired origin to the destination

Tir Ordered set of all possible epochs in station i of realization r, indexed by t. An epoch is a point

in time in which renting or returning a bicycle may occur. In addition, time 0 is defined as the first

epoch in each station and realization.

Lqjr Travel time of user q in journey j of realiztion r

Airt Set of user-journey pairs (q, j) that end their bicycle ride at station i at epoch t∈ Tir
Girt Set of user-journey pairs (q, j) that begin their bicycle ride at station i at epoch t∈ Tir

Decision Variables

Xqjr Equals 1 if user q takes journey j in realization r

Birt Number of bicycles that arrive to station i in realization r at epoch t∈ Tir
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Hirt Number of bicycles taken from station i in realization r at epoch t∈ Tir
Iirt Number of bicycles at station i in realization r at epoch t∈ Tir
I0i Number of bicycles at station i at epoch 0, in all realizations

min
∑

r∈R,q∈Qr,j∈Jqr

LqjrXqjr (1)

subject to

Ii,r,t−1 +Birt−Hirt = Iirt ∀i∈ S, r ∈R, t∈ Tir (2)

Iirt ≤Ci ∀i∈ S, r ∈R, t∈ Tir (3)

I0i = Ii,r,0 ∀i∈ S, r ∈R (4)∑
j∈Jqr

Xqjr = 1 ∀r ∈R,q ∈Qr (5)

∑
(q,j)∈Airt

Xqjr =Birt ∀i∈ S, r ∈R, t∈ Tir (6)

∑
(q,j)∈Girt

Xqjr =Hirt ∀i∈ S, r ∈R, t∈ Tir (7)

I0i ≥ 0, integer ∀i∈ S (8)

Iirt ≥ 0 ∀i∈ S, r ∈R, t∈ Tir (9)

Xqjr ∈ {0,1} ∀j ∈ Jq, r ∈R,q ∈Qr (10)

The objective function (1) minimizes the total time users spend in the system, by minimizing

the sum of the travel times of all users. The total excess time is the difference between the total

travel time and the ideal time. Since the ideal time for each journey is a constant, minimizing the

total travel time is the same as minimizing the total excess time. Constraints (2) are inventory

balance constraints, which keep track of the inventory level at each station, in each realization, at

each epoch. Constraints (3) ensure that the inventory at each station is bounded by its capacity,

in each realization, at each epoch. Constraints (4) state that the initial inventory level at each

station is equal for all realizations. Constraints (5) state that, in each realization, each user is

assigned to exactly one journey. Constraints (6) and (7) stipulate that in each realization, for

every journey made, there will be bicycles arriving or taken at the relevant stations at the relevant

epochs. Constraints (8) define the initial inventory level at each station as nonnegative and integer.

Constraints (9) define the number of bicycles at the stations to be nonnegative and (10) define the

decisions of which journey each user takes to be binary. Note that since I0i and Xqjr are defined to

be integer, the values of Birt,Hirt and Iirt are also integers. The decision variables I0i ∀i represent

the solution, where the rest of the decision variables are auxiliary. Note that the initial inventory
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levels are decided jointly for all the realizations, since this decision is taken before the demand is

revealed to the planner. In this formulation, determining all Xqjr variables simultaneously, with

a single objective function for all users, represents the assumption that a central planner chooses

their journeys.

The centralized model provides an assignment of journeys to users that minimizes the total travel

time of the users under the given set of realizations. However, since the users make their journey

choices independently according to their behavior model, the resulted assignment is not likely to

represent the actual choices of the users. Indeed, the central planner may assign a user to a journey

which is not convenient for her but reduces the total travel time of all the users in the system. The

objective function value of the model is thus a lower bound on the average travel time under any

user behavior model.

Unfortunately, it is hard to solve the above MILP model for a realistic system with many stations,

large number of possible journeys and a reasonably large set of demand realizations. Therefore,

we solved the model with a limited number of possible journeys for each user in each realization,

representing the five possible choices that are the most likely to be materialized by the user in

that realization, i.e., the ones with the shortest travel times. This set includes in addition the

choice of walking between her origin and destination. While the objective value obtained by the

model with the limited number of journeys is not a valid lower bound, it can be viewed as an

approximation to it. This “approximated” lower bound is used to benchmark our solution method

to the decentralized problem. The results are reported in Section 5.5.

Another application of the centralized model could be heuristically using its initial inventory

levels as a solution for the BSIP-SI. However, when simulating the system using these levels, it is

observed that the resulted total excess time is large . This is demonstrated in Datner (2015).

3.2. The decentralized model

In the decentralized model, the central planner still determines the initial inventory levels I0i ∀i,

but the decision variables Xqjr are determined by the users rather than by the central planner.

Each user q aims to choose her journey in a way that would minimize her travel time (and hence

her excess time). Thus, this choice depends on the state of the system (the number of bicycles

available at each station) and on the user behavior when experiencing shortage or surplus, see the

general user behavior model in Figure 1. As for the state of the system - it changes rapidly, due

to the stochasticity and complex dynamics of the system (specifically, the interactions between

stations), and according to the actual realization. This implies that a complete mathematical

formulation, which modifies the centralized formulation to the case of a decentralized system,

taking into consideration the user behavior model on top of the above complexities, is unrealistic.
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Therefore, we represent the decentralized problem through a bi-level optimization model, in which

the lower level decisions are based on the user behavior model. Specifically, define S to be the state

of the system and let fq(S) be a function that represents the choices made by user q according to

the user behavior model, when the state of the system is S. Clearly S depends on the realization r

and the epoch t but we omit these indices for simplicity of the notation. Note that fq(S) refers to

all occurrences in which user q needs to take a decision throughout her journey and the results of

these choices determine the entire journey performed, j ∈ Jq. Thus, constraints (5) that state in the

centralized problem that each user is assigned to exactly one journey, are replaced by constraints

in which the choice of each user q is the above function, fq(S). That is, constraints (5) are replaced

by (for comparison with the centralized problem, we add here the index r):

Xq,fq(S),r = 1 ∀q ∈Q,r ∈R (5’),

and the objective function (1) becomes:

min
∑

r∈R,q∈Q

Lq,fq(S),r (1’)

Note that Lq,fq(S),r is a function of the state of the system, which depends on the initial state of

the system, represented by the decision variables of the central planner, I0i ∀i and the choices of

the users dictated by the user behavior model.

The formulation consisting of (1’), (2)-(4), (5’) and (6)-(10) represent the problem faced by the

central planner in a decenralized decision making environment. However, due to the decentralized

nature of the lower level decisions of the users, this formulation cannot be solved by a general

purpose optimization software, and we resort to other methods. Particularly, we use a guided search

optimization algorithm, combined with simulation, as described in Section 4.

4. Methodology

Before presenting our algorithm for setting initial inventory levels, we derive a useful property of

the inventory dynamics in a single bike sharing station.

Proposition 1 For a given demand realization at a station, consider the sequence of shortage and

surplus events. Let n ≥ 0 be the number of shortage events that occur before any surplus event.

Then, increasing the initial inventory by l bicycles will result in the elimination of at most min(n, l)

shortage events.

Proof Let BA(0) be the initial inventory at a given station A at the beginning of the planning

horizon. Let B be an alternative station facing the same demand realization, with an initial inven-

tory of BB(0) =BA(0) + l. Consider first the case in which l≤ n: After each of the first l shortage
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(a) l≤ n (b) l > n

Figure 3 Inventory Trajectory at a Single Station

events at station A or surplus events at station B (or any combination of l such events), the dif-

ference BB(t)−BA(t) is decreased by one. Therefore, after at most l shortage events at station

A, BA(t) =BB(t), and from this time onward, the inventory levels of the two stations coincide. In

other words, there are at most l shortage events that can be eliminated by increasing the initial

inventory of a station by l bicycles.

We illustrate the above argument using the example presented in Figure 3a. In this example,

BA(0) = 2 and BB(0) = 4, that is, l = BB(0)−BA(0) = 2. At station A, there are two shortage

events (at times 3 and 6) before the first surplus event. With each of these two shortage events,

the difference between the two stations is decreased by one, until the station inventories coincide

after the second shortage event.

Similarly, consider the case in which l > n: After each of the first n shortage events at station A

or surplus events at station B (or any combination of n such events), the difference BB(t)−BA(t)

is decreased by one. Therefore, after at most n shortage events at station A, BB(t)−BA(t)≤ l−n.

Afterward, the inventory levels of the two stations coincide when station A becomes full, which

occurs sometime before the first surplus event at station A. In other words, there are at most n

shortage events that can be eliminated by increasing the initial inventory of a station by l bicycles;

see Figure 3b. �

A similar property also applies for surplus events.

Proposition 2 For a given demand realization at a station, consider the sequence of surplus and

shortage events. Let n ≥ 0 be the number of surplus events that occur before any shortage event.

Then, decreasing the initial inventory by l bicycles will result in the elimination of at most min(n, l)

surplus events.

The proof of Proposition 2 is a mirror image of the proof of Proposition 1 and is thus omitted.

An important conclusion that can be drawn from these propositions is that at a station that suffers

both surplus and shortage events, only the type of event that occurs first can be directly mitigated
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by changing the initial inventory level; for example, if the first unmet demand is for a bicycle (i.e.,

a shortage), then by changing the initial inventory level, we can only prevent shortages and cannot

affect any surpluses that occur afterward. We use this observation in the design of our guided local

search algorithm by increasing or decreasing the initial inventory levels in accordance with the first

type of event observed. We note that Proposition 1 and Proposition 2 are valid only under the

assumption of a fixed demand realization at a station.

In reality, any shortage or surplus events at a station affects the demand faced by other stations

and may result in a chain reaction throughout the system. The algorithm presented below accounts

for this phenomenon by making small changes to the initial inventory levels at each iteration. This

in turn, may result in new shortage or surplus event that will be addressed in the next iterations.

We introduce a guided local search algorithm that strives to minimize the total JDF over the

planning horizon by setting appropriate initial inventory levels. Our algorithm considers a fixed set

of demand realizations, each representing a possible instance of the planning horizon. It searches

for the initial inventory levels that minimize the average total JDF over these realizations as an

approximation of the expected JDF.

The search is performed iteratively, starting from some initial solution to the problem, i.e., an

initial inventory Bi(0) for each station i. In each search iteration, the algorithm estimates the

expected total JDF by simulating the system based on a user behavior model, given a set of demand

realizations and a vector of initial inventory levels. Information on the occurrences of shortage and

surplus events is collected during the simulation. Based on this information, the inventory levels

are updated, typically at numerous stations simultaneously. The process is then repeated until

some stopping criterion is met. The core of the search algorithm is the mechanism that updates

the initial inventory levels of the stations at the end of each iteration.

Guided by Propositions 1 and 2, the information we collect focuses on the first shortage or

surplus event at each station. We define the following categories of scenarios:

1. The first shortage event occurs before any surplus event.

2. The first surplus event occurs before any shortage event.

3. No shortage or surplus occurs, but Bi(t) = 0 for some t, i.e., the station is empty at some

point.

4. No shortage or surplus occurs, but Bi(t) =Ci for some t, i.e., the station is full at some point.

Note that Categories 3 and 4 are not disjoint. In each iteration, we count the number of demand

realizations that belong to each category (M1,M2,M3,M4) for each station. We use these values

to determine at which stations a change in the inventory level by one unit may be beneficial, i.e.,

we apply Propositions 1 and 2 with l = 1. An increase in the inventory level could be beneficial at

a station where there are more realizations with shortages (Category 1) than surpluses (Category
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2). In addition, we must consider the realizations in which there are no shortages or surpluses but

the inventory level Bi(t) reaches the station’s capacity, that is, the station is full at some point

(Category 4). Increasing the inventory level in Category 4 cases will result in a surplus, as in

Category 2 cases. Accordingly, we add a bicycle to each station for which M1 >M2 + M4. Using

the same logic, we remove a bicycle from each station for which M2 >M1 + M3. Note that each

station can satisfy at most one of the conditions considered above. If a station does not satisfy any

of these conditions, this means that it is impossible to reduce the number of shortages or surpluses

by changing its inventory level, and therefore, its initial inventory level remains unchanged.

The process is repeated, using the same set of demand realizations, until a solution that was

previously considered is encountered. We could stop the search at this point, considering that as

a result of its deterministic nature, the algorithm would simply repeat its cycle from this point

onward. However, as long as the algorithm’s stopping criterion is not met, we instead continue

by perturbing the best found inventory levels and continuing from that point. This perturbation

also provides some protection against premature convergence to a local minimum. We apply the

perturbation by adding a uniform discrete random variable U [−2,2] to the initial inventory level

at each station. If this modification results in a solution that exceeds the range 0, ...,Ci for station

i, then the corresponding value is truncated accordingly. Finally, the algorithm stops when a

predetermined time budget or number of iterations is reached. A summary of the search stages is

illustrated in Figure 4.

Figure 4 Search Algorithm

We refer to the search described thus far as an occurrence-driven search. The purpose of this

occurrence-driven search is to reduce the number of shortage and surplus occurrences, which is

typically consistent with the objective of minimizing any JDF. However, two arbitrary events

will not necessarily have the same impact on a JDF. Therefore, it is desirable to devise a search
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algorithm that prioritizes the elimination of events that will result in a greater effect on the chosen

JDF.

Therefore, we introduce a time-driven search that is specially tailored for the excess-time JDF.

We use an approach similar to that presented above but with an emphasis on the time that

users must spend in the system as a result of each avoidable shortage or surplus. Using the same

previously described scenario categories, instead of counting the number of realizations, we sum

over the avoidable excess time. Let M ′
1 be the sum of the excess times due to the first shortage event

in all realizations of Category 1. This is calculated by, for each such realization, determining the

station to which the user roams, k∗ = arg mink:Bk(t)>0(Wik +Tkj), and then recording the difference

between the resulting journey time with roaming and the ideal time, i.e., min(Wik∗+Tk∗j,Wij)−Tij.

Similarly, M ′
2 is the sum of the excess times due to the first surplus event in all realizations in

which a surplus event occurs first. This is calculated as mink:Bk(t)<Ck
(Tjk +Wkj).

M ′
3 is calculated in the same way as M ′

1 for realizations of Category 3. M ′
3 is updated at the

first time at which the station becomes empty. This represents an evaluation of the excess time

that would have been added if the initial inventory level had been reduced by one. Similarly, M ′
4

is calculated in the same way as M ′
2 for realizations of Category 4. This represents an evaluation

of the excess time that would have been added if the initial inventory level had been increased by

one.

Based on the values of M ′
1, ...,M

′
4, we update the inventory levels of the stations in the same

manner used in the occurrence-driven search: we add a bicycle to each station for which M ′
1 >

M ′
2 +M ′

4 and remove a bicycle from each station for which M ′
2 >M ′

1 +M ′
3. The iterations of the

search process and the stopping criterion remain the same.

The search algorithm uses a simulation model (described in Section 5.1) that implements the user

behavior model using a discrete event simulation architecture. It simulates the system’s inventory

levels and customers’ movement over the planning horizon, given certain initial inventory levels.

Different inventory levels can lead to different user decisions, which then lead to different dynamics

of the inventory levels, and so on. In this way, the simulation captures the interactions among

stations.

5. Numerical Study

In this section, we present a numerical study conducted using the proposed algorithm and its

results. Section 5.1 presents the search settings and implementation details. Section 5.2 describes

the data used in the study. Section 5.3 reports our results, and Section 5.4 analyzes the robustness

of the algorithm.
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5.1. Implementation and Experimental Settings

The user behavior model was implemented in a simulation that reproduced two main types of

events: renting attempt events (Figure 5) and returning attempt events (Figure 6). In a renting

attempt event, a user arrives at a station. If a bicycle is available, a new returning attempt event

is created and added to the event queue. Otherwise, based on the logic of the user behavior model,

the user either leaves the system or roams to another station. In the latter case, a new renting

attempt event is created. In a returning attempt event, a user arrives at a station with a bicycle.

If a locker is available, the user leaves the system. Otherwise, the user roams to another station

and a new returning attempt event is created.

Figure 5 Renting Attempt Event

The two search algorithms and the simulation were coded using MathWorks MATLAB R2011b.

The experiments were run on an Intel Xeon X3450 @ 2.67 GHz with 16 GB of RAM. Each of

the two search methods was run using three different starting points, i.e., sets of initial inventory

levels: (i) Random - a random inventory level at each station; (ii) Half - a starting inventory level

at each station equal to half of that station’s capacity, a heuristic used both in the literature and

in industry; and (iii) R&K - a starting inventory level at each station set using the single-station

model suggested by Raviv and Kolka (2013). The stopping criterion was set to 100 iterations.
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Figure 6 Returning Attempt Event

Table 1 Problem Instances

Hubway Capital Divvy

Number of Stations 131 232 300

Period May-13 Aug-13 Apr-13 Jun-13 Aug-13 Oct-13
Avg. Rides per Day 3364 4906 7311 8101 4953 5633
Avg. Rides per Planning Horizon 1823 2493 3536 3800 2505 2964

5.2. Input Data

We used data from three BSSs of different sizes, all of which are located in the United States:

Hubway in Boston, Capital Bikeshare in Washington, D.C., and Divvy in Chicago. The network

topologies of and detailed trip data for these systems are available on their websites. The problem

was solved for a planning horizon of 9.5 hours starting at 7:00 am on a working day, assuming

without loss of generality that dynamic repositioning would be performed by the end of this

planning horizon. For each BSS, we used data from two different months, one working month and

one during summer vacation. In this way, we could consider different demand patterns in the same

BSS. Several properties of these problem instances are presented in Table 1.

The demand estimation process was executed as described by Kaspi et al. (2014). All rent and

return transactions were recorded by the operators. After eliminating holidays and weekend trips,

we found that the daily demand patterns did not change significantly throughout each period. By

aggregating these transactions over multiple days, we estimated the demand rate of renters for each

origin-destination pair during each 30-minute period throughout the day. As may be expected, the

demand process was not homogeneous over time. For example, the demand for bicycles at stations

located near working areas was low at the beginning of the day and increased significantly toward

the end of the working day.

We note that in their current state, the information systems cannot document user abandon-

ments. This is primarily because when a user arrives at an empty station, she will not attempt
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to rent a bicycle, and therefore, no such attempt is registered by the system. To address this

issue, we considered the proportion of time for which a station was empty or full and inflated

the demand rates accordingly. However, using the transaction data we obtained, we could not

distinguish between users who rented or returned bicycles at their desired origins or destinations

and those who were obliged to roam to nearby stations. We note that statistical analysis of this

phenomenon will be required to obtain more reliable estimations of demand; however, this is out

of the scope of this study.

Based on the estimated origin-destination demand rates, we created a training set of 50 real-

izations, which was used as the input to the search algorithm, and a test set of 500 realizations,

which was used to evaluate the solutions obtained by the algorithm. In this manner, we simulated

the real-life situation in which operators set initial inventory levels based on their forecasts (the

training set) and then observe the results on future days (the test set). In addition, the search

results showed no effect of over-fitting to the realizations in the training set.

Riding and walking times were estimated using the Google Maps API. For regular trips, it is

safe to assume that most users will aim to ride directly from their origins to their destinations.

This is not the case for round trips, i.e., trips that begin and end at the same station. The riding

time for such trips was set to 30 minutes based on the observed average round-trip travel time.

In summary, our complete data set included riding-time and walking-time matrices, an O-D

demand matrix for each 30-minute period of the day, the capacity and location of each station, and

demand realizations (i.e., training and test sets) for all six problem instances. These data are avail-

able for download from our website at http://www.eng.tau.ac.il/~talraviv/Publications/.

5.3. Main Results

In this section, we present our main numerical results. Each problem instance was solved using two

search methods (occurrence- and time-driven search) and three starting points. We first note that

each of these six solutions consistently outperformed the two alternative solutions with which we

compared our results, namely, Half and R&K (note that these solutions should not be confused

with the three tested starting points of our search algorithm: Random, Half, and R&K). In Table

2, we report the results for the best solution of the six in each case, referred to as our solution,

whereas in Section 5.4, we perform a detailed comparison of all solutions.

The first group of rows presents the total excess time per day (in hours) for the three tested

solutions. The second group of rows in Table 2 shows the percentage reduction in excess time

achieved by our solution compared with the other two solutions. The third and fourth groups

of rows present the number and percentage (with respect to the total demand) of ideal rides,

respectively. The average excess time spent in the system by a user who does not have an ideal ride
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Table 2 Main Results

Hubway-May Hubway-Aug Capital-Apr Capital-June Divvy-Aug Divvy-Oct

Excess Time (h/day)
Half 85.57 140.43 274.45 318.03 36.08 75.50
R&K 22.15 54.48 50.92 47.67 14.57 19.12
Our Search 20.53 49.48 46.08 46.69 14.43 17.35

Excess Time Reduc-
tion

Vs. Half 76.01% 64.77% 83.21% 85.32% 60.00% 77.02%

Vs. R&K 7.35% 9.20% 9.51% 2.08% 0.91% 9.23%

Number of Ideal Rides
Half 1321 1745 2140 2269 2201 2371

R&K 1623 2119 3104 3207 2385 2754
Our Search 1644 2133 3120 3377 2384 2767

Ideal Ride Ratio
Half 72.5% 70.0% 60.5% 59.7% 87.9% 80.0%

R&K 89.0% 85.0% 87.8% 84.4% 95.2% 92.9%
Our Search 90.2% 85.6% 88.2% 88.9% 95.2% 93.4%

Avg. Excess Time per
Non-ideal Ride
User (min)

Half 10.2 11.3 11.8 12.5 7.1 7.6

R&K 6.6 8.7 7.1 4.8 7.3 5.5
Our Search 6.9 8.2 6.6 6.6 7.2 5.3

Number of Shortage
and Surplus Events

Half 630 998 2137 2476 334 748

R&K 218 437 476 689 125 232
Our Search 197 413 451 459 127 212

Avg. Number of Shortage
and Surplus Events per
Non-ideal Ride User

Half 1.3 1.3 1.5 1.6 1.1 1.3

R&K 1.1 1.2 1.1 1.2 1.0 1.1
Our Search 1.1 1.1 1.1 1.1 1.1 1.1

Avg. Running Time (h) 1.02 1.34 2.06 2.08 1.49 1.69

is presented in the fifth group of rows. The sixth group of rows shows the total number of shortage

and surplus occurrences. Note that this number is slightly different from the number of non-ideal

rides because the same user may experience one or more shortage and/or surplus events. In the

seventh group of rows, the average number of shortage and/or surplus occurrences per non-ideal

ride user is presented. The last row reports the average running time of the search algorithm per

problem instance.

We observe that our solution consistently outperforms the other solutions in terms of total excess

time. The excess time reduction is statistically significant compared with both the Half and the

R&K solution methods. The mean excess time, when calculated based on the 500 realizations

in the test set, is significantly smaller for our solution. In a paired t-test the p-value is at most

0.0006. Interestingly, for the same BSS in different months, the percentage reductions in excess

time achieved by our solution can be very different, as in the cases of Capital and Divvy. Recall

that the R&K solution considers only a single station at a given time, neglecting the interactions

among stations. Therefore, in instances in which such interactions are rare because of the balanced

nature of the demand process, it is more difficult to affect the total excess time merely by adjusting

the initial inventory levels.
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Although we advocate the use of the excess-time JDF, we recognize that many other authors

and operators use other performance measures, particularly the number of shortage and surplus

occurrences. We observe in Table 2 that minimizing the total excess time results in reducing the

number of such shortage or surplus events in five of the six cases. In one case (Divvy-Aug), the

number of these events in our solution is slightly larger compared with that in the R&K solution.

Similarly, the number and ratio of ideal rides are typically larger in our solution. Another interesting

observation is related to the average excess time spent by users who do not have an ideal ride.

In most cases, in addition to reducing the number of users who experience non-ideal rides, the

average excess time they spend is also reduced. Furthermore, the average number of shortage and

surplus occurrences experienced by a non-ideal ride user is no larger than in the other solutions.

In short, our solution results in a higher number of satisfied users, and most unsatisfied users are

less discomforted in terms of both the number of shortage and surplus events and their consequent

excess time.

Next, let us consider the results of the occurrence- and time-driven search algorithms. In Table 3,

we compare the solutions that represent the best results (among the three starting points) achieved

by each of these algorithms in terms of excess time. The values presented in the table represent

the difference between the two solutions, where positive values in the table correspond to higher

measures for the time-driven search. The first column shows the names of the problem instances. In

the second column, we present the percentage reduction in excess time achieved by the time-driven

search minus the corresponding value for the occurrence-driven search. The third column shows

the average difference in the number of shortage and surplus events per user between these two

solutions. Similarly, in the last column, we present the difference in the ideal ride ratio. Recall that

unlike the two previous measures, the ideal ride ratio is a measure that should be maximized; thus,

negative values here reflect better results in the time-driven search.

As expected, the time-driven search algorithm is better suited to minimizing the total excess

time. Interestingly, the two algorithms yield very similar results in terms of the number of shortage

and surplus occurrences and the ideal ride ratio, although the time-driven algorithm demonstrates

a slight advantage. We conclude that the excess time may be a good surrogate objective function

for various service quality measures. To further investigate the properties of the search method, in

the following subsection, we focus only on the time-driven algorithm.

5.4. Robustness of the Algorithm

In this section, we consider the effects of different starting points and different training sets on the

performance of the time-driven algorithm. In Table 4, we show how the search is affected by the

different starting points (i.e., Random, Half and R&K). For each problem instance and starting
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Table 3 Time-driven Results Minus Occurrence-driven Results

Excess Time
Reduction

No. Shortage and
Surplus per User

Ideal Ride Ratio

Hubway-May 0.81% -0.0006 -0.0011
Hubway-Aug 1.09% 0.0040 -0.0004
Capital-Apr 0.44% -0.0002 -0.0003
Capital-June 0.33% 0.0025 -0.0008
Divvy-Aug -0.05% 0.0096 -0.0004
Divvy-Oct 1.72% 0.0086 -0.0007

Table 4 Robustness to the Starting Point

Random Half R&K

Hubway-May 7.00% The quality of the solutions 7.35% 6.91%
Hubway-Aug 9.20% 8.85% 8.80%
Capital-Apr 9.27% 9.21% 9.51%
Capital-June 1.67% 1.97% 2.08%
Divvy-Aug 0.48% 0.91% 0.80%
Divvy-Oct 8.96% 9.11% 9.23%

point, the table presents the excess time improvement compared with the R&K solution (as in the

fifth row of Table 2).

The most important observation to be drawn from Table 4 is that our search algorithm is not

highly sensitive to its starting point, which is advantageous. Recall that the three starting points

that we used were a randomly generated vector, a vector representing half of the capacity at each

station and the solution obtained using the R&K method. Each of these starting points could itself

represent a solution to the problem; among them, Random is typically the worst and R&K is the

best in terms of excess time. Interestingly, the table shows that a better starting point does not

necessarily lead to a better solution. In fact, the R&K starting point led to the best final result in

only half of the problem instances. Clearly, if sufficient computational resources are available, some

improvement may be gained by running the algorithm with multiple starting points, including

various random vectors.

Next, let us examine the sensitivity of the algorithm to the specific training set of 50 realizations

that was used as the input to the search algorithm. We created three more such sets based on the

same demand processes and ran the search again using the R&K starting point. The solutions were

evaluated using the same test set of 500 realizations as was the solution of the original search. The

results are displayed in Table 5. The first column provides the names of the problem instances.

The second column gives the excess time improvement (over R&K) of the original training set’s

solution for the R&K starting point. The remainder of the columns show the improvement rates

achieved using the three other training sets with the same starting point. It is evident that the
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Table 5 Robustness to the Training Set

Original 1 2 3

Hubway-May 6.91% 6.81% 6.91% 6.81%
Hubway-Aug 8.80% 8.70% 8.65% 8.75%
Capital-Apr 9.51% 7.58% 9.01% 9.30%
Capital-June 2.08% 1.59% 2.42% 2.10%
Divvy-Aug 0.80% 0.80% 1.12% 1.20%
Divvy-Oct 9.23% 9.66% 10.26% 10.68%

search algorithm is fairly robust. In nine of the eighteen runs, the improvement achieved using the

newly generated training sets was equal to or larger than the original. Therefore, there is no reason

to suspect that the search was over-fitted to the original training set.

5.5. Approximated lower bound

In this section we present the results of a numerical experiment that we conducted with the

centralized MILP model presented in Section 3. Our goal was to calculate an approximated lower

bound (A-LB) obtained by this model and compare it with the actual excess time simulated with

initial inventory levels based on our time driven search. Both the MILP model and the search

procedure were applied with the same 50 demand realizations (the training set). The actual excess

time was estimated by a different set of 500 demand realizations drawn from the same stochastic

process.

We used the same six datasets as in Section 5. The results of this experiment are summarized in

Table 6. Each row refers to one of the instances. In the first column the instance name is presented.

In the next four columns the excess time obtained from the centralized model, the time driven

search procedure, the optimal solution obtained from Raviv and Kolka (2013) (R&K) and the naive

approach of setting the inventory level to “half” are presented, respectively. In the sixth column

the relative optimality gap between the solution of the time driven search and the approximated

lower bound is presented. The gap is calculated as the ratio between the absolute optimality gap

and the upper bound. In the two right most columns we present the relative share of the gap closed

by the time driven search heuristic as compared to the R&K and the naive solutions.

It is apparent from Table 6 that either the A-LB provided by the centralized model is rather weak

or the solution obtained by our time driven search procedure is far from the optimum. We believe

that the former is true. Indeed, when looking closely into the solution of the centralized planner,

we observe that many of the decisions made by the model are far from being optimal from the

individual user perspective. These decisions are done by the centralized model only for the “greater

good” of all users. Moreover, this model exploits full information about future demand, which is

not available in practice. On the positive side, we observe that the time driven search closes most
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Table 6 Analyses of the A-LB obtained by the centralized model

Centralized Time Gap Gap

model driven R&K Half Optimality closed closed
(A-LB) Search Gap from R&K from Half

Hubway-May 9.72 20.53 22.15 85.57 52.7% 13.0% 85.7%
Hubway-Aug 19.19 49.48 54.48 140.43 61.2% 14.2% 75.0%
Capital-Apr 25.02 46.08 50.92 274.45 45.7% 18.7% 91.6%
Capital-June 24.73 46.69 47.67 318.03 47.0% 4.3% 92.5%
Divvy-Aug 5.88 14.43 14.57 36.08 59.2% 1.6% 71.7%
Divvy-Oct 6.75 17.35 19.12 75.50 61.1% 14.3% 84.6%
Average 54.5% 11.0% 83.5%

of the optimality gap between the naive solution and the approximated lower bound, and a non-

negligible part of gap between the R&K solution and the approximated lower bound. This further

strengthen our claim that advanced optimization techniques has the potential of improving the

service level provided by a BSS without using additional physical resources, such as repositioning

vehicles.

6. Conclusions

In this paper, we introduced the problem of setting the initial inventory levels in a BSS with

station interactions and developed a simulation-based guided local search algorithm that optimizes

the quality of service. Our algorithm is novel in the sense that it extracts information from the

dynamics observed in the simulation. We proved that only the first shortage or surplus event at

each station in each demand realization can be eliminated by changing the initial inventory level

at that station by one unit. We used this property to guide our search procedure. The algorithm

is capable of capturing and considering complex interactions in the system that originate from the

behavior of the users. Such complexities could not be addressed without the use of simulation. The

effectiveness of our algorithm was demonstrated using actual demand data from three real BSSs.

In our model, it is assumed that the goal of the operator when setting the initial inventory levels is

to minimize the JDF, which is equivalent to maximizing the quality of service. A legitimate criticism

of this modeling assumption is that the operator may have other objectives, such as minimizing his

operational cost and, in particular, the cost of repositioning bicycles between stations. Moreover,

it is not always possible to satisfy the inventory levels prescribed by our model. This can be the

case, for example, because of the capacity and time constraints of the repositioning operation.

Therefore, it is important to also explore values of solutions in the neighborhood of the solution

obtained by our algorithm. Such an investigation is out of the scope of the current study and will

be an important topic for future research.

Our numerical study shows that the interactions among stations should not be neglected when

planning the inventory levels of BSS stations, as done by previous authors, e.g., Raviv and Kolka
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(2013). In most of the cases, our guided search algorithm saves about 7-9% of the excess time,

compared with the R&K solution. We believe, that such an improvement in the service level,

achieved without additional physical resources, is worth the effort of looking into the interactions

between the stations. However, if the system is not very loaded or the demand is relatively balanced,

the interactions are infrequent and thus it is less crucial to take them into account.

In any transportation system, and particularly in a BSS, each user is selfishly attempting to

minimize her own dissatisfaction by selecting the best possible itinerary. If a central planner could

assign an itinerary to each user, the total JDF could be reduced much further, although certain

users might be worse off. A model that is based on a central planner that assigns users to journeys is

formulated as a mixed integer linear program. This model determines the optimal initial inventory

level with respect to a large set of demand realizations. However, when we used the inventory levels

prescribed by this model in combination with the simulation and user behavior model described in

this paper, we found that the resulting excess time and number of shortage and surplus events were

not competitive with our results or even with the R&K solution. This finding can be attributed to

the gap between the itineraries that would be selected by a central planner and those selected by

the users themselves. The results of this numerical experiment is reported in Datner (2015).

The discussion above is relevant to various decisions regarding the design and operation of BSSs,

e.g., repositioning operations and the locations and capacities of stations. Future research should

consider the behavior of users and interactions among stations when devising models for these

problems. For example, when operators are considering the trade-off between setting up many small

stations or fewer stations with greater capacity, the corresponding problem cannot be correctly

solved without considering that users can roam between stations.
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