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Abstract

We study unreliable serial production lines with known failure probabilities for each

operation. Such a production line consists of a series of stations; existing machines and

optional quality control stations (QCS). Our aim is to simultaneously decide where and if

to install the QCSs along the line and to determine the production rate, so as to maximize

the steady state expected net profit per time unit from the system.

We use dynamic programming to solve the cost minimization auxiliary problem where

the aim is to minimize the time unit production cost for a given production rate. Using

the above developed O(N2) dynamic programming algorithm as a subroutine, where N

stands for the number of machines in the line, we present an O(N4) algorithm to solve

the profit maximization QCS configuration problem.
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1 Introduction

In this paper we consider the well studied problem of incorporating quality control stations

(some times referred to as inspection stations) into unreliable multi-stage production systems.

The effect of insertion of quality control stations (QCS) on the final cost and on the quality

of the final product is well observed in the literature. Models and optimization algorithms for

various problems related to locating QCS stations along production lines are date back to 1965,

see Lindsay and Bishop [2]. A survey on the problem of optimal location of QCS along multi-

stage systems appears in Raz [4]. For more recent studies focused on systems with imperfect

inspection facilities, see for example Raz and Kaspi [5], for a study on systems allowing rework

and repair see Yum and McDowell [7]. All the above studies consider optimization of steady

state performance. For the problem under a finite planning horizon setting look at Kogan and

Raz [1].

We point out that the above mentioned studies focus on maximizing the profit per product

and overlook the effect of the QCS configuration on the system throughput and on the holding

costs of work in process. In [3] we consider holding costs and utilize the influence of the QCS

configuration on the production line throughput in the branch and bound strategy developed

there, one that maximizes the expected profit per time unit. To the best of our knowledge, this

was the first attempt to maximize the expected profit per time unit rather than per finished

product. We continue to follow this line in the present paper.

In this paper we look for an optimal QCS configuration in a serial production line, in a

steady state, under any arrival process and with zero holding costs. Two optimization problems

are considered: Minimization of the expected operational cost under a given production rate

and maximization of the expected profit per time unit where the QCS configuration and the

production rate are to be decided simultaneously. As opposed to our approximation branch and

bound strategy in [3], where holding costs were taken into account, here we provide an exact

polynomial time algorithm. We first solve the cost minimization problem using an O(N2) time

dynamic programming algorithm, where N stands for the number of machines along the line.

Then, the profit maximization problem is solved by an O(N4) time algorithm that uses the

cost minimization algorithm as a subroutine. A key ingredient in our proof of the complexity of

the maximization algorithm is the O(N2) bound on the number of potential maximum eligible

production rates, and an efficient way to obtain these rates.

The rest of the paper is organized as follows. In Section 2 we define the two versions of our

QCS problem. Section 3 presents a dynamic programming algorithm to solve the cost minimiza-

tion problem and Section 4 provides a polynomial time algorithm for the profit maximization
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problem. We conclude with a short discussion in Section 5.

2 Preliminaries and Notations

Consider a serial production line with N machines and an infinite number of identical products

to be produced. For simplicity of exposition we slightly abuse the notion of a product and, if

no confusion may arise, we refer to an unfinished product as a product. Processing of a product

consists of a series of N operations, with the ith operation processed on the ith machine. The

ith operation’s cost is ci and its processing time assumed to be an i.i.d random variable with

expectation xi. Operation i, if performed on a non-defective product, succeeds with a known

probability pi and fails with probability (1−pi). A defective product processed by any machine

remains defective.

Quality control stations (QCS) can be installed anywhere along the line and each installed

QCS detects all the defective products delivered from its preceding machine and discards them

from the line. Machines and QCSs are referred to as stations. Each product can be processed by

a single station at a time, and each station can process one product at time. An unlimited buffer

is located in front of each station where all products that finished their previous operations are

waiting to be processed. A fictitious buffer in front of the first machine represents the products

that entered the production line but their first operation has not yet been started. The arrival

process to the fictitious buffer is assumed to be any stationary stochastic process, including

the deterministic process with constant inter-arrival times. The rate of the arrival process into

the fictitious buffer is referred to as the production rate and is denoted by a. Note, however,

that in general, installed QCSs reduce the throughput rate to be less than a since part of the

products become defective and are thus discarded from the system.

The ith machine is denoted by Mi and its immediate consecutive QCS, if such installed,

is denoted QCi. The location of the last installed QCS before Mi is denoted by Li, with the

convention that Li = 0 if no such QCS is installed, and LN+1 is the location of the last QCS in

the line. Any QCS configuration is denoted by a set Y of its installed QCSs. For convenience,

when it is clear from the context, we refer to Y as the characteristic vector of this set. That

is, Yi = 1 if QCi exists and Yi = 0 otherwise. Note that Li is determined by Y and thus the

notation Li(Y ) should be used. However, to avoid cumbersome notation, we use Li rather than

Li(Y ), if the particular configuration Y is clear from the context. We use Bi (B′
i) to denote the

ith corresponding buffer in front of Mi (QCi). Note that B1 is the fictitious buffer. The cost of

an inspection done by QCi, if such installed, is c′i and its length assumed to be an i.i.d random

variable with mean x′i. In addition, there is a time unit fixed capital cost of f ′i associated

3



with each installed QCS, regardless of its actual working rate. Capital costs of machines are

considered as sunk costs and thus can be eliminated form the optimization process hereinafter.

Each non-defective (defective) finished product has its own revenue (penalty cost) denoted by

rG (rB).

Let qij denote the probability that a non-defective product leaving machine Mi remains

non-defective while leaving Mj. Clearly,

qij ≡
j∏

k=i+1

pk. (1)

Note that (1) holds also if the failure events are dependent across machines since the p′is are

the probabilities that a product will come out of Mi as non-defective, conditioned on being

non-defective when it entered Mi. Note that q0i stands for the probability that a product was

successfully processed along the partial series of machines M1, . . . ,Mi.

Consider a QCS system with a given QCS configuration Y . Clearly, if the steady state

arrival rate into Bi is ai, and there is no installed QCS between the two consecutive machines

Mi and Mi+1, then the arrival rate into Bi+1 is

ai+1 = min

{
ai,

1

xi

}
.

Furthermore, if QCi exists, then

ai+1 = qLi,i ·min

{
ai,

1

xi

,
1

x′i

}
.

Recall that qLi,i indicates the probability that a product remains non-defective after completed

its ith operation, given Li, the location of the last installed QCS before Mi. Hence, qLi,i stands

for the proportion of products qualified by QCi.

A production rate a is said to be eligible for a given QCS configuration Y , if its implied arrival

rate to each station along the line is at most the station’s potential production (inspection)

rate. That is, ai ≤ 1
xi

and Yi · ai ≤ 1
x′i

for all i = 1, . . . , N . Observe that it is undesirable

to operate a system under any production rate that exceeds the maximum eligible rate. This

is since the throughput of non-defective products associated with the maximum eligible rate

dominates any other such throughput from the system. A QCS configuration Y is said to be

eligible for a production rate a, if a is eligible for Y . Using these notations, if a is eligible for

Y , then the throughput rate of the products (non-defective products) is aq0,LN
(aq0,N).

Given a QCS configuration Y and a production rate a, we denote by C(Y, a) the time unit

steady state operational cost of the system. The convention C(Y, a) = ∞ is used if a is ineligible
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for Y . For a given production rate a, let Y ∗(a) denote an optimal configuration that minimizes

C(Y, a) and C∗(a) = C(Y ∗(a), a) denotes this minimal cost.

Two problems are considered in this paper, the auxiliary cost minimization problem and the

main problem of profit maximization. The problem of determining an optimal QCS configura-

tion for a given production rate, one that minimizes the steady state expected production cost

per time unit, is referred to as the Cost Minimization QCS Configuration Problem. The second

problem of maximizing the steady state expected net profit from the system per time unit by

simultaneously determining the QCS configuration and the production rate, is referred to as

the Profit Maximization QCS Configuration Problem. A solution of the Profit Maximization

Problem is given by (Y, a), a pair of a QCS configuration Y and an eligible production rate a

for it. In the following, the tuple (p,x,x′, c, c′, f ′, rB, rG) is referred to as a QCS system.

3 The Cost Minimization Problem

In this section we present our quadratic dynamic programming algorithm for solving the Cost

Minimization QCS Configuration Problem that returns an optimal QCS configuration for a

given production rate.

Algorithm 3.1 (Cost Minimization Algorithm)

Input: A QCS system (p,x,x′, c, c′, f ′, rB, a) 1.

Output: Y ∗(a), C∗(a).

We use Li as state variable and Yi as a decision binary variable that indicates whether or not

to install QCi. The recursion formula qij = qi,j−1pj is used to calculate the q′ijs. The function

hi(Li; Yi) returns the cost incurred by the tail of the line for a given (Li, Yi). It is recursively

constructed as follow:

hi(Li; Yi) =

{
aq0,Li

(ci + c′iYi) + f ′iYi + h∗i+1 (Li+1(Li, Yi)) aq0,Li
∈ [0, min( 1

xi
, 1−Yi

xi
+ 1

x′i
)]

∞ otherwise.

(2)

Note that the upper bound on the flow rate in each step is set to 1
xi

= min( 1
xi

, 1−Yi

xi
+ 1

x′i
) for

Yi = 0, and to min( 1
xi

, 1
x′i

) for Yi = 1. We use the following transition function:

Li+1(Li, Yi) =

{
Li Yi = 0

i Yi = 1.
(3)

1Note that rG, the revenue per product, is irrelevant for this problem.
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The initial condition for hN is

hN(LN ; YN) = aq0,LN
[(1− YN) · rB · (1− qLN ,N) + (cN + c′N · YN)] + YNf ′N (4)

if aq0,LN
∈ [0, min( 1

xN
, 1−YN

xN
+ 1

x′N
)], and hN(LN ; YN) = ∞ otherwise.

The function h∗i is constructed by

h∗i (Li) = min
Yi

hi(Li; Yi), (5)

and the value of h∗1(0) is returned as C∗(a). If h∗1(0) = ∞, then there is no eligible configuration

for the given production rate a. In such a case, Y ∗(a) = ∅ and C∗(a) = ∞. Otherwise, the

optimal QCS configuration is determined in the forward iterations by

Y ∗
i (Li) ∈ argminYi

hi(Li; Yi). (6)

¥

Proposition 3.2 Algorithm 3.1 is correct and its time and space complexity are O(N2).

Proof. The correctness of Algorithm 3.1 follows directly from Bellman’s principle of conditional

optimization, see for example [6]. Calculating q using the recursion formula qij = qi,j−1pj, for all

i > j, takes O(N2) operations and the space required to store q is O(N2). In addition, at any

backward iteration i, the function hi(Li; Yi) is calculated in a constant number of operations

for the two possible values of Yi ({0, 1}) and for i possible values of Li ({0, . . . , i− 1}). Thus,

there are N(N +1) such calculations in total. The forward iterations to determine the optimal

configuration, take O(N). Hence, the overall time complexity of the algorithm is O(N2). The

results of each stage i are stored in i reals [h∗i (Li)] and i boolean variables [Y ∗
i (Li)] and thus

the total space complexity is O(N2) as well. ¥

4 The Profit Maximization Problem

Here we present an O(N4) time algorithm for solving the Profit Maximization QCS Config-

uration Problem that uses Algorithm 3.1 as a subroutine. The key observation for proving

the complexity of the Profit Maximization Algorithm is Proposition 4.3 below that enables

us to bound nicely the number of times Algorithm 3.1 is executed in one run of the Profit

Maximization Algorithm.
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Observe that if (Y, a) is a solution of the Profit Maximization QCS Configuration Problem,

then the expected profit from the system per time unit is given by

P (Y, a) = a

{
q0,NrG − (1− YN) · (1− qN,N)rB −

N∑
i=1

[q0,Li
(ci + c′iYi)]

}
−

N∑
i=1

Yif
′
i (7)

if a is an eligible production rate for the configuration Y . Otherwise, P (Y, a) is undefined

(sometimes we use the notation P (Y, a) = −∞ to indicate this). It is apparent from the above

exposition of P (Y, a), in (7), that for a given QCS configuration Y , P (Y, a) is a linear function

of a within its domain. Its slope is given by

q0,NrG − (1− Yi) · (1− q0,LN
)rB −

N∑
i=1

[q0,Li
(ci + c′iYi)]

and its offset is

−
N∑

i=1

Yif
′
i .

Consider now the function

P ∗(a) ≡ max
Y

P (Y, a) = a · q0,N · rG − C∗(a). (8)

Using P ∗(a), our Profit Maximization QCS Configuration Problem can be stated as maxa P ∗(a).

Note that P ∗(a) describes the maximum attainable profit from a QCS system for a given

production rate a. This function is a piecewise linear (not necessarily continuous) function.

This is since it is obtained as a maximization over the set of the linear functions P (Y, a) for

all 2N possible QCS configurations. Example 4.1 with its Figure 1 to follow, illustrate the

structure of P ∗(a).

Example 4.1 Consider the following QCS system that consists of 4 machines, 4 optional

quality control stations and the data presented in Table 1. Figure 1 illustrates the 16 possible

P (Y, a) functions, one for each QCS configuration, and the obtained P ∗(a) function.

Observation 4.2 Let (Y ∗, a∗) be an optimal solution of the Profit Maximization QCS Config-

uration Problem that induces a positive profit. Then, this solution satisfies,

1. P (Y ∗, a) is an increasing function of a in the relevant domain. That is,

q0,NrG − (1− Y ∗
N(a)) · (1− q0,LN

)rB −
N∑

i=1

[q0,Li
(ci + c′iY

∗
i (a))] > 0.
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Station # p x x′ c c′ f ′

1 0.8 10 9 4 1 0.1

2 0.8 13 12 6 1 0.3

3 0.8 14 14 6 1 0.4

4 0.85 16 17 8 1 0.8

rG = 80 rB = 10

Table 1: Data for Example 4.1

2. Let U(Y ) denote the maximum eligible production rate allowed by the QCS configuration

Y , then a∗ = U(Y ∗).

Observe that if none of the (Y, a)s can achieve positive profit, then P (Y ∗, a) is a non-

increasing function of a and hence, the optimal solution is not to produce at all (that is a∗ = 0).

For a given system, let U =
⋃

Y ∈{0,1}N {U(Y )} be the set of all maximum eligible production

rates for all possible QCS configurations. Then, Observation 4.2 implies that optimizing P ∗(a)

over U is sufficient for solving the Profit Maximization QCS Configuration Problem. Further-

more, although the number of possible QCS configurations is 2N , Proposition 4.3 below shows

that |U| is O(N2). This crucial observation is the key for proving the polynomiality of our

Profit Maximization Algorithm.

Proposition 4.3 For any given QCS system, the number of maximum eligible production rates

for all possible configurations is at most
(

N+2
2

)
. That is, |U| ≤ (

N+2
2

)
.

Proof. First note that if a = U(Y ), then there must be at least one station (either a machine

or a QCS) that under (Y, a) works in its full capacity. We call such station a bottleneck. Given

a QCS system and a QCS configuration Y , the bottleneck station with the smallest index is

said to be the first bottleneck of the production line under (Y, U(Y )), and is denoted by S(Y ).

We use the notation S for S(Y ) if the configuration Y is clear from the context.

For each pair 0 ≤ i < j ≤ n + 1, the set of configurations Yij includes all the configurations

Y with S being one of Mi+1, . . . ,Mj, QCj, Lj = i and Yj = 1 for j < N + 1.

Clearly, the set of all 2N possible QCS configurations can be partitioned according to these(
N+2

2

)
subsets. Now, our proof follows from the fact that for any pair (i, j), all its associated

U(Y )s are of equal value for all QCS configurations Y ∈ Yij. The above fact is argued as fol-

lows. First note that the pair (i, j) uniquely determines S if Yij 6= ∅. This is since S is a slowest

station with the smallest index among Mi+1, . . . , Mj, QCj. Once S is identified, the maximum

eligible production rate is uniquely determined. Let x̄ denote the expected processing time of
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Figure 1: The functions P (Y, a) are plotted for all 16 possible configurations of the QCS problem

presented in Example 4.1. The function P ∗(a) is plotted in thick dashed line. The vectors above some

of the P (Y, a) functions are their corresponding QCS configurations.

S. Then, (x̄ · qij)
−1 is the maximum eligible production rate for each configuration Y ∈ Yij. To

see this, observe that the arrival rate to each of the stations Mi+1, . . . , Mj, QCj is aq0,i which

is equal to 1
x̄
, the production rate of S. We conclude that each subset Yij contributes at most

one member to U and so |U| ≤ (
N+2

2

)
. ¥

The basic idea behind the above proof is illustrated by Example 4.1 and Figure 1. Consider

for example the three QCS configurations (1, 1, 0, 0), (1, 1, 1, 0) and (1, 1, 1, 1). Observe that

their corresponding three P (Y, a) profit functions terminate at the same value of a, as demon-

strated by the vertical dashed lines in Figure 1, and their corresponding first bottleneck station is

M2. These configurations form the set Y1,2. Similarly, Y0,2 = {(0, 1, 0, 1), (0, 1, 1, 1), (0, 1, 1, 0)}.

9



Here the first bottleneck station is QC2 and no QCS precedes it. Recall that the number of

possible configurations grows exponentially with the number of stations and thus, clearly, it

is impractical to maximize P ∗(a) directly over all possible P (Y, a)’s. We are now ready to

describe our main algorithm.

Algorithm 4.4 (Profit Maximization Algorithm)

Input: A QCS system (p,x,x′, c, c′, f ′, rB, rG).

Output: (Y ∗, a∗) a pair of a QCS configuration and an eligible production rate that maximizes P (Y, a).

Let Y ∗ = ∅ and a∗ = 0;

For each pair of integers (i, j) with 0 ≤ i < j ≤ N + 1

Let x̄ be the expected processing time of the first slowest station among Mi+1, . . . , Mj , QCj

(Or Mi+1, . . . ,MN for the case j = N + 1);

Calculate the corresponding maximum production rate a = 1
x̄·q0,i

;

Call Algorithm 3.1 to obtain Y ∗(a) and C∗(a);

Calculate P ∗(a) as in (8);

If P ∗(a) > P (Y ∗, a∗) Then

Let a∗ = a and Y ∗ = Y ∗(a);

Return (Y ∗, a∗); ¤

Theorem 4.5 Algorithm 4.4 is correct with time complexity of O(N4) and space complexity of

O(N2).

Proof. For each configuration set Yij we calculate the maximum eligible production rate a and

then call Algorithm 3.1 to obtain Y ∗(a) and P ∗(a). We observe that P ∗(a) is at least as good

as the value of the best solution attained by any configuration in Yij. The correctness of the

algorithm follows from the above coupled with the fact that {Y} is a partition of all possible

QCS configurations.

Now, by Proposition 4.3, Algorithm 4.4 calls Algorithm 3.1 at most O(N2) times. Recall

that by Proposition 3.2, the complexity of Algorithm 3.1 is O(N2) and hence we obtain the

overall time complexity of O(N4). The space complexity of Algorithm 3.1 is O(N2) and since

the same memory can be reused at each call of this algorithm, the space complexity of Algo-

rithm 4.4 is O(N2) as well. ¥

A closer look at some of the properties of the QCS systems enables us to further reduce

the processing time of Algorithm 4.4. However, as for now, those reductions do not improve

the computational complexity of the algorithm. We demonstrate such a possible improvement

by the following simple observations presented in Proposition 4.6 below. These observations
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enable us to exclude from further computation some of the (i, j) pairs, pairs that correspond

to empty subsets Yij, and hence to reduce the actual running time of Algorithm 4.4.

Proposition 4.6 Consider a pair (i, j) and let x̄ denote the expected processing time of S̄, the

slowest station among Mi+1, . . . ,Mj, QCj. If one the following conditions holds, then S̄ is not

the first bottleneck along the production line, and thus Yij = ∅.

1. x̄ ≤ xk

qki
for some k ≤ i.

2. x̄ ≤ x′i
pi

.

3. x̄ > qikxk for some k > j.

Proof. Assume by contradiction that a configuration Y ∈ Yij for which the first condition

holds exists. That is, the first bottleneck is located between QCi and QCj (including QCj but

not including QCi) and for some k ≤ i we have that,

1

x̄
≥ qki

xk

.

Note that, for configuration Y , the maximum eligible flow rate via the stations Mi+1, . . . , Mj, QCj

is U(Y ) · q0i. Thus,

U(Y ) · q0i =
1

x̄

and so

U(Y ) · q0i ≥ qki

xk

. (9)

Dividing both sides of (9) by qki and using the definition of q as in (1) we get

U(Y ) · q0k ≥ 1

xk

.

However, this implies that using the maximum eligible flow rate for configuration Y causes the

flow rate via Mk to be at least its capacity 1
xk

; contradicting the fact that the first bottleneck of

the line is located between QCi and QCj. This completes the correctness of the first condition.

Similarly, assume by contradiction that a configuration Y ∈ Yij for which the second con-

dition holds exists. That is,
1

x̄
≥ pi

x′i
.

As before we have 1
x̄

= U(Y )q0i and so

U(Y )q0i ≥ pi

x′i
.
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By the definition of q we have that q0i ≥ pi and so U(Y ) ≥ 1
x′i

which is again a contradiction

to the fact that the first bottleneck is located after QCi.

The proof of the third case is very similar to the first one and thus omitted. It should be

noted that the strict inequality in the third case follows from the fact that Mk may works in

its full capacity and still not be the first bottleneck.¥

5 Discussion

We present in this paper a method to optimize, in a steady state, an unreliable serial production

line by considering the possibility of installing quality control stations along the line. Our results

hold for any arrival process and under the assumption that no holding costs incurred by work

in process. If holding costs are relatively high, we suggest the use of the approximation branch

and bound method presented in [3].

We first present a simple O(N2) dynamic programming algorithm that minimizes the ex-

pected cost per time unit under a specified production rate. We then show how to use this

algorithm in order to obtain simultaneously a pair of an optimal QCS configuration and its ap-

propriate production rate, so as to maximize the expected profit per time unit. The basic idea

behind our O(N4) maximization algorithm is the observation that the size of the set of possible

values for optimal production rates is relatively small and an efficient method to identify this

set.

Our solutions imply full utilization of the bottleneck stations. Thus, implementing our so-

lutions “as is” results in an unstable system since the arrival rates to the bottleneck stations

equal their production rates. Nevertheless, using the following minor modifications one can

“stabilize” the obtained solution. In the cost minimization problem one should solve the prob-

lem for a slightly higher production rate than the one required. For the profit maximization

problem, the actual production rate to be used for the optimal QCS configuration obtained

should be slightly lower than the one obtained by the algorithm.

For further research we point out the following various possible extensions and generaliza-

tions of the problems presented in this paper. To extend our model to allow unreliable QCSs,

rework, scrap values, etc. Further on, we suggest introducing QCS to more general production

models such as job shop, multistage shops, assembly lines, etc. Another possible direction is

to remove our independence assumption, that of the failure events. This calls for more so-

phisticated quality control methods such as sample inspection. It will also be interesting to

explore an adaptive QCS policy where the actual inspection done by an installed QCS should
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be decided on-line by considering the current state of the system.
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