PTAS for the Bi-Scenario Total Completion Time Trade-Off Problem

Miri Gilenson, Hussein Naseraldin, Dvir Shbtay, Liron Yedidsion

Introduction

Introduction

- Four approaches are commonly used in the literature to capture the uncertainty level:

1. One possible and known value for each parameter (Deterministic approach).
2. Parameters belongs to a given distribution function (Stochastic approach).
3. Parameters belongs to bounded intervals, with lower and upper bounds.

Problem Definition

- A set of n jobs, $\mathcal{J}=\left\{J_{1}, \ldots, J_{n}\right\}$ is to be scheduled on a single machine so as to minimize the total completion time.

We assume two scenarios, $S=\left\{s_{1}, s_{2}\right\}$, each of which defines a different possible set of job processing times, such
that under scenario $s_{i} \in S, p_{j}^{\left(s_{i}\right)}$ is the processing time of
$j o b J_{j}$.

Discrete Scenario Uncertainty- An Example

- Preventive maintenance:
- Processing time of each job consists of inspection and repair.
- The inspection duration is known and represents the minimal processing time.
- Job- dependency: if repair is required, it affects all jobs.

Scenario $\left(s_{1}\right)$:

Scenario (s_{2}):
Inspection + Repair $\longrightarrow p_{j}^{\left(s_{2}\right)}, \forall j$

Problem Definition

- Let $\sigma(j)$ denote the job in the $j^{\text {th }}$ position in a given schedule σ.
- Let $C_{\sigma(j)}^{\left(s_{i}\right)}$ be the completion time of job $\sigma(j)$ under scenario s_{i}.
- The quality of a solution, σ, is measured by a pair solution
values: $\varnothing=\left(\sum_{j=1}^{n} C_{\sigma(j)}^{\left(s_{1}\right)}, \quad \sum_{j=1}^{n} C_{\sigma(j)}^{\left(s_{2}\right)}\right)$.

Problem Definition

- Objective: Solve the $1\left|\mid \#\left(\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}, \sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\right)\right.$ problem

Definition of \#: Identify a single Pareto-Optimal (PO) schedule (also known as efficient) for each PO point, where schedule σ is considered to be a PO schedule with respect to $\sum C_{j}^{\left(s_{1}\right)}, \sum C_{j}^{\left(s_{2}\right)}$ if there does not exist another schedule σ^{\prime} such that $\sum_{j=1}^{n} C_{\sigma(j)}^{\left(s_{i}\right)}$
$\leq \sum_{j=1}^{n} C_{\sigma \prime(j)}^{\left(s_{i}\right)}$ for $i=1,2$ with at least one of these inequalities being strict.

- No preemption
- Offline scheduling

Pareto-Optimal Set

Results

Theorem :The 1\|\|($\left.\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}, \sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\right)$ problem is ordinary NP-hard (based on Yang and Yu (2002)).

- Thus, for the $1 \| \#\left(\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}, \sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\right)$ problem, we provide:
- A constant factor approximation algorithm that provides, in polynomial time, (2,1)-approximation and (1,2)-approximation ratios for the entire set of PO solutions (based on the idea of Angels et al. (2005));
- A proof that the above approximation ratios are asymptotically tight;
- A data-dependent analysis of the approximation ratios; and
- A PTAS for the $1 \| \#\left(\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}, \sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\right)$ problem.

($\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}$)-Approximation

- Definition: A set Π^{A} of feasible solutions for a $1 \| \#\left(\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}, \sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\right)$ problem with a corresponding set of solution points, APOS, is a (ρ_{1}, ρ_{2})-approximation to the Pareto set of optimal solutions (set Π^{E} with it's corresponding set of solution points POS), if for any point $\left(\sum_{j=1}^{n} C_{\sigma(j)}^{\left(s_{1}\right)}, \sum_{j=1}^{n} C_{\sigma(j)}^{\left(s_{2}\right)}\right) \in P O S$ there exists a point $\left(\sum_{j=1}^{n} C_{\sigma^{\prime}(j)}^{\left(s_{1}\right)}, \sum_{j=1}^{n} C_{\sigma^{\prime}(j)}^{\left(s_{2}\right)}\right) \in$ APOS in which the condition that

$$
\sum_{j=1}^{n} C_{\sigma \prime(j)}^{\left(s_{i}\right)} \leq \rho_{i} \sum_{j=1}^{n} C_{\sigma(j)}^{\left(s_{i}\right)}
$$

holds for $i=1,2$.

- An algorithm that provides such an approximate set Π^{A} is referred to as $\left(\rho_{1}, \rho_{2}\right)$ approximation algorithm.

Approximation for $1\left|\mid \#\left(\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}, \sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\right)\right.$

We present an approximation algorithm that constructs a set of feasible supported solutions, $\Pi^{S} \equiv \Pi^{A}$, for the $1 \| \#\left(\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}, \sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\right)$ problem, that provides a (2,1)-approximation and a (1,2)-approximation to set Π^{E} in a polynomial time.

Definition: A solution o for a bi-scenario problem is called "supported", if there exists a pair of $\left(\theta_{1}, \theta_{2}\right)$ values such that σ is an optimal solution the ${ }_{1}| | \sum_{i=1}^{2} \theta_{i} \sum_{j=1}^{n} C_{j}^{\left(s_{i}\right)}$ problem.

Approximation for $1\left|\mid \#\left(\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}, \sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\right)\right.$

Corollary: Given θ, the optimal solution, σ_{θ}^{*}, for the $1 \|\left(\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}+\theta \sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\right)$ problem is to sequence the jobs in a non-decreasing order of $p_{j}^{\left(s_{1}\right)}+\theta p_{j}^{\left(s_{2}\right)}$.

Approximation for $1 \| \#\left(\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}, \sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\right)$

Algorithm Outline:

1. Initiate the algorithm by finding the first supported solution, which is the optimal solution for $1 / \|\left(\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}+\theta \sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\right)$ problem for $\theta=0$.
2. Find the set Π^{S} of supported solutions, by finding consecutive supported solutions, i.e., finding the $\theta>0$ values for which the optimal solution for $1 \|\left(\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}+\theta \sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\right)$ changes.

Approximation for $1\left|\mid \#\left(\sum_{j=1}^{n} c_{j}^{\left(s_{1}\right)}, \sum_{j=1}^{n} c_{j}^{\left(s_{2}\right)}\right)\right.$

Approximation for $1\left|\mid \#\left(\sum_{j=1}^{n} c_{j}^{\left(s_{1}\right)}, \sum_{j=1}^{n} c_{j}^{\left(s_{2}\right)}\right)\right.$

Proving the approximation ratio:

1) $\Delta=\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}\left(\sigma^{\prime}\right)-\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}(\sigma)=$

$$
p_{v}^{\left(s_{1}\right)}-p_{u}^{\left(s_{1}\right)} \leq p_{\text {max }}^{\left(s_{1}\right)}
$$

Swapping adjacent jobs
2) $\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}\left(\sigma^{\prime}\right)=\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}(\sigma)+\Delta$

$$
\begin{aligned}
& \leq \sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}(\sigma)+p_{\max }^{\left(s_{1}\right)} \\
& \leq \sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}(\sigma)+\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}(\sigma) \leq 2 \sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}(\sigma)
\end{aligned}
$$

Approximation for $1\left|\mid \#\left(\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}, \sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\right)\right.$

Proving the approximation ratio:

- Consider an arbitrary PO point (a, b) that is included in POS but not in SS (thus, point (a, b) is not a supported point).
- $\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}(\sigma)<a<\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}\left(\sigma^{\prime}\right)$ and

$$
\sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}(\sigma)>b>\sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\left(\sigma^{\prime}\right)
$$

- $\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}(\sigma)<a<\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}\left(\sigma^{\prime}\right)<2 \sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}(\sigma)<2 a$
- $\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}\left(\sigma^{\prime}\right)<2 a$ and $\sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\left(\sigma^{\prime}\right)<b$

PTAS for $1\left|\mid \#\left(\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathbf{C}_{\mathrm{j}}^{\left(\mathrm{s}_{1}\right)}, \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathbf{C}_{\mathrm{j}}^{\left(s_{2}\right)}\right)\right.$

We present an approximation algorithm that constructs a set Π^{A} of feasible solutions for the $1 \| \#\left(\sum_{j=1}^{n} C_{j}^{\left(s_{1}\right)}, \sum_{j=1}^{n} C_{j}^{\left(s_{2}\right)}\right)$ problem, that provides $a(1+\varepsilon, 1)$-approximation and a
$(1,1+\varepsilon)$-approximation to set Π^{E} in a time that is polynomial in n (but not in $\frac{1}{\varepsilon}$). Thus we present a Polynomial Time Approximation Scheme (PTAS).

$$
\text { Denote: } \delta=\left\lceil\frac{1}{\varepsilon}-1\right\rceil
$$

PTAS for $1\left|\mid \#\left(\sum_{j=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{j}}^{\left(\mathrm{S}_{\mathrm{j}}\right)}, \Sigma_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{j}}^{\left(\mathrm{s}_{2}\right)}\right)\right.$

Position

Approximation algorithm
$(n-\delta)^{2}$ possible permutations for each $\Pi\left(D^{\prime \prime}\right)$

Full enumeration of D^{\prime}
δ ! possible permutations for each $\Pi\left(D^{\prime}\right)$

$$
\left[\sigma^{\prime \prime}, \sigma^{\prime}\right]=\sigma \in \Pi^{A} \quad n \text { jobs in each } \sigma
$$

$$
O\left(\left(\delta!+n^{2} \log n\right) n^{\delta}\right)=\boldsymbol{O}\left(\boldsymbol{n}^{2+\delta} \boldsymbol{\operatorname { l o g }} \boldsymbol{n}\right)
$$

PTAS for $1\left|\mid \#\left(\sum_{j=1}^{n} \mathbf{C}_{\mathbf{j}}^{\left(\mathbf{s}_{1}\right)}, \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathbf{C}_{\mathrm{j}}^{\left(\mathbf{s}_{2}\right)}\right)\right.$

Data-dependent Analysis

Definition: $r^{\left(s_{i}\right)}=\frac{p_{\text {max }}^{\left(s_{i}\right)}}{p_{\text {min }}^{\left(s_{i}\right)}}$

An example:

- $N=20$
- $1 \leq r^{\left(s_{i}\right)} \leq 64$

Work in Process

- Exploring multi-scenario scheduling problems with rejection option, for both fixed and arbitrary number of scenarios.:
- The $1 / \mathrm{reg} /\left(C_{\text {max }}^{\left(s_{1}\right)}(A)+R C, \ldots, C_{\text {max }}^{\left(s_{q}\right)}(A)+R C\right)$
- The $1|r \operatorname{reg}|\left(\sum_{J_{j} \in A} w_{j} C_{j}^{\left(s_{1}\right)}+R C, \ldots, \sum_{J_{j} \in A} w_{j} C_{j}^{\left(s_{q}\right)}+R C\right)$
- Exploring the multi-scenario problem of maximizing the weighted number of JIT jobs in two-machine flow-shop system
- The F2 $/ p_{j}^{\left(s_{i}\right)}, d_{j}^{\left(s_{i}\right)} \in S / \sum_{J_{j} \in E} w_{j}^{\left(s_{i}\right)}$ problem for different uncertain parameters (proceeding times, weights, due-dates).

Thank you
 gilenson@post.bgu.ac.il

