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The Gradient Method

The problem.

min{f (x) : x ∈ Rn}

f differentiable.

The Gradient Method

xk+1 = xk − tk∇f (xk)

tk > 0 - chosen stepsize.

I What is the starting point?

I What stepsize should be taken?

I What is the stopping criteria?
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Stepsize Selection Rules
I constant stepsize - tk = t̄ for any k.

I exact stepsize - tk is a minimizer of f along the ray xk − t∇f (xk):

tk ∈ argmin
t≥0

f (xk − t∇f (xk)).

I backtracking1 - The method requires three parameters:
s > 0, α ∈ (0, 1), β ∈ (0, 1). Here we start with an initial stepsize
tk = s. While

f (xk)− f (xk − tk∇f (xk)) < αtk‖∇f (xk)‖2.

set tk := βtk

Sufficient Decrease Property:

f (xk)− f (xk − tk∇f (xk)) ≥ αtk‖∇f (xk)‖2.

1also referred to as Armijo
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Gradient Method as Steepest Descent

I −∇f (xk) is a descent direction:

f ′(xk ;−∇f (xk)) = −∇f (xk)T∇f (xk) = −‖∇f (xk)‖2 < 0.

I In addition for being a descent direction, minus the gradient is also
the steepest descent direction method.

Lemma. Let f be a differentiable function and let x ∈ Rn satisfy
∇f (x) 6= 0. Then an optimal solution of

min
d
{f ′(x; d) : ‖d‖ = 1}

is d = −∇f (x)/‖∇f (x)‖.
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Convergence(?) of the Gradient Method

min{f (x) : x ∈ Rn}

Standard conditions:

I f is bounded below and differentiable.

I f is L-smooth meaning that

‖∇f (x)−∇f (y)‖ ≤ L‖x− y‖ ∀x, y ∈ Rn.

Can be proved:

I Descent method: f (xk+1) < f (xk)

I Accumulation pts. of the sequence generated by GM are stationary
points (∇f (x∗) = 0) (constant stepsize tk ≡ t̄ ∈

(
0, 2L

)
, backtracking

or exact minimization)

I If f is convex, convergence to a global optimal solution.
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Gradient Method - the Oldest Continuous Optimization
Method?

Méthode generales pour la résolution
des systèmes d’equations
simultanées, 1847

Augustin Louis Cauchy
1789-1857

I Suggested the method for solving sets of nonlinear equations

fi (x) = 0, i = 1, 2, . . . ,m⇒ min
x

∑m
i=1 fi (x)2

I Not a particularly rigorous paper...
I Modern optimization starts only 100 years afterwards (simplex for LP)
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Gradient	Method	

Scaled	
Gradient	

Newton Gauss	
Newton

Quasi-Newton	
(BFGS…)

Trust-Region	
Method

Levenberg
Margquardt

Subgradient
Method	

Projected	
Subgradient

Mirror	
Descent

Dual	Projected	
Subgradient

Proximal	
Gradient

FISTAStochastic	
Subgradient

Smoothed	
FISTA FDPG



Gradient-Based Algorithms

Widely used in applications....

I Clustering Analysis: The k-means algorithm

I Neuro-computing: The backpropagation algorithm

I Statistical Estimation: The EM (Expectation-Maximization)
algorithm.

I Machine Learning: SVM, Regularized regression, etc...

I Signal and Image Processing: Sparse Recovery, Denoising and
Deblurring Schemes, Total Variation minimization...

I Matrix minimization Problems....and much more...
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The Zig-Zag Property
Zig-Zagging: directions produced by the gradient method with exact
minimization are perpendicular.

〈∇f (xk),∇f (xk+1)〉 = 0

Main disadvantage: gradient method is rather slow.
Advantages: requires minimal information (f ,∇f ), “cheap” iterative
scheme, suitable for large-scale problems.
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The Condition Number

I Rate of convergence of the gradient method depends on the condition
number of the matrix ∇2f (x∗):

κ(∇2f (x∗)) =
σmax(∇2f (x∗))

σmin(∇2f (x∗))

I Ill-conditioned problems - high condition number

I Well-conditioned problems - small condition number

Amir Beck - Tel Aviv University The Gradient Method: Past and Present 9 / 45



A Severely Ill-Condition Function - Rosenbrock

min
{
f (x1, x2) = 100(x2 − x21 )2 + (1− x1)2

}
.

condition number: 2508

6890(!!!) iterations.
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Improving the Gradient Method - Scaled Gradient
Scaled Gradient Method

xk+1 = xk − tkDk∇f (xk)

tk > 0 - chosen stepsize. Dk � 0

I Since Dk � 0 - still a descent directions method.

I Same as the gradient method employed after the change of variables

x = D
1/2
k y

I Convergence is related to the condition number of

D
−1/2
k ∇2f (xk)D

−1/2
k

I “best” choice Dk = ∇2f (xk)−1. pure Newton’s method:

xk+1 = xk −∇2f (xk)−1∇f (xk)

I Popular and “cheap” choice: Dk diagonal (diagonal scaling)
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The Gauss-Newton Method

Nonlinear least squares:

min
x∈Rn

m∑
i=1

(fi (x)− ci )
2

f1, f2, . . . , fm - differentiable.

Given the kth iterate xk , the next iterate is chosen to minimize the sum of
squares of the linearized terms, that is,

xk+1 = argmin
x∈Rn

{
m∑
i=1

[
fi (xk) +∇fi (xk)T (x− xk)− ci

]2}
.

I The general step requires to solve a linear least squares problem at
each iteration.

I Actually a scaled gradient method with Dk = (J(xk)TJ(xk))−1 (J(·) -
Jacobian)
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Problems with Newton’s Method

xk+1 = xk −∇2f (xk)−1∇f (xk)

I ∇2f (xk) difficult to compute and/or problematic to solve the system
∇2f (xk)z = ∇f (xk)

I ∇2f (xk) might be singular

I ∇2f (xk) might not be positive definite (Newton’s direction not a
descent direction...)

I Convergence extremely problematic: requires a lot of assumptions
that are usually not satisfied.

I main advantage: quadratic rate of convergence (under very
restrictive conditions...)

Btw, pure Newton’s is a utopian method. Better to incorporate a stepsize
(damped Newton).
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Classics from the 70’s - Trying to Mend Newton
• Trust-Region Methods

xk+1 ∈ argmin
{
m(x; xk) : ‖x− xk‖ ≤ ∆k

}
where m(x; xk) is a model of f around xk , e.g.,
m(x; xk) ≡ f (xk) +∇f (xk)T (x− xk) + 1

2(x− xk)T∇2f (xk)(x− xk)

• Quasi-Newton Try to mimic the Hessian without actually forming it.
e.g., BFGS

xk+1 = xk − tkD−1k ∇f (xk)

Dk is chosen to satisfy the QN condition

Dk(xk − xk−1) = ∇f (xk)−∇f (xk−1)

I Dk+1 “simply” constructed from Dk

I Computation of D−1k requires only O(n2) flops (linear algebra tricks)
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So far...

Classical algorithms for solving

The problem.

min{f (x) : x ∈ Rn}

f differentiable.

What happens if f is nonsmooth? e.g.,

f (x) =
m∑
i=1

|aT
i x− bi |, max

i=1,...,m
|aT

i x− bi |....
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Wolfe’s Example

False hope: What happens if the method never encounters
non-differentiability points?

I Let γ > 1 and consider

f (x1, x2) =


√

x21 + γx22 , |x2| ≤ x1,
x1+γ|x2|√

1+γ
, else.

I f is differentiable at all points except for the ray {(x1, 0) : x1 ≤ 0}.
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Wolfe’s Example
The gradient method with exact line search converges to a non-optimal
point.
Conclusion: cannot ignore non-differentiability → extend the notion of
the gradient

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
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The Subgradient Method. Shor (63) Polyak (65)

xk+1 = xk − tk f
′(xk)

Replace the gradient ∇f (x) by a subgradient f ′(x) ∈ ∂f (x) (vectors that
correspond to underestimators of the function)

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
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Projected Subgradient Method
Model: f - convex. C - closed convex

min{f (x) : x ∈ C}

Projected Subgradient Method (PSM): Shor (63), Polyak (65)

xk = PC (xk−1 − tk f
′(xk−1)), f ′(xk−1) ∈ ∂f (xk−1)

tk > 0 - stepsize, PC (·) - orthogonal projection operator.

Orthogonal Projection Operator:
PC (x) = closest point in C to x = argmin

y∈C
‖y − x‖.

I SPM is not a descent method.

I tk ∝ 1√
k
⇒ f kbest := min1≤s≤k f (xs)→ fopt
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Rate of Convergence of SPM

A typical result: assume C convex compact. Take

tk =
Diam(C )√

k
; Diam(C ) := max

x,y∈C
‖x− y‖ <∞,

Then, min
1≤s≤k

f (xs)− f∗ ≤ O(1)M
Diam(C )√

k

I Thus, to find an approximate ε solution: O(1/ε2)

I Key Advantages: rate nearly independent of problem’s dimension.
Simple, when projections are easy to compute...

I Main Drawback of SPM: too slow...needs k ≥ ε−2 iterations.

I Can we improve the situation of SPM? by exploiting the
structure/geometry of the constraint set C .
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Mirror Descent: Non-Euclidean Version of SD

I Originated from functional analytic arguments in infinite dimensional
setting between primal-dual spaces. Nemirovsky and Yudin (83)

I In (B.-Teboulle-2003) it was shown that the (MDA) can be simply
viewed as a Non-Euclidean projected subgradient method.
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The Idea
Another representation of the projected subgradient method:

xk+1 = argmin
x∈C

{
f (xk) + 〈f ′(xk), x− xk〉+

1

2tk
‖x− xk‖22

}
Next iterate is a minimizer of the linear approximation regularized by a

prox term.

The Idea: Replace the Euclidean distance by a non-Euclidean function:

xk+1 = argmin
x∈C

{
f (x) + 〈f ′(xk), x− xk〉+

1

tk
D(x, xk)

}
What should we expect from D(·, ·)?
I Take into account the structure of the constraints and “easy to

compute”.
I ”distance-like”: D(u, v) ≥ 0 and equal zero iff u = v.
I Popular choice: Bregman distance

D(u, v) = Bω(u, v) = ω(u)− ω(v)−∇ω(v)T (u− v) strongly convex
w.r.t. to an arbitrary norm.
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Demo - Trust Topology Design

Design a truss of a given total weight capable to withstand a collection of
forces acting on the nodes. Simplex constraints.

min
t
{fTA−1(t)f : t ∈ ∆n}

Comparing PSM with mirror descant (ω(x) = 1
2‖x‖

2
2,
∑n

i=1 xi log xi )

xk+1
i =

xki e
−tk f ′i (x

k )∑n
j=1 x

k
j e
−tk f ′j (xk )

, i = 1, 2, . . . , n.

Theoretically the efficiency estimate is still of the order O(1/
√
k) but

the constants can be improved by using non-Euclidean distances.
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Dual Projected Subgradient Method
Model:

fopt = min f (x)
s.t. g(x) ≤ 0,

x ∈ X .

Assumptions:

(A) X ⊆ Rn is convex.

(B) f : Rn → R is convex.

(C) g(·) = (g1(·), g2(·), . . . , gm(·))T , where g1, g2, . . . , gm : Rn → R are
convex.

(D) For any λ ∈ Rm
+, the problem minx∈X{f (x) + λTg(x)} attains an

optimal solution.

The Lagrangian of the problem is given by

L(x,λ) = f (x) + λTg(x).
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The Dual Problem

(D) qopt ≡ max{q(λ) : λ ∈ Rm
+},

where
q(λ) = min

x∈X
f (x) + λTg(x).

I Under the assumptions, strong duality holds, meaning that fopt = qopt
and the optimal solution of the dual problem is attained.
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The Method
Main Observation: To compute a subgradient of −q at λ:

I Find xλ ∈ argmin
x∈X

L(x,λ).

I −g(xλ) ∈ ∂(−q)(λ).

The Dual Projected Subgradient Method
Initialization: pick λ0 ∈ Rm

+ arbitrarily.
General step: for any k = 0, 1, 2, . . .,

(a) pick a positive number γk .

(b) compute xk ∈ argmin
x∈X

{
f (x) + (λk)Tg(x)

}
.

(c) if g(xk) = 0, then terminate with an output xk ; otherwise,

λk+1 =

[
λk + γk

g(xk)

‖g(xk)‖2

]
+

.

O(1/
√
k) rate of convergence can be shown
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O(1/ε2) Rate of Convergence in Nonsmooth Convex
Optimization

I SPM,MD and dual projected subgradient are all O(1/ε2),O(1/
√
k)

methods. Can we do better?

I According to lower complexity bounds, the answer is No!

I However, by exploiting the structure of the functions, we can do
better. For example, if assuming some smoothness properties...
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Polynomial versus Gradient-Based Methods (80’s and 90’s)

I Rise of Polynomial methods for convex programming: ellipsoid,
interior point methods.

I Convex problems are polynomially solvable within ε accuracy:

Running Time ≤ Poly(Problem’s size,# of accuracy digits).

I Theoretically: large scale problems can be solved to high accuracy
with polynomial methods, such as IPM.

I Practically: Running time is dimension-dependent and grows
nonlinearly with problem’s dimension. For IPM which are Newton’s
type methods: ∼ O(n3).

I Thus, a ”single iteration” of IPM can last forever!

I 2000-... Gradient-based method have become popular again due to
increasing size of applications.
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Dealing with the Size - Decomposition
I One way to deal with the large or even huge-scale size of the new

arising applications is use decomposition. For example...

I Consider the problem

min
x

{
f (x) ≡

m∑
i=1

fi (x)

}
where f1, f2, . . . , fm are all convex functions. Suppose that m is huge.

I The subgradient method is very expansive to execute:

xk+1 = xk − tk

(
m∑
i=1

f ′i (xk)

)
.

I Instead, we can use the stochastic projected subgradient method that
exploits only one randomlly chosen subgradient at each iteration
(decomposition)

xk+1 = xk − tk f
′
ik

(xk)

ik - randomly chosen
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The General Composite Model
We will be interested in the following model:

(P) min{F (x) ≡ f (x) + g(x) : x ∈ E}.

I f : Rn → R is an Lf -smooth convex functin:

‖∇f (x)−∇f (y)‖ ≤ Lf ‖x− y‖ for every x, y ∈ Rn,

I g : Rn → R ∪ {∞} extended valued convex function which is
nonsmooth.

I Problem (P) is solvable, i.e., X∗ := argmin f 6= ∅, and for x∗ ∈ X∗ we
set Fopt := F (x∗).
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Special Cases of the General Model

I g = 0 - smooth unconstrained convex minimization.

min
x

f (x)

I g = δC (·) - constrained smooth convex minimization.

min
x
{f (x) : x ∈ C}

I g = ‖ · ‖1 - l1-regularized convex minimization.

min
x
{f (x) + λ‖x‖1}
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The Proximal Gradient Method
The derivation of the proximal gradient method is similar to the one of the
projected subgradient method.

I For any L ≥ Lf , and a given iterate xk :

QL(x, xk) := f (xk) + 〈x− xk ,∇f (xk)〉+
L

2
‖x− xk‖2+ g(x)︸︷︷︸

untouched

I Algorithm:

xk+1 := argmin
x

QL(x, xk)

= argmin
x

{
g(x) +

L

2

∥∥∥∥x− (xk − 1

L
∇f (xk))

∥∥∥∥2
}

= prox 1
L
g

(
xk − 1

L
∇f (xk)

)
≡ pL(xk).

prox operator:proxg (x) := argmin
u

{
g(u) +

1

2
‖u− x‖2

}
.
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Special Cases
The general method: xk+1 = prox 1

L
g

(
xk − 1

L∇f (xk)
)
.

I g ≡ 0⇒ the gradient method.

xk+1 = xk − 1

L
∇f (xk)

I g = δC (·)⇒ the gradient projection method

xk+1 = PC

(
xk − 1

L
∇f (xk)

)
I g(x) := λ‖x‖1 ⇒ Iterative shrinkage/thresholding algorithm

xk+1 = T λ/L
(

xk − 1

L
∇f (xk)

)
and T α : Rn → Rn is the shrinkage operator defined by

T α(x)i = (|xi | − α)+sgn (xi ).
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Special Case: LASSO

I g(x) := λ‖x‖1, f (x) := ‖Ax− b‖2 (prox=shrinkage).

xk+1 = T λ/L
(

xk −
2

L
AT (Axk − b)

)
ISTA - Iterative Shrinkage/Thresholding Algorithm

In SP literature: Chambolle (98); Figueiredo-Nowak (03, 05);
Daubechies et al. (04),Elad et al. (06), Hale et al. (07)...

In Optimization: can be viewed as the Proximal forward backward
Splitting Method (Passty (79))
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Prox Computations

There are a quite a few “simple” functions for which the
prox can be easily computed

Amir Beck - Tel Aviv University The Gradient Method: Past and Present 35 / 45



“fmo˙b
2016/6/24
page✐

✐
✐

✐

✐
✐

✐
✐

Appendix B. Tables

Prox Computations

f dom(f) proxf (x) assumptions reference

1
2x

TAx +

bTx + c

Rn (A + I)−1(x− b) A ∈ Sn+, b ∈
Rn, c ∈ R

Section 6.2.3

λx3 R+
−1+
√

1+12λ[x]+
6λ λ > 0 Lemma 6.5

µx [0, α] min{max{x− µ, 0}, α} µ ∈ R, α ∈ R+ Example 6.14

λ‖x‖ E
(
1− λ

max{‖x‖,λ}

)
x ‖·‖ - Euclidean

norm, λ > 0
Example 6.19

−λ‖x‖ E

(
1 + λ

‖x‖

)
x, x 6= 0,

{u : ‖u‖ = λ}, x = 0.
‖·‖ - Euclidean
norm, λ > 0

Example 6.21

λ‖x‖1 Rn Tλ(x) = [|x| − λe]+ ⊙ sgn(x) λ > 0 Example 6.8

‖ω ⊙ x‖1 Box[−α,α] Sω,α(x) α ∈ [0, ∞]n,ω ∈
Rn++

Example 6.23

λ‖x‖∞ Rn x− λPB‖·‖1[0,1]
(x/λ) λ > 0 Example 6.48

λ‖x‖a E x− λPB‖·‖a,∗ [0,1](x/λ) ‖x‖a – norm,
λ > 0

Example 6.47

λ‖x‖0 Rn H√
2λ(x1)× · · · ×H√

2λ(xn) λ > 0 Example 6.10

λ‖x‖3 E 2

1+
√

1+12λ‖x‖
x ‖·‖ - Euclidean

norm, λ > 0,
Example 6.20

−λ
n∑

j=1

log xj Rn
++




xj+

√
x2
j
+4λ

2




n

j=1

λ > 0 Example 6.9

δC(x) E PC(x) ∅ 6= C ⊆ E Theorem 6.24

λσC(x) E x− λPC(x/λ) λ > 0, C 6= ∅
closed convex

Theorem 6.46

λmax{xi} Rn x− P∆n (x/λ) λ > 0 Example 6.49

λ
∑k

i=1 x[i] Rn x− λPC(x/λ),
C = He,k ∩ Box[0, e]

λ > 0 Example 6.50

λ
∑k

i=1 |x〈i〉| Rn x− λPC(x/λ),
C = B‖·‖1 [0, k] ∩ Box[−e, e]

λ > 0 Example 6.51

λMµ
f (x) E x+

λ
µ+λ

(
prox(µ+λ)f (x)− x

) λ, µ > 0, f
proper closed
convex

Corollary 6.63

λdC(x) E x+

min
{

λ
dC(x)

, 1
}
(PC(x)− x)

C nonempty
closed convex,
λ > 0

Lemma 6.43

λ
2 d

2
C(x) E λ

λ+1PC(x) + 1
λ+1x C nonempty

closed convex,
λ > 0

Example 6.64

λHµ(x) E
(
1 − λ

max{‖x‖,µ+λ}

)
λ, µ > 0 Example 6.65

ρ‖x‖21 Rn
(

vixi
vi+2ρ

)n

i=1
, v =

[√
ρ
µ |x| − 2ρ

]
+
,eTv = 1 (0

when x = 0)

ρ > 0 Lemma 6.69

‖Ax‖2 Rn x − AT (AAT + α∗I)−1Ax,
α∗ = 0 if ‖v0‖2 ≤ λ; oth-
erwise, ‖vα∗‖2 = λ; vα ≡
(AAT + αI)−1Ax

A ∈ Rm×n

with full row
rank

Lemma 6.67
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Prox of Symmetric Spectral Functions over Sn (From Example 7.19)

F (X) dom(F ) proxF (X)

α‖X‖2F Sn 1
1+2αX

α‖X‖F Sn
(
1 − α

max{‖X‖F ,α}

)
X

α‖X‖S1 Sn UTα(λ(X))UT

α‖X‖2,2 Sn Udiag(λ(X)− αPB‖·‖1[0,1]
(λ(X)/α))UT

−αdet(X) Sn++ Udiag

(
λj(X)+

√
λj(X)2+4α

2

)
UT

αλ1(X) Sn Udiag(λ(X)− P∆n (λ(X)/α))UT

α
∑k

i=1 λi(X) Sn X− αUPC(λ(X)/α)UT , C = He,k ∩ Box[0, e]

Prox of Symmetric Spectral Functions over Rm×n (From Example 7.30)

F (X) proxF (X)

α‖X‖2F 1
1+2αX

α‖X‖F
(
1− α

max{‖X‖F ,α}

)
X

α‖X‖S1 UTα(σ(X))VT

α‖X‖S∞ X− αUdiag(PB‖·‖1[0,1]
(σ(X)/α))VT

α‖X‖〈k〉 X− αUPC(σ(X)/α)VT ,

C = B‖·‖1 [0, k] ∩ B‖·‖∞ [0, 1]
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Orthogonal Projections

set (C) PC(x) assumptions reference

Rn
+ [x]+ − Lemma 6.26

Box[ℓ,u] PC(x)i = min{max{xi, ℓi}, ui} ℓi ≤ ui Lemma 6.26

B‖·‖2 [c, r] c + r
max{‖x−c‖2,r} (x− c) c ∈ Rn, r > 0 Lemma 6.26

{x : Ax = b} x−AT (AAT )−1(Ax− b) A ∈ Rm×n,
b ∈ Rm,
A full row rank

Lemma 6.26

{x : aTx ≤ b} x− [aT x−b]+

‖a‖2 a 0 6= a ∈ Rn, b ∈
R

Lemma 6.26

∆n [x − µ∗e]+ where µ∗ ∈ R satisfies

eT [x− µ∗e]+ = 1

Corollary 6.29

Ha,b ∩ Box[ℓ,u] PBox(ℓ,u)(x−µ∗a) where µ∗ ∈ R sat-

isfies aTPBox[ℓ,u](x− µ∗a) = b

a ∈ Rn\{0}, b ∈
R

Theorem 6.27

H−
a,b ∩ Box[ℓ,u]





PBox[ℓ,u](x), aTvx ≤ b,
PBox[ℓ,u](x− λ∗a), aTvx > b,

vx = PBox[ℓ,u](x), aTPBox[ℓ,u](x −
λ∗a) = b, λ∗ > 0

a ∈ Rn\{0}, b ∈
R

Example 6.32

B‖·‖1 [0, α]





x, ‖x‖1 ≤ α,
Tλ∗ (x), ‖x‖1 > α,

‖Tλ∗(x)‖1 = α, λ∗ > 0

α > 0 Example 6.33

{x : ωT |x| ≤ β,
−α ≤ x ≤ α}





vx, ωT |vx| ≤ β,
Sλ∗ω,α(x), ωT |vx| > β,

vx = PBox[−α,α](x),

ωT |Sλ∗ω,α(x)| = β, λ∗ > 0

ω ∈ Rn
++, α ∈

[0,∞]n, β ∈
R++

Example 6.34

{x > 0 : Πxi ≥ α}





x, x ∈ C,


xj+

√
x2
j
+4λ∗

2




n

j=1

, x /∈ C,
,

Πn
j=1

(
(xj +

√
x2
j + 4λ∗)/2

)
=

α, λ∗ > 0

α > 0 Example 6.35

{(x, s) : ‖x‖2 ≤ s}

( ‖x‖2+s

2‖x‖2
x,

‖x‖2+s

2

)
if ‖x‖2 ≥ |s|

(0, 0) if s < ‖x‖2 < −s,
(x, s) if ‖x‖2 ≤ s.

Example 6.37

{(x, s) : ‖x‖1 ≤ s}





(x, s), ‖x‖1 ≤ s,
(Tλ∗ (x), s + λ∗), ‖x‖1 > s,

‖Tλ∗(x)‖1 − λ∗ − s = 0, λ∗ > 0

Example 6.38
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Appendix B. Tables

Orthogonal Projections onto Symmetric Spectral Sets in Sn

set (C) PC(X) assumptions

Sn+ Udiag([λ(X)]+)UT −

{X : ℓI � X � uI} Udiag(v)UT , ℓ ≤ u
vi = min{max{λi(X), ℓ}, u}

B‖·‖F [0, r] r
max{‖X‖F ,r}X r > 0

{X : Tr(X) ≤ b} Udiag(v)UT ,

v = λ(X)− [eT λ(X)−b]+
n e

b ∈ R

Υn Udiag(v)UT , v = [λ(X) − µ∗e]+
where µ∗ ∈ R satisfies eT [λ(X) −
µ∗e]+ = 1

-

B‖·‖S1
[0, α]





X, ‖X‖S1 ≤ α,
UTλ∗ (λ(X))UT , ‖X‖S1 > α,

‖Tλ∗(λ(X))‖1 = α, λ∗ > 0

α > 0

Orthogonal Projection onto Symmetric Spectral Sets in Rm×n (From Example 7.31)

set (C) PC(X) assumptions

B‖·‖S∞
[0, α] Udiag(v)UT , vi = min{σi(X), α} α > 0

B‖·‖F [0, r] r
max{‖X‖F ,r}X r > 0

B‖·‖S1
[0, α]





X, ‖X‖S1 ≤ α,
UTλ∗(σ(X))UT , ‖X‖S1 > α,

‖Tλ∗(σ(X))‖1 = α, λ∗ > 0

α > 0



Rate of Convergence of Prox-Grad

Theorem - [Rate of Convergence of Prox-Grad]
Let {xk} be the sequence generated by the proximal gradient
method.

F (xk)− F (x∗) ≤ L‖x0 − x∗‖2

2k

for any optimal solution x∗.

I Thus, to solve (M), the proximal gradient method converges at a
sublinear rate in function values.

I # iterations for F (xk)− F (x∗) ≤ ε is O(1/ε).

I Note: The sequence {xk} can be proven to converge to solution x∗.

I No need to know the Lipschitz constant (backtracking).
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Towards a Faster Algorithm

I An O(1/k) rate of convergence is rather slow.

I Can we find a faster methods?

I The answer is YES!.
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FISTA - [B., Teboulle 2009]
An equally simple algorithm as prox-grad. (Here Lf is known).

FISTA with constant stepsize
Input: L ≥ Lf - A Lipschitz constant of ∇f .
Step 0. Take y1 = x0 ∈ E, t1 = 1.
Step k. (k ≥ 1) Compute

xk ≡ prox 1
L
g

(
yk − 1

L
∇f (yk)

)
, ←↩ main computation

• tk+1 =
1 +

√
1 + 4t2k

2
,

•• yk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1).

Additional computation for FISTA in (•) and (••) is clearly marginal.
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Theorem - Global Rate of Convergence FISTA

Theorem Let {xk} be generated by FISTA. Then for any k ≥ 1

F (xk)− F (x∗) ≤ 2αL(f )‖x0 − x∗‖2

(k + 1)2
,

where α = 1 for the constant stepsize setting and α = η for the
backtracking stepsize setting.

I # of iterations to reach F (x̃)− F∗ ≤ ε is ∼ O(1/
√
ε).

I Clearly improves ISTA by a square root factor.

I Do we practically achieve this theoretical rate? Yes
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LASSO (Penalized Version)

I Consider the problem

(P) min

{
f (x) ≡ 1

2
‖Ax− b‖22 + λ‖x‖1

}
A ∈ R100×200,b ∈ R100, λ > 0

Illustration (λ = 1)
0 20 40 60 80 100 120 140 160 180 200

-1.5

-1

-0.5

0

0.5

1

200

GP

FISTA
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Gradient	Method	

Scaled	
Gradient	

Newton Gauss	
Newton

Quasi-Newton	
(BFGS…)

Trust-Region	
Method

Levenberg
Margquardt

Subgradient
Method	

Projected	
Subgradient

Mirror	
Descent

Dual	Projected	
Subgradient

Stochastic	
Subgradient



Gradient	Method	

Scaled	
Gradient	

Newton Gauss	
Newton

Quasi-Newton	
(BFGS…)

Trust-Region	
Method

Levenberg
Margquardt

Subgradient
Method	

Projected	
Subgradient

Mirror	
Descent

Dual	Projected	
Subgradient

Proximal	
Gradient

Stochastic	
Subgradient



Gradient	Method	

Scaled	
Gradient	

Newton Gauss	
Newton

Quasi-Newton	
(BFGS…)

Trust-Region	
Method

Levenberg
Margquardt

Subgradient
Method	

Projected	
Subgradient

Mirror	
Descent

Dual	Projected	
Subgradient

Proximal	
Gradient

FISTAStochastic	
Subgradient



Gradient	Method	

Scaled	
Gradient	

Newton Gauss	
Newton

Quasi-Newton	
(BFGS…)

Trust-Region	
Method

Levenberg
Margquardt

Subgradient
Method	

Projected	
Subgradient

Mirror	
Descent

Dual	Projected	
Subgradient

Proximal	
Gradient

FISTAStochastic	
Subgradient

Smoothed	
FISTA



Smoothed FISTA

I Revisit nonsmooth problems:

min
x
{f (x) : x ∈ C}

f - convex nonsmooth, C - convex

I “standard” nonsmooth algorithms solve it in O(1/ε2) complexity.

I Another approach: consider a smoothed version of the problem:
minx∈C fη(x) and solve it using FISTA.

I Example:
∑m

i=1 |aT
i x− bi | →

∑m
i=1

√
(aT

i x− bi )2 + η2

I Carefully choosing the smoothing parameter, O(1/ε) complexity can
be shown.
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Dual FISTA - FDPG

I Model:

min
x

f (x) + g(Ax)

I Dual model:

max
y
−f ∗(ATy)− g∗(−y)

f ∗, g∗ - convex conjugates (h∗(y) ≡ maxx{xTy − h(x)})
I Apply FISTA on the dual.

I Can deal with many different types of problems...
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FDPG

The Fast Dual Proximal Gradient (FDPG) Method - primal
representation

Initialization: L ≥ LF = ‖A‖2
σ ,w0 = y0 ∈ Rm, t0 = 1.

General step (k ≥ 0):

(a) uk = argmax
u

{
〈u,AT (wk)〉 − f (u)

}
.

(b) yk+1 = wk − 1
LA(uk) + 1

LproxLg (A(uk)− Lwk)

(c) tk+1 =
1+
√

1+4t2k
2

(d) wk+1 = yk+1 +
(
tk−1
tk+1

)
(yk+1 − yk).
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Present and Future?

The scale of problems is becoming huge. Emphasis of current and
probably near future research:

I Decomposition

I Randomization

I Distributed
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Thank You

Any Questions????
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