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The Gradient Method

The problem.

min{f(x) : x € R"}

f differentiable.
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f differentiable.
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The Gradient Method

X = xk — 1, VF(xK)

txy > 0 - chosen stepsize.

Amir Beck - Tel Aviv University The Gradient Method: Past and Present

2/ 45



The Gradient Method

The problem.

min{f(x) : x € R"}

f differentiable.

The Gradient Method
xkHL = xk — thf(xk)

txy > 0 - chosen stepsize.

» What is the starting point?
» What stepsize should be taken?
» What is the stopping criteria?
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Stepsize Selection Rules

» constant stepsize - t, = t for any k.

lalso referred to as Armijo
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Stepsize Selection Rules

» constant stepsize - t, = t for any k.
> exact stepsize - t; is a minimizer of f along the ray x, — tVf(x¥):

t € argmin f(x* — tV£(xX)).
t>0

lalso referred to as Armijo
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Stepsize Selection Rules

» constant stepsize - t, = t for any k.
> exact stepsize - t; is a minimizer of f along the ray x, — tVf(x¥):

t € argmin f(x* — tV£(xX)).
t>0

» backtracking! - The method requires three parameters:
s>0,a€(0,1),5 € (0,1). Here we start with an initial stepsize
ty = s. While

F(x) = F(x¥ — 6, VF(x) < aty| [ VF(x¥)|2.
set ty := Bty
Sufficient Decrease Property:

F(x¥) = F(xk — £, VF(xK)) > at, || VF(x9)|12.

1 ..
also referred to as Armijo
Amir Beck - Tel Aviv University The Gradient Method: Past and Present 3 /45



Gradient Method as Steepest Descent

» —V£(x¥) is a descent direction:

f/(x}; =VF(xX)) = —=VF(x)TVF(x) = —||[VF(x")|* < 0.

» In addition for being a descent direction, minus the gradient is also
the steepest descent direction method.
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Gradient Method as Steepest Descent

» —V£(x¥) is a descent direction:

f/(x}; =VF(xX)) = —=VF(x)TVF(x) = —||[VF(x")|* < 0.

» In addition for being a descent direction, minus the gradient is also
the steepest descent direction method.

Lemma. Let f be a differentiable function and let x € R" satisfy
V£ (x) # 0. Then an optimal solution of

min{f'(x;d) : [|d]| = 1}

is d = —VF(x)/| V)|
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Convergence(?) of the Gradient Method

min{f(x) : x € R"}
Standard conditions:

» f is bounded below and differentiable.

» f is L-smooth meaning that

IVE(x) = VE(y)l < Llx =yl %y € R"
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Convergence(?) of the Gradient Method

min{f(x) : x € R"}
Standard conditions:

» f is bounded below and differentiable.

» f is L-smooth meaning that

IVE(x) = VE(y)l < Llx =yl %y € R"

Can be proved:

» Descent method: f(x 1) < f(x¥)

» Accumulation pts. of the sequence generated by GM are stationary
points (Vf(x*) = 0) (constant stepsize t, =t € (0, %) backtracking
or exact minimization)

» If f is convex, convergence to a global optimal solution.
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Gradient Method - the Oldest Continuous Optimization
Method?

Méthode generales pour la résolution
des systemes d’equations
simultanées, 1847

Augustin Louis Cauchy
1789-1857
» Suggested the method for solving sets of nonlinear equations

fi(x)=0,i=1,2,....,m=min Y7 fi(x)?

» Not a particularly rigorous paper...

» Modern optimization starts only 100 years afterwards (simplex for LP)
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Gradient Method

.

Scaled Subgradient Proximal
Gradient Method Gradient
Gauss Projected Stochastic
Newton X FISTA
Newton Subgradient Subgradient
Quasi-Newton Trust-Region Levenberg Mirror Dual Projected Smoothed FDPG
(BFGS...) Method Margquardt Descent Subgradient FISTA




Gradient-Based Algorithms

Widely used in applications....

»

>

>

Clustering Analysis: The k-means algorithm
Neuro-computing: The backpropagation algorithm

Statistical Estimation: The EM (Expectation-Maximization)
algorithm.

Machine Learning: SVM, Regularized regression, etc...

Signal and Image Processing: Sparse Recovery, Denoising and
Deblurring Schemes, Total Variation minimization...

Matrix minimization Problems....and much more...
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The Zig-Zag Property

Zig-Zagging: directions produced by the gradient method with exact
minimization are perpendicular.

(VF(x¥), VF(x*) =0
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The Zig-Zag Property

Zig-Zagging: directions produced by the gradient method with exact
minimization are perpendicular.

(VF(x¥), VF(x*) =0

Main disadvantage: gradient method is rather slow.
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The Zig-Zag Property

Zig-Zagging: directions produced by the gradient method with exact
minimization are perpendicular.

N
NN

(VF(x¥), VF(x*) =0

Main disadvantage: gradient method is rather slow.
Advantages: requires minimal information (f, V), “cheap” iterative
scheme, suitable for large-scale problems.
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The Condition Number

» Rate of convergence of the gradient method depends on the condition
number of the matrix V2f(x*):

Tmax(V2f(x*))

/i(vz f(X*)) = Omin (vz f(x*))

» lll-conditioned problems - high condition number

» Well-conditioned problems - small condition number
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A Severely Ill-Condition Function - Rosenbrock

min { f(x1, %) = 100(x> — x{)> + (1 — x1)*} .

condition number: 2508
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A Severely Ill-Condition Function - Rosenbrock

min {f(x1, ) = 100(x> — x7)? + (1 — x1)?} .

condition number: 2508

5

6890(!!!) iterations.
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Improving the Gradient Method - Scaled Gradient
Scaled Gradient Method

X1 = xk — £,D, VF(xK)

tx > 0 - chosen stepsize. Dy >~ 0

Amir Beck - Tel Aviv University The Gradient Method: Past and Present

11/ 45



Improving the Gradient Method - Scaled Gradient
Scaled Gradient Method

X1 = xk — £,D, VF(xK)

tx > 0 - chosen stepsize. Dy >~ 0

» Since Dy > 0 - still a descent directions method.
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Improving the Gradient Method - Scaled Gradient
Scaled Gradient Method

X1 = xk — £,D, VF(xK)

ty > 0 - chosen stepsize. Dy - 0

» Since Dy > 0 - still a descent directions method.

» Same as the gradient method employed after the change of variables
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Improving the Gradient Method - Scaled Gradient
Scaled Gradient Method

X1 = xk — £,D, VF(xK)

ty > 0 - chosen stepsize. Dy - 0

» Since Dy > 0 - still a descent directions method.

» Same as the gradient method employed after the change of variables

» Convergence is related to the condition number of
D, /?V2f(x<)D 1/
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Improving the Gradient Method - Scaled Gradient
Scaled Gradient Method

X1 = xk — £,D, VF(xK)

tx > 0 - chosen stepsize. Dy >~ 0

v

Since Dy > 0 - still a descent directions method.

v

Same as the gradient method employed after the change of variables
X = D}(/zy
Convergence is related to the condition number of
—-1/2 —-1/2
D, /*v2f(x<)D, V/
“best” choice Dy = V2f(x¥)~1. pure Newton's method:

v

v

xkl = xk — V2f(xk)_1Vf(xk)

» Popular and “cheap” choice: Dy diagonal (diagonal scaling)
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The Gauss-Newton Method

Nonlinear least squares:

m

min ;(fi(X) - q)?

fi, b, ..., fn - differentiable.
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The Gauss-Newton Method

Nonlinear least squares:

m

min ;(fi(X) - q)?

fi,f, ..., fy - differentiable.
Given the kth iterate x*, the next iterate is chosen to minimize the sum of
squares of the linearized terms, that is,

X1 = argmin {i [f,-(xk) + V()T (x = x¥) = Cir} .

x€R iz
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The Gauss-Newton Method

Nonlinear least squares:

m

min ;(fi(X) — )’

fi,f, ..., fy - differentiable.
Given the kth iterate x*, the next iterate is chosen to minimize the sum of
squares of the linearized terms, that is,

X1 = argmin {i [f,-(xk) + V()T (x = x¥) = Cir} .

x€R iz

» The general step requires to solve a linear least squares problem at
each iteration.
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The Gauss-Newton Method

Nonlinear least squares:

m

min ;(fi(X) — )’

fi,f, ..., fy - differentiable.
Given the kth iterate x*, the next iterate is chosen to minimize the sum of
squares of the linearized terms, that is,

X1 = argmin {i [f,-(xk) + V()T (x = x¥) = Cir} .

x€R iz

» The general step requires to solve a linear least squares problem at
each iteration.

» Actually a scaled gradient method with Dy = (J(x*)TJ(x*))~% (J(*) -
Jacobian)
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Problems with Newton's Method

xkHL = xk — sz(xk)*:lVf(xk)

» V2f(xK) difficult to compute and/or problematic to solve the system
V2f(xK)z = VF(x¥)
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Problems with Newton's Method

xkHL = xk — sz(xk)*:lVf(xk)

> V2f(xk) dlfflcult to compute and/or problematic to solve the system
V2f(x)z = VF(x")

» V2f(x¥) might be singular

> V2f(x¥) might not be positive definite (Newton's direction not a
descent direction...)

X
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Problems with Newton's Method

xkHL = xk — sz(xk)*:lVf(xk)

> V2f(xk) dlfflcult to compute and/or problematic to solve the system
V2f(x)z = VF(x")
» V2f(x¥) might be singular
> V2f(x¥) might not be positive definite (Newton's direction not a
descent direction...)
» Convergence extremely problematic: requires a lot of assumptions

that are usually not satisfied.

Amir Beck - Tel Aviv University The Gradient Method: Past and Present 13 / 45



Problems with Newton's Method

xkHL = xk — sz(xk)*:lVf(xk)

> V2f(xk) dlfflcult to compute and/or problematic to solve the system
V2f(x)z = VF(x")

» V2f(x¥) might be singular

> V2f(x¥) might not be positive definite (Newton's direction not a

descent direction...)

» Convergence extremely problematic: requires a lot of assumptions
that are usually not satisfied.

» main advantage: quadratic rate of convergence (under very
restrictive conditions...)
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Problems with Newton's Method

xkHL = xk — sz(xk)*:lVf(xk)

> V2f(xk) dlfflcult to compute and/or problematic to solve the system
V2f(x)z = VF(x")

» V2f(x¥) might be singular

> V2f(x¥) might not be positive definite (Newton's direction not a

descent direction...)
» Convergence extremely problematic: requires a lot of assumptions
that are usually not satisfied.

» main advantage: quadratic rate of convergence (under very
restrictive conditions...)

Btw, pure Newton's is a utopian method. Better to incorporate a stepsize
(damped Newton).
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Classics from the 70's - Trying to Mend Newton
e Trust-Region Methods

x**1 € argmin {m(x; xF) o Ix — xF|| < Ak}

where m(x;xk) is a model of f around x*, e.g.,
m(x; xK) = £(xk) + VF(xF) T (x — x¥) + 3 (x — x¥) TV2F(xk) (x — x¥)
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Classics from the 70's - Trying to Mend Newton
e Trust-Region Methods

x**1 € argmin {m(x; xF) o Ix — xF|| < Ak}

where m(x;xk) is a model of f around x*, e.g.,

m(x; xK) = £(xk) + VF(xF) T (x — x¥) + 3 (x — x¥) TV2F(xk) (x — x¥)

e Quasi-Newton Try to mimic the Hessian without actually forming it.
e.g., BFGS

XK = xk — 4D 1V F(x)

Dy is chosen to satisfy the QN condition

Dk(xk — xk_l) = Vf(xk) — Vf(xk_l)

Amir Beck - Tel Aviv University The Gradient Method: Past and Present

14 / 45



Classics from the 70's - Trying to Mend Newton
e Trust-Region Methods

x**1 € argmin {m(x; xF) o Ix — xF|| < Ak}

where m(x;xk) is a model of f around x*, e.g.,

m(x; xK) = £(xk) + VF(xF) T (x — x¥) + 3 (x — x¥) TV2F(xk) (x — x¥)

e Quasi-Newton Try to mimic the Hessian without actually forming it.
e.g., BFGS

XK = xk — 4D 1V F(x)

Dy is chosen to satisfy the QN condition

Dk(xk — xk_l) = Vf(xk) — Vf(xk_l)

» Dy 1 “simply” constructed from Dy
» Computation of D, ! requires only O(n?) flops (linear algebra tricks)
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ﬁuasi-Newton Trust—Reiion Levenberi




So far...

Classical algorithms for solving

The problem.

min{f(x) : x € R"}

f differentiable.
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So far...

Classical algorithms for solving

The problem.

min{f(x) : x € R"}

f differentiable.

What happens if f is nonsmooth? e.g.,

m
T T
f(x) = E la; x — b\ _max_|aj
. ..,m
i=1
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Wolfe's Example

False hope: What happens if the method never encounters
non-differentiability points?

Amir Beck - Tel Aviv University The Gradient Method: Past and Present 16 / 45



Wolfe's Example

False hope: What happens if the method never encounters
non-differentiability points?

» Let v > 1 and consider

/2 2
X7 + X x| < x
f(Xl,XQ) 1 VX2, ’ 2| >~ X1,

x1t+ve| [
Vit else.

» f is differentiable at all points except for the ray {(x1,0) : x; < 0}.
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Wolfe's Example
The gradient method with exact line search converges to a non-optimal
point.

Conclusion: cannot ignore non-differentiability — extend the notion of
the gradient

-3

-3 -2 -1 0
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The Subgradient Method. Shor (63) Polyak (65)

X = xk — 1 f/(x9) J

Replace the gradient Vf(x) by a subgradient f'(x) € Of(x) (vectors that
correspond to underestimators of the function)

. . i . .
-2 -1 0 1 2
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Projected Subgradient Method

Model: f - convex. C - closed convex

min{f(x) :x € C}
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Projected Subgradient Method

Model: f - convex. C - closed convex

min{f(x) :x € C}

Projected Subgradient Method (PSM): Shor (63), Polyak (65)

xK = Pc(x}71 =t f'(xk_1)),  f'(xk_1) € OF(x*71)

tx > 0 - stepsize, Pc(-) - orthogonal projection operator.

Orthogonal Projection Operator:

Pc(x) = closest point in C to x = argmin |y — x||.
yeC
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Projected Subgradient Method

Model: f - convex. C - closed convex

min{f(x) :x € C}

Projected Subgradient Method (PSM): Shor (63), Polyak (65)

xK = Pc(x}71 =t f'(xk_1)),  f'(xk_1) € OF(x*71)

tx > 0 - stepsize, Pc(-) - orthogonal projection operator.

Orthogonal Projection Operator:

Pc(x) = closest point in C to x = argmin |y — x||.
yeC

» SPM is not a descent method.

/*

X

1 . H
>t X ﬁ = fbliest = mlnlSSSk f(XS) - f;)pt
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Rate of Convergence of SPM

A typical result: assume C convex compact. Take

b Diam(C)
T vk

; Diam(C) := max [[x =yl < oo,

Diam(C)

i —f <
Then, 2, f(xs) — f < O(1)M Tk

» Thus, to find an approximate ¢ solution: O(1/£?)
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Rate of Convergence of SPM
A typical result: assume C convex compact. Take

Diam(C
b = 'a\%); Diam(€) := max [lx - y|| < oo,

Diam(C)

i —f <
Then, 1§ms|2kf(xs) f. <O()M Np

v

Thus, to find an approximate ¢ solution: O(1/¢2)

v

Key Advantages: rate nearly independent of problem’s dimension.
Simple, when projections are easy to compute...

v

Main Drawback of SPM: too slow...needs k > 2 iterations.

v

Can we improve the situation of SPM? by exploiting the
structure/geometry of the constraint set C.

Amir Beck - Tel Aviv University The Gradient Method: Past and Present 20 / 45



Gauss
ﬁuasi-Newton Trust—Reiion Levenberi




ﬁuasi-Newton Trust—Reiion Levenberi



Gradient Method

/\

Scaled Subgradient
Gradient Method
NEGeT Gauss Projected
Newton Subgradient
Quasi-Newton Trust-Region Levenberg
(BFGS...) Method Margquardt




Mirror Descent: Non-Euclidean Version of SD

» Originated from functional analytic arguments in infinite dimensional
setting between primal-dual spaces. Nemirovsky and Yudin (83)

» In (B.-Teboulle-2003) it was shown that the (MDA) can be simply
viewed as a Non-Euclidean projected subgradient method.
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The ldea

Another representation of the projected subgradient method:

1
w41 = angmin () + (/(c4)x = x5 + 51— <t 3]
xeC 2t

Next iterate is a minimizer of the linear approximation regularized by a
prox term.
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The Ildea
Another representation of the projected subgradient method:

k+1

1
X :argmin{f(xk)—i—<f’(xk),x—xk> 2% |x—xk||2}

xeC

Next iterate is a minimizer of the linear approximation regularized by a
prox term.

The ldea: Replace the Euclidean distance by a non-Euclidean function:

x*1 = argmin {f(x) + (F/(xF), x = x*) + tlkD(x,xk)}

xeC
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The Ildea
Another representation of the projected subgradient method:

1
w41 = angmin () + (/(c4)x = x5 + 51— <t 3]

xeC

Next iterate is a minimizer of the linear approximation regularized by a
prox term.

The ldea: Replace the Euclidean distance by a non-Euclidean function:

x*1 = argmin {f(x) + (F/(xF), x = x*) + tlkD(x,xk)}

xeC
What should we expect from D(-,-)?

» Take into account the structure of the constraints and “easy to
compute”.
"distance-like": D(u,v) > 0 and equal zero iff u = v.

» Popular choice: Bregman distance
D(u,v) = B, (u,v) = w(u) — w(v) — Vw(v) " (u — v) strongly convex
w.r.t. to an arbitrary norm.
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Demo - Trust Topology Design
Design a truss of a given total weight capable to withstand a collection of

forces acting on the nodes. Simplex constraints.

mtin{fTA_l(t)f te Ay}

Comparing PSM with mirror descant (w(x) = 1||x||3,>7_; x; log x;)

deuft

X: == I = ey n.
1 Zn Xke_tkf;‘/(xk)’ » = )
J=17

Theoretically the efficiency estimate is still of the order O(1/v/k) but
the constants can be improved by using non-Euclidean distances.
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Gradient Method

/\

Scaled Subgradient
Gradient Method
NEGeT Gauss Projected
Newton Subgradient
Quasi-Newton Trust-Region Levenberg
(BFGS...) Method Margquardt




Gradient Method

/\

Scaled Subgradient
Gradient Method
Gauss Projected
T Newton Subgradient
Quasi-Newton Trust-Region Levenberg Mirror
(BFGS...) Method Margquardt Descent




Gradient Method

— |

Scaled Subgradient
Gradient Method
NEGeT Gauss Projected
Newton Subgradient
Quasi-Newton Trust-Region Levenberg Mirror Dual Projected
(BFGS...) Method Margquardt Descent Subgradient




Dual Projected Subgradient Method

Model:
fopt = min  f(x)
sit. g(x) <0,
x € X.

Assumptions:
(A) X CR" is convex.
(B) f:R" — R is convex.

(€) g() = (&1(-),&2();---8m(-)) ", where g1,82,...,8m : R" — R are
convex.

(D) For any A € R, the problem mingex{f(x) + A" g(x)} attains an
optimal solution.

The Lagrangian of the problem is given by

L(x,A) = f(x) + AT g(x).
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The Dual Problem

(D) Gopt = max{g(N) : A € RT}, J

where
q(A) = mi)r<1 F(x) +ATg(x).
Xe

» Under the assumptions, strong duality holds, meaning that f,,; = Gopt
and the optimal solution of the dual problem is attained.
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The Method

Main Observation: To compute a subgradient of —g at A:
» Find x, € argmin L(x, A).
xeX
> —g(xx) € I(—=q)(A).
The Dual Projected Subgradient Method
Initialization: pick \° € R’ arbitrarily.
General step: for any k =0,1,2,...

(a) pick a positive number .
(b) compute x¥ € argmin {f(x) + ()\k)Tg(x)} .
xeX
(c) if g(x¥) = 0, then terminate with an output x*; otherwise,

k+1 _ k g(xk)
A ‘P *”kug(xk)uz];

O(1/V/k) rate of convergence can be shown
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O(1/£?) Rate of Convergence in Nonsmooth Convex
Optimization

» SPM,MD and dual projected subgradient are all O(1/£2), O(1/v'k)
methods. Can we do better?

» According to lower complexity bounds, the answer is No!

» However, by exploiting the structure of the functions, we can do
better. For example, if assuming some smoothness properties...
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Polynomial versus Gradient-Based Methods (80’s and 90's)

» Rise of Polynomial methods for convex programming: ellipsoid,
interior point methods.

» Convex problems are polynomially solvable within € accuracy:
Running Time < Poly(Problem’s size, # of accuracy digits).

» Theoretically: large scale problems can be solved to high accuracy
with polynomial methods, such as IPM.

» Practically: Running time is dimension-dependent and grows
nonlinearly with problem’s dimension. For IPM which are Newton's
type methods: ~ O(n?).

» Thus, a "single iteration” of IPM can last forever!

» 2000-... Gradient-based method have become popular again due to
increasing size of applications.
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Dealing with the Size - Decomposition

» One way to deal with the large or even huge-scale size of the new
arising applications is use decomposition. For example...
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Dealing with the Size - Decomposition

» One way to deal with the large or even huge-scale size of the new
arising applications is use decomposition. For example...
» Consider the problem

mxin {f(x) = Z f,-(x)}
i=1

where f1, f>, ..., fy, are all convex functions. Suppose that m is huge.
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Dealing with the Size - Decomposition

» One way to deal with the large or even huge-scale size of the new
arising applications is use decomposition. For example...
» Consider the problem

mxin {f(x) = Z f,-(x)}
i=1

where f1, f>, ..., fy, are all convex functions. Suppose that m is huge.
» The subgradient method is very expansive to execute:

X =xk — (Z f/(Xk)> :
i=1
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Dealing with the Size - Decomposition

» One way to deal with the large or even huge-scale size of the new
arising applications is use decomposition. For example...
» Consider the problem

mxin {f(x) = Z f,-(x)}
i=1

where f1, f>, ..., fy, are all convex functions. Suppose that m is huge.
» The subgradient method is very expansive to execute:

X =xk — (Z f/(Xk)> :
i=1

» Instead, we can use the stochastic projected subgradient method that
exploits only one randomlly chosen subgradient at each iteration
(decomposition)

xk+1 — Xk _ tkfii (Xk)

i, - randomly chosen
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Gradient Method

— |

Scaled Subgradient
Gradient Method
NEGeT Gauss Projected Stochastic
Newton Subgradient Subgradient
Quasi-Newton Trust-Region Levenberg Mirror Dual Projected
(BFGS...) Method Margquardt Descent Subgradient




The General Composite Model

We will be interested in the following model:

(P) min{F(x) = f(x) + g(x) : x € E}.

» f:R" — Ris an Lssmooth convex functin:

IVF(x) — VF(y)| < Le||x —y|| for every x,y € R,

» g:R” - RU{oco} extended valued convex function which is
nonsmooth.

» Problem (P) is solvable, i.e., X, := argminf # (), and for x* € X, we
set Fopt i= F(x*).
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Special Cases of the General Model

» g =0 - smooth unconstrained convex minimization.

min £(x)

X
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Special Cases of the General Model
» g =0 - smooth unconstrained convex minimization.

min £(x)

X

» g = dc(+) - constrained smooth convex minimization.

mxin{f(x) :xe C}
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Special Cases of the General Model
» g =0 - smooth unconstrained convex minimization.

min £(x)

X

» g = dc(+) - constrained smooth convex minimization.

mxin{f(x) :xe C}

» g = |- ||1 - h-regularized convex minimization.

mxin {F(x) + Allx[1}
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The Proximal Gradient Method

The derivation of the proximal gradient method is similar to the one of the
projected subgradient method.
» For any L > Lf, and a given iterate xk:

L
Sl =412+ g(x)
~~

untouched

QL(x,xk) = f(xk) + (x — x, Vf(xk)) +
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The Proximal Gradient Method

The derivation of the proximal gradient method is similar to the one of the

projected subgradient method.
» For any L > Lf, and a given iterate xk:

Qu(x, x¥) == F(x¥) + (x = x*, VF(x")) + éHx — x|+ g(x)
~~

untouched

)

» Algorithm:
x1 = argmin Q. (x, x)
X

1
X — (xk - ZVf(xk))

) L
= argmin {g(x) t3

= proxi,

<xk — in(xk)> = pu(x9).

1
prox operator:prox,(x) := argmin {g(u) + §||u - x|]2} .
u
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Special Cases

The general method: x<t1 = proxi, (xk — 1Vf(x)).

» g =0 = the gradient method.
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Special Cases

The general method: x**1 = proxi,
L

» g =0 = the gradient method.

(xk — 1Vf(x)).

1
xk+ = xk — ZVf(xk)

» g = 0c(-) = the gradient projection method

x = pc <xk - in(xk)>
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Special Cases

The general method: x<t1 = proxi, (xk — 1Vf(x)).

» g =0 = the gradient method.

1
xk+ = xk — ZVf(xk)

» g = 0c(-) = the gradient projection method

e (- e

> g(x) := A||x|[|1 = Iterative shrinkage/thresholding algorithm

TA/L (X — LVf( ))
and 7, : R” — R" is the shrinkage operator defined by
Ta(x)i = (Ixi] — a)+sgn (x)-
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Special Case: LASSO

> g(x) := Allx||l1, f(x) := ||Ax — b||> (prox=shrinkage).

2
XK1 = TA/L <Xk - ZAT(AXk — b))

ISTA - Iterative Shrinkage/Thresholding Algorithm

In SP literature: Chambolle (98); Figueiredo-Nowak (03, 05);
Daubechies et al. (04),Elad et al. (06), Hale et al. (07)...

In Optimization: can be viewed as the Proximal forward backward
Splitting Method (Passty (79))
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Prox Computations

There are a quite a few “simple” functions for which the
prox can be easily computed
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Rate of Convergence of Prox-Grad

Theorem - [Rate of Convergence of Prox-Grad]
Let {x¥} be the sequence generated by the proximal gradient
method.
L[[x° —x*||2
S -4 00

Fix) = Fx') < =

for any optimal solution x*.

» Thus, to solve (M), the proximal gradient method converges at a
sublinear rate in function values.

> # iterations for F(x*) — F(x*) < e is O(1/e).
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Rate of Convergence of Prox-Grad

Theorem - [Rate of Convergence of Prox-Grad]
Let {x¥} be the sequence generated by the proximal gradient
method.
L[[x° —x*||2
S -4 00

Fix) = Fx') < =

for any optimal solution x*.

v

Thus, to solve (M), the proximal gradient method converges at a
sublinear rate in function values.

# iterations for F(x¥) — F(x*) < eis O(1/¢).

Note: The sequence {xX} can be proven to converge to solution x*.

v

v

v

No need to know the Lipschitz constant (backtracking).
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Towards a Faster Algorithm

» An O(1/k) rate of convergence is rather slow.

» Can we find a faster methods?
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Towards a Faster Algorithm

» An O(1/k) rate of convergence is rather slow.
» Can we find a faster methods?
» The answer is YES!.
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FISTA - [B., Teboulle 2009]

An equally simple algorithm as prox-grad. (Here L¢ is known).

FISTA with constant stepsize

Input: L > L¢ - A Lipschitz constant of Vf.
Step 0. Takey! =x€E, t; =1.

Step k. (k > 1) Compute

1
xk = prox (yk—Vf(yk)), <> main computation
X3 L
1+ \/@
[ ) tk+1 = f’
o0 yk+1 = xk_|_ E (xk_xk—l).
tkt1

Additional computation for FISTA in (e) and (ee) is clearly marginal.
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Theorem - Global Rate of Convergence FISTA

Theorem Let {x,} be generated by FISTA. Then for any k > 1

« xo — X*||?
) — Flx) < 2202

where o = 1 for the constant stepsize setting and o = 7 for the
backtracking stepsize setting.

v

» # of iterations to reach F(X) — F, < e is ~ O(1//e).
» Clearly improves ISTA by a square root factor.
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Theorem - Global Rate of Convergence FISTA

Theorem Let {x,} be generated by FISTA. Then for any k > 1

o xo — x*||?
) - F(x) < 22H0le 2,

where o = 1 for the constant stepsize setting and o = 7 for the
backtracking stepsize setting.

v

» # of iterations to reach F(X) — F, < e is ~ O(1//e).
» Clearly improves ISTA by a square root factor.

» Do we practically achieve this theoretical rate? Yes
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LASSO (Penalized Version)

» Consider the problem
: 1 2
(P)  min ¢ f(x) = Z[|Ax — b|3 + Aljx]|s

Ac R100X200 be RIOO A>0
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LASSO (Penalized Version)

» Consider the problem
: 1 2
(P)  min ¢ f(x) = Z[|Ax — b|3 + Aljx]|s

Ac R100X200 be RIOO A>0

0s 200 U |
i
| | |
0 ““H;, A
iy
| If |
|
| [
osf| | I
4
—=
45 L
o m W w @ w m W e @ o

llustration (A = 1)
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Gradient Method

— \

Scaled Subgradient Proximal
Gradient Method Gradient
Newton Gauss Projected Stochastic
Newton Subgradient Subgradient

FISTA

Quasi-Newton
(BFGS...)

Levenberg
Margquardt

Trust-Region
Method

Mirror
Descent

Dual Projected
Subgradient




Gradient Method

.

Scaled Subgradient Proximal
Gradient Method Gradient
NEGeT Gauss PrOJectgd Stochas.tlc FISTA
Newton Subgradient Subgradient
Quasi-Newton Trust-Region Levenberg Mirror Dual Projected Smoothed
(BFGS...) Method Margquardt Descent Subgradient FISTA




Smoothed FISTA

» Revisit nonsmooth problems:
min{f(x) : x € C}

f - convex nonsmooth, C - convex
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Smoothed FISTA

» Revisit nonsmooth problems:
min{f(x) : x € C}

f - convex nonsmooth, C - convex

» “standard” nonsmooth algorithms solve it in O(1/22) complexity.
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Smoothed FISTA

» Revisit nonsmooth problems:
min{f(x) : x € C}

f - convex nonsmooth, C - convex
» “standard” nonsmooth algorithms solve it in O(1/22) complexity.
» Another approach: consider a smoothed version of the problem:
minge ¢ f;(x) and solve it using FISTA.

» Example: Y7 [a/x — bi| — Y7 \/(@lx — b;)2 +n?
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Smoothed FISTA

v

Revisit nonsmooth problems:
min{f(x) : x € C}

f - convex nonsmooth, C - convex
» “standard” nonsmooth algorithms solve it in O(1/22) complexity.
» Another approach: consider a smoothed version of the problem:
minge ¢ f;(x) and solve it using FISTA.
» Example: Y7 [a/x — bi| — Y7 \/(@lx — b;)2 +n?

» Carefully choosing the smoothing parameter, O(1/¢) complexity can
be shown.
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Gradient Method

.

Scaled Subgradient Proximal
Gradient Method Gradient
NEGeT Gauss PrOJectgd Stochas.tlc FISTA
Newton Subgradient Subgradient
Quasi-Newton Trust-Region Levenberg Mirror Dual Projected Smoothed
(BFGS...) Method Margquardt Descent Subgradient FISTA




Gradient Method

.

Scaled Subgradient Proximal
Gradient Method Gradient
Gauss Projected Stochastic
Newton X FISTA
Newton Subgradient Subgradient
Quasi-Newton Trust-Region Levenberg Mirror Dual Projected Smoothed FDPG
(BFGS...) Method Margquardt Descent Subgradient FISTA




Dual FISTA - FDPG

» Model:

mxin f(x) + g(Ax)
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Dual FISTA - FDPG

» Model:

mxin f(x) + g(Ax)

» Dual model:

myax—f*(ATy) —g*(-y)

f*,g* - convex conjugates (h*(y) = max{x"y — h(x)})
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Dual FISTA - FDPG

» Model:

mxin f(x) + g(Ax)

» Dual model:

max —f*(ATy) — g*(—y)

y

f*,g* - convex conjugates (h*(y) = maxx{x"y — h(x)})
» Apply FISTA on the dual.
» Can deal with many different types of problems...

Amir Beck - Tel Aviv University
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FDPG

The Fast Dual Proximal Gradient (FDPG) Method - primal
representation

IA[2

g

Initialization: L > L =
General step (k > 0):

(a) uk = argTax{<u,AT(wk)> - f(u)} .

WO =yl e R™ 5 =1.

whtl — yktl (L*l) (y*+! — yk),

tyt1
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Present and Future?

The scale of problems is becoming huge. Emphasis of current and
probably near future research:

» Decomposition
» Randomization
» Distributed
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Thank You

Any Questions??7?
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