The Gradient Method: Past and Present

Amir Beck
School of Mathematical Sciences, Tel Aviv University

Workshop in honor of Uri Rothblum,
Tel Aviv University, January 22, 2018

The Gradient Method

```
The problem.
    \(\min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\}\)
\(f\) differentiable.
```


The Gradient Method

```
The problem.
    min}{f(\mathbf{x}):\mathbf{x}\in\mp@subsup{\mathbb{R}}{}{n}
f differentiable.
```

The Gradient Method

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

$t_{k}>0$ - chosen stepsize.

The Gradient Method

$$
\begin{aligned}
& \text { The problem. } \\
& \qquad \min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\} \\
& f \text { differentiable. }
\end{aligned}
$$

The Gradient Method

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

$t_{k}>0$ - chosen stepsize.

- What is the starting point?
- What stepsize should be taken?
- What is the stopping criteria?

Stepsize Selection Rules

- constant stepsize $-t_{k}=\bar{t}$ for any k.

[^0]
Stepsize Selection Rules

- constant stepsize - $t_{k}=\bar{t}$ for any k.
- exact stepsize $-t_{k}$ is a minimizer of f along the ray $\mathbf{x}_{k}-t \nabla f\left(\mathbf{x}^{k}\right)$:

$$
t_{k} \in \underset{t \geq 0}{\operatorname{argmin}} f\left(\mathbf{x}^{k}-t \nabla f\left(\mathbf{x}^{k}\right)\right) .
$$

[^1]
Stepsize Selection Rules

- constant stepsize - $t_{k}=\bar{t}$ for any k.
- exact stepsize $-t_{k}$ is a minimizer of f along the ray $\mathbf{x}_{k}-t \nabla f\left(\mathbf{x}^{k}\right)$:

$$
t_{k} \in \underset{t \geq 0}{\operatorname{argmin}} f\left(\mathbf{x}^{k}-t \nabla f\left(\mathbf{x}^{k}\right)\right) .
$$

- backtracking ${ }^{1}$ - The method requires three parameters: $s>0, \alpha \in(0,1), \beta \in(0,1)$. Here we start with an initial stepsize $t_{k}=s$. While

$$
f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{k}-t_{k} \nabla f\left(\mathbf{x}^{k}\right)\right)<\alpha t_{k}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}
$$

set $t_{k}:=\beta t_{k}$

Sufficient Decrease Property:

$$
f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{k}-t_{k} \nabla f\left(\mathbf{x}^{k}\right)\right) \geq \alpha t_{k}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}
$$

[^2]
Gradient Method as Steepest Descent

- $-\nabla f\left(\mathbf{x}^{k}\right)$ is a descent direction:

$$
f^{\prime}\left(\mathbf{x}^{k} ;-\nabla f\left(\mathbf{x}^{k}\right)\right)=-\nabla f\left(\mathbf{x}^{k}\right)^{T} \nabla f\left(\mathbf{x}^{k}\right)=-\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}<0 .
$$

- In addition for being a descent direction, minus the gradient is also the steepest descent direction method.

Gradient Method as Steepest Descent

- $-\nabla f\left(\mathbf{x}^{k}\right)$ is a descent direction:

$$
f^{\prime}\left(\mathbf{x}^{k} ;-\nabla f\left(\mathbf{x}^{k}\right)\right)=-\nabla f\left(\mathbf{x}^{k}\right)^{T} \nabla f\left(\mathbf{x}^{k}\right)=-\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}<0 .
$$

- In addition for being a descent direction, minus the gradient is also the steepest descent direction method.

Lemma. Let f be a differentiable function and let $\mathbf{x} \in \mathbb{R}^{n}$ satisfy $\nabla f(\mathbf{x}) \neq \mathbf{0}$. Then an optimal solution of

$$
\min _{\mathbf{d}}\left\{f^{\prime}(\mathbf{x} ; \mathbf{d}):\|\mathbf{d}\|=1\right\}
$$

is $\mathbf{d}=-\nabla f(\mathbf{x}) /\|\nabla f(\mathbf{x})\|$.

Convergence(?) of the Gradient Method

$$
\min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

Standard conditions:

- f is bounded below and differentiable.
- f is L-smooth meaning that

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\| \leq L\|\mathbf{x}-\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

Convergence(?) of the Gradient Method

$$
\min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

Standard conditions:

- f is bounded below and differentiable.
- f is L-smooth meaning that

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\| \leq L\|\mathbf{x}-\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

Can be proved:

- Descent method: $f\left(\mathbf{x}^{k+1}\right)<f\left(\mathbf{x}^{k}\right)$
- Accumulation pts. of the sequence generated by GM are stationary points $\left(\nabla f\left(\mathbf{x}^{*}\right)=0\right)$ (constant stepsize $t_{k} \equiv \bar{t} \in\left(0, \frac{2}{L}\right)$, backtracking or exact minimization)
- If f is convex, convergence to a global optimal solution.

Gradient Method - the Oldest Continuous Optimization Method?

Méthode generales pour la résolution des systèmes d'equations simultanées, 1847

Augustin Louis Cauchy 1789-1857

- Suggested the method for solving sets of nonlinear equations

$$
f_{i}(\mathbf{x})=0, i=1,2, \ldots, m \Rightarrow \min _{\mathbf{x}} \sum_{i=1}^{m} f_{i}(\mathbf{x})^{2}
$$

- Not a particularly rigorous paper...
- Modern optimization starts only 100 years afterwards (simplex for LP)

Gradient-Based Algorithms

Widely used in applications....

- Clustering Analysis: The k-means algorithm
- Neuro-computing: The backpropagation algorithm
- Statistical Estimation: The EM (Expectation-Maximization) algorithm.
- Machine Learning: SVM, Regularized regression, etc...
- Signal and Image Processing: Sparse Recovery, Denoising and Deblurring Schemes, Total Variation minimization...
- Matrix minimization Problems....and much more...

The Zig-Zag Property

Zig-Zagging: directions produced by the gradient method with exact minimization are perpendicular.
$\left\langle\nabla f\left(\mathbf{x}^{k}\right), \nabla f\left(\mathbf{x}^{k+1}\right)\right\rangle=0$

The Zig-Zag Property

Zig-Zagging: directions produced by the gradient method with exact minimization are perpendicular.
$\left\langle\nabla f\left(\mathbf{x}^{k}\right), \nabla f\left(\mathbf{x}^{k+1}\right)\right\rangle=0$

Main disadvantage: gradient method is rather slow.

The Zig-Zag Property

Zig-Zagging: directions produced by the gradient method with exact minimization are perpendicular.
$\left\langle\nabla f\left(\mathbf{x}^{k}\right), \nabla f\left(\mathbf{x}^{k+1}\right)\right\rangle=0$

Main disadvantage: gradient method is rather slow. Advantages: requires minimal information ($f, \nabla f$), "cheap" iterative scheme, suitable for large-scale problems.

The Condition Number

- Rate of convergence of the gradient method depends on the condition number of the matrix $\nabla^{2} f\left(\mathbf{x}^{*}\right)$:

$$
\kappa\left(\nabla^{2} f\left(\mathbf{x}^{*}\right)\right)=\frac{\sigma_{\max }\left(\nabla^{2} f\left(\mathbf{x}^{*}\right)\right)}{\sigma_{\min }\left(\nabla^{2} f\left(\mathbf{x}^{*}\right)\right)}
$$

- III-conditioned problems - high condition number
- Well-conditioned problems - small condition number

A Severely III-Condition Function - Rosenbrock

$$
\min \left\{f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}\right\} .
$$

condition number: 2508

A Severely III-Condition Function - Rosenbrock

$$
\min \left\{f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}\right\} .
$$

condition number: 2508

$6890(!!!)$ iterations.

Improving the Gradient Method - Scaled Gradient

Scaled Gradient Method

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k} \mathbf{D}_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

$t_{k}>0$ - chosen stepsize. $\mathbf{D}_{k} \succ \mathbf{0}$

Improving the Gradient Method - Scaled Gradient

Scaled Gradient Method

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k} \mathbf{D}_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

$t_{k}>0$ - chosen stepsize. $\mathbf{D}_{k} \succ \mathbf{0}$

- Since $\mathbf{D}_{k} \succ \mathbf{0}$ - still a descent directions method.

Improving the Gradient Method - Scaled Gradient

Scaled Gradient Method

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k} \mathbf{D}_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

$t_{k}>0$ - chosen stepsize. $\mathbf{D}_{k} \succ \mathbf{0}$

- Since $\mathbf{D}_{k} \succ \mathbf{0}$ - still a descent directions method.
- Same as the gradient method employed after the change of variables $\mathbf{x}=\mathbf{D}_{k}^{1 / 2} \mathbf{y}$

Improving the Gradient Method - Scaled Gradient

Scaled Gradient Method

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k} \mathbf{D}_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

$t_{k}>0$ - chosen stepsize. $\mathbf{D}_{k} \succ \mathbf{0}$

- Since $\mathbf{D}_{k} \succ \mathbf{0}$ - still a descent directions method.
- Same as the gradient method employed after the change of variables $\mathbf{x}=\mathbf{D}_{k}^{1 / 2} \mathbf{y}$
- Convergence is related to the condition number of $\mathbf{D}_{k}^{-1 / 2} \nabla^{2} f\left(\mathbf{x}^{k}\right) \mathbf{D}_{k}^{-1 / 2}$

Improving the Gradient Method - Scaled Gradient

Scaled Gradient Method

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k} \mathbf{D}_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

$t_{k}>0$ - chosen stepsize. $\mathbf{D}_{k} \succ \mathbf{0}$

- Since $\mathbf{D}_{k} \succ \mathbf{0}$ - still a descent directions method.
- Same as the gradient method employed after the change of variables $\mathbf{x}=\mathbf{D}_{k}^{1 / 2} \mathbf{y}$
- Convergence is related to the condition number of $\mathbf{D}_{k}^{-1 / 2} \nabla^{2} f\left(\mathbf{x}^{k}\right) \mathbf{D}_{k}^{-1 / 2}$
- "best" choice $\mathbf{D}_{k}=\nabla^{2} f\left(\mathbf{x}^{k}\right)^{-1}$. pure Newton's method:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\nabla^{2} f\left(\mathbf{x}^{k}\right)^{-1} \nabla f\left(\mathbf{x}^{k}\right)
$$

- Popular and "cheap" choice: \mathbf{D}_{k} diagonal (diagonal scaling)

Gradient Method

Scaled Gradient

The Gauss-Newton Method

Nonlinear least squares:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \sum_{i=1}^{m}\left(f_{i}(\mathbf{x})-c_{i}\right)^{2}
$$

$f_{1}, f_{2}, \ldots, f_{m}$ - differentiable.

The Gauss-Newton Method

Nonlinear least squares:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \sum_{i=1}^{m}\left(f_{i}(\mathbf{x})-c_{i}\right)^{2}
$$

$f_{1}, f_{2}, \ldots, f_{m}$ - differentiable.
Given the k th iterate \mathbf{x}^{k}, the next iterate is chosen to minimize the sum of squares of the linearized terms, that is,

$$
\mathbf{x}^{k+1}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\sum_{i=1}^{m}\left[f_{i}\left(\mathbf{x}^{k}\right)+\nabla f_{i}\left(\mathbf{x}^{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{k}\right)-c_{i}\right]^{2}\right\} .
$$

The Gauss-Newton Method

Nonlinear least squares:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \sum_{i=1}^{m}\left(f_{i}(\mathbf{x})-c_{i}\right)^{2}
$$

$f_{1}, f_{2}, \ldots, f_{m}$ - differentiable.
Given the k th iterate \mathbf{x}^{k}, the next iterate is chosen to minimize the sum of squares of the linearized terms, that is,

$$
\mathbf{x}^{k+1}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\sum_{i=1}^{m}\left[f_{i}\left(\mathbf{x}^{k}\right)+\nabla f_{i}\left(\mathbf{x}^{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{k}\right)-c_{i}\right]^{2}\right\} .
$$

- The general step requires to solve a linear least squares problem at each iteration.

The Gauss-Newton Method

Nonlinear least squares:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \sum_{i=1}^{m}\left(f_{i}(\mathbf{x})-c_{i}\right)^{2}
$$

$f_{1}, f_{2}, \ldots, f_{m}$ - differentiable.
Given the k th iterate \mathbf{x}^{k}, the next iterate is chosen to minimize the sum of squares of the linearized terms, that is,

$$
\mathbf{x}^{k+1}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\sum_{i=1}^{m}\left[f_{i}\left(\mathbf{x}^{k}\right)+\nabla f_{i}\left(\mathbf{x}^{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{k}\right)-c_{i}\right]^{2}\right\} .
$$

- The general step requires to solve a linear least squares problem at each iteration.
- Actually a scaled gradient method with $\mathbf{D}_{k}=\left(\mathbf{J}\left(\mathbf{x}^{k}\right)^{T} \mathbf{J}\left(\mathbf{x}^{k}\right)\right)^{-1}(\mathbf{J}(\cdot)$ Jacobian)

Problems with Newton's Method

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\nabla^{2} f\left(\mathbf{x}^{k}\right)^{-1} \nabla f\left(\mathbf{x}^{k}\right)
$$

- $\nabla^{2} f\left(\mathbf{x}^{k}\right)$ difficult to compute and/or problematic to solve the system $\nabla^{2} f\left(\mathbf{x}^{k}\right) \mathbf{z}=\nabla f\left(\mathbf{x}^{k}\right)$

Problems with Newton's Method

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\nabla^{2} f\left(\mathbf{x}^{k}\right)^{-1} \nabla f\left(\mathbf{x}^{k}\right)
$$

- $\nabla^{2} f\left(\mathbf{x}^{k}\right)$ difficult to compute and/or problematic to solve the system $\nabla^{2} f\left(\mathbf{x}^{k}\right) \mathbf{z}=\nabla f\left(\mathbf{x}^{k}\right)$
- $\nabla^{2} f\left(\mathbf{x}^{k}\right)$ might be singular
- $\nabla^{2} f\left(\mathbf{x}^{k}\right)$ might not be positive definite (Newton's direction not a descent direction...)

Problems with Newton's Method

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\nabla^{2} f\left(\mathbf{x}^{k}\right)^{-1} \nabla f\left(\mathbf{x}^{k}\right)
$$

- $\nabla^{2} f\left(\mathbf{x}^{k}\right)$ difficult to compute and/or problematic to solve the system $\nabla^{2} f\left(\mathbf{x}^{k}\right) \mathbf{z}=\nabla f\left(\mathbf{x}^{k}\right)$
- $\nabla^{2} f\left(\mathbf{x}^{k}\right)$ might be singular
- $\nabla^{2} f\left(\mathbf{x}^{k}\right)$ might not be positive definite (Newton's direction not a descent direction...)
- Convergence extremely problematic: requires a lot of assumptions that are usually not satisfied.

Problems with Newton's Method

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\nabla^{2} f\left(\mathbf{x}^{k}\right)^{-1} \nabla f\left(\mathbf{x}^{k}\right)
$$

- $\nabla^{2} f\left(\mathbf{x}^{k}\right)$ difficult to compute and/or problematic to solve the system $\nabla^{2} f\left(\mathbf{x}^{k}\right) \mathbf{z}=\nabla f\left(\mathbf{x}^{k}\right)$
- $\nabla^{2} f\left(x^{k}\right)$ might be singular
- $\nabla^{2} f\left(\mathbf{x}^{k}\right)$ might not be positive definite (Newton's direction not a descent direction...)
- Convergence extremely problematic: requires a lot of assumptions that are usually not satisfied.
- main advantage: quadratic rate of convergence (under very restrictive conditions...)

Problems with Newton's Method

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\nabla^{2} f\left(\mathbf{x}^{k}\right)^{-1} \nabla f\left(\mathbf{x}^{k}\right)
$$

- $\nabla^{2} f\left(\mathbf{x}^{k}\right)$ difficult to compute and/or problematic to solve the system $\nabla^{2} f\left(\mathbf{x}^{k}\right) \mathbf{z}=\nabla f\left(\mathbf{x}^{k}\right)$
- $\nabla^{2} f\left(x^{k}\right)$ might be singular
- $\nabla^{2} f\left(\mathbf{x}^{k}\right)$ might not be positive definite (Newton's direction not a descent direction...)
- Convergence extremely problematic: requires a lot of assumptions that are usually not satisfied.
- main advantage: quadratic rate of convergence (under very restrictive conditions...)

Btw, pure Newton's is a utopian method. Better to incorporate a stepsize (damped Newton).

Classics from the 70's - Trying to Mend Newton

- Trust-Region Methods

$$
\mathbf{x}^{k+1} \in \operatorname{argmin}\left\{m\left(\mathbf{x} ; \mathbf{x}^{k}\right):\left\|\mathbf{x}-\mathbf{x}^{k}\right\| \leq \Delta_{k}\right\}
$$

where $m\left(\mathbf{x} ; \mathbf{x}^{k}\right)$ is a model of f around \mathbf{x}^{k}, e.g.,
$m\left(\mathbf{x} ; \mathbf{x}^{k}\right) \equiv f\left(\mathbf{x}^{k}\right)+\nabla f\left(\mathbf{x}^{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{k}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{k}\right)^{T} \nabla^{2} f\left(\mathbf{x}^{k}\right)\left(\mathbf{x}-\mathbf{x}^{k}\right)$

Classics from the 70's - Trying to Mend Newton

- Trust-Region Methods

$$
\mathbf{x}^{k+1} \in \operatorname{argmin}\left\{m\left(\mathbf{x} ; \mathbf{x}^{k}\right):\left\|\mathbf{x}-\mathbf{x}^{k}\right\| \leq \Delta_{k}\right\}
$$

where $m\left(\mathbf{x} ; \mathbf{x}^{k}\right)$ is a model of f around \mathbf{x}^{k}, e.g.,
$m\left(\mathbf{x} ; \mathbf{x}^{k}\right) \equiv f\left(\mathbf{x}^{k}\right)+\nabla f\left(\mathbf{x}^{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{k}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{k}\right)^{T} \nabla^{2} f\left(\mathbf{x}^{k}\right)\left(\mathbf{x}-\mathbf{x}^{k}\right)$

- Quasi-Newton Try to mimic the Hessian without actually forming it. e.g., BFGS

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k} \mathbf{D}_{k}^{-1} \nabla f\left(\mathbf{x}^{k}\right)
$$

\mathbf{D}_{k} is chosen to satisfy the QN condition

$$
\mathbf{D}_{k}\left(\mathbf{x}^{k}-\mathbf{x}^{k-1}\right)=\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)
$$

Classics from the 70's - Trying to Mend Newton

- Trust-Region Methods

$$
\mathbf{x}^{k+1} \in \operatorname{argmin}\left\{m\left(\mathbf{x} ; \mathbf{x}^{k}\right):\left\|\mathbf{x}-\mathbf{x}^{k}\right\| \leq \Delta_{k}\right\}
$$

where $m\left(\mathbf{x} ; \mathbf{x}^{k}\right)$ is a model of f around \mathbf{x}^{k}, e.g.,
$m\left(\mathbf{x} ; \mathbf{x}^{k}\right) \equiv f\left(\mathbf{x}^{k}\right)+\nabla f\left(\mathbf{x}^{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{k}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{k}\right)^{T} \nabla^{2} f\left(\mathbf{x}^{k}\right)\left(\mathbf{x}-\mathbf{x}^{k}\right)$

- Quasi-Newton Try to mimic the Hessian without actually forming it. e.g., BFGS

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k} \mathbf{D}_{k}^{-1} \nabla f\left(\mathbf{x}^{k}\right)
$$

\mathbf{D}_{k} is chosen to satisfy the QN condition

$$
\mathbf{D}_{k}\left(\mathbf{x}^{k}-\mathbf{x}^{k-1}\right)=\nabla f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k-1}\right)
$$

- \mathbf{D}_{k+1} "simply" constructed from \mathbf{D}_{k}
- Computation of \mathbf{D}_{k}^{-1} requires only $O\left(n^{2}\right)$ flops (linear algebra tricks)

Gradient Method

So far...

Classical algorithms for solving

$$
\begin{aligned}
& \text { The problem. } \\
& \qquad \min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\} \\
& f \text { differentiable. }
\end{aligned}
$$

So far...

Classical algorithms for solving

$$
\begin{aligned}
& \text { The problem. } \\
& \qquad \min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\} \\
& f \text { differentiable. }
\end{aligned}
$$

What happens if f is nonsmooth? e.g.,

$$
f(\mathbf{x})=\sum_{i=1}^{m}\left|\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right|, \max _{i=1, \ldots, m}\left|\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right| \ldots
$$

Wolfe's Example

False hope: What happens if the method never encounters non-differentiability points?

Wolfe's Example

False hope: What happens if the method never encounters non-differentiability points?

- Let $\gamma>1$ and consider

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\sqrt{x_{1}^{2}+\gamma x_{2}^{2}}, & \left|x_{2}\right| \leq x_{1} \\ \frac{x_{1}+\gamma\left|x_{2}\right|}{\sqrt{1+\gamma}}, & \text { else }\end{cases}
$$

- f is differentiable at all points except for the ray $\left\{\left(x_{1}, 0\right): x_{1} \leq 0\right\}$.

Wolfe's Example

The gradient method with exact line search converges to a non-optimal point.
Conclusion: cannot ignore non-differentiability \rightarrow extend the notion of the gradient

The Subgradient Method. Shor (63) Polyak (65)

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k} f^{\prime}\left(\mathbf{x}^{k}\right)
$$

Replace the gradient $\nabla f(\mathbf{x})$ by a subgradient $f^{\prime}(\mathbf{x}) \in \partial f(\mathbf{x})$ (vectors that correspond to underestimators of the function)

Projected Subgradient Method

Model: f - convex. C - closed convex

$$
\min \{f(\mathbf{x}): \mathbf{x} \in C\}
$$

Projected Subgradient Method

Model: f-convex. C - closed convex

$$
\min \{f(\mathbf{x}): \mathbf{x} \in C\}
$$

Projected Subgradient Method (PSM): Shor (63), Polyak (65)

$$
\begin{aligned}
& \mathbf{x}^{k}=P_{C}\left(\mathbf{x}^{k-1}-t_{k} f^{\prime}\left(\mathbf{x}_{k-1}\right)\right), \quad f^{\prime}\left(\mathbf{x}_{k-1}\right) \in \partial f\left(x^{k-1}\right) \\
& t_{k}>0 \text { - stepsize, } P_{C}(\cdot) \text { - orthogonal projection operator. }
\end{aligned}
$$

Orthogonal Projection Operator:
$P_{C}(\mathbf{x})=$ closest point in C to $\mathbf{x}=\underset{\mathbf{a r g m i n}}{ }\|\mathbf{y}-\mathbf{x}\|$.

$$
\mathbf{y} \in C
$$

Projected Subgradient Method

Model: f - convex. C - closed convex

$$
\min \{f(\mathbf{x}): \mathbf{x} \in C\}
$$

Projected Subgradient Method (PSM): Shor (63), Polyak (65)

$$
\mathbf{x}^{k}=P_{C}\left(\mathbf{x}^{k-1}-t_{k} f^{\prime}\left(\mathbf{x}_{k-1}\right)\right), \quad f^{\prime}\left(\mathbf{x}_{k-1}\right) \in \partial f\left(x^{k-1}\right)
$$

$t_{k}>0$ - stepsize, $P_{C}(\cdot)$ - orthogonal projection operator.

Orthogonal Projection Operator:

$P_{C}(\mathbf{x})=$ closest point in C to $\mathbf{x}=\underset{C}{\operatorname{argmin}}\|\mathbf{y}-\mathbf{x}\|$.

$$
\mathbf{y} \in C
$$

- SPM is not a descent method.
- $t_{k} \propto \frac{1}{\sqrt{k}} \Rightarrow f_{\text {best }}^{k}:=\min _{1 \leq s \leq k} f\left(\mathbf{x}_{s}\right) \rightarrow f_{\text {opt }}$

Rate of Convergence of SPM

A typical result: assume C convex compact. Take

$$
\begin{aligned}
& t_{k}=\frac{\operatorname{Diam}(C)}{\sqrt{k}} ; \operatorname{Diam}(C):=\max _{\mathbf{x}, \mathbf{y} \in C}\|\mathbf{x}-\mathbf{y}\|<\infty \\
& \text { Then, } \quad \min _{1 \leq s \leq k} f\left(\mathbf{x}_{s}\right)-f_{*} \leq O(1) M \frac{\operatorname{Diam}(C)}{\sqrt{k}}
\end{aligned}
$$

- Thus, to find an approximate ε solution: $O\left(1 / \varepsilon^{2}\right)$

Rate of Convergence of SPM

A typical result: assume C convex compact. Take

$$
\begin{aligned}
& t_{k}=\frac{\operatorname{Diam}(C)}{\sqrt{k}} ; \operatorname{Diam}(C):=\max _{x, y \in C}\|\mathbf{x}-\mathbf{y}\|<\infty \\
& \text { Then, } \quad \min _{1 \leq s \leq k} f\left(\mathbf{x}_{s}\right)-f_{*} \leq O(1) M \frac{\operatorname{Diam}(C)}{\sqrt{k}}
\end{aligned}
$$

- Thus, to find an approximate ε solution: $O\left(1 / \varepsilon^{2}\right)$
- Key Advantages: rate nearly independent of problem's dimension. Simple, when projections are easy to compute...
- Main Drawback of SPM: too slow...needs $k \geq \varepsilon^{-2}$ iterations.
- Can we improve the situation of SPM? by exploiting the structure/geometry of the constraint set C.

Mirror Descent: Non-Euclidean Version of SD

- Originated from functional analytic arguments in infinite dimensional setting between primal-dual spaces. Nemirovsky and Yudin (83)
- In (B.-Teboulle-2003) it was shown that the (MDA) can be simply viewed as a Non-Euclidean projected subgradient method.

The Idea

Another representation of the projected subgradient method:

$$
\mathbf{x}^{k+1}=\underset{\mathbf{x} \in C}{\operatorname{argmin}}\left\{f\left(\mathbf{x}^{k}\right)+\left\langle f^{\prime}\left(\mathbf{x}^{k}\right), \mathbf{x}-\mathbf{x}^{k}\right\rangle+\frac{1}{2 t_{k}}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{2}^{2}\right\}
$$

Next iterate is a minimizer of the linear approximation regularized by a prox term.

The Idea

Another representation of the projected subgradient method:

$$
\mathbf{x}^{k+1}=\underset{\mathbf{x} \in C}{\operatorname{argmin}}\left\{f\left(\mathbf{x}^{k}\right)+\left\langle f^{\prime}\left(\mathbf{x}^{k}\right), \mathbf{x}-\mathbf{x}^{k}\right\rangle+\frac{1}{2 t_{k}}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{2}^{2}\right\}
$$

Next iterate is a minimizer of the linear approximation regularized by a prox term.
The Idea: Replace the Euclidean distance by a non-Euclidean function:

$$
\mathbf{x}^{k+1}=\underset{\mathbf{x} \in C}{\operatorname{argmin}}\left\{f(\mathbf{x})+\left\langle f^{\prime}\left(\mathbf{x}^{k}\right), \mathbf{x}-\mathbf{x}^{k}\right\rangle+\frac{1}{t_{k}} D\left(\mathbf{x}, \mathbf{x}^{k}\right)\right\}
$$

The Idea

Another representation of the projected subgradient method:

$$
\mathbf{x}^{k+1}=\underset{\mathbf{x} \in C}{\operatorname{argmin}}\left\{f\left(\mathbf{x}^{k}\right)+\left\langle f^{\prime}\left(\mathbf{x}^{k}\right), \mathbf{x}-\mathbf{x}^{k}\right\rangle+\frac{1}{2 t_{k}}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{2}^{2}\right\}
$$

Next iterate is a minimizer of the linear approximation regularized by a prox term.
The Idea: Replace the Euclidean distance by a non-Euclidean function:

$$
\mathbf{x}^{k+1}=\underset{\mathbf{x} \in C}{\operatorname{argmin}}\left\{f(\mathbf{x})+\left\langle f^{\prime}\left(\mathbf{x}^{k}\right), \mathbf{x}-\mathbf{x}^{k}\right\rangle+\frac{1}{t_{k}} D\left(\mathbf{x}, \mathbf{x}^{k}\right)\right\}
$$

What should we expect from $D(\cdot, \cdot)$?

- Take into account the structure of the constraints and "easy to compute".
- "distance-like": $D(\mathbf{u}, \mathbf{v}) \geq 0$ and equal zero iff $\mathbf{u}=\mathbf{v}$.
- Popular choice: Bregman distance $D(\mathbf{u}, \mathbf{v})=B_{\omega}(\mathbf{u}, \mathbf{v})=\omega(\mathbf{u})-\omega(\mathbf{v})-\nabla \omega(\mathbf{v})^{T}(\mathbf{u}-\mathbf{v})$ strongly convex w.r.t. to an arbitrary norm.

Demo - Trust Topology Design

Design a truss of a given total weight capable to withstand a collection of forces acting on the nodes. Simplex constraints.

$$
\min _{\mathbf{t}}\left\{\mathbf{f}^{T} A^{-1}(\mathbf{t}) \mathbf{f}: \mathbf{t} \in \Delta_{n}\right\}
$$

Comparing PSM with mirror descant $\left(\omega(\mathbf{x})=\frac{1}{2}\|\mathbf{x}\|_{2}^{2}, \sum_{i=1}^{n} x_{i} \log x_{i}\right)$

$$
x_{i}^{k+1}=\frac{x_{i}^{k} e^{-t_{k} f_{i}^{\prime}\left(x^{k}\right)}}{\sum_{j=1}^{n} x_{j}^{k} e^{-t_{k} f_{j}^{\prime}\left(x^{k}\right)}}, \quad i=1,2, \ldots, n
$$

Theoretically the efficiency estimate is still of the order $O(1 / \sqrt{k})$ but the constants can be improved by using non-Euclidean distances.

Dual Projected Subgradient Method

Model:

$$
\begin{aligned}
& f_{\text {opt }}=\min f(\mathbf{x}) \\
& \text { s.t. } \quad \mathrm{g}(\mathrm{x}) \leq \mathbf{0} \text {, } \\
& \mathbf{x} \in X \text {. }
\end{aligned}
$$

Assumptions:

(A) $X \subseteq \mathbb{R}^{n}$ is convex.
(B) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex.
(C) $\mathbf{g}(\cdot)=\left(g_{1}(\cdot), g_{2}(\cdot), \ldots, g_{m}(\cdot)\right)^{T}$, where $g_{1}, g_{2}, \ldots, g_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex.
(D) For any $\boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}$, the problem $\min _{\mathbf{x} \in X}\left\{f(\mathbf{x})+\boldsymbol{\lambda}^{T} \mathbf{g}(\mathbf{x})\right\}$ attains an optimal solution.
The Lagrangian of the problem is given by

$$
L(\mathbf{x}, \boldsymbol{\lambda})=f(\mathbf{x})+\boldsymbol{\lambda}^{T} \mathbf{g}(\mathbf{x})
$$

The Dual Problem

$$
\text { (D) } q_{\mathrm{opt}} \equiv \max \left\{q(\boldsymbol{\lambda}): \boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}\right\},
$$

where

$$
q(\boldsymbol{\lambda})=\min _{\mathbf{x} \in X} f(\mathbf{x})+\boldsymbol{\lambda}^{T} \mathbf{g}(\mathbf{x})
$$

- Under the assumptions, strong duality holds, meaning that $f_{\mathrm{opt}}=q_{\mathrm{opt}}$ and the optimal solution of the dual problem is attained.

The Method

Main Observation: To compute a subgradient of $-q$ at $\boldsymbol{\lambda}$:

- Find $\mathbf{x}_{\lambda} \in \operatorname{argmin} L(\mathbf{x}, \boldsymbol{\lambda})$.
- $-\mathbf{g}\left(\mathbf{x}_{\lambda}\right) \in \partial(-q)(\boldsymbol{x})$.

The Dual Projected Subgradient Method Initialization: pick $\lambda^{0} \in \mathbb{R}_{+}^{m}$ arbitrarily.
General step: for any $k=0,1,2, \ldots$,
(a) pick a positive number γ_{k}.
(b) compute $\mathbf{x}^{k} \in \underset{\mathbf{x} \in X}{\operatorname{argmin}}\left\{f(\mathbf{x})+\left(\boldsymbol{\lambda}^{k}\right)^{T} \mathbf{g}(\mathbf{x})\right\}$.
(c) if $\mathbf{g}\left(\mathbf{x}^{k}\right)=\mathbf{0}$, then terminate with an output \mathbf{x}^{k}; otherwise,

$$
\lambda^{k+1}=\left[\lambda^{k}+\gamma_{k} \frac{\mathbf{g}\left(\mathbf{x}^{k}\right)}{\left\|\mathbf{g}\left(\mathbf{x}^{k}\right)\right\|_{2}}\right]_{+}
$$

$O\left(1 / \varepsilon^{2}\right)$ Rate of Convergence in Nonsmooth Convex Optimization

- SPM,MD and dual projected subgradient are all $O\left(1 / \varepsilon^{2}\right), O(1 / \sqrt{k})$ methods. Can we do better?
- According to lower complexity bounds, the answer is No!
- However, by exploiting the structure of the functions, we can do better. For example, if assuming some smoothness properties...

Polynomial versus Gradient-Based Methods (80's and 90's)

- Rise of Polynomial methods for convex programming: ellipsoid, interior point methods.
- Convex problems are polynomially solvable within ε accuracy:

Running Time \leq Poly(Problem's size, \# of accuracy digits).

- Theoretically: large scale problems can be solved to high accuracy with polynomial methods, such as IPM.
- Practically: Running time is dimension-dependent and grows nonlinearly with problem's dimension. For IPM which are Newton's type methods: $\sim O\left(n^{3}\right)$.
- Thus, a "single iteration" of IPM can last forever!
- 2000-... Gradient-based method have become popular again due to increasing size of applications.

Dealing with the Size - Decomposition

- One way to deal with the large or even huge-scale size of the new arising applications is use decomposition. For example...

Dealing with the Size - Decomposition

- One way to deal with the large or even huge-scale size of the new arising applications is use decomposition. For example...
- Consider the problem

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}) \equiv \sum_{i=1}^{m} f_{i}(\mathbf{x})\right\}
$$

where $f_{1}, f_{2}, \ldots, f_{m}$ are all convex functions. Suppose that m is huge.

Dealing with the Size - Decomposition

- One way to deal with the large or even huge-scale size of the new arising applications is use decomposition. For example...
- Consider the problem

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}) \equiv \sum_{i=1}^{m} f_{i}(\mathbf{x})\right\}
$$

where $f_{1}, f_{2}, \ldots, f_{m}$ are all convex functions. Suppose that m is huge.

- The subgradient method is very expansive to execute:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k}\left(\sum_{i=1}^{m} f_{i}^{\prime}\left(\mathbf{x}^{k}\right)\right)
$$

Dealing with the Size - Decomposition

- One way to deal with the large or even huge-scale size of the new arising applications is use decomposition. For example...
- Consider the problem

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}) \equiv \sum_{i=1}^{m} f_{i}(\mathbf{x})\right\}
$$

where $f_{1}, f_{2}, \ldots, f_{m}$ are all convex functions. Suppose that m is huge.

- The subgradient method is very expansive to execute:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k}\left(\sum_{i=1}^{m} f_{i}^{\prime}\left(\mathbf{x}^{k}\right)\right) .
$$

- Instead, we can use the stochastic projected subgradient method that exploits only one randomlly chosen subgradient at each iteration (decomposition)

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-t_{k} f_{i_{k}}^{\prime}\left(\mathbf{x}^{k}\right)
$$

${ }_{\text {Amir Beck }}^{i k_{\text {- Tel Avii Univesity }} \text { - randoren }}$

The General Composite Model

We will be interested in the following model:

$$
(P) \quad \min \{F(\mathbf{x}) \equiv f(\mathbf{x})+g(\mathbf{x}): \mathbf{x} \in \mathbb{E}\}
$$

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is an L_{f}-smooth convex functin:

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\| \leq L_{f}\|\mathbf{x}-\mathbf{y}\| \quad \text { for every } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

- $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ extended valued convex function which is nonsmooth.
- Problem (P) is solvable, i.e., $X_{*}:=\operatorname{argmin} f \neq \emptyset$, and for $\mathbf{x}^{*} \in X_{*}$ we set $F_{\mathrm{opt}}:=F\left(\mathbf{x}^{*}\right)$.

Special Cases of the General Model

- $g=0$ - smooth unconstrained convex minimization.

$$
\min _{x} f(\mathbf{x})
$$

Special Cases of the General Model

- $g=0$ - smooth unconstrained convex minimization.

$$
\min _{x} f(\mathbf{x})
$$

- $g=\delta_{C}(\cdot)$ - constrained smooth convex minimization.

$$
\min _{\mathbf{x}}\{f(\mathbf{x}): \mathbf{x} \in C\}
$$

Special Cases of the General Model

- $g=0$ - smooth unconstrained convex minimization.

$$
\min _{x} f(\mathbf{x})
$$

- $g=\delta_{C}(\cdot)$ - constrained smooth convex minimization.

$$
\min _{\mathbf{x}}\{f(\mathbf{x}): \mathbf{x} \in C\}
$$

- $g=\|\cdot\|_{1}-I_{1}$-regularized convex minimization.

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x})+\lambda\|\mathbf{x}\|_{1}\right\}
$$

The Proximal Gradient Method

The derivation of the proximal gradient method is similar to the one of the projected subgradient method.

- For any $L \geq L_{f}$, and a given iterate \mathbf{x}^{k} :

$$
Q_{L}\left(\mathbf{x}, \mathbf{x}^{k}\right):=f\left(\mathbf{x}^{k}\right)+\left\langle\mathbf{x}-\mathbf{x}^{k}, \nabla f\left(\mathbf{x}^{k}\right)\right\rangle+\frac{L}{2}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|^{2}+\underbrace{g(\mathbf{x})}_{\text {untouched }}
$$

The Proximal Gradient Method

The derivation of the proximal gradient method is similar to the one of the projected subgradient method.

- For any $L \geq L_{f}$, and a given iterate \mathbf{x}^{k} :

$$
Q_{L}\left(\mathbf{x}, \mathbf{x}^{k}\right):=f\left(\mathbf{x}^{k}\right)+\left\langle\mathbf{x}-\mathbf{x}^{k}, \nabla f\left(\mathbf{x}^{k}\right)\right\rangle+\frac{L}{2}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|^{2}+\underbrace{g(\mathbf{x})}_{\text {untouched }}
$$

- Algorithm:

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathbf{x}^{k+1} & :=\underset{\mathbf{x}}{\operatorname{argmin}} Q_{L}\left(\mathbf{x}, \mathbf{x}^{k}\right) \\
& =\underset{\mathbf{x}}{\operatorname{argmin}}\left\{g(\mathbf{x})+\frac{L}{2}\left\|\mathbf{x}-\left(\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)\right)\right\|^{2}\right\} \\
& =\operatorname{prox}_{\frac{1}{L} g}\left(\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)\right) \equiv p_{L}\left(\mathbf{x}^{k}\right) .
\end{aligned} \\
& \text { prox operator: } \operatorname{prox}_{g}(\mathbf{x}):=\underset{\mathbf{u}}{\operatorname{argmin}}\left\{g(\mathbf{u})+\frac{1}{2}\|\mathbf{u}-\mathbf{x}\|^{2}\right\} .
\end{aligned}
$$

Special Cases

The general method: $\mathbf{x}^{k+1}=\operatorname{prox}_{\frac{1}{L} g}\left(\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)\right)$.

- $g \equiv 0 \Rightarrow$ the gradient method.

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)
$$

Special Cases

The general method: $\mathbf{x}^{k+1}=\operatorname{prox}_{\frac{1}{L} g}\left(\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)\right)$.

- $g \equiv 0 \Rightarrow$ the gradient method.

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)
$$

- $g=\delta_{C}(\cdot) \Rightarrow$ the gradient projection method

$$
\mathbf{x}^{k+1}=P_{C}\left(\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

Special Cases

The general method: $\mathbf{x}^{k+1}=\operatorname{prox}_{\frac{1}{L} g}\left(\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)\right)$.

- $g \equiv 0 \Rightarrow$ the gradient method.

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)
$$

- $g=\delta_{C}(\cdot) \Rightarrow$ the gradient projection method

$$
\mathbf{x}^{k+1}=P_{C}\left(\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

- $g(\mathbf{x}):=\lambda\|\mathbf{x}\|_{1} \Rightarrow$ Iterative shrinkage/thresholding algorithm

$$
\mathbf{x}^{k+1}=\mathcal{T}_{\lambda / L}\left(\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

and $\mathcal{T}_{\alpha}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the shrinkage operator defined by

$$
\mathcal{T}_{\alpha}(\mathbf{x})_{i}=\left(\left|x_{i}\right|-\alpha\right)_{+} \operatorname{sgn}\left(x_{i}\right)
$$

Special Case: LASSO

- $g(\mathbf{x}):=\lambda\|\mathbf{x}\|_{1}, f(\mathbf{x}):=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}$ (prox=shrinkage).

$$
\mathbf{x}_{k+1}=\mathcal{T}_{\lambda / L}\left(\mathbf{x}_{k}-\frac{2}{L} \mathbf{A}^{T}\left(\mathbf{A} \mathbf{x}_{k}-\mathbf{b}\right)\right)
$$

ISTA - Iterative Shrinkage/Thresholding Algorithm
In SP literature: Chambolle (98); Figueiredo-Nowak (03, 05);
Daubechies et al. (04), Elad et al. (06), Hale et al. (07)...
In Optimization: can be viewed as the Proximal forward backward Splitting Method (Passty (79))

Prox Computations

There are a quite a few "simple" functions for which the prox can be easily computed

Appendix B. Tables

1	$\operatorname{dom}(f)$	prox $_{(}(\mathbf{x})$	assumptions	reference				
$\begin{aligned} & \hline \frac{t^{\top} \mathbf{x}^{T} \mathbf{A x}+}{\mathbf{b}^{T} \mathbf{x}+c} . \end{aligned}$	R^{*}	($\mathrm{A}+\mathbf{1})^{-1}(\mathbf{x}-\mathrm{b})$	$\begin{aligned} & \hline \begin{array}{l} \mathrm{A} \in \mathrm{~S}^{n}, \mathrm{~b} \in \\ \mathbb{R}^{n}, c \in \mathbb{R} \end{array} \end{aligned}$	Soction 6.2.3				
λx^{2}	R_{+}	$\frac{-1+\sqrt{1+12 k] \mid}+}{6 \lambda}$	$\lambda>0$	Lemma 6.5				
μz	${ }^{10, a]}$	$\min \{\max \{x-\mu, D), \alpha\}$	$\mu \in \mathbb{R}, \alpha \in \mathbb{R}_{+}$	Example 6.14				
ㅅㅔㅔ\\|	E		$\\| \cdot 1 \text { - Euchidean }$ $\text { norm, } \lambda>0$	Example 6.19				
- $\lambda \\|$ \|x ${ }^{\text {d }}$	\&	$\begin{array}{ll} \left(1+\frac{\lambda}{\pi x}\right) \times x & x \neq 0, \\ (\mathrm{u}:\\|\mathrm{u}\\|-\lambda\}, & x=0 . \end{array}$	$\begin{aligned} & \\| \cdot 1 \text { - Euclidean } \\ & \text { norm, } \lambda>0 \end{aligned}$	Example 6.21				
$\lambda\\|\mathbf{x}\\|_{1}$	R^{*}	$T_{\lambda}(\mathbf{x})-[\|\mathbf{x}\|-\lambda \mathrm{e}]_{+} \odot \operatorname{sgn}(\mathbf{x})$	$x>0$	Example 6.8				
$\\| \boldsymbol{\omega}$ (1) $\\|_{1}{ }_{2}$	$\operatorname{Bax}[-\alpha, \alpha]$	$S_{\text {S.a }}(\mathbf{x})$		Example 6.23				
$\lambda\\|\mathbf{x}\\|_{\infty}$	R^{*}		$\lambda>0$	Example 6.4s				
$\lambda^{\lambda}\\|\mathbf{x}\\|_{\text {a }}$	E		$\begin{array}{\|l\|l\|} \substack{\\|x\\|_{a} \\ x>0} \\ \hline \end{array}$	Example 6.47				
$\lambda_{\text {d }} \times \mathbf{x} \\|_{0}$	R^{n}	$H_{\sqrt{2 \pi}\left(x_{1}\right) \times \cdots \times H_{\sqrt{2 \pi}}\left(x_{n}\right)}$	$x>0$	Example 6.10				
$\lambda\\|x\\|^{3}$	E		$\begin{aligned} & \\| \cdot \mid- \text { Euchidean } \\ & \text { norm, } \lambda>0, \end{aligned}$	Example 6.20				
$-\lambda \sum_{j=1}^{n} \log x_{s}$	$\mathrm{R}^{\mathrm{n}}+$	$\left(\frac{x_{i}+\sqrt{2^{2}+6 x}}{2}\right)^{1=1}$	$x>0$	Example 6.9				
$\delta_{6 C}(\mathbf{x})$	E	$P_{C(}(\mathbf{x})$	$\cdots \neq C \subseteq \mathrm{R}$	Theorem 6.24				
$\lambda_{\sigma_{C}(\mathbf{x})}$	\&	$\mathbf{x}-\lambda P_{C}(\mathbf{x} / \lambda)$	$\begin{aligned} & \lambda>0, c \neq \beta \\ & \text { closed convex } \end{aligned}$	Theorem 6.45				
λ max $\left\{z_{i}\right\}$	\mathbb{R}^{*}	$\mathbf{x}-P_{\lambda_{n}}(\mathbf{x} / \lambda)$	$x>0$	Example 6.49				
$\lambda \sum_{i=1}^{k} x_{[\mid]}$	R^{*}	$\begin{gathered} \mathbf{x}-\lambda P_{c}(\mathbf{x} / \lambda) \\ C-H_{\mathrm{o}, \mathrm{~A}} \cap \mathrm{Bax}[\mathbf{0}, \mathrm{e}] \\ \hline \end{gathered}$	$x>0$	Example 6.50]				
$\lambda \sum^{k}=1\left\|x_{(c)}\right\|$	R^{*}		$\lambda>0$	Example 6.51				
${ }^{\lambda M_{f}^{\mu}(\mathbf{x})}$	E	$\frac{x}{\mu+\pi}\left(\operatorname{prox}_{\{, \mu+\lambda \mid y}(\mathbf{x})-\mathbf{x}\right)$		Corollary 6.6.3				
	E	$\min \left\{\frac{x}{\mathrm{~S}_{C}(\mathbf{x} \mid}, 1\right\}\left(P_{C}(\mathbf{x})-\mathbf{x}\right)$	$\begin{aligned} & \hline C \text { nowempty } \\ & \text { closed convex, } \\ & \lambda>0 \end{aligned}$	Lemma 6.43				
$\frac{1}{\lambda}{ }^{\frac{1}{c}{ }_{C}^{2}(\mathbf{x})}$	8	$\frac{\lambda}{x+1} P_{C}(\mathbf{x})+\frac{1}{x+2} \mathrm{x}$	$\begin{aligned} & \hline C \text { nonompty } \\ & \text { closed convex, } \\ & \lambda>0 \end{aligned}$	Example 6.64				
$\lambda H_{\mu}(\mathbf{x})$	E	($1-\frac{1}{\max (1 \times 1, n+x \mid}$)	$\lambda, \mu>0$	Example 6.65				
$\rho\\|\mathbf{x}\\|_{1}^{2}$	R^{*}		$p>0$	Lenma 6.69				
$\\|A x\\|_{2}$	R^{n}			Lemma 6.67				

$p_{(\mathbf{X})}$	$\operatorname{dom}(F)$	$\mathrm{prox}_{5}(\mathbf{X})$			
$\stackrel{a \mid X \\|_{p}}{\text { a }}$	$\mathrm{s}^{\text {n }}$	$\frac{1}{1+2 n} \mathrm{X}$			
${ }_{\text {a }}^{\text {a }} \mathbf{X} \\|_{\\|_{F}}$	$\mathrm{s}^{\text {n }}$				
${ }_{\alpha}^{\\|}\\|\mathbf{X}\\|_{s_{1}}$	$\mathrm{s}^{\text {n }}$	UTo $\left(\boldsymbol{\lambda}(\mathbf{X}) \mathrm{U}^{T}\right.$			
${ }_{\text {a }}^{\\|} \mathbf{X} \mathbf{X}_{2,2}$	S^{n}				
$-a \operatorname{det}(\mathbf{X})$	s_{++}^{n}	$\mathrm{Udiag}\left(\frac{\lambda_{\mathrm{y}}(\mathbf{X})+\sqrt{\lambda_{\mathrm{X}}(\mathbf{X})^{2}+40}}{2}\right) \mathrm{U}^{T}$			
$\alpha \lambda_{1}(\mathbf{X})$	$\mathrm{s}^{\text {n }}$	$\operatorname{Udiang}\left(\mathbf{\lambda}(\mathbf{X})-P_{\Delta_{0}}(\mathbf{\lambda}(\mathbf{X}) / \alpha)\right) \mathrm{U}^{T}$			
$\sum_{i=1}^{e} \lambda_{i}(\mathbf{X})$	S^{n}	$\mathbf{X}-\alpha \mathrm{U} P_{C}(\mathbf{\lambda}(\mathbf{X}) / \alpha) \mathrm{U}^{\mathrm{T}}, C-H_{e, k} \cap \operatorname{Box}[0, \mathrm{e}]$			

Prox of Symmetric Spectral Functions over $\mathbb{R}^{\mathbf{w x n}}$ (Prom Example 7.30$\}$

$P_{(\text {(})}$	$\operatorname{prax}_{p}(\mathbf{X})$				
$\Delta \mid \mathbf{X} \\|_{P}^{2}$	$\frac{1}{1+20} \mathrm{X}$				
${ }_{\alpha \mid X_{1} \\|_{P}}$					
$\alpha_{\\| \\|} \mathbf{X}^{*} \\|_{s_{1}}$	$\mathrm{U} \mathcal{T}_{\sim}(\boldsymbol{\sigma}(\mathbf{X}))^{\text {V }}{ }^{\text {P }}$				
${ }_{\alpha}^{\alpha}\\|\mathbf{X}\\| \\|_{\infty}$					
${ }_{\sim}^{\alpha}\\|\mathbf{X}\\|_{(w)}$	$\begin{gathered} \mathbf{X}-\alpha \mathbf{U} P_{c}(\boldsymbol{\sigma}(\mathbf{X}) / \alpha) \mathbf{V}^{T} \\ c-B_{\\| \cdot i 1}\left[\mathbf{0}, \mathrm{~K} \\| \cap B_{0-1 \infty}[\mathbf{0}, 1]\right. \\ \hline \end{gathered}$				

set (C)	$\mathrm{Pc}_{C}(\mathbf{x})$	assumptions	reference									
R_{+}^{*}	${ }_{\text {[x] }}{ }_{+}$	-	Lemma 6.26									
Box [$¢$, u]	$P_{C C}(\mathbf{x})_{c}=\min \left\{\max \left\{z_{i}, \chi_{4}\right\}, w_{i}\right\}$	$\ell_{i} \leq u_{i}$	Lemma 6.26									
$B_{\text {l-12 }}[\mathrm{c}, \mathrm{r}]$		$c \in \mathbb{R}^{n}, r>0$	Lemma 6.26									
($\mathrm{x}, \mathrm{Ax}-\mathrm{b}$)	$\mathbf{x}-\mathbf{A}^{T}\left(\mathbf{A A}^{T}\right)^{-1}(\mathbf{A x}-\mathbf{b})$		Lemman 6.26									
($\mathbf{x}: \mathbf{a}^{T} \times \leq 6{ }^{\text {a }}$		${\underset{\mathbb{R}}{0} \times a \in \mathbb{R}^{n}, b \in}^{b}$	Lemma 6.26									
$\Delta_{\text {。 }}$	$\left[\mathbf{x}-\mu^{*} \mathrm{e}\right]_{+}$where $\mu^{+} \in \mathbb{R}$ satisfies $\mathrm{e}^{T}\left\|\mathrm{x}-\mu^{+} \mathrm{e}\right\|_{+}=1$		Corollary 6.29									
$H_{\text {A, }} \cap \ldots \operatorname{Bax}[\mathrm{k}, \mathrm{u}]$	 	$\underset{\mathbb{Z}}{\mathbf{a} \in \mathbb{R}^{n} \backslash\{0\rangle, b \in}$	Theorem 6.27									
$H_{\Delta, n}^{-} \cap \operatorname{Bax}[\mathcal{L}$, ul			Example 6.32									
$B_{1-1}[0, a]$	$\left\{\begin{array}{ll} \mathbf{x}, & \mid \mathbf{x} \\|_{1} \leq \alpha, \\ \tau_{x_{\lambda}}-(\mathbf{x}), & \mid \mathbf{x} \\|_{1}>\alpha_{0} \end{array},\right.$	$\alpha>0$	Example 6.33									
$\begin{aligned} & \left\{\mathbf{x}: \omega^{7}\|\mathbf{x}\| \leq \beta,\right. \\ & -\alpha \leq x \leq \alpha\} \end{aligned}$	$\left\{\begin{array}{ll} \mathbf{v}_{\mathbf{x}} & \omega^{T}\left\|\mathbf{v}_{x}\right\| \leq \beta, \\ S_{x+2, a}(\mathbf{x}), & \omega^{T}\left\|\mathbf{v}^{T}\right\|>\beta, \end{array},\right.$		Example 6.34									
\{ $\mathrm{x}>0 \mathrm{o}: \mathrm{Hx}, \geq \mathrm{l}$,		$\alpha>0$	Example 6.35									
$\left.f(\mathbf{x}, s):\\|\mathbf{x}\\|_{2} \leq s\right\}$	$\begin{aligned} & \left(\frac{\\| \mathbf{x} \mid 2+2}{1 / 2 \\|_{2}} \mathbf{x} \cdot \frac{\|\mathrm{x}\|_{2}+\mathrm{e}}{2}\right) \text { if }\\|\mathbf{x}\\|_{2} \geq\|s\| \\ & (\mathbf{0}, \mathbf{0}) \text { if } s<\mid \mathbf{x} \\|_{2}<-s, \\ & (\mathbf{x}, s) \text { if }\\|\mathbf{x}\\|_{2} \leq s \end{aligned}$		Example 6.37									
$f(\mathbf{x}, \mathrm{~s}):\\|\mathrm{x}\\|_{1} \leq * *$	$\left\{\begin{array}{ll} (\mathbf{x}, s), & \\|\mathbf{x}\\|_{1} \leq s, \\ \left(\tau_{\lambda}-(\mathbf{x}), s+\lambda^{*}\right), & \\|\mathbf{x}\\|_{1}>s_{1} \end{array},\right.$		Example 6.34									

set (C)	$\mathrm{Pc}_{\text {c }}(\mathbf{X})$	assumptions	
S_{+}^{n}	Udatag ($\left.(\boldsymbol{\lambda}(\mathbf{X})]_{+}\right) \mathbf{U}^{T}$	-	
(X:A〕X	$\begin{gathered} \mathrm{Ud} \mathrm{\operatorname{lag}(} \mathrm{\mathbf{v}) U}^{T} \\ n_{i}-\min \left\{\max \left\{\lambda_{i}(\mathbf{X}), \ell\right\}, u\right\} \\ \hline \end{gathered}$	$t \leq u$	
$B_{1-\\|_{p}[0, r]}$		$r>0$	
($\mathbf{X} \cdot \mathrm{Tr}(\mathbf{X}) \leq 6\}$	$\begin{gathered} \text { Udiag }(\mathbf{v}) \mathrm{U}^{T} \\ \mathrm{v}-\mathrm{x}(\mathrm{X})-\frac{\left.\left\|\mathrm{o}^{T}\right\| \mathrm{x}\right)-4 \mid+e}{n^{2}} \end{gathered}$	$b \in \mathbb{R}$	
r_{n}	where $\mu^{*} \in \mathbb{R}$ satisfics $\boldsymbol{e}^{J}[\boldsymbol{\lambda}(\mathbf{X})$ $\left.\mu^{*} e\right\|_{+}-1$	-	
$B_{1\|\cdot\| s s_{1}}[0, \alpha]$		$a>0$	

Orthogonal Projection onto Symmetric Spectral Sets in $\mathbb{R}^{m \times n}$ (Prom Example 7.31)

set (C)	$P_{c}(\mathbf{X})$	assumptions						
$B_{1 \\| \cdot l \mid s_{\infty}}[0, \alpha]$	Udiag $(\mathbf{v}) \mathbf{U}^{T}, v_{c}=\min \left\{\sigma_{c}(\mathbf{X}), \alpha\right\}$	$\alpha>0$						
$B_{1-\\|_{p}}[0, r]$		$r>0$						
$B_{\\|\cdot\\| s_{1}}[0, \alpha]$	$\begin{cases}\mathbf{X} & \\|\mathbf{X}\\|_{s_{1} \leq a} \\ \mathbf{U} \tau_{x_{x}-(\sigma(\mathbf{X})) \mathbf{U}^{T}} & \\|\mathbf{X}\\|_{s_{1}}>\alpha,\end{cases}$	$a>0$						

Rate of Convergence of Prox-Grad

Theorem - [Rate of Convergence of Prox-Grad]

Let $\left\{\mathbf{x}^{k}\right\}$ be the sequence generated by the proximal gradient method.

$$
F\left(\mathbf{x}^{k}\right)-F\left(\mathbf{x}^{*}\right) \leq \frac{L\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|^{2}}{2 k}
$$

for any optimal solution \mathbf{x}^{*}.

- Thus, to solve (M), the proximal gradient method converges at a sublinear rate in function values.
- \# iterations for $F\left(\mathbf{x}^{k}\right)-F\left(\mathbf{x}^{*}\right) \leq \varepsilon$ is $O(1 / \varepsilon)$.

Rate of Convergence of Prox-Grad

Theorem - [Rate of Convergence of Prox-Grad]

Let $\left\{\mathbf{x}^{k}\right\}$ be the sequence generated by the proximal gradient method.

$$
F\left(\mathbf{x}^{k}\right)-F\left(\mathbf{x}^{*}\right) \leq \frac{L\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|^{2}}{2 k}
$$

for any optimal solution \mathbf{x}^{*}.

- Thus, to solve (M), the proximal gradient method converges at a sublinear rate in function values.
- \# iterations for $F\left(\mathbf{x}^{k}\right)-F\left(\mathbf{x}^{*}\right) \leq \varepsilon$ is $O(1 / \varepsilon)$.
- Note: The sequence $\left\{\mathbf{x}^{k}\right\}$ can be proven to converge to solution \mathbf{x}^{*}.
- No need to know the Lipschitz constant (backtracking).

Towards a Faster Algorithm

- An $O(1 / k)$ rate of convergence is rather slow.
- Can we find a faster methods?

Towards a Faster Algorithm

- An $O(1 / k)$ rate of convergence is rather slow.
- Can we find a faster methods?
- The answer is YES!.

FISTA - [B., Teboulle 2009]

An equally simple algorithm as prox-grad. (Here L_{f} is known).

FISTA with constant stepsize

Input: $L \geq L_{f}$ - A Lipschitz constant of ∇f.
Step 0. Take $\mathbf{y}^{1}=\mathbf{x}^{0} \in \mathbb{E}, t_{1}=1$.
Step \mathbf{k}. $(k \geq 1)$ Compute

$$
\begin{aligned}
\mathbf{x}^{k} & \equiv \operatorname{prox}_{\frac{1}{L} g}\left(\mathbf{y}^{k}-\frac{1}{L} \nabla f\left(\mathbf{y}^{k}\right)\right), \hookleftarrow \text { main computation } \\
\bullet t_{k+1} & =\frac{1+\sqrt{1+4 t_{k}^{2}}}{2} \\
\bullet \mathbf{y}^{k+1} & =\mathbf{x}^{k}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{x}^{k}-\mathbf{x}^{k-1}\right)
\end{aligned}
$$

Additional computation for FISTA in (\bullet) and $(\bullet \bullet)$ is clearly marginal.

Theorem - Global Rate of Convergence FISTA

Theorem Let $\left\{\mathbf{x}_{k}\right\}$ be generated by FISTA. Then for any $k \geq 1$

$$
F\left(\mathbf{x}_{k}\right)-F\left(\mathbf{x}^{*}\right) \leq \frac{2 \alpha L(f)\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\|^{2}}{(k+1)^{2}}
$$

where $\alpha=1$ for the constant stepsize setting and $\alpha=\eta$ for the backtracking stepsize setting.

- \# of iterations to reach $F(\tilde{\mathbf{x}})-F_{*} \leq \varepsilon$ is $\sim O(1 / \sqrt{\varepsilon})$.
- Clearly improves ISTA by a square root factor.

Theorem - Global Rate of Convergence FISTA

Theorem Let $\left\{\mathbf{x}_{k}\right\}$ be generated by FISTA. Then for any $k \geq 1$

$$
F\left(\mathbf{x}_{k}\right)-F\left(\mathbf{x}^{*}\right) \leq \frac{2 \alpha L(f)\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\|^{2}}{(k+1)^{2}}
$$

where $\alpha=1$ for the constant stepsize setting and $\alpha=\eta$ for the backtracking stepsize setting.

- \# of iterations to reach $F(\tilde{\mathbf{x}})-F_{*} \leq \varepsilon$ is $\sim O(1 / \sqrt{\varepsilon})$.
- Clearly improves ISTA by a square root factor.
- Do we practically achieve this theoretical rate? Yes

LASSO (Penalized Version)

- Consider the problem

$$
\text { (P) } \quad \min \left\{f(\mathbf{x}) \equiv \frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}\right\}
$$

$\mathbf{A} \in \mathbb{R}^{100 \times 200}, \mathbf{b} \in \mathbb{R}^{100}, \lambda>0$

LASSO (Penalized Version)

- Consider the problem

$$
\text { (P) } \quad \min \left\{f(\mathbf{x}) \equiv \frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}\right\}
$$

$\mathbf{A} \in \mathbb{R}^{100 \times 200}, \mathbf{b} \in \mathbb{R}^{100}, \lambda>0$

Illustration ($\lambda=1$)

Smoothed FISTA

- Revisit nonsmooth problems:

$$
\min _{\mathbf{x}}\{f(\mathbf{x}): \mathbf{x} \in C\}
$$

f - convex nonsmooth, C - convex

Smoothed FISTA

- Revisit nonsmooth problems:

$$
\min _{\mathbf{x}}\{f(\mathbf{x}): \mathbf{x} \in C\}
$$

f - convex nonsmooth, C-convex

- "standard" nonsmooth algorithms solve it in $O\left(1 / \varepsilon^{2}\right)$ complexity.

Smoothed FISTA

- Revisit nonsmooth problems:

$$
\min _{\mathbf{x}}\{f(\mathbf{x}): \mathbf{x} \in C\}
$$

f - convex nonsmooth, C - convex

- "standard" nonsmooth algorithms solve it in $O\left(1 / \varepsilon^{2}\right)$ complexity.
- Another approach: consider a smoothed version of the problem: $\min _{\mathbf{x} \in C} f_{\eta}(\mathbf{x})$ and solve it using FISTA.
- Example: $\sum_{i=1}^{m}\left|\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right| \rightarrow \sum_{i=1}^{m} \sqrt{\left(\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right)^{2}+\eta^{2}}$

Smoothed FISTA

- Revisit nonsmooth problems:

$$
\min _{\mathbf{x}}\{f(\mathbf{x}): \mathbf{x} \in C\}
$$

f - convex nonsmooth, C - convex

- "standard" nonsmooth algorithms solve it in $O\left(1 / \varepsilon^{2}\right)$ complexity.
- Another approach: consider a smoothed version of the problem: $\min _{\mathbf{x} \in C} f_{\eta}(\mathbf{x})$ and solve it using FISTA.
- Example: $\sum_{i=1}^{m}\left|\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right| \rightarrow \sum_{i=1}^{m} \sqrt{\left(\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right)^{2}+\eta^{2}}$
- Carefully choosing the smoothing parameter, $O(1 / \varepsilon)$ complexity can be shown.

Dual FISTA - FDPG

- Model:

$$
\min _{\mathbf{x}} f(\mathbf{x})+g(\mathbf{A} \mathbf{x})
$$

Dual FISTA - FDPG

- Model:

$$
\min _{\mathbf{x}} f(\mathbf{x})+g(\mathbf{A} \mathbf{x})
$$

$$
\max _{\mathbf{y}}-f^{*}\left(\mathbf{A}^{T} \mathbf{y}\right)-g^{*}(-\mathbf{y})
$$

$$
f^{*}, g^{*} \text { - convex conjugates }\left(h^{*}(\mathbf{y}) \equiv \max _{\mathbf{x}}\left\{\mathbf{x}^{T} \mathbf{y}-h(\mathbf{x})\right\}\right)
$$

Dual FISTA - FDPG

- Model:

$$
\min _{\mathbf{x}} f(\mathbf{x})+g(\mathbf{A} \mathbf{x})
$$

- Dual model:

$$
\max _{\mathbf{y}}-f^{*}\left(\mathbf{A}^{T} \mathbf{y}\right)-g^{*}(-\mathbf{y})
$$

f^{*}, g^{*} - convex conjugates $\left(h^{*}(\mathbf{y}) \equiv \max _{\mathbf{x}}\left\{\mathbf{x}^{T} \mathbf{y}-h(\mathbf{x})\right\}\right)$

- Apply FISTA on the dual.
- Can deal with many different types of problems...

FDPG

The Fast Dual Proximal Gradient (FDPG) Method - primal representation

Initialization: $L \geq L_{F}=\frac{\|\mathbf{A}\|^{2}}{\sigma}, \mathbf{w}^{0}=\mathbf{y}^{0} \in \mathbb{R}^{m}, t_{0}=1$.
General step ($k \geq 0$):
(a) $\mathbf{u}^{k}=\underset{\mathbf{u}}{\operatorname{argmax}}\left\{\left\langle\mathbf{u}, \mathbf{A}^{T}\left(\mathbf{w}^{k}\right)\right\rangle-f(\mathbf{u})\right\}$.
(b) $\mathbf{y}^{k+1}=\mathbf{w}^{k}-\frac{1}{L} \mathbf{A}\left(\mathbf{u}^{k}\right)+\frac{1}{L} \operatorname{prox}_{L g}\left(\mathbf{A}\left(\mathbf{u}^{k}\right)-L \mathbf{w}^{k}\right)$
(c) $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$
(d) $\mathbf{w}^{k+1}=\mathbf{y}^{k+1}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right)$.

Present and Future?

The scale of problems is becoming huge. Emphasis of current and probably near future research:

- Decomposition
- Randomization
- Distributed

Thank You

Any Questions????

[^0]: ${ }^{1}$ also referred to as Armijo

[^1]: ${ }^{1}$ also referred to as Armijo

[^2]: ${ }^{1}$ also referred to as Armijo

