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Abstract 

Large companies often outsource their field service tasks to smaller contractors. Since 

sharing of private information between the various parties is not always possible, the 

common practice is allocating the tasks to the contractors heuristically. With this, the 

tasks for which the contractors have committed to other companies are not considered 

at all. As a result, the allocation can be inefficient. This study develops 2-stage 

collaborative mechanisms that cope with the problem and result in nearly optimal 

solutions. 

 

In the first stage, a feasible, not necessarily optimal, allocation of tasks to contractors 

is generated. We consider several possible allocation procedures such as sequential 

Vickrey auctions, sequential combinatorial auctions and sequential negotiation. The 

sequential combinatorial auctions procedure implements the Generalized Vickrey 

auction mechanism, which is a strategy-proof mechanism for the allocation problem 

of multiple goods among several competing agents.  

 

In the second stage, the contractors are allowed to exchange the tasks among 

themselves so as to decrease their operational costs. The exchanges may or may not 

include money transfers.  

 

The quality of the generated allocation is evaluated according to various performance 

measures. It was found that the first stage procedures yield fairly efficient allocations 

and the second further improves it. The resulted allocations are considerably more 

efficient compared with the solutions generated by a reasonable benchmark heuristic. 

The allocations' costs are close to a lower bound established by the optimal allocation 

of a central planner. That is, the price of anarchy is shown to be small.  
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1 Introduction 

Field service organizations operate in a dynamic, ever-changing world which 

combines long-range planning with emergency responses. While this could be said to 

apply to most types of businesses, there are two characteristics of field service that 

make it particularly challenging. First, the main “raw material” used in “producing” 

field service are work hours which must be applied at the right time – when the 

service is provided. Unlike tangible raw materials, and working hours used to produce 

tangibles that can be stored, a supply of work hours cannot be stored until a time 

when there is a demand for it. Field service managers describe this fact as “work 

hours have zero shelf life”, or even more briefly as “use it or lose it”. The second 

characteristic of field service is that resources and demands all have physical locations 

(e.g. location of the service engineer, location where the task needs to be performed). 

This brings travel times to the forefront of any attempt at optimization. 

 

Most commercial packages assume that the optimization is done by a central planner 

that is trying to optimize a single objective function and has access to all relevant 

data. The optimization process often includes employing algorithms that are 

distributed – that is, written in such a way that several computing resources can share 

the required computational work. However, the algorithms are typically centralized – 

that is, they allow each computing resource to access any item of problem 

information, so that the computing process may be considered to be performed by a 

central aggregated computing system. However, in many cases this assumption is not 

valid: In such cases, there are many interacting agents, each of which has its own 

resources, where all the resources (e.g. technician, trainer, heavy-equipment operator) 

need to agree on accepting a certain task and on the task's timing. Typically, each 

agent has private information not shared with the other agents.  

 

In this study we formulate the Decentralized Field Service Routing Problem 

(DFSRP), which requires a company to allocate a set of tasks to several contractors. 

Each task is characterized by its location and service time. In addition, each contractor 

is pre-committed to its own set of tasks which are not revealed to the company. Each 

contractor is interested in maximizing his revenue net of the labor and routing costs. 

The company, on the other hand, is interested in minimizing its payments to the 

contractors.   

 

Such a situation occurs in many real-world processes where providing the service 

involves several business entities, some of which have tasks that they need to 

perform, and some others have resources which may perform these tasks. For 

example, service firms (that have tasks to perform) that provide the service by 

outsourcing the tasks to contractors, where each of the contractors controls one or 

more vehicles. Contractors do not share their business information, such as the 

number and the availability of their vehicles, with the service firms. This lack of 

information sharing leads to inefficient (and therefore expensive) schedule and routes 

of the agents. Even worse, it leads to failures to deliver the work on time. 
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In this study we suggest a decentralized 2-stage mechanism for the allocation of the 

service tasks to the contractors. This mechanism does not require the contractors to 

reveal their private business information. The quality of the generated routing and 

allocation are measured both from the point of view of the society (efficiency) and 

from the point of view of all the business agents (profits). The business relations 

between the agents are assumed to be of a long term nature.   

 

 

The thesis is organized as follows: In Chapter 2, we review the relevant literature 

regarding the solution of routing problems and decentralized problems. In Chapter 3, 

the DFSRP is defined. In Chapter 4, we present several variations of a 2-stage task 

allocation mechanism. In Chapter 5, we benchmark these mechanisms and study their 

properties. Chapter 6 concludes the thesis and suggests directions for future research.   
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2 Literature review 

In this chapter we review the Field Service Scheduling (FSS) optimization problem, 

compare it with the VRP and present several solution algorithms for centralized 

settings of the problem. Thereafter, we discuss the methodology of solving the 

decentralized VRP and introduce several concepts from auction theory and 

mechanism design that assist in developing a decentralized solution method. Finally, a 

gap to be addressed by this study is identified.  

 

2.1. The Field Service Scheduling (FSS) Problem 

The Field Service Scheduling problem has been the prime focus of many studies 

carried out over the last two decades. Its main attributes are described quite 

comprehensively in Zerdin et al. (2011) that discuss the problem as a combinatorial 

NP-hard optimization one. The problem schedules technicians (resources) to serve a 

set of tasks (demands), scattered at different locations. When a technician serves a 

task, he is awarded with a prize. Each technician has a different set of skills and his 

capacity is limited. Serving a task requires certain skills, and service time of each task 

is known. The time and cost of traveling from one task to another are known, as well.    

 

The objective function is maximizing the total sum of awarded prizes minus the total 

traveling cost. Typically, not all tasks are able to be served due to limited capacities of 

the resources. A common variant of the FSS is The Field Service Scheduling problem 

with Time Windows (FSS-TW) where the time a certain task started and completed is 

restricted.  

 

The authors of this paper claim that if the objective function of the FSS problem is 

modified and some of the constraints are relaxed, FSS instances become similar to 

instances of VRP. Yet, FSS differs from the VRP in the following: 

1. The resources in FSS are different not only in capacity, but also in quality. 

Each resource can serve certain tasks and there is no assumed relation between 

the set of tasks one resource is capable of serving and the set of tasks another 

resource is capable of serving.   

2. In FSS, not all demands are served due to limited availability of resources. 

The possibility of having the demands which are not served increases the 

complexity of the problem. In VRP, all demands must be served1.  

3. The objective function in FSS is different from the objective function in VRP. 

VRP is usually solved with the goal of minimizing either the total traveling 

time or the number of routes, or some weighted average of the two. On the 

other hand, FSS is usually solved to maximize total profit (prizes minus 

traveling costs) and, if possible, minimize traveling time.     

4. Other characteristics:  

                                                           
1  This is true whether the capacity of the vehicle is large enough to serve all demands or whether the 

capacity of a single vehicle is small but the number of available vehicles is enough.     
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a. Service times of the tasks (in VRP the times are usually 0, whereas in 

FSS the times are positive parameters). 

b. Limits on the total duration of a route 

c. Multiple depots (possible in FSS, not standard for VRP) 

 

Following that, the authors suggest that certain instances of FSS can be transformed to 

instances of VRP. They note several examples. The first is FSS instances where 

capacity of resources is enough to satisfy all demands, so that the problem can be 

transformed to VRP with given time windows and vehicle parameters2. The second is 

instances where all resources are able to serve all tasks, and the problem reduces to 

VRP with time windows.  

 

Therefore, assuming that all resources are capable of serving all tasks and that their 

capacity is large enough to serve all tasks, our FSS instances can be modeled as a 

generalization of the VRP that includes the following features: 

1. Service times of the tasks are greater than 0. 

2. Multiple depots (one for each contractor) exist.  

3. Maximal duration of working day for all contractors.     

 

Indeed, this is the way we follow when modeling and solving FSS settings. Although 

the properties of the settings enabled us to cope with them using a commercial 

optimization solver, we find it appropriate to include various solution algorithms for 

the FSS problem in this survey. These are now presented. 

 

2.2 Selected solution algorithms for the FSS 

Various solution algorithms for the problem are presented in numerous studies. We 

discuss three of them that highlight important components of the state of the art 

optimization methods. The first study suggests a method based on multiple 

processors. The second study solves a stochastic problem using a Branch and Bound 

(B&B) algorithm and the third one demonstrates the use of state of the art heuristic 

optimization methods (Genetic algorithms and Ant colony). 

 

Xu and Chiu (2001) suggested a heuristic solution for a scheduling problem with 𝐾 

service technicians and a planning horizon of one working day. A solution to the 

problem is an allocation of tasks, scattered in different locations, to a set of service 

technicians, while satisfying time window constraints and considering predefined 

priorities. The technicians own diverse skills required to serve the tasks3.  

                                                           
2  Traveling time in this case is the sum of actual time spent in traveling and the service time.  
3 The authors represent the level of capability of a certain technician to perform a certain task by a 

fraction which varies from 0 to 1.   



5 

 

The authors solve the problem by transforming it to a generalized version of the VRP 

with Time Windows (VRPTW), tailored to consider unidentical resources. The 

generalized version of VRPTW differs from the classical VRPTW in its objective 

function. While VRPTW is solved in order to minimize either the number of routes or 

traveling distance, the generalized problem is solved mainly in order to maximize the 

number of served tasks4 in a given period of time. A secondary goal is minimizing the 

total working time (sum of traveling time and waiting time). An additional goal is 

minimizing the total traveling time. Furthermore, the generalized problem differs 

from the standard VRPTW in its constraints. While VRPTW's solution is subject to 

limited capacity, the generalized problem's solution is constrained due to the 

differences in skills of the service technicians.  

 

The authors present a mathematical model for the problem and solve it heuristically 

by applying a 2-stage algorithm. The output of the first stage is an initial feasible 

solution of the problem constructed using a Greedy algorithm previously developed 

by the authors. This solution is an input for the second stage, in which a local iterative 

search is operated to improve an initial solution. A solution's neighborhood is defined 

rather standardly and includes solutions generated by exchanging tasks between 

technicians, moving tasks from one technician to another, etc. The objective function 

is to maximize the total free time of the technicians5.  

 

Next, the authors modify the construction process of the greedy solution by including 

randomness based on the GRASP (Greedy-Randomized Adaptive Search Procedure) 

approach. As a result, several greedy solutions are constructed. Each of them is 

processed by a different processor, with a local search being applied to the solutions. 

When some processor reaches a local optimum, the search ends and the local 

optimum is kept. Then, a new random initial greedy solution is generated and sent to 

the idle processor that operates a local search on the new solution. This algorithm can 

be stopped by setting a time limit or a limit on the amount of total operations 

performed. Numerical experiments show that the modified algorithm yields the best 

solutions to the problem with respect to the predefined measures. However, the 

difference in performance between the algorithm's versions is not significant and the 

running time for the modified algorithm is considerably larger.      

 

The authors also present upper and lower bounds for the optimal solution. 

Additionally, they develop a more general version of the problem, where the number 

of possible depots is larger than 1 and overtime is allowed. The authors do not address 

randomness in service times or traveling times. Instead, they note that minimizing the 

total working time increases the robustness of the generated solutions. This, according 

to the authors, is beneficial if randomness exists.   

 

                                                           
4 This number is weighted with the predefined priority of the task.  
5 Xu and Chiu present a procedure which receives a specific technician and the list of tasks allocated to 

him and returns a feasible scheduling that maximizes the free time.    



6 

 

Unlike Xu and Chiu, Hadjiconstantinou and Roberts (2002) address randomness 

directly. They solve a VRP with stochastic service times and constant traveling times. 

The authors state the problem and claim that identifying a solution for each specific 

scenario of service times realization is not practical and suggest instead a policy that 

maximizes the expected performance. The problem deals with several tasks to be 

carried out by a single service technician. The planning horizon is 𝐾 working days. 

The length of a single working day is known. Overtime is allowed and penalized. The 

primary objective is minimizing the total transportation costs. A secondary objective 

is minimizing the total expected overtime.   

 

The authors claim that the problem can, in principle, be solved straightforwardly by 

formulating and solving an extremely complicated 2-stage stochastic programming 

model. The first stage is identifying possible schedules by solving an Integer Linear 

Programming model. This stage is followed by formulating a recursive program 

designed to find the total overtime of each schedule. Due to the complexity of this 

procedure, the authors choose to solve the problem using a Branch and Bound 

algorithm.  

 

The primary data structure of the B&B algorithm is a paired tree comprised of 2 trees. 

The first one is a decision tree (travel/not travel from task 𝑖 to task 𝑗). The second tree 

maps each possible branch in the first tree to the corresponding set of schedules that 

can result from choosing this branch. The set of possible schedules is constructed 

according to the distributions of service times of the tasks served in a specific branch. 

The authors also calculate lower and upper bounds of the total overtime in each 

branch.  

 

The authors comprehensively describe the real life scheduling problem they solve 

using the B&B algorithm. It consists of a set of tasks scheduled to service during a 5-

day working week of a single service technician6. The length of a working day is set 

at 8 hours and 15 minutes. The service times as well as the set of tasks to be 

scheduled are random, since this set consists of both planned tasks (weekly/monthly 

maintenance) and unexpected tasks (damages needed to be addressed immediately). 

The latter are unknown in advance. 

 

This problem is solved in two ways. In the first one, an optimal schedule is generated 

at the beginning of the week by applying the algorithm with the planned tasks as its 

input. The schedule is modified when information regarding an unexpected task 

arrives according to a set of rules defined in the paper. This generates the actual-

optimal scheduling. The algorithm does not imply re-optimization. According to the 

second method, the schedule is re-optimized at the end of each working day. The 

method considers the unexpected tasks that arrived during that day. Both the "actual-

                                                           
6 The problem was solved retrospectively i.e. according to data obtained in a certain week.  
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optimal" and re-optimized schedules are compared to the actual one followed by the 

service engineer7. Both schedules proved to perform better than the actual one.  

 

Beniaminy et al. (2009) present several solution algorithms for a FSS problem which 

is a generalized version of the VRPTW. First, a genetic algorithm (GA) is presented. 

According to the GA, a chromosome represents an assignment of demands (service 

tasks) to resources (service technicians). Each chromosome consists of genes. A gene 

is a pair (𝑅𝑖, 𝐷𝑗) implying that demand 𝐷𝑗  is assigned to technician 𝑅𝑖. A valid 

chromosome is a chromosome where each demand is assigned at most once. The 

actual scheduling that fits a chromosome is constructed by starting the service of 

demands as early as possible considering traveling times and the other constraints. A 

chromosome can represent an infeasible schedule, since resources are limited. When 

an initial population of schedules has been randomly built, the next generation is 

created in the following manner. The current population is segmented and the first 

segment "elite" moves the best solutions on to the next generation. All the other 

segments undergo some variation of crossover after parents have been chosen 

randomly using a uniform distribution, or mutation.  The GA was found to perform 

well when applied to a real case study with 620 demands and 88 different resources 

with a variety of required skills.  

 

The second algorithm is an Ant Colony Optimization (ACO) algorithm. According to 

this algorithm, an arc (𝐴, 𝐵) in a pheromone table describes the worthwhileness of 

assigning demand 𝐵 immediately after demand 𝐴. Since the technicians differ in their 

skills and in the set of assigned demands, a separate pheromone table for each 

resource is created. The algorithm has 2 levels of operation – a higher level (the 

controller) and a lower level (the builder). The builder assigns demands to resources 

based on the current pheromone tables. In order to avoid convergence to a local 

optimum, randomness is added to the creation of assignments. The controller uses the 

builder to create full-range solutions. Then, the pheromone tables are updated based 

on the solutions where either the objective function's value is high, or the number of 

supplied demands is high. The process repeats until a stopping criterion is reached. 

Since more than one colony can be established, the process can be done using 

multiple processors. From applying the algorithm to two case studies it was evident 

that considering separate pheromone tables had a significant effect only when 

resources were non-identical. For identical resources no considerable effect is 

reported.  

 

The third algorithm combines ideas from the ACO and the GRASP algorithm. The 

first stage of the algorithm constructs an initial solution with randomness taken in the 

choice of the next step of the solution construction. The second stage improves the 

first one by applying a local search. The suggested algorithm uses a pheromone table 

in both stages of GRASP with the intent to store the desired components of the 

solution that are learned through various iterations. Preliminary results indicate that 

applying this method improves GRASP considerably.  

                                                           
7 This schedule was probably built by the company, heuristically.   
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As we have shown, most researchers solve a centralized problem either by developing 

and implementing heuristic algorithms, or by using mathematical programming 

methods. Data required to solve the problem is known and available. 

 

Solving the problem centrally bares a hidden assumption that all components of the 

system (vehicles/service technicians, clients/service tasks and the central planner) 

share the same interests. This assumption is accurate when both the central planner 

and the service technicians belong to the same business entity. However, when the 

service technicians are independent contractors serving the tasks of many companies, 

their interests are clearly different from those of the companies. In fact – they are even 

opposite. The contractors aim at maximizing income, while the companies aim at 

minimizing their costs associated with the payments to the contractors. 

 

Therefore, much of the data required to solve the problem centrally is usually 

unavailable and a centralized solution to the problem can't be obtained. Furthermore, 

a solution of this sort has little value, since different business entities involved in the 

decision making do not have to follow it. A decentralized solution method, which 

considers different interests of the business entities, must be applied. This is the topic 

of the following section.   

 

2.3 Solving Decentralized problems 

We now review the literature that deals with the solution of Decentralized problems. 

This area has been the primary concern of many studies done under the discipline of 

computer science in relation to artificial intelligence.  

 

Smith (1980) developed the CNP (Contract Net Protocol) with the intent to efficiently 

distribute tasks, which are to be processed by a set of decentralized loosely coupled 

Knowledge-Sources located at different processors. An efficient distribution of tasks 

allows a certain node (Knowledge-Source), which is requested to process a task and is 

busy in processing a previous task to transfer the new task to another node that is idle. 

The CNP was developed in order to define the communication between the nodes 

before and during the transfer.  

 

The mechanism that regulates the transfer of tasks from a busy node to an idle one is 

similar to a negotiation towards signing a contract. It has four characteristics: (1) local 

process with no central control (2) bilateral exchange of information (3) each side 

analyzes the information from its perspective (4) a final contract is signed by a mutual 

agreement.       
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According to Smith (1980), the set of nodes is a contract net. Deciding what node 

processes a task is a contract between two nodes – the manager and the contractor. 

The contractor actually executes the task. A node can be the manager of a certain task 

and a contractor of another task. The contract is signed on the basis of mutual local 

selection based on bilateral exchange of information.  

 

This exchange begins when the manager sends out a message (in a format defined by 

the CNP) regarding a task to be processed by a contractor. Each contractor examines 

the list of messages and chooses the messages which he would like to bid on. After all 

bids have been received, the manager examines the bids, chooses the most suitable 

contractor and transfers the task to him for processing. That contractor can become a 

manager too, if he chooses to send out a message regarding the task he had received 

offering it to other contractors. 

 

Smith's work suggested the task distribution mechanism that became the basis to other 

mechanisms developed later for distributing clients to be served by vehicles8. These 

mechanisms can be classified into two types; the first – mechanisms designed to solve 

a complex centralized problem using distributed algorithms and the second – 

mechanisms designed to solve a decentralized problem. Examples of mechanisms 

from both types are presented in the following sections.   

 

2.3.1. Solving Centralized problems using distributed algorithms 

Kohout and Erol (1999) present an agent-based method developed to cope with a 

dynamic Pickup and Delivery problem with Time Windows (PDPTW). They 

developed a computationally efficient algorithm that identifies a solution to the 

problem and then improves it by a stochastic mechanism. The use of agents allows 

decomposing the problem into several sub-problems. Each sub-problem can then be 

solved independently and simultaneously using parallel computers. 

 

The authors suggest a configuration that consists of two types of agents – client agents 

and vehicle agents. The solution process is as follows: a client agent announces his 

need for a vehicle. Then, each vehicle agent estimates added costs associated with the 

client. This is done by implementing an adapted version of Solomon's (1987) 

algorithm. Then, payment requests are sent to the client. The client chooses the 

vehicle with the smallest payment. Once all clients are assigned to vehicles, the 

stochastic improvement stage begins. Clients, chosen randomly, can re-announce a 

need for service. Then, the bidding process is repeated and the client can be assigned 

to another vehicle. The solution process is quite quick so new clients, that are not 

known in advance, can be assigned to vehicles dynamically. Numerical experiments 

                                                           
8 Smith and others exploring the CNP thoroughly discuss the actual transportation of data, its bottle 

necks, computational load etc. in their work. Our focus is on the contractual mechanisms developed in 

their work.             
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with static instances indicate that this algorithm yields fairly good results compared to 

the Solomon's adapted algorithm.  

 

Thangiah et al. (2001) suggested a decentralized solution to a VRP in order to 

distribute computations among several computers. Their objective is minimizing the 

number of vehicles and the traveling distance. They discuss the concept of an 

intelligent agent, who is independent, communicative and goal-driven, and define two 

types of agents in the solution process – a scheduling agent and a vehicle agent. Their 

solution method consists of two stages. At the first stage, the scheduling agent 

announces the client's data to all vehicle agents. Each of them calculates his bid, 

based on the added cost of serving that client. That added cost is estimated by 

implementing the Clarke-Wright heuristic. After all bids have been calculated and 

sent to the scheduling agent, the latter allocates the client to the lowest bidder. This 

process repeats until all clients are allocated. At the second stage, vehicle agents are 

allowed to exchange clients between them to decrease their costs. The obtained 

solution proved to be considerably worse than the best one generated when solving 

the problem centrally. The authors claim that it is the result of the use of a very simple 

Clarke-Wright heuristic.      

 

Leong and Liu (2006) solve a Capacitated VRP with time windows. Their primary 

objective is minimizing the number of routes. Their secondary objective is 

minimizing the total traveling distance. The solution process is comprised of two 

stages. The first stage builds initial feasible routing of vehicles by applying a heuristic 

method presented by Solomon (1987). The second stage improves the initial routing 

by applying a decentralized multi-agent algorithm. 

 

The authors model clients and vehicles by agents. Each client agent aims at 

minimizing his waiting time. Each vehicle agent aims at maximizing the utilization 

while minimizing its traveling distance. A client agent is allowed to share information 

with the other client agents. A vehicle agent is allowed to share the information 

regarding the clients it serves with the other vehicle agents. The authors also define a 

global planning agent who is responsible for all vehicles and is aware of the clients' 

data and the vehicles' data.9 He aims at minimizing the number of routes and the total 

traveling distance. 10 

 

According to the developed algorithm, the construction of the initial route is followed 

by a distribution of relevant information among the agents.11 Then, the negotiations 

between clients and vehicles offering possible transitions begin. A transition is a 

                                                           
9 Examples of data characterizing a client: it's time windows, the vehicle serving it, exact time the 

vehicle arrives at the client etc. Typical information regarding a vehicle is its route and its capacity.    
10  Leong and Liu define a cost function weighting the number of routes and the total traveling 

distance.  
11 Relevant information of a client is what vehicle serves him and when that vehicle arrives. Relevant 

information for a vehicle agent is the list of its clients, and data regarding them.  
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valid operation on the current routing such as exchanging clients between vehicles, 

transferring clients from one vehicle to another, etc. A client is allowed to suggest a 

transition in which it is transferred to be served by a different vehicle. He can also 

suggest a mutual exchange of vehicles that includes another client. A vehicle is 

allowed to suggest the removal of a client from another vehicle's route followed by 

the insertion of the client into his route. He can also suggest an exchange of two sets 

of clients (the size of the sets can be greater than 1) between two vehicles.  

 

The global planning agent is responsible for selecting the transitions to be carried out 

from the list of transitions and for executing transitions in order to improve the 

performance of the system as a whole. The execution of the chosen transition is 

followed by optimizing all routes. This is done by the global planner that implements 

a 2-opt heuristic. Then, the global planner examines the new routing and finds routes 

in which the capacity of a vehicle is not fully utilized. The global planner wishes to 

eliminate these routes by transferring their clients to other vehicles. The process 

repeats until no improvement can be achieved.  

 

The authors apply their algorithm to solve several benchmark problems presented by 

Solomon and report that the algorithm produced good solutions, compared with other 

heuristics (SA, TS) as well as with the best known.  

 

Zhenggang et al. (2009) also solve a Capacitated VRP with time windows by 

implementing a modified version of Smith's CNP. They aim at minimizing the sum of 

traveling distances and present a system of agents comprised of multiple vehicle 

agents and a single scheduling agent, responsible for planning and controlling the 

vehicle agents.  

 

This method allocates an order (defined as a request to supply a certain amount of 

products at specific time window and location) to a vehicle in the following manner: 

 an order is announced by the scheduling agent that sends its details to the 

relevant vehicle agents; 

 each vehicle agent estimates the feasibility of serving this order (considering 

previous orders and capacity constraints);  

 if serving this order is feasible, the vehicle agent sends a bid for the order. 

This bid is formed based on an approximation of the marginal cost added to 

the agent if he serves the order. The scheduling agent then allocates the order 

to the lowest bidder.  

 

As implied, not all agents are relevant. A relevant agent of a newly announced order 

is defined as an agent that at least one of the orders he serves is relatively close to the 

announced order (the distance between them is less or equal to a predetermined 

value). The authors claim that this definition improves the CNP.  
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The numerical experiments with the Solomon's benchmark problems show that the 

amount of negotiations held when implementing their protocol is only 30% of the 

amount of negotiations held implementing the original CNP. The total negotiation 

duration decreases by 30%.  

 

2.3.2 Solving decentralized problems 

Rassenti et al. (1982) present a version of a combinatorial auction (more on this – to 

follow) applied in order to find the allocation of various airports' time slots to 

competing airlines so as to maximize the sum of values of slots allocated among all 

airlines. A time slot can be a slot for departure or a slot for arrival. Since values for 

these slots are generally correlated, grouping of slots into packages allows bidding on 

them by a combinatorial auction and allocating them to the airlines. 

 

A linear integer programming model is presented. It aims at maximizing the sum of 

bids of packages among all airlines while satisfying the airlines' constraints. The 

combinatorial nature of the auction, which resulted from the correlation between 

values of slots, is expressed in the model as a set of constraints. Mathematically, the 

problem is a version of the set-packing problem and is solved using a previously-

known algorithm.  

 

For the allocated packages, the airlines pay prices. A price of a package is no greater 

than its bid and is determined in the following manner: first, the shadow price of each 

time slot is found; then, the price of a package is set at the sum of shadow prices of 

the slots it contains. Each airport receives the sum of shadow prices of the slots it 

owns. 

 

The proposed auction does not ensure that truthful bidding is a dominant strategy 

(more on this – to follow). However, the authors claim that speculations can be risky 

when an agent does not know the bids and preferences of the other agents, especially 

if the auction is combinatorial. Multi-period lab experiments seem to validate this 

claim. When the users tended to bid true preferences, the mechanism gave results 

close to the global optimum. 

 

Sandholm (1993) expands the CNP by defining the negotiation between the nodes. He 

notes that Smith hadn't defined how contractors form bids for tasks12, and how 

managers find winning contractors. Sandholm addresses these issues by using the 

marginal cost criterion.  

 

                                                           
12  A task is defined as a client or a set of clients to be served. 
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Sandholm solves a transportation problem comprised of several distribution centers 

that operate in overlapping geographical areas. Each center is owned by a different 

company and is responsible to serve some amount of clients in different locations. 

Each center owns a fleet of un-identical vehicles and aims at minimizing its 

transportation cost. Each vehicle is characterized by its own traveling cost per km, 

maximal length of route, maximal traveling duration etc. All clients must be served.  

 

Sandholm models each distribution center with a single agent and constructs the 

solution to the problem in the following manner: first, each agent, seeking to 

minimize his total transportation cost, solves his own routing problem and finds an 

allocation of its customers to the vehicles. Thereafter, each agent can negotiate with 

other agents in order to receive or transfer clients in exchange for a payment. A 

negotiation ends successfully if transferring a client from one agent to another is 

profitable to both agents. By repeating this process, the initial allocation is improved, 

without solving the problem centrally.     

 

Each agent has two components – a bargaining system and a local optimizer. The 

bargaining system has four functions that are periodically run by the agents. The 

second, third and fourth function run first. The first function runs last. All functions 

use the local optimizer that is able to find the marginal cost of tasks and to optimize 

the routing program of the agent. 

 

The first function finds the tasks that can be transferred to other agents and announces 

these tasks in an auction.13 An Announcement of a task includes its clients' data and a 

maximal payment for the task, based on the marginal saving the agent gains when the 

task is transferred to another agent.  

 

The second function is responsible for finding tasks announced by other agents and 

for building and sending corresponding bids to these agents. Constructing a bid is 

done using the marginal cost criterion – the cost added to the agent if he serves the 

task's clients14. No agent has information regarding the bids of the other agents.  

 

The third function examines the bids received in the auction and allocates each task to 

its lowest bidder when the marginal saving gained by the announcing agent is larger 

than the lowest bid. The forth function integrates newly won tasks into the winning 

agent's routing program. 

 

                                                           
13 Sandholm notes that usually, the tasks announced by an agent are the ones close to the operation area 

of other agents.  
14 Estimating the added cost is quite hard due to the fact that the set of tasks the agent serves is not 

known. Its computational complexity is exponential.    
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Sandholm also solves an actual routing problem with five distribution centers located 

in Finland. Three centers are owned by one company and the other two centers are 

owned by another company. Sandholm generated two solutions to the problem. The 

first solution was generated using a time limit of 15 minutes and the second was 

generated using a time limit of 30 minutes. Both solutions yielded lower costs 

compared to the routing the companies actually followed. 

 

As shown, some researches develop and implement a two stage solution algorithm 

that uses agents to cope with optimization problems, typically versions of the VRP. 

The first stage ends when a feasible, not necessarily optimal, solution to the problem 

is generated. Thereafter, the second stage, during which the solution can be improved 

by negotiations between the agents, is operated. A successful negotiation results in the 

exchange of tasks between vehicles. That exchange generally improves the status of 

the system as a whole.  

 

This procedure seems adequate for our needs, particularly the improvement stage 

done by an exchange of tasks15. However, most researchers do not deal with a 

configuration where various agents present in the problem may have different 

interests, and therefore can't be expected, a priori, to share private information, for 

example – information on their costs.  

 

When the problem is decentralized, the use of agents simulates a real life 

configuration where various independent entities are at competition. Different 

interests obviously exist. Ignoring these interests can result in a poor solution. This is 

especially true when the agents themselves are contractors that serve tasks that 

originally belong to other companies and the payments are determined by mutual 

interaction. A priori, there is no reason to anticipate the sharing of information 

between the parties. Therefore, the need for a mechanism that encourages 

communication between them is evident. Mechanisms of this sort were developed 

under the disciplines of mechanism design and auction theory. 

 

2.4 Auctions 

An auction is a method of buying or selling objects. This is done by receiving bids for 

an object from potential buyers and selling that object to the highest bidder. An 

auction can be considered as a game with incomplete information, and classified 

according to several parameters.  

 

An auction can be open or sealed. In an open auction, all participants hear or see each 

other during the bidding process and, therefore, can offer counter bids. In a sealed bid 

auction all participants offer their bids simultaneously and no participant has any 

                                                           
15 An interesting mechanism for the exchange of tasks can be found at Bachem et al. (1996) 
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information on other participants' bids. Additionally, the announced object can have a 

private value or a common value. An object is said to have a common value, when the 

value of the object is identical among all participants and unknown. In the case of 

private value, its value is known, and differs among the participants. Lastly, auctions 

can announce a single item, several identical items or several distinguishable items.  

 

Zamir et al. (2008) present several common auctions of a single object with private 

value. Among them are the sealed-bid first price auction and the sealed-bid second 

price auction, also known as the Vickrey auction. In these bids, each participant 

inserts into a box a sealed envelope containing his bid for the object. Once all 

participants have inserted their envelopes, the auctioneer opens the envelopes and 

awards the highest bidder with the object. In a first price auction, the highest bidder 

pays his bid for the object. In the second price auction, the highest bidder pays the 

second highest bid.  

 

The authors analyze the first price auction and present a suitable symmetric 

equilibrium strategy and the expected profit of the participants. This requires making 

some assumptions regarding the distributions of private values of all participants and 

regarding the knowledge each participant has on other participants' distributions of 

private values. Similar analysis for the second price auction is much simpler, since 

bidding truthfully in the second price auction is a dominant strategy for all 

participants16. This result holds without the need for any of the assumptions made for 

the first price auction analysis. When applying the second price auction, the 

participant with the highest private value wins the bid. This result is typically desired.  

 

However, the second price auction has shortcomings as discussed in Sandholm 

(2000): the possibility to create coalitions in order to decrease the selling price; an 

untruthful auctioneer; lower revenues for the seller compared with the English auction 

and the loss of dominance of the truthful bidding strategy. The latter two 

shortcomings are relevant when the value of an item is not private (i.e. common). 

Elaborating the common value issue, Sandholm addresses his 1993 study (presented 

in this survey earlier) and argues that the value of an auctioned transportation task that 

may be, at least in part, non-private if sub-contracting (transferring the execution of a 

task from one vehicle to another) is allowed. This is true, since the profitability of 

winning the task for a certain vehicle may be affected from the ability of other 

vehicles to execute the task as sub-contractors. 

   

Thereafter, Sandholm (2000) discusses additional shortcomings of the second price 

auction associated with allocating several distinguishable items with correlated values 

by a sequential Vickrey auction. In this case truthful bidding (following myopic 

strategies) can lead to an inefficient allocation of items among the buyers, while the 

looking ahead strategy can result in a more efficient allocation. This is demonstrated 

                                                           
16 When the dominant strategy for all participants in an auction is bidding truthfully, the auction is said 

to be strategy proof.  
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by presenting and analyzing an example of 2 transportation tasks where transportation 

costs are common knowledge. Sandholm suggest that for the common knowledge 

case, an optimal strategy for each bidder (buyer) exists and should be found by 

constructing a search tree17.  

 

Sandholm argues that a simultaneous auction, when the buyers bid for several single 

items at the same time is not an appropriate solution for the correlated values case, 

since the value of an item for a certain agent depends upon the other items that are in 

the agent's possession (see further discussion of simultaneous auctions in Milgrom 

(2000), Sandholm (2002)).   

 

Sandholm proves also that for risk-averse agents, truthful bidding is not necessarily a 

dominant strategy in the second price auction if the value of the item is uncertain. 

Additionally, when an agent is allowed to transfer money as to eliminate that 

uncertainty, speculation over other agents' preferences is beneficial.         

 

Despite possible weaknesses we implemented a sequential Vickrey auction as one of 

the options available for the company to allocate its service tasks to contractors (see 

section 4.1.1). When the set of offered tasks is large enough and there is little or no 

common knowledge between contractors, myopic contractors' strategy in the 

sequential auction seems reasonable, since looking ahead is extremely difficult. The 

performance of this strategy is to be analyzed (see section 3.3).  

 

A different, more reasonable way to allocate objects to participants, who have private 

values for objects as well as for sets of objects, is the topic of the next section.  

 

2.4.1 The combinatorial allocation problem 

Parkes (2001) extensively discusses the combinatorial allocation problem. The 

problem is to allocate a set of items to a set of self-interested agents that have 

different private values for the items. The private values for bundles of items are non-

linear. The goal is to allocate the items among the agents in a way that maximizes the 

total value over all agents.  

 

Formally, let 𝑣𝑘: 2
𝑛 → ℝ+ be the private valuation function of agent 𝑘 ∈ {1. . 𝐾} with 

respect to the subsets of the set of 𝑛 items, where 𝐾 is the number of agents. The 

function defines preferences of an agent over different outcomes. It is assumed that 

the value function is non-negative, 𝑣𝑘(𝑆) ≥ 0 for all bundles of items, 𝑆 ⊆

                                                           
17  An interesting application of finding an optimal strategy for an agent in a sequential auction for 

resources can be found at Boutilier et al. (1999)  
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{1,2, … , 𝑛}; an empty bundle has a value of 0, 𝑣𝑘(∅) = 0 ; and monotone, that is, 

𝑣𝑘(𝑆) ≤ 𝑣𝑘(𝑆
′) for all 𝑆 ⊂ 𝑆′ meaning that items have non negative marginal values.    

 

A feasible solution to the problem defines an allocation (𝑆1, 𝑆2,………𝑆𝐾) of items to 

agents so that agent 𝑘 receives one bundle, 𝑆𝑘. Each item is allocated to no more than 

one agent. The goal is to maximize the total value of bundles among all agents.  

 

Parkes mentions various optimization problems that can be modeled as combinatorial 

allocation problems, among them are the time-slot allocation problem (Rassenti et al. 

(1982)) and the distributed vehicle routing problem (Sandholm (1993)). We believe a 

combinatorial auction can be used to solve the problem stated in this work. An 

implementation of this auction is developed in Chapter 4.  

 

Let us now review the way the combinatorial allocation problem can be solved. The 

classical mechanism by which the problem is solved is named Vickrey-Clarke-Groves 

(VCG). This mechanism makes all agents to have the same dominant strategy – 

truthfully reveling their preferences over the different outcomes. Importantly, 

applying the VCG mechanism does not involve game theoretic considerations. 

 

The VCG mechanism is a sealed-bid, single shot, combinatorial auction. Each agent is 

required to provide the auctioneer (a central allocator) with his private value function 

𝑣𝑘(∙), i.e., a vector of length 2𝑛 − 1 values, a value for each possible bundle of items. 

The latter solves the combinatorial allocation problem, and allocates bundles to agents 

while maximizing the total value of the bids. Then, each agent is charged with a 

payment. The way the payments are defined ensures that truthful revelation of 

preferences is a dominant strategy.  

 

The GVA (Generalized Vickrey Auction) is a variation of the VCG where the 

payment of agent 𝑘 is equal to the change of the total value among all other agents 
{1. . 𝐾}\𝑘 caused by his participant in the auction. The utility that agent 𝑘 gains from 

participating in the auction is assumed to be quasi-linear, and is equal to the total 

value gained by him minus the price he paid.  

 

We denote the optimal solution when all 𝐾 agents participate in the auction by 

(𝑆1, 𝑆2,………𝑆𝐾) and the optimal solution when agent 𝑘 does not participate in the 

auction by (𝑆1̅, 𝑆2̅, … 𝑆𝑘−1̅̅ ̅̅ ̅̅ , 𝑆𝑘+1̅̅ ̅̅ ̅̅ , … 𝑆𝐾̅̅ ̅). Then, agent 𝑘's payment is:  

(𝑣1(𝑆1̅) + 𝑣2(𝑆2̅)+. . 𝑣𝑘−1(𝑆𝑘−1̅̅ ̅̅ ̅̅ ) + 𝑣𝑘+1(𝑆𝑘+1̅̅ ̅̅ ̅̅ )+. . 𝑣𝐾(𝑆𝐾̅̅ ̅)) − 

(𝑣1(𝑆1) + 𝑣2(𝑆2)+. . 𝑣𝑘−1(𝑆𝑘−1) + 𝑣𝑘+1(𝑆𝑘+1)+. . 𝑣𝐾(𝑆𝐾))   
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Parkes believes that applying the VCG mechanism as part of the solution method for 

decentralized problems can yield efficient solutions, in spite of the fact that its 

computational complexity is quite considerable. Each agent is required to calculate an 

exponential number of private values of bundles. Additionally, the winner 

determination problem, which determines which agents are awarded with which 

bundle, is NP-Hard (see Sandholm (2002)). This method is even more intricate when 

calculating the private values themselves is NP-hard, as with the case for routing 

problems.  

 

Ausubel and Milgrom (2006) note several other weaknesses of the VCG mechanism. 

Among them are: low revenues for the seller; creation of coalitions of losing bidders 

and the possibility for a single bidder to falsely present himself as several competing 

bidders and offer multiple bids with the intent to decrease his payment. The authors 

demonstrate these weaknesses by analyzing a simple combinatorial auction in which 

two items are to be allocated among three agents when some items are worthless 

(have the value 0) for some agents. The authors prove that only in this case, these 

weaknesses are relevant. The authors also mention privacy problems as a shortcoming 

of the VCG mechanism. These problems can occur when public resources are sold in 

exchange for a price that is considered by the public low. The authors also note that 

when the value of items is common, i.e., not private, truthful revelation of preferences 

is not necessarily an optimal strategy for the agents.  

 

As noted, the combinatorial auction has been implemented and solved by using the 

GVA mechanism in Chapter 4 while assuming that no coalitions can be formed. The 

other weaknesses seem to be irrelevant in our case. However, the computational load 

and therefore running times of the auction are relatively large. Therefore, there is a 

room for alternative mechanisms that can cope more efficiently with the 

combinatorial allocation problem. Parkes (2001) suggests an iterative combinatorial 

auction named i-bundle.        

 

i-bundle is an iterative combinatorial auction that obtains an optimal solution to the 

combinatorial allocation problem when agents are assumed to follow myopic 

strategies. In each iteration of i-bundle, the agents are allowed to bid on bundles of 

items, while considering other agents' bids, as a response to the auctioneer who raised 

the minimum prices. Then, a tentative allocation of items is calculated by solving a 

winner determination problem. The auction ends when all agents receive a bundle or 

when all agents do not change their bids in 2 consecutive rounds. i-bundle solves the 

combinatorial allocation problem to optimum. That is proved by applying a duality 

theorem.     

 

i-bundle may be superior to the GVA for two reasons. First, the total amount of bids 

that are calculated is significantly smaller compared with the GVA, in which bids for 

all possible bundles are calculated in advance. Second, the winner determination 

problem is typically smaller. As a result, the running time of i-bundle is significantly 
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smaller than the running time of the GVA. However, i-bundle does not ensure truthful 

bidding by agents.  

 

We now move forward to presenting the implementation of single shot combinatorial 

auctions in the area of freight transportation procurement.   

 

2.4.2 Combinatorial auctions in freight transportation procurement  

A combinatorial auction seems to be an effective method of solving decentralized 

problems. Auctions of this sort are typically applied in the area of freight 

transportation, where the auction is reversed.  

 

Caplice and Sheffi (2006) discuss such auctions. The auctioneer or shipper (typically 

a large retailer) has to buy items (freight transportation services) from a large number 

of potential suppliers or carriers (transportation providers). Generally, the auction is a 

single shot, first price auction that is conducted by a software company or a third 

party consultant that carries out the auction on the auctioneer's behalf.   

 

A shipper conducts an auction every two years (in average) and the bidding process 

usually takes several months. The main focus in the auction is in determining winning 

carriers (the auctioneer's problem) rather than in the optimization problems of each 

carrier.     

 

Indeed, several (large) commercial companies have held complex combinatorial 

auctions over the recent decades and reported the saving of millions of dollars. See for 

example Porter et al. (2002). However, these auctions are generally first-price 

auctions, and as such do not ensure truthful bidding. Although recent studies suggest 

the implementation of the GVA mechanism to the procurement of transportation 

services (see Haung and Xu (2013) and Haung and Xu (2014)), this mechanism has 

never been applied in real life to the procurement of transportation services, due to its 

complexity and the desire of carriers not to reveal private information. 

 

However, we do find the GVA mechanism appropriate for the solution of the problem 

studied in this thesis.  

 

2.5 Literature Gap addressed in this study  

We apply the GVA mechanism for the solution of the decentralized allocation 

problem of service tasks while using clustering as a means for decomposition of the 

problem as to reduce the GVA's computational complexity. To the best of our 
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knowledge, this is the first study to suggest the use of the GVA mechanism for 

allocation problems similar to the one stated in this thesis. That is, the first study to 

suggest the use of a strategy-proof mechanism for these allocation problems and by 

doing so cancel out game-theory considerations of the agents.    

 

Indeed, there is some risk at a decomposition of the problem since bidders may be 

encouraged to bid untruthfully or speculate (see Rothkopf (2007)). However, we 

assume this risk is negligible, due to the exponential computational complexity and 

little common knowledge.  

 

Additionally, less computationally demanding allocation methods, such as a 

sequential Vickrey auction and sequential negotiations are implemented and 

examined.   

 

The framework of a 2-stage allocation mechanism, which is commonly used to solve 

distributed transportation problems, is accepted in this work. Therefore, after the 

initial allocation process ends, contractors are allowed to exchange tasks between 

them as to decrease their total cost.  
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3 Problem Definition 

In this chapter, the decentralized field service routing problem is defined. We describe 

elements of the problem (independent acting agents), define the research goals and 

develop features of a desired solution. Performance measures are then presented and a 

default status is characterized.  

 

3.1 Problem settings 

The Decentralized Field Service Routing Problem (DFSRP) can be stated as follows: 

A set of 𝑁 service tasks should be carried out by a company. Each task is 

characterized by its location and service time. The company provides this service by 

outsourcing the tasks to 𝐾 contractors. In addition, each of the contractors is pre-

committed to additional service tasks, originated from different companies. The 

details of the contractors' tasks are private information of each one of the contractors 

and cannot be revealed to the other agents. Similarly, before the tasks of the company 

are allocated to contractors their details is private information of the company.  

 

We denote the set of tasks owned by the company by 𝐼𝐶 and the sets of the pre-

committed tasks by 𝐼𝑘 for 𝑘 = 1,… , 𝐾. Each contractor provides a single field service 

team which is initially located at a given point. That is, the contractors are 

characterized by the location of their depots and by the location and duration of their 

pre-committed tasks.  

 

The goal of the company is to outsource all its tasks at the minimal possible total 

payment for her, while the goal of each contractor is to maximize the payments 

obtained from the company net of the variable costs that he incurs. These costs consist 

of the regular time and overtime fee to his field service team and of the traveling cost 

of the vehicle. 

 

The traveling cost (of a service team's vehicle) between a pair of locations 𝑖 and 𝑗, is 

denoted by 𝑐𝑖𝑗 and the traveling time by 𝑡𝑖𝑗. The regular time hourly salary to the field 

service team is denoted by 𝑓1. In overtime, the hourly salary increases by 𝑓2. The 

planning horizon is a single working day that consists of up to 𝐿 regular working 

hours and possibly up to 𝑀 − 𝐿 overtime hours. 

 

3.2 Research Goals 

While there is a clear conflict of interests between the company and the contractors, it 

is not a zero sum game. Efficient allocation of tasks to contractors may benefit all the 

parties. Moreover, since the business relations between the company and the 

contractors are of a long term nature, an allocation mechanism can be agreed upon in 
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advance and the parties are not likely to abandon the agreement as long as their 

expected long-run benefits are greater than the conceivable alternatives. 

  

The goal of this study is to devise an automatic allocation mechanism that satisfies the 

following requirements 

1. The mechanism results in an allocation of the tasks to contractors such that the 

total operational cost for them will be as close as possible to that of the 

allocation that could be constructed by a hypothetic omniscient central planner 

whose objective is to minimize this cost while serving all the required tasks. 

2. The mechanism does not require the contractors to reveal their private 

information regarding the pre-committed tasks. 

3. The total sum of payments paid by the company to the contractors is small 

enough to motivate the outsourcing of the tasks. In other words, the company 

is not able to perform the tasks by its own fleet at a lower expense. 

4. The reward obtained by each individual contractor is large enough to motivate 

him to accept the agreement. That is, the net profit of the contractor from 

executing the tasks allocated to him is large enough. 

5. Implementation of the mechanism is computationally tractable. 

 

3.3 Performance measures 

In order to evaluate the proposed allocation mechanism, we define several 

performance measures that reflect the attractiveness of the method from different 

points of view. 

 

From the company's point of view, a good solution would allow the sum of the 

payments the contractors are paid to be lower than the cost of serving all tasks by 

itself. Therefore, the first performance measure is the difference between the total 

payments paid by the company to the contractors and the cost of serving its tasks by 

its own employees and vehicles. We refer to this measure as profitability of 

outsourcing. 

 

When calculating the cost of providing the services by the company without 

outsourcing we assume that the company employs appropriate personnel and 

maintains its own fleet of vehicles. In addition, we assume that the cost structure of 

the company is similar to that of the contractors except for the fact that the service 

teams of the company depart from a single location (the company depot) and hence 

need regularly to spend more time and cover longer distances in order to arrive at the 

location of the tasks.  
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From the contractor's point of view, a good solution would allow the additional costs 

incurred by him to be lower than the rewards received from the company. That is, his 

marginal profit from the cooperation with the company is positive. 

 

As noted, a solution is defined by the payments paid by the company and by the 

allocation of the tasks to the contractors. Therefore, the next step would be evaluating 

the quality of the allocation.   

 

From the society's point of view, a good solution is one that allocates the tasks among 

the contractors such that their total operational cost is minimized. The quality of the 

allocation from this perspective can be evaluated by comparing it to an optimal 

allocation identified by a hypothetic central planner who considers the pre-committed 

tasks and the other operational constraints. The gap between these two solutions is 

referred to as the price of anarchy18. Clearly, the lower price of anarchy, the better the 

decentralized solution is.  

 

In real life, the companies may outsource their service tasks heuristically, without 

taking the contractors' pre-committed tasks into account. As a result, the generated 

solutions may be inefficient, and the price of anarchy may be very high.  

 

Another way to measure the social benefit of an allocation mechanism is to compare 

its outcome to the outcome achieved in a default situation where the agents do not 

cooperate. We define the default as such a situation where the company serves all its 

tasks by its own and the contractors are engaged with their pre-committed tasks 

exclusively, again assuming that all parties admit a similar cost structure. The value of 

cooperation is the net increase in the contractors' profits as a result of the 

collaboration plus the net decrease in the company's costs, both with respect to the 

default situation. Consider the example illustrated in Table 1 where a 900$ value of 

cooperation is derived from a 400$ decrease in the company net costs and 500$ 

increase in the contractors profits. 

 

 

 

 

 

 

                                                           
18 This term was first used by Koutsoupias and Papadimitriou (1999) and was defined as the 

ratio of the worst-case objective function value of a Nash equilibrium of a game and that of an optimal 

outcome. The term quantifies the inefficiency of selfish behavior in an 𝑛-agent game, and seems 

appropriate to describe the loss of social value caused by a multi-agent with self-interests.   
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Table 1: The value of Cooperation 

Default Situation 

Company Contractors System 

Total cost for the company without 

outsourcing 
Total cost for the contractors 

without outsourcing 
Total cost for the 

system 

4400 4000 4400+4000=8400 

After applying our mechanism 

Total cost for the company - 

outsourcing (sum of prizes/payments) 
Total cost for the contractors - 

outsourcing 
Total cost for the 

system 

3900 7500 7500 

Value of Cooperation 

Decrease in costs for the company Profit for the contractors Value of cooperation 

4400-3900=500 3900-(7500-4000)=400 

500+400=900  

or 

8400-7500=900 

   

The following figure demonstrates the relation between the price of anarchy and the 

value of cooperation 

 

 

 

 

 

           

Figure 1: Price of Anarchy and value of cooperation 

 

A summary of the performance measures is given in Table 2.  

 

 

 

 

 

 

 

 

Value of 

cooperation 

Price of 

anarchy 

Total cost 

with 

outsourcing 

Total cost 

central 

planner 

Total cost 

without 

outsourcing 
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Table 2: Summary of performance measures 

Measure Performance measure Compared with 

Profitability of  

outsourcing 
(Company Perspective) 

Sum of rewards 

Total cost for the company without 

outsourcing 

Profitability of 

outsourcing (contractors' 

perspective) 

Additional costs 

Value of cooperation 
(Social Perspective) 

Total cost for the contractors 

Total cost for the system without 

outsourcing 

Cost of Anarchy 
(Social Perspective) 

Optimal total cost (under complete 

information and centralized decision 

maker 

 

In order to calculate the above measures, one needs to solve the optimization 

problems faced by the agents when no outsourcing is practiced, as well as the problem 

of the central planner. While these two problems are not in the focus of this study, we 

formulate and solve them for the sake of evaluating and benchmarking the proposed 

allocation methods. The problems are closely related but not identical to the field 

service and routing problems discussed in the literature. In the next two sections we 

formulate these problems as mixed integer programs. In the numerical experiments 

reported in Chapter 5 we solve these programs using a state of the art solver. 

 

3.3.1 The problem of the central planner 

As noted, an optimal allocation of company's tasks to contractors is the allocation that 

minimizes the total cost of all contractors while meeting certain constraints. In 

particular, in a feasible solution each pre-committed task should be served by the 

contractor that owns it and each of the company's tasks should be served by one of the 

contractors. This allocation is found by solving the following model.  

Notations 

𝑘 ∈ {1. . 𝐾} – depot of contractor 𝑘 

𝐼𝑘 – set of pre-committed tasks of contractor 𝑘 

𝐼 – set of all locations in the centralized problem 𝐼 = {1. . 𝐾} ∪ 𝐼𝐶 ∪ ⋃𝑘∈{1..,,𝐾}𝐼𝑘  

    

Decision Variables 

𝑥𝑖𝑗𝑘 = {
1 𝑖𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝑘 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑢𝑗𝑘 – arrival time of contractor 𝑘 at location 𝑗 

𝑇𝑘 – total working time of contractor 𝑘  

𝐸𝑘 – overtime of contractor 𝑘 
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Model 

𝑀𝑖𝑛

{
 
 

 
 

∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘
𝑖,𝑗∈𝐼

𝑘∈{1..𝐾}

+ 𝑓1 ∑ 𝑇𝑘
𝑘∈{1..𝐾}

+ 𝑓2 ∑ 𝐸𝑘
𝑘∈{1..𝐾}

}
 
 

 
 

                                                       (1) 

𝑠. 𝑡. 

∑𝑥𝑘𝑖𝑘
𝑖∈𝐼

= 1                                                                      ∀𝑘 ∈ {1. . 𝐾}                                  (2) 

∑𝑥𝑖𝑘𝑘
𝑖∈𝐼

= 1                                                                       ∀𝑘 ∈ {1. . 𝐾}                                 (3) 

∑ 𝑥𝑖𝑗𝑘
𝑗∈𝐼

𝑘∈{1..𝐾}

= 1                                                                 ∀𝑖 ∈ 𝐼\{1. . 𝐾}                              (4) 

∑𝑥𝑖𝑗𝑘
𝑗∈𝐼

= 1                                                                     ∀𝑖 ∈ 𝐼𝑘, ∀𝑘 ∈ {1. . 𝐾}                    (5) 

∑𝑥𝑖𝑗𝑘
𝑗∈𝐼

=∑𝑥𝑗𝑖𝑘
𝑗∈𝐼

                                                          ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ {1. . 𝐾}                     (6) 

𝑇𝑘 = ∑ 𝑥𝑖𝑗𝑘𝑠𝑖
𝑖,𝑗∈𝐼

+∑ 𝑥𝑖𝑗𝑘𝑡𝑖𝑗
𝑖,𝑗∈𝐼

                                    ∀𝑖, 𝑗 ∈ 𝐼, ∀𝑘 ∈ {1. . 𝐾}                    (7) 

𝑢𝑗𝑘 ≥ 𝑢𝑖𝑘 + 𝑡𝑖𝑗 + 𝑠𝑖 −𝑀(1 − 𝑥𝑖𝑗𝑘)         ∀𝑖 ∈ 𝐼  , ∀𝑗 ∈ 𝐼\{0} , ∀𝑘 ∈ {1. . 𝐾}      (8) 

𝐸𝑘 ≥ 𝑢𝑖𝑘 + 𝑠𝑖 + 𝑡𝑖𝑘 − 𝐿                             ∀𝑖 ∈ 𝐼\{0},   ∀𝑘 ∈ {1. . 𝐾}                             (9) 

𝐸𝑘 ≤ 𝑀 − 𝐿                                                   ∀𝑘 ∈ {1. . 𝐾}                                                   (10) 

∑ 𝑥𝑖𝑘ℎ = 0                                            ∀𝑘 ∈ {1. . 𝐾}                                                   (11)

ℎ∈{1..𝐾}
ℎ≠𝑘
𝑖∈𝐼

 

𝑥𝑖𝑗𝑘 ∈ {0,1}                                                         ∀𝑖, 𝑗 ∈ 𝐼     , ∀𝑘 ∈ {1. . 𝐾}               (12) 

𝐸𝑘 ≥ 0                                                             ∀𝑘 ∈ {1. . 𝐾}                                                  (13) 

𝑢𝑗𝑘 ≥ 0                                    ∀𝑗 ∈ 𝐼\{0} , ∀𝑘 ∈ {1. . 𝐾}                                           (14) 

This model aims at minimizing the total cost (traveling, overtime and regular time) of 

all contractors, while making sure that contractor 𝑘 begins and ends his route at depot 

(𝑘) (see constraints (2) and (3)). Moreover, the model assures that all tasks are served 

by the contractors (constraint (4)) and that the set of pre-commited tasks of contractor 

𝑘, 𝐼𝑘, is served solely by him (constraint (5)). Constraint (6) is a flow conservation 

equality. Constraint (7) calculates the total working time for the 𝑘'th contractor, by 
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taking into account both the traveling time and the service time. Constraint (8) relates 

the variable 𝑢𝑗𝑘 that keeps track on the arrival time of the contractor at each task to 

the routing variable 𝑥𝑖𝑗𝑘 and is used to eliminate sub-tours, i.e., cycles that do not pass 

through depots.  Constraint (9) assigns correct value of overtime to each contractor 

and (10) limits the total overtime of contractor 𝑘. Constraint (11) prevents a 

contractor from traveling to another contractor's depot. Lastly, Constraints (12), (13) 

and (14) define the decision variables.  

 

Constraint (8) is based on a well-known sub-tours elimination technique in a variety 

of vehicle routing problems originally introduced by Miller, Tucker and Zemlin 

(1960) in the context of the traveling salesman problem. Its advantage over other 

alternatives is that it eliminates the exponential number of sub-tours using a small set 

of constraints. Hence, it can be easily implemented in a commercial solver and 

modeling language. However, the LP relaxation of the formulation based on this 

technique is known to yield weak lower bounds and hence these formulations are 

typically hard to solve to optimality. In fact, state of the art solvers typically fail to 

deliver optimal solutions for these programs even for instances with several dozens of 

nodes. Near optimal solutions with optimality gaps of a few percentages can be 

achieved for larger instances and such solutions are often adequate for practical 

purposes. Note that we are interested in the optimal solution of an omniscient central 

planner    as a reference point to what is achieved by the proposed allocation 

mechanism. For this reference to be valid, it makes no sense to use a sub-optimal 

solution.  

 

However, a super-optimal solution may be beneficial. A solution of this sort can be 

obtained by solving the model without considering constraints (8) and (14), i.e., 

without arrival time variables 𝑢𝑗𝑘.  

 

This requires modifying constraint (9) to  

𝐸𝑘 ≥ 𝑇𝑘 − 𝐿                                                                          ∀𝑘 ∈ {1. . 𝐾}                             (9) 

The generated solution is obviously a lower bound for the optimal solution, and can 

be considered to be equal to the optimal solution if close enough. Iterative sub-tour 

elimination enables us to approach this kind of solutions.  

 

The pseudo-code of the iterative sub-tour elimination process (limited by maximal 

time allowed) is given below: 
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An inner circle is defined as a path that begins and ends at location 𝑖 ∈ 𝐼𝐶 and does 

not contain any contractors' depots.  

 

Let 𝐶 be a set of nodes that constitute a sub-tour in the obtained solution. The 

corresponding forbidding constraint is: 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑖,𝑗∈𝐶
𝑖≠𝑗

𝑘∈{1..𝐾}

≤ |𝐶| − 1                                                                                                    (15) 

The solution is optimal when it does not contain inner circles.   

 

3.3.2 Total cost for the company without outsourcing 

Recall that in the default situation the company serves the tasks by itself. The service 

is done using a fleet of vehicles and service teams that exit from and arrive to the 

company's depot. The company is then faced with the problem of determining the 

routes of its vehicles covering the tasks so as to minimize the total operational cost of 

the vehicles and the total working cost of the service teams. A formulation of this 

problem as a mixed integer programming model can be derived from the formulation 

of the central planner's problem applying the following adjustments. 

1. All vehicles exit from and arrive to the company's depot, denoted by node 0.  

2. No pre-committed tasks exist in the company's problem. Therefore, constraint 

(5) is unnecessary. Additionally, 𝐼, the set of all locations in the problem is 

just 𝐼 = 𝐼𝐶 ∪ {0} 

 

An optimal solution to this problem cannot be found using a state of the art solver. 

Therefore, we apply the sub-tour elimination method to obtain a near super-optimal 

solution for this problem as well.  

   

 

 

1. Solve (1-13) without constraint (8)   

2. Find the inner circles that are part of the solution  

3. While inner circles are part of the solution and time limit hasn't been exceeded   

    3.1. Insert constraints forbidding the inner circles to the model 

    3.2. Solve the new model 

    3.3. Find new inner circles in the solution 

4. Return the total cost for the final solution  
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3.3.3 Total cost for a single contractor 

The formulation of the contractor's problem is a particular case of the central planner's 

problem, where only a single vehicle exists and all tasks to be considered are served 

by him. Therefore, constraints (5) and (11) are unnecessary. All the other constraints 

are adjusted to consider a single vehicle.  

 

Note that this problem is in fact an instance of the TSP. Hence, the problem is much 

easier than the central planner's problem and therefore, its optimal solution can be 

found quite quickly using a state of the art solver.    
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4 The Proposed Mechanism  

A two-stage solution mechanism is developed and implemented in order to cope with 

the decentralized problem formulated in the previous chapter. At the first stage, a 

feasible allocation of all the company's tasks to the contractors is created. At the 

second stage, the contractors are allowed to exchange tasks among themselves. The 

exchange procedure may reduce the total operational cost of the contractors, and 

improves the solution obtained at the first stage. 

 

We consider two variations of the first stage mechanism that allocates the tasks to the 

contractors:  

a. Sequential Sealed-bid auctions: second price auctions and combinatorial 

auctions.   

b. Sequential negotiation protocol between the company and the contractors. 

The second stage procedure is studied in two different settings, either with or without 

cash transfers between the contractors.  

 

In section 4.1 the variations of the Stage A allocation mechanism are presented and 

Section 4.2 is dedicated to the exchange protocol of Stage B. 

 

4.1 Stage A – Allocation of tasks to contractors  

The variations of the allocation mechanism are discussed here. The sealed-bid auction 

mechanism is presented in 4.1.1 and the Sequential negotiation protocol in 4.1.2 

 

The scheme of the sealed-bid auctions is as follows: a task (or a cluster of tasks) is 

communicated to all contractors at once by the company. Each contractor forms his 

bid (or bids). Then, the company decides which contractor should serve which task 

and rewards the contractors accordingly. The company's decision is based on 

minimizing the total added cost of the contractors required to serve all the offered 

tasks. Payments to contractors are paid as to ensure that bidding truthfully (bidding 

the real added cost) is a dominant strategy of the contractors. Here, we consider two 

types of sealed-bid auctions – the second price Vickrey auction and the combinatorial 

auction. 

 

The Sequential negotiation procedure is designed in the following manner: First the 

company sets a payment (a "prize") for each task. The tasks and their attached 

payments are than offered to the contractors one by one according to some arbitrary 

order (of the contractors). Each contractor, on his turn, may either accept each of the 

tasks with its offered payment or reject it. Once all the contractors are offered, the 
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payments for the remaining unserved tasks are increased and the process is repeated 

until all the tasks are allocated to contractors.    

 

The sequential sealed-bid auctions and the Sequential negotiation differ in several 

ways. The first one is the number of times a task is communicated to contractors. 

While during a sequential negotiation, a task can be announced more than once (not 

only to different contractors but also in different iterations of the procedure), in a 

sealed-bid auction a task is announced once (one-shot auction). The second major 

difference is the way contractors interact with the company. While in sealed-bid 

auctions, all contractors bid simultaneously, only one contractor commits on a task in 

a single iteration of the negotiation procedure. The third difference is the amount of 

information communicated. While in the sequential negotiation the contractors 

communicate only their willingness to commit to a subset of the tasks, the sealed-bid 

auctions require providing an exact bid. 

 

4.1.1 Sealed-bid auctions       

A full combinatorial auction appears to be an ideal implementation of the sealed bid 

auctions to allocating the company's tasks to the contractors. In this scenario, all 

company's tasks are announced to the contractors at once and each contractor 

estimates the cost of serving each sub-set of the tasks. These estimations are 

communicated to the company which applies the GVA mechanism (Vickrey (1961), 

Clarke (1971) and Groves (1973)) and determines the winner of each task and 

payments of the winners. The payments are calculated in a way which ensures truthful 

bidding. Using this setting, all tasks are optimally allocated at the same time, and the 

total cost for the system is minimal.  

 

Unfortunately, the computational complexity of this mechanism is exponential. 

Indeed, in order to calculate the cost of serving all the subsets of 𝑁 offered tasks each 

contractor has to solve 2𝑁 − 1 NP-hard optimization problems. Clearly, this is 

impossible for any reasonable large 𝑁. Therefore, applying the combinatorial auction 

with a large number of tasks is not practical. How can the complexity of the 

combinatorial auction be reduced to make this mechanism applicable for our 

problem?  

 

A reduction of the complexity can be achieved by clustering the company's tasks into 

subsets to be offered to contractors sequentially. The auction determines the winners 

of each task of the subset and the payments. The size of each subset should be small 

enough to allow solving the hard optimization problems required to calculate the 

additional cost that each contractor incurs by serving the subset and all of its subsets 

in reasonable time.   

 

We consider several possible sizes of task's subsets: 
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a. 𝑛 = 1. In this case, the combinatorial auction reduces to a simple second-price 

(Vickrey) auction.   

b. 1 ≤ 𝑛 ≤ 𝑛𝑚𝑎𝑥, where 𝑛𝑚𝑎𝑥 is the maximal subset size allowed.  

 

For a contractor already committed for a set of tasks 𝐼 the marginal cost of serving a 

set of additional tasks 𝐼′ is calculated as the difference between the contractor's costs 

for serving 𝐼 ∪ 𝐼′ and serving 𝐼 alone. This calculation can be carried out by solving 

the MILP model (1)-(14).  Since in the proposed bidding mechanism bidding 

truthfully is a dominant strategy this cost represents the bid for 𝐼′. When no feasible 

solution for 𝐼 ∪ 𝐼′  is found, the bid is equal to ∞.  

 

Sequential vickrey auctions 

For the Vickrey auction (𝑛 = 1) the process is as follows: The company announces its 

tasks one at a time to the contractors according to some arbitrary order. For each task, 

the contractors calculate their bid as described above and submit it to the company. 

Thereafter, the company allocates the task to the lowest bidder. His payment is the 

second lowest bid. The process ends once all tasks have been allocated to contractors.  

 

The order in which tasks are announced may affect the quality of the obtained 

allocation. In order to increase the social welfare we propose to announce the tasks 

starting with the geographically most isolated tasks and proceeding, at each iteration, 

to the nearest neighbor of the previously announced one.  A pseudo-code of this 

process is given below: 

 

 

The winning contractor's net profit (payment paid by the company net of added cost) 

is non-negative. Note that for the analysis of the outcome of this mechanism we 

assume that the contractors have no knowledge regarding the tasks before they are 

announced and apply no speculative consideration regarding them.  

 

Sequential Vickrey auctions with small clusters 

The proposed procedure is as follows: company's tasks are grouped in several 

clusters. Each cluster is announced, in turn, to the contractors. Each contractor 

constructs and communicates one bid that is his added cost when serving all tasks in 

the cluster. Once all bids are received, the company allocates all cluster's tasks to the 

lowest bidder and pays him the second lowest bid. 

1. Create an empty list called ORDER  

2. Add the task for which the distance to its nearest neighbor is largest to the list ORDER.  

3. While not all tasks are in ORDER   

    3.1. Add to ORDER the nearest neighbor of the last member in ORDER 
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According to this procedure, winning contractors are allocated with all tasks in a 

cluster. Therefore, and in order to allow them to win more than one cluster, 𝑛𝑚𝑎𝑥, the 

maximal number of tasks in cluster, should be small.   

A protocol for this process is listed below 

 

 

Bids are constructed based upon the additional cost that each contractor incurs if 

serving all cluster's tasks. Methods for cluster's formation and determining the order 

of announcement are presented in the next section on sequential combinatorial 

auctions.  

     

Sequential combinatorial auctions 

Next, we present the sequential combinatorial auctions. The auction is administrated 

as follows: at first, tasks are grouped together in several clusters. Each cluster, in 

turn, is announced to the contractors. The contractors compute the appropriate bid for 

all subsets of the cluster, meaning that for a cluster containing 𝑛 tasks and an auction 

containing 𝑚 participating contractors, 𝑚(2𝑛 − 1) bids are calculated. A bid of a 

contractor for some subset is equal to the added cost incurred by him should he serve 

this subset. The bids are communicated to the company. Then, the company 

implements the GVA mechanism and determines the winner of each task in the 

cluster. The company also rewards each contractor with his corresponding payment. 

A protocol of the process is listed below.    

1. Group the company's tasks in small clusters 

2. Form the order by which the clusters are announced   

3. While there are still clusters that were not announced to contractors  

    3.1. Company: announce the next cluster to contractors 

    3.2. Contractors: calculate one bid for all cluster's tasks and communicate it to company 

    3.3. Company: award the lowest bidder with all cluster's tasks 

    3.4. Company: pay the lowest bidder the second lowest bid 
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Order of announcement is constructed by applying the following method: first, the 

center of mass for each cluster is found, assuming that all tasks within a certain cluster 

are weighted equally. Then, we apply the procedure presented for the Vickrey auction 

when these centers are considered as tasks. The underlying assumption is that offering 

nearby clusters one after another results in a better allocation of tasks and hence 

increases the social welfare.  

 

The main key stones of this process are: Clustering (done by the company once); 

forming bids (done, for all clusters, by contractors); Winner-determination of each 

task (done, for all clusters, by the company); Payment Calculation (done by the 

company, for all clusters). We now describe these key stones in details.   

 

Clustering 

The clustering procedure initially creates 𝑁 clusters. Each cluster contains one of the 

company's tasks. As this procedure proceeds, tasks located closely to one another are 

grouped to the same cluster, and that causes some clusters to be eliminated. The 

number of clusters should be selected such that the size of the largest one (𝑛𝑚𝑎𝑥) is 

sufficiently small.   

 

A pseudo-code of the process is given below. This procedure was inspired by the 

work of Kruskal (1956): 

1. Group the company's tasks into clusters 

2. Form the order by which the clusters are announced   

3. While there are still clusters that were not announced to contractors  

    3.1. Company: announce the next cluster to contractors 

    3.2. Contractors: for all subsets of the cluster: calculate the bid and communicate it to company 

    3.3. Company: determine the contractors who will serve the cluster's tasks by applying the GVA 

           mechanism and notify the contractors 

    3.4. Company: Calculate the payment each contractor is entitled to and award him with that 

           payment 
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Once all the company's tasks are grouped in 𝐾 clusters, the sequential auctions can 

begin.  

 

Forming bids – sequential auctions 

Given a cluster offered by the company each of the contractors calculates the 

additional cost incurred by serving each possible non-empty subset of tasks in the 

cluster.  This calculation can be done by solving MILP (1)-(14) with the proper input. 

 

Winner Determination 

Once all bids for a cluster are received, the company is able to apply the GVA 

mechanism and determine the contractor who serves each cluster's tasks. This is done 

with the intent of minimizing the overall additional cost for the contractors by solving 

an optimization problem.      

The formulation of the optimization problem is as follows: 

 

Notations 

𝒞  -  the set of tasks in the cluster.  𝑃(𝒞) is the collection of all subsets of this set (the 

power set). 

𝑝𝑘,𝑆 - the cost of the offer of contractor 𝑘 for subset 𝑆.  

Recall that this value is obtained from each contractor for each subset of the cluster 𝒞 

 

 

1. Create 𝑁 different clusters, each containing one company task. Mark them by (1. . 𝑁).  

2. While the number of clusters is greater than 𝐾  

    2.1. Find the minimal distance in the distance matrix. Save the row (𝑖) and the column (𝑗) 

    2.2. If 𝑖 and 𝑗are not in the same cluster then 

           2.2.1. Count the number of tasks that the cluster containing 𝑖 contains. Mark it by 𝑛𝑖 

           2.2.2. Count the number of tasks that the cluster containing 𝑗 contains. Mark it by 𝑛𝑗   

           2.2.3. If 𝑛𝑖 + 𝑛𝑗 ≤ 𝑛𝑚𝑎𝑥  then 

                     2.2.3.1. group all tasks that the cluster containing 𝑖 contains with the tasks contained by  

                                  The cluster containing 𝑗.  

    2.3. Set the distance between (𝑖) and (𝑗) to ∞ 
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Decision variables 

𝑥𝑘,𝑆 = {1 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝑘 𝑠𝑒𝑟𝑣𝑒𝑠 𝑠𝑢𝑏𝑠𝑒𝑡 𝑆
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Model 

𝑍{1,..,𝐾}
∗ = ∑ 𝑝𝑘,𝑆𝑥𝑘,𝑆

𝑆∈𝑃(𝒞)

𝑘∈{1..𝑘}

                                                                                                      (16) 

𝑠. 𝑡. 

∑ 𝑥𝑘,𝑆
𝑆∈𝑃(𝒞)

 ≤ 1                                                       ∀𝑘 ∈ {1. . 𝐾}                                         (17) 

∑ 𝑥𝑘,𝑆 = 1

𝑆∈𝑃(𝒞):𝑖∈𝐶

𝑘∈{1..𝐾}

                                                         ∀𝑖 ∈ 𝒞                                            (18) 

𝑥𝑘,𝑆 ∈ {0,1}                                             ∀𝑘 ∈ {1. . 𝐾},     𝑆 ∈ 𝑃(𝒞)                                  (19) 

This model aims at minimizing the total additional total cost to contractors (16) while 

all tasks are to be served once (constraint (18)) and no contractor is allowed to serve 

more than one sub-set (constraint (17)) since the auction is combinatorial. A 

contractor who serves subset 𝑆 serves all tasks grouped in it.  

 

Payment calculation 

Once all cluster's tasks are allocated to contractors, the company is required to reward 

the contractors with their corresponding payment. According to the GVA mechanism, 

a contractor should be rewarded with the amount of money he saves for others when 

participating in the auction.  

 

For contractor 𝑘, this amount is equal to the difference between the total cost for all 

other contractors ({1. . 𝐾}\𝑘 ) when contractor 𝑘 does not participate in the auction 

and the total cost for all other contractors when contractor 𝑘 participates in the 

auction. The latter cost is the value of the solution of the original Winner-

Determination problem (16)-(19) net of the added cost for contractor 𝑘. The former 

cost is found by solving another instance of the Winner-Determination model for all 

the contractors excluding 𝑘. We denote the values of the optimal solutions of these 

problems by 𝑍{1,..,𝐾}∖{𝑘}
∗ . 

 

Therefore, the winner-determination problem is solved 𝐾 + 1 times. It is solved once 

with all contractors and 𝐾 additional times without each of the contractors. 
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Formally, the payment that contractor 𝑘 obtains from the company denoted by 𝑃𝑘, is 

given by 

𝑃𝑘 = 𝑍{1..𝐾}\𝑘
∗ − (𝑍{1,…,𝐾}

∗ − ∑ 𝑝𝑘,𝑆𝑥𝑘,𝑆
∗

𝑆∈𝑃(𝐶)

)     (20) 

where 𝑥𝑘,𝑆
∗  is the optimal solution of the original winner determination problem for all 

the contractors.  Note that 𝑍{1,…,𝐾}
∗ − ∑ 𝑝𝑘,𝑆𝑥𝑘,𝑆

∗
𝑆∈𝑃(𝐶)  is the total cost of all the 

contractors excluding 𝑘 when all the contractors are included. 

 

Let us show that the net profit of contractor 𝑘 is non-negative. 

𝑃𝑘 = 𝑍{1..𝐾}\𝑘
∗ − (𝑍{1,…,𝐾}

∗ − ∑ 𝑝𝑘,𝑆𝑥𝑘,𝑆
∗

𝑆∈𝑃(𝐶) ) = 𝑍{1..𝐾}\𝑘
∗ − 𝑍{1,…,𝐾}

∗ + ∑ 𝑝𝑘,𝑆𝑥𝑘,𝑆
∗

𝑆∈𝑃(𝐶)    

Since 𝑍{1,…,𝐾}
∗  is the optimal cost when all contractors participate in the auction, 

𝑍{1,…,𝐾}
∗ ≤ 𝑍{1..𝐾}\𝑘

∗  and therefore 𝑍{1..𝐾}\𝑘
∗ − 𝑍{1,…,𝐾}

∗ ≥ 0. Thus, 𝑍{1..𝐾}\𝑘
∗ − 𝑍{1,…,𝐾}

∗ +

∑ 𝑝𝑘,𝑆𝑥𝑘,𝑆
∗

𝑆∈𝑃(𝐶) ≥ ∑ 𝑝𝑘,𝑆𝑥𝑘,𝑆
∗

𝑆∈𝑃(𝐶) . The latter phrase is exactly the additional cost to 

contractor 𝑘. Hence, the payment is larger than the additional cost and the net profit is 

positive.  

Note that payment of contractor 𝑘 is given in return to serving all tasks in subset 𝑆.   

 

4.1.2 Sequential negotiation 

In the Sequential negotiation scheme, a prize for serving each task is initially set by 

the company. Then, all tasks are offered, simultaneously, to the contractors (one 

contractor at a time) according to some arbitrary order. That is, each negotiation 

session is held (automatically) between the company and a single contractor. Each 

contractor commits for a subset (possibly empty) of the tasks offered as to maximize 

his net profit (prizes net of operational costs). If the negotiations with all contractors 

end and some tasks are yet to be allocated, new, higher, prizes are set and the process 

is repeated until all tasks are allocated. We assume that no speculative considerations 

are applied by contractors. That is, contractors never reject a profitable offer in 

anticipation for a more profitable one. In practice, while this assumption may not 

hold, the speculative power of each contractor with respect to a task is limited by his 

beliefs about the cost of serving the task by the other contractors.    

 

We identify three factors that influence the dynamics of the negotiation: the order by 

which the contractors are negotiated; the initial prizes; the prize incrementing method.  

 

Contractors can be negotiated according to a fixed order (round robin). However, this 

is unfair since the contractors that are negotiated first are favored over those who are 

negotiated last.  
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Another option would be fixing a certain negotiation order for the first iteration, and 

then reverse this order repeatedly until all tasks are allocated. However, such ordering 

implies that the last contractor in each iteration is negotiated immediately at the 

beginning of the next iteration. Thus, assuming that he does not speculatively 

postponed his offer to the later iteration, when the prizes are higher, does not make 

sense. 

 

Therefore, it seems that random order generated in each iteration is the preferred 

option – applying it does not favor one contractor over the other (assuming the 

process is done on a regular basis) and no contractor can be sure that applying 

speculative considerations will result in higher prizes for him. 

 

The initial prize for a task is determined by an increasing function of the service time 

of the task, 𝑟𝑖 = 𝑔(𝑠𝑖). A policy that dictate lower initial prizes are likely to result in 

lower profits for the contractors, more efficient allocation and more iterations of 

negotiations. In practice, the function 𝑔, and hence the prizes, are determined largely 

by the balance of power between the company and the contractors. In our numeric 

experiments we consider two levels of initial prizes in order to demonstrate these 

effects. 

 

In order to maintain the correlation between the service time of a task and the prize of 

that task, the prize is multiplied by a constant after each iteration. Thus, the prizes 

grow exponentially with the number of iterations.  

A protocol of the negotiation process is listed below 
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𝑎 represents the increase rate of the prizes and 𝐼�̂� is the set of tasks that contractor 𝑘 is 

committed to. In order to find 𝐼𝑠, the set of company's tasks to commit on in the 

current iteration, the contractor solves an optimization problem aimed at maximizing 

his net profit. The formulation of the problem (a prize collecting problem) is given 

below.  

 

The prize collecting problem of the contractor 

Notations 

𝐼 = 𝐼�̂� ∪ 𝐼𝑜 ∪ {𝑘} – set of all locations in the problem.  

 

Decision variables 

𝑥𝑖𝑗 = {
1 𝑖𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝑘 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑢𝑗 – arrival time of contractor at location 𝑗 

𝑇– total working time of contractor  

𝐸– Duration of overtime  

 

 

1. Set 𝐼𝑜 to be the group of all company's tasks: 𝐼𝑜 = 𝐼𝐶 . 

2. Company: sets initial prizes for the company's tasks 𝑟𝑖 = 𝑔(𝑠𝑖)                     ∀𝑖 ∈ 𝐼
𝑜  

4. While 𝐼𝑜 ≠ ∅ do 

   4.1  Company: Creates a random 𝐾-size permutation. This is the order by which the contractors are 

          negotiated  in the first iteration.  

   4.2. For each contractor 𝑘  (in the permutation) 

           4.2.1. Company:  offers 𝐼𝑜 to the next contractor 

           4.2.2. Contractor 𝑘: solves an optimization problem to find 𝐼𝑠  

           4.2.2. Contractor 𝑘: commits for a sub-set 𝐼𝑠 of 𝐼𝑜. 𝐼𝑠 ⊆ 𝐼𝑜 

           4.2.3. Contractor 𝑘: updates 𝐼�̂�  = 𝐼�̂�  ∪ 𝐼
𝑠 

           4.2.4. Company: awards contractor with prizes {𝑟𝑖|𝑖 ∈ 𝐼
𝑠} 

           4.2.5. Company: updates 𝐼𝑜 = 𝐼𝑜\𝐼𝑠 

           4.2.6. If 𝐼0 = ∅ then stop 

    4.3. If 𝐼𝑜 ≠ ∅  then company: update 𝑟𝑖 = 𝑎 ⋅ 𝑟𝑖               ∀𝑖 ∈ 𝐼
𝑜  
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Model  

𝑀𝑎𝑥 {∑ 𝑟𝑖𝑥𝑖𝑗 −

𝑖,𝑗∈𝐼𝑐

∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑖,𝑗∈𝐼

− 𝑇𝑓1 − 𝐸𝑓2}                                                                   (21) 

𝑠. 𝑡.                                                                                                                                                               

∑𝑥𝑘𝑖
𝑖∈𝐼

= 1                                                                                                                               (22) 

∑𝑥𝑖𝑘
𝑖∈𝐼

= 1                                                                                                                               (23) 

∑𝑥𝑖𝑗
𝑗∈𝐼

≤ 1                                                          ∀𝑖 ∈ 𝐼𝑜                                                        (24) 

∑𝑥𝑖𝑗
𝑗∈𝐼

= 1                                                          ∀𝑖 ∈ 𝐼�̂�                                                        (25) 

∑𝑥𝑖𝑗
𝑗∈𝐼

=∑𝑥𝑗𝑖
𝑗∈𝐼

                                               ∀𝑖 ∈ 𝐼                                                           (26) 

𝑇 = ∑ 𝑥𝑖𝑗𝑠𝑖
𝑖,𝑗∈𝐼

+ ∑ 𝑥𝑖𝑗𝑡𝑖𝑗
𝑖,𝑗∈𝐼

                                                                                                   (27) 

𝑢𝑗 ≥ 𝑢𝑖 + 𝑡𝑖𝑗 + 𝑠𝑖 −𝑀(1 − 𝑥𝑖𝑗)                 ∀𝑖 ∈ 𝐼         ∀𝑗 ∈ 𝐼\{𝑘}                               (28) 

𝐸 ≥ 𝑢𝑖 + 𝑠𝑖 + 𝑡𝑖𝑘 − 𝐿                                     𝑖 ∈ 𝐼\{𝑘}                                                  (29) 

𝐸 ≤ 𝑀 − 𝐿                                                                                                                               (30) 

𝑥𝒊𝒋 ∈ {0,1}                                                                                                                                (31) 

𝐸 ≥ 0                                                                                                                                        (32) 

𝑢𝑗 ≥ 0                                                                                                                                       (33) 

The model aims at maximizing the sum of prizes net of costs (regular time, over time 

and traveling). Constraints (22)-(23) ensure that the contractor's route begins and ends 

at his depot. Constraint (24) allows the contractor to not serve some offered tasks and 

constraint (25) obliges him to serve his committed tasks. Constraint (26) ensures flow 

conservation. Constraint (27) calculates the total working time. Constraint (28) relates 

the variable 𝑢𝑗  that keeps track on the arrival time of the contractor at each task to the 

routing variable 𝑥𝑖𝑗. Constraints (29)-(30) limit and calculate the overtime. The three 

last constraints define the decision variables. The set 𝐼𝑠 is defined as  

𝐼𝑠 = {𝑖|∃𝑗, 𝑥𝑖𝑗 = 1,   𝑖 ∉ 𝐼�̂�}                                                                                                 (34)     
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4.2 Exchanging tasks between the contractors 

Stage A ends when all the company's tasks are allocated to the contractors. The goal 

of Stage B is decreasing the total operational cost for the contractors by allowing them 

to exchange company's tasks among themselves. An Exchange of task 𝑖 with task 𝑗 is 

defined from the point of view of the contractor that serves task 𝑖, and it means 

removing task 𝑖 from his route and inserting task 𝑗 into his route instead. The 

payments received in Stage A from the company are not exchanged.   

 

This framework considers the exchange of one task with another. More general 

versions would consider the exchange of sets of tasks for a different (possibly empty) 

set.  

  

We offer the following protocol for stage B:  

 The company communicates the location and duration of its service tasks to all 

contractors. 

 Each contractor calculates the profit caused by an exchange of task 𝑖 (that he 

serves) with task 𝑗 (that he does not serve). This change is noted by 𝑎𝑖𝑗.  

 𝑎𝑖𝑗 is communicated to a central controller (3rd party agent).  

 The central controller finds a set of exchanges that maximizes the reduction in 

the total cost of the contractors.  

 The exchanges are carried out and possibly money is transferred between the 

controller and the contractors. 

 The process is repeated until no set of exchanges that reduces the total cost for 

all the contractors exists. 

 

The resolution of the communicated information by the contractors, i.e., 𝑎𝑖𝑗, is likely 

to affect the performance of the protocol. Two resolution levels are considered in this 

framework: 

1. complete information with money transfers – the size and the sign 

(positive/negative) of the cost change 

2. Partial information without money transfers – the sign (positive/negative) of 

the cost change only.   

 

Considering the first level (complete information) requires adapting the proposed 

protocol. For this case, exchange of tasks also includes money transfers between the 

contractors done through the mediation of a central controller.  We later describe the 

exact method by which the amount of transferred money is set. 
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4.2.1 Calculation of the change in the operational cost 

Each contractor is required to calculate the change of cost that an exchange of task 𝑖 
(that he serves) with task 𝑗 (that another contractor serves) inflicts. For this end, the 

contractor calculates its cost in the current status (with 𝑖 in his route and without 𝑗 in 

the route) and also its cost in the alternative status (without 𝑖 his route and with 𝑗 in 

the route) by solving a minimum cost optimization problem (1)-(14) presented earlier 

for the two options. Subtracting the latter from the former gives us 𝑎𝑖𝑗. For the case of 

complete information, the change of cost is communicated to the central controller 

(size and sign). If an exchange is infeasible, than 𝑎𝑖𝑗 = −∞ is communicated.   

 

When partial information is transferred, only the sign is communicated to the central 

controller. When an exchange decreases the cost of the contractor a positive sign is 

communicated. A negative sign is communicated when the exchange increases the 

cost. Since the size of change is not communicated, the central controller has no 

option but to address all desirable exchanges in the same manner. Therefore, for these 

exchanges 𝑎𝑖𝑗 = 1 is considered. Similar considerations lead the central controller to 

forbid undesirable exchanges completely. Therefore, for these exchanges 𝑎𝑖𝑗 = −∞.  

 

We later show that in the case of complete information, an exchange that increases 

some contractor's cost is not forbidden since it can reduce the total cost for all 

contractors. This contractor will be compensated by a money transfer.  

 

4.2.2 Finding best sets of feasible exchanges 

After 𝑎𝑖𝑗 is defined for all 𝑖, 𝑗 ∈ 𝐼𝐶 the central controller finds the best set of feasible 

exchanges. As defined earlier from the point of view of the contractor serving task 𝑖, 
an exchange of task 𝑖 with task 𝑗 means removing task 𝑖 from the contractor's route 

and inserting task 𝑗 into his route. An exchange of this sort cannot be done without a 

complementary exchange (or exchanges) by which some contractor receives task 𝑖 
into his route and some contractor removes task 𝑗 from his route. The anticipated 

complementary exchange is the reverse exchange. The contractor who serves task 𝑗 
exchanges it with task 𝑖.  

 

Nonetheless, this is not the only complementary exchange. Consider the following 

example: contractor 1 wishes to exchange task 𝑖 with task 𝑗. Contractor 2 wishes to 

exchange task 𝑗 with task 𝑚 and contractor 3 wishes to exchange task 𝑚 with task 𝑖. 
None of the desirable exchanges has an anticipated complementary exchange. 

However, a solution to satisfy all contractors is clear: contractor 1 removes 𝑖; 
contractor 2 removes 𝑗; contractor 3 removes 𝑚; contractor 1 receives 𝑗; contractor 2 

receives 𝑚; contractor 3 receives 𝑖. It is possible to include more than two contractors 

(tasks) in a set of exchanges so long as all the tasks that are removed by the 

contractors are also received by the contractors. This example also illustrates that a set 

of feasible exchanges constitutes a circle in a directed graph.  
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The graph's nodes are the company's tasks. An arc (𝑖, 𝑗) from node 𝑖 to node 𝑗 exists if 

tasks 𝑖 and 𝑗 are served by different contractors. Its weight is the profit that the 

contractor who serves 𝑗 can enjoy if he removes 𝑗 from his route and inserts task 𝑖 
instead, i.e. 𝑎𝑗𝑖. The existence of a circle in this graph indicates the fact that all tasks 

in the circle (represented by nodes) can be removed and received by contractors.  

 

Therefore, finding best sets of feasible exchanges is equivalent to maximizing the 

total weight of disjoint circles in a directed graph. The mathematical model of this 

optimization problem is presented below.  

Notations 

𝐼�̃� – set of company's tasks allocated to contractor 𝑘 

𝐼𝐶 = ⋃𝑘𝐼�̃� - set of all company's tasks 

For simplicity of the model we assume 𝑎𝑖𝑗 = 0 for all pairs of tasks 𝑖, 𝑗 that are 

initially allocated to the same contractor. 

 

Decision Variables 

𝑦𝑖𝑗 = {
1 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑖 𝑖𝑠 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡𝑎𝑠𝑘 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Model 

𝑀𝑎𝑥 {∑ 𝑎𝑖𝑗𝑦𝑖𝑗
𝑖,𝑗∈𝐼𝑐

}                                                                                                                (35) 

𝑠. 𝑡. 

∑𝑦𝑖𝑗
𝑗∈𝐼𝐶

= ∑ 𝑦𝑗𝑖
𝑗∈𝐼𝐶

                                                            ∀𝑖 ∈ 𝐼𝐶                                           (36) 

∑𝑦𝑖𝑗
𝑗∈𝐼𝐶

≤ 1                                                                      ∀𝑖 ∈ 𝐼𝐶                                            (37) 

∑𝑦𝑖𝑗
𝑖∈𝐼�̃�
𝑗∈𝐼𝐶

≤ 1                                                                      𝑘 ∈ {1. . 𝐾}                                    (38) 

𝑦𝑖𝑗 ∈ {0,1}                                                                                                                                (39) 

 

This model aims at maximizing the sum of weights of the circles, while ensuring that 

all the removed tasks are received by other contractors (constraint (36)), ensuring that 

each task is to be exchanged at most once (constraint (37)) and that each contractor is 
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allowed to exchange one task, at most (constraint (38)). This is important since 𝑎𝑖𝑗 

values are not correct if a contractor exchanges more than one task in each iteration. 

 

In the case of partial information where 𝑎𝑖𝑗 ∈ {1,−∞}  solving (35) means simply 

maximizing the number of performed exchanges. All exchanges that are chosen 

reduce costs for the corresponding contractors.  

 

In the case of complete information solving this problem does in fact maximizes the 

overall profit for the system. However, this does not necessarily mean that all 

exchanges chosen reduce costs for each contractor. Consider the example for 𝑎𝑖𝑗 

given in Table 3. 

Table 3: Example instance for 𝑎𝑖𝑗   

 1 2 3 

1  -2 −∞ 

2 −∞  8 

3 8 3  

 

 

The data in the table can be represented by the graph given in figure 2.  

 

            

 

 

 

Figure 2: Auxiliary graph for example   
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−∞ −∞ 
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5 possible circles can be found in the graph. They are presented in figure 3a – 3e 

respectively. 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

 

 

 

 

(d) 

 

 

 

 

 

 

 

 

 

(e) 

 

 

Figure 3a – 3e: Possible circles found in graph   

In the example instance given above, maximizing the overall profit for the system 

results in applying exchanges according to circle (d) since the overall weight of circle 

(d) is 14, which is highest. However, applying the exchanges according to (d) means 

that the contractor who serves task 1 exchanges it with task (2). This increases his 

cost by 2 units. In order to make this arrangement acceptable by this contractor money 

transfers are needed to be applied.  

 

4.2.3 Money transfers 

We have shown that in the case of complete information, a set of exchanges that best 

reduces the overall cost for contractors can make the situation of some contractors  

worse compared to their situation prior to the exchange. This can be resolved by 

1 

2 

−∞ 
-2 

1 

8 

3 

−∞ 

8 

3 3 2 

1 

8 

8 

-2 

3 2 

3 

-∞ 

3 2 

1 

-∞ 
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money transfers. The idea is that contractors who benefit considerably from the 

chosen exchanges will subsidies contractors whose benefits from the exchanges are 

relatively small or negative. How is this possible and in what way should we 

determine the subsidy?  

 

Let us consider that the system as a whole (all contractors combined) benefit from 

applying the best set of possible exchanges since the total profit is positive. This 

benefit can be distributed among the all contractors in a way that will ensure each of 

them will gain from the exchanges. Deciding how to distribute this benefit derives the 

corresponding subsidies for the contractors.  

 

Let �̃� be a set of tasks that constitute a circle in the obtained solution and �̃� be the set 

of contractors that own the tasks in �̃� (one contractor owns one task). Implementing 

the exchanges implied by �̃� reduces the system's cost by ∑ 𝑎𝑖𝑗𝑖,𝑗∈�̃� . If contractor 𝑘 ∈ �̃� 

exchanges task 𝑖 with task 𝑗 then his cost reduces by 𝑎𝑖𝑗. Supposing that the desired 

profit of contractor 𝑘 is 𝜋𝑘 derives a corresponding subsidy that is 𝜋𝑘 − 𝑎𝑖𝑗. Clearly, 

if ∑ 𝜋𝑘𝑘 = ∑ 𝑎𝑖𝑗𝑖,𝑗∈�̃�  then the sum of subsidies is 0.  

 

This means that no external insertion of money is required in order to perform the 

money transfers.  

 

Since 𝑎𝑖𝑗s are known, what is left to be determined is 𝜋𝑘 – desired profit for 

contractor 𝑘. We suggest that the profit of each contractor will be equal. i.e.: 𝜋𝑘 =

𝜋 =
∑ 𝑎𝑖𝑗𝑖,𝑗∈�̃�

|�̃�|
. The corresponding subsidy for contractor is 

∑ 𝑎𝑖𝑗𝑖,𝑗∈�̃�

|�̃�|
− 𝑎𝑖𝑗.  

For the example given above, the proposed distribution of profit and the 

corresponding subsidies are given in Table 4: 

Table 4: Required money transfers in example 

 
Contractor who 

originally owns (1) 

Contractor who 

originally owns (2) 

Contractor who 

originally owns (3) 

Saving in cost from 

the exchange 
-2 8 8 

Total saving for 

system 
-2+8+8 = 14 

Profit for each 

contractor 

14

3
 

Money transfer 

(subsidy) 

14

3
− (−2) =

20

3
 

14

3
− 8 = −

10

3
 

14

3
− 8 = −

10

3
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The contractor who originally owns (2) transfers 
10

3
 units of money. So does the 

contractor who owns (3). These units are transferred to the contractor who originally 

owns (1), who is therefore subsided by 
20

3
 units of money.  

 

Not only does this definition of 𝜋𝑘 not discriminatory, it is also Nash's solution to a 

bargaining game for more than two players (1950).    

 

4.2.4 Stage B – Discussion 

Stage B is constructed in a way that ensures all contractors are better off in each of its 

iterations. This is true for the case of partial information, as well as for the case of 

complete information (by allowing money transfers). However, stage B does not 

ensure that truthful bidding is an optimal strategy for the contractors. Consider the 

following example given in figure 4: 

 

 

 

      

                     

Figure 4: Example graph of truthful bidding   

In this case, the optimal solution for the system is that the contractor who owns task 

(1) replaces it with task (2), whose owner receives (1). The total profit for the system 

is 6. Each of the two contractors gains 3 units of money from the exchange and no 

money transfer is performed hence each of the two contractors is better off by 3. The 

contractor who owns (3) is not a part of the solution and therefore gains nothing.  

 

However, had the contractor who owned (3) known 𝑎𝑖𝑗for all 𝑖, 𝑗 ∈ 𝐼𝐶  of all other 

contractors, he could have communicated a false value for his own possible profits in 

such a way as to ensure to be a part of the solution and by that make that solution be 

sub-optimal for the system. Consider the altered graph displayed in figure 5.     

 

 

 

      

Figure 5: Example graph of untruthful bidding   
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If the contractor who owns (3) decides to communicate a32 = 5.5 then in the eyes of 

the controller the best set of exchanges is replacing (2) with (3) and the total saving is 

1+5.5=6.5. The estimated profit each contractor will enjoy is 
6.5

2
= 3.25. In order to 

ensure that profit, the contractor who owns (3) will have to pay 5.5 − 3.25 = 2.25 

units of money as subsidy to the contractor who owns 2. However, his net profit is 

still positive and is equal to 4-2.25 = 1.75.  

 

This is of course better than gaining nothing in the case of truthful bidding. The 

system as a whole lost 6-(4+1) = 1 unit of money that could have been saved. An 

example for profitable untruthful bidding can also be shown for stage B with partial 

information, i.e., when only the sign of 𝑎𝑖𝑗 is communicated to the controllers.  

Consider the following example given in figure 6: 

 

 

 

 

Figure 6: Example graph of truthful reporting   

Suppose that contractor 𝑘1 owns tasks (1) and (4), contractor 𝑘2 owns tasks (2) and 

(5) and contractor 𝑘3 owns task (3). Since all possible exchanges are profitable, 

reporting truthfully leads to executing the exchanges implied in the circle that 

contains the higher number of arcs, that is, the circle that contains 3 arcs. All 

contractors are better off.   

 

Now, suppose that the exchanges implied in the 2-arc circle yield higher profit for 

contractor 𝑘2.  Had this contractor have complete information regarding the 

profitability of all exchanges (and thus, regarding all possible circles) he could have 

reported a false value for his profit from participating in the 3-arc circle, and thus 

preventing the feasibility of this circle. Figure 7 illustrates this report. 

 

 

 

 

 

Figure 7: Example graph of untruthful reporting   

By reporting untruthfully, contractor 𝑘2 manipulated the controllers that choose the 

exchanges preferred by him, although they are the less profitable from the perspective 

of the society.   
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Indeed, this is a problem in the structure of stage B. However, we still propose to 

include it as an improvement heuristic of the solution generated by applying stage A. 

We present both practical and theoretical reasons for our recommendation. 

 

First, in practice, in order for a contractor to successfully manipulate the system, he 

needs to have information regarding the 𝑎𝑖𝑗s of the other contractors which is not 

likely. Without this information each contractor can secure a non-negative profit by 

truthfully report his 𝑎𝑖𝑗𝑠.  

 

Second, follows from the proposition below, 

Proposition: in both versions of stage B and disregarding the information available to 

the contractors the mechanisms can only improve the profit of each one of the 

contractors. 

Proof: We will first show that under both mechanisms and disregarding the actions of 

the other contractors a contractor can secure himself a non-negative improvement in 

his profit by bidding truthfully. Thus a profit maximizer contractor will never submit 

a bid that will result in a loss. 

For the version of stage B without money transfers, the claim is trivial. In this case 

only exchanges that are reported by the contractors as profitable to them are carried 

out. Thus at each iterations any truthful bidder can only improve his profit. 

For the version of stage B with money transfers, consider a contractor that owns task 

𝑖1 but do not own task 𝑗1 and let �̅�𝑖1𝑗1 be the true (possibly negative) profit of this 

contractor from trading 𝑖1 for 𝑗1. Now assuming he bids truthfully, that is 𝑎𝑖1𝑗1 =

�̅�𝑖1𝑗1 and that the exchange is carried out then he will receive the direct profit 𝑎𝑖1𝑗1 

and the subsidy 
∑ 𝑎𝑖𝑗𝑖,𝑗∈�̃�

|�̃�|
− 𝑎𝑖1𝑗1 =

∑ 𝑎𝑖𝑗𝑖,𝑗∈�̃�

|�̃�|
− �̅�𝑖1𝑗1. That is in total 

∑ 𝑎𝑖𝑗𝑖,𝑗∈�̃�

|�̃�|
. Now, 

clearly this is a positive value, because regardless of the truthfulness of the bids of the 

other contractors the circle  �̃� is selected by the mechanism only if ∑ 𝑎𝑖𝑗𝑖,𝑗∈�̃�  is 

positive.   This concludes the proof.  ∎ 
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5 Numerical Experiments 

We have conducted numerical experiments in order to evaluate the effectiveness of 

the mechanism developed in the previous chapter. The setting of the experiments 

includes problem instances and parameters of the proposed variations of the 

mechanism. The results of the experiments are presented and analyzed with respect to 

the performance measures defined in Chapter 3.  

 

5.1 Problem Instances 

An instance of the problem is characterized by locations and durations of all service 

tasks (those of the company and those pre-commited by the contractors) as well as by 

the locations of the company and contractors. Since the locations of the company and 

the contractors are not likely to change on a daily basis, these locations remain fixed 

for all generated instances of the problem. The locations of the service tasks, however, 

do change across the problem instances.  

 

The number of tasks in each instance was set to 40, half of which are pre-committed 

tasks and the rest are company's tasks. The number of contractors was set to four, 

which seems quite reasonable, so the size of the generated instances is large enough to 

demonstrate the outcomes of the proposed mechanism. A realistic setting of the 

problem is likely to be larger. However, testing the mechanism with larger instances 

would have required developing and implementing stronger solution methods (exact 

or heuristic) for the underlying routing problem, which is out of the scope of this 

thesis. Recall that our focus here is to study the ability of the mechanism to induce 

efficient allocation of the task to the contractors. Therefore, the dimension of the test 

instances was selected such that the routing problem could be solved (or 

approximated) in a reasonable time using the methods presented in Chapter 3.  

 

For each instance the locations of the tasks were randomly generated on a 100 × 100 

square using a continuous uniform distribution (𝑥𝑖~𝑈(0,100), 𝑦𝑖~𝑈(0,100)). The 

company's depot is located in the square's center, i.e. at point (50,50). Next, the 

square has been divided into 4 quarters, and the contractors have been placed in the 

centers of the quarters, so that contractor 1 is placed in point (25,25), contractor 2 in 

(25,75), contractor 3 in (75,75) and contractor 4 in (75,25). The durations of service 

tasks (in minutes) are generated using the normal distribution with the expectancy of 

30 and the standard deviation of 10 (𝑆𝑖~𝑁(30, 10
2)).       

 

The length of a regular working day is set at 8 hours, i.e. 𝐿 = 480 minutes, and 𝑀, 

maximal length of working day with overtime is set at 12 hours, i.e. 𝐿 = 720 minutes. 

The cost of a regular working period is set at 200 cost units per hour (3.33 per minute) 

i.e. 𝑓1 = 3.33. The cost of overtime (in addition to regular cost) is set at 100 money 

units per hour (1.66 per minute) i.e. 𝑓2 = 1.66. The traveling cost and traveling time 

(in minutes) from location 𝑖 to location 𝑗 is equal to the Euclidian distance between 𝑖 
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and 𝑗, i.e. 𝑐𝑖𝑗 = 𝑡𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2. This definition implies that the cost 

of traveling is 1 unit of money per unit of distance (km for example) and that traveling 

speed is one. Clearly, this does not limit the generality of the results. 

 

As mentioned earlier, 20 tasks out of 40 generated in each instance are company's 

tasks. These 20 tasks are to be chosen randomly in each instance. The other 20 tasks 

are set as pre-committed tasks of the contractors.  

 

We have used a parametric probabilistic procedure that relates pre-committed tasks to 

the contractors with a probability that decreases with the traveling time. This is 

because practically, a task is most likely to be served by its nearest contractor. For 

pre-committed task 𝑖 we defined the probability that the task belongs to contractor 𝑘 

as  

Pr(𝑖 ∈ 𝐼𝑘) =
(
1
𝑡𝑖𝑘
)
𝛼

∑ (
1
𝑡𝑖𝑘
)
𝛼

𝑘

   (40) 

where 𝑡𝑖𝑘 is the traveling time between the locations of task 𝑖 and contractor 𝑘. 

Parameter 𝛼 controls the clustering structure of the instance. The larger the value of  

𝛼 is, the higher is the probability of relating a task to its nearest neighbor. However, 

since we wish to create balanced instances we fixed the number of tasks to be related 

to each of the four contractors to five (exactly one quarter of the number of pre-

committed tasks).  

 

5.1.1 Generated instances 

We generated 20 datasets of 40 service tasks locations and times. For each dataset the 

locations of the 20 company tasks were randomly selected. The rest of the tasks (pre-

committed) were related to contractors using the mechanism described above once 

with 𝛼 = 1 and once with 𝛼 = 3. That is, we created 40 instances of the problem in 

total.   

 

 
(a) 

 

 
(b) 

Figure 8a – 8b: Optimal initial routes for 𝛼 = 1 compared to 𝛼 = 3     
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Figure 8 exemplifies two such instances with the initial routes of the contractors 

before committing to the company's tasks. Blue circles represent the company's tasks 

and black circles represent pre-committed tasks. Each diamond represents one 

contractor. The route and pre-committed locations of each contractor are marked in a 

different color. 

 

Clearly, the allocation of pre-committed tasks to contractors for 𝛼 = 1 (Figure 6a) is 

considerably different from the allocation for 𝛼 = 3 (Figure 6b). While in the case of 

𝛼 = 3 most of the pre-committed tasks are related to their nearest contractor (or at 

least – second nearest), for 𝛼 = 1 this relation seems almost random. Consequentially, 

the initial routes for 𝛼 = 3 are much shorter than the initial routes for 𝛼 = 1. Hence, 

the total initial cost of the contractors is expected to be significantly lower for 𝛼 = 3.  

 

5.1.2 Total cost for heuristic allocation 

In practice, companies that outsource their service tasks to several contractors 

typically allocate the tasks based on simple geographic considerations. A service zone 

is defined for each contractor and service calls are allocated based on this zoning. If a 

contractor is too loaded to handle tasks from his zone, the task is allocated to a 

contractor in a neighboring zone.   

 

In order to benchmark our method, we imitate this heuristic allocation procedure as 

follows. The heuristic approach aims at allocating each task to its nearest contractor, 

assuming that his pre-committed tasks are also nearby. In order to balance the work 

load of each contractor, the number of company's tasks allocated to a single contractor 

is limited to ⌈
𝑁

𝐾
⌉ tasks (5 in our case). Once all these tasks are allocated to a contractor 

he is removed from further consideration. 

A pseudo-code of the heuristic method is presented below: 

 

After applying this heuristic procedure, the shortest route is found by TSP and the 

total working time (service and routing) is calculated. The total cost of the heuristic 

allocation is the sum of the total costs of the contractors. 

1. Calculate the distances between all company's tasks and all contractors' depots.   

2. Do for all company's tasks  

    2.1. Find task 𝑖 and contractor 𝑘 for whom the distance is minimal 

    2.2. Allocate task 𝑖 to contractor 𝑘 

    2.3. Set the distances between task 𝑖 and all contractors to ∞ 

    2.4. If contractor 𝑘 is allocated with ⌈
𝑁

𝐾
⌉ company's tasks 

           2.4.1. Set the distances between contractor 𝑘and all tasks to ∞             
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5.2 Solution parameters 

In this section, we discuss and determine the value of the parameters of the suggested 

variations of the mechanism. 

 

5.2.1 Mechanism parameters 

First, we discuss the value of the parameters for the variations of Stage A.  

For the combinatorial auction, 𝑛𝑚𝑎𝑥 must be defined. As noted, the efficiency of the 

solution increases with 𝑛𝑚𝑎𝑥, however, the value of 𝑛𝑚𝑎𝑥 is limited due to the 

complexity of the combinatorial auction and the need to conduct it in a reasonable 

time. We therefore selected 𝑛𝑚𝑎𝑥 = 8. For Vickrey auction with small clusters the 

value of 𝑛𝑚𝑎𝑥 was set to 4.  

 

For the sequential negotiation mechanism, two possible values for 𝑟𝑖 = 𝑔(𝑠𝑖), the 

initial prize for task 𝑖 as a function of its duration in the sequential negotiation were 

considered: 

1. 𝑔(𝑠𝑖) = 100% × 𝑓1 × 𝑠𝑖 = 100% ×
10

3
× 𝑠𝑖 

2. 𝑔(𝑠𝑖) = 150% × 𝑓1 × 𝑠𝑖 = 150% ×
10

3
× 𝑠𝑖 

Recall that 𝑠𝑖 is the service time in minutes and 𝑓1 is the cost of one minute of regular 

working day. For the two values of 𝑟𝑖, the increase rate of the prize was set to 𝑎 =
1.1. 

 

The sum of the prizes paid to the contractors is expected to be higher for the higher 

value of initial prizes. The total cost for the generated allocation is expected to be 

higher as well, since with higher initial prizes it is more likely that tasks will be 

allocated less efficiently.  

 

Note that in the first case (paying exactly 100% of the working cost for each task 𝑖) 𝑟𝑖 
is the minimal prize for which a contractor that will be willing to serve task 𝑖 may be 

found. This is the case only if the task is located exactly on the route of a contractor, 

who has not exploited all his regular time hours. Allocating the task to the contractor 

in such a case incurs neither additional traveling cost, nor overtime cost.  Even in this 

case, the net profit from serving the task is zero. Therefore, it is reasonable from the 

company's point of view to begin the negotiation offering this prize.  

Since the working relation between the company and the contractors is of a long term 

nature, any sustainable arrangement must be profitable for all the parties. By changing 

the value of the initial prizes it is possible to control the long term expected profit of 

the contractor and to make this arrangement appealing enough for the parties. 

A summary of the chosen parameters for variations of Stage A is presented in Table 5.  
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Table 5: Parameters for variations of Stage A 

Sequential 

combinatorial 

auctions 

Vickrey auctions 

with small clusters 

Sequential negotiation Heuristic 

𝑛𝑚𝑎𝑥 = 8 𝑛𝑚𝑎𝑥 = 4 
𝑟𝑖 = 𝑔(𝑠𝑖) = 100%× 𝑠𝑖 ×

10

3
 

𝑎 = 1.1 

𝑟𝑖 = 𝑔(𝑠𝑖) = 150%× 𝑠𝑖 ×
10

3
 

𝑎 = 1.1 

⌈
𝑁

𝐾
⌉=
20

4
= 5 

 

 

5.2.2 Computational features 

Experiments were carried out using a Intel® core ™ i7-2600 CPU @ 3.40Ghz 

processor and 16GB of RAM. The MILP models were solved using IBM CPLEX 

12.5.1.  

 

The TSP (presented in section 3.3.3) and the prize collecting problem of the 

contractor (presented in section 4.1.2) were solved directly using CPLEX with time 

limits of 10 seconds and 1800 seconds, respectively. For the TSP, time limit of 10 

seconds was usually enough to obtain the optimal solution. The time limit for the 

prize collecting problem is considerably larger since it is more complicated, dealing 

with usually larger number of tasks. Furthermore, it contains a decision element – 

whether to carry out a proposed task, that does not exist in the contractor's 

optimization problem. Time limit of 1800 seconds was enough to obtain an optimal 

solution for most instances of the prize collecting problem.  

 

The winner determination problem in the combinatorial auction and the problem of 

finding the best set of exchanges (see sections 4.1.1 and 4.2.2 respectively) were 

solved to optimality in less than one second.  

 

The time limit for finding the lower bounds of both of the central planner problems 

and the company’s problem (see sections 3.3.1 and 3.3.2 respectively) was set to four 

hours. However since this is an iterative process and running time was checked only 

at the end of each iteration, the actual running time for the process was sometimes 

longer. The lower bounds obtained were typically tight. 

 

5.3 Experimental procedure 

As previously noted, 40 instances were generated. For each instance all variations of 

Stage A (Vickrey auction, combinatorial auction, Vickrey auction with small clusters, 

both variations of the sequential negotiation and heuristic allocation) were applied. 

The allocation obtained for each variation was kept. Next, the two variations of Stage 

B were applied for each allocation of Stage A.  
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Note that Stage B is considered also for the allocation generated heuristically. This is 

valuable since applying Stage B, performed between the contractors themselves, is 

possible even without applying collaborative mechanisms designed to generate the 

initial allocation.  

 

5.4 Results 

We now present the results of the experiments; first, for the default status (without 

outsourcing) and then for all treatments specified previously. The results are analyzed 

using the performance measures defined in Chapter 3.  

 

5.4.1 Default status 

The default status is defined by the total cost for the company without outsourcing 

and by the total cost for the contractors when they serve their pre-committed tasks 

only, when the latter depends on 𝛼. The total cost for the contractors for 𝛼 = 1 and 

for 𝛼 = 3, and for all instances are presented in Table 6. 

Table 6: Total cost for the contractors without outsourcing 

Instance number 𝛼 = 1 𝛼 = 3 

1 5,072.45 4,928.08 

2 5,792.12 4,849.90 

3 4,565.54 4,541.21 

4 6,075.61 4,842.06 

5 6,147.64 4,703.01 

6 4,651.40 4,844.56 

7 4,852.56 4,219.34 

8 5,241.73 4,413.67 

9 5,006.22 4,090.52 

10 5,193.90 4,644.92 

11 5,177.30 4,287.46 

12 5,668.04 5,572.77 

13 5,158.39 5,333.96 

14 5,984.35 4,903.86 

15 5,006.41 4,623.18 

16 5,908.19 4,759.78 

17 5,248.12 4,621.00 

18 6,322.44 5,402.11 

19 5,867.85 5,516.29 

20 5,278.79 4,776.51 

 

The costs are considerably lower for 𝛼 = 3, as anticipated.        

Running times and the obtained lower bounds for the total cost of the company 

without outsourcing are presented in Table 7.  
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Table 7: Lower bounds for the total cost for the company without outsourcing 

Instance number Value Running time (seconds) Comments 

1 4,392.91 17,161  

2 3,887.04 12,560 Optimal value 

3 4,000.97 9,184 Optimal value 

4 3,753.33 6,946 Optimal value 

5 4,311.26 15,579  

6 3,930.30 15,198  

7 3,708.15 15,036  

8 4,285.52 20,388  

9 3,988.73 14,756  

10 4,474.78 15,631  

11 3,609.71 442 Optimal value 

12 4,031.77 15,836  

13 3,858.65 16,165  

14 3,866.91 11,824 Optimal value 

15 3,400.73 49 Optimal value 

16 4,255.02 14,778  

17 3,843.58 15,331  

18 3,752.76 1,425 Optimal value 

19 3,700.60 16,422  

20 4,416.40 16,128  

 

Assuming these lower bounds are good estimations for the total costs for the company 

gives us total costs for the system (contractors and company) that are presented in 

Table 8. 

Table 8: Total cost for the system in default status 

  𝛼 = 1 𝛼 = 3 

Instance 

number 

Total cost for the 

company without 

outsourcing 

Total cost for 

the contractors 

Total cost for 

the system 
Total cost for 

the contractors 

Total cost 

for the 

system 

1 4,392.91 5,072.45 9,465.36 4,928.08 9,320.99 

2 3,887.04 5,792.12 9,679.16 4,849.90 8,736.94 

3 4,000.97 4,565.54 8,566.51 4,541.21 8,542.18 

4 3,753.33 6,075.61 9,828.94 4,842.06 8,595.39 

5 4,311.26 6,147.64 10,458.90 4,703.01 9,014.27 

6 3,930.30 4,651.40 8,581.70 4,844.56 8,774.86 

7 3,708.15 4,852.56 8,560.71 4,219.34 7,927.49 

8 4,285.52 5,241.73 9,527.25 4,413.67 8,699.19 

9 3,988.73 5,006.22 8,994.95 4,090.52 8,079.25 

10 4,474.78 5,193.90 9,668.68 4,644.92 9,119.70 

11 3,609.71 5,177.30 8,787.01 4,287.46 7,897.17 

12 4,031.77 5,668.04 9,699.81 5,572.77 9,604.54 

13 3,858.65 5,158.39 9,017.04 5,333.96 9,192.61 

14 3,866.91 5,984.35 9,851.26 4,903.86 8,770.77 

15 3,400.73 5,006.41 8,407.14 4,623.18 8,023.91 

16 4,255.02 5,908.19 10,163.21 4,759.78 9,014.80 

17 3,843.58 5,248.12 9,091.70 4,621.00 8,464.58 

18 3,752.76 6,322.44 10,075.20 5,402.11 9,154.87 

19 3,700.60 5,867.85 9,568.45 5,516.29 9,216.89 

20 4,416.40 5,278.79 9,695.19 4,776.51 9,192.91 
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5.4.2 Mechanism results 

A solution to the decentralized problem is defined by an allocation of the company's 

tasks to the contractors and by the sum of the prizes that the company pays the 

contractors.  

 

Total cost for the contractors 

An allocation can be evaluated by its total cost for the contractors. This cost needs to 

be compared to the cost of the optimal allocation that a central planner with complete 

information could have found. Lower bounds for these costs are presented in Table 9 

for all instances.  

Table 9: Lower bounds for optimal cost for the system with outsourcing 

 𝛼 = 1 𝛼 = 3 

Instance 

number 
Value 

Running time 

(seconds) 
Comments Value 

Running time 

(seconds) 
Comments 

1 7,779.69 14,566  7,824.62 15,232  

2 8,049.80 17,554  7,221.82 2,138 Optimal value 

3 6,947.65 827 Optimal value 6,997.63 14,526  

4 8,446.17 15,948  7,380.88 317 Optimal value 

5 8,779.09 15,634  7,742.64 379 Optimal value 

6 7,092.55 15,001  7,275.30 14,714  

7 7,186.92 15,562  6,983.97 14,983  

8 8,144.45 15,130  7,472.00 702 Optimal value 

9 7,498.11 14,465  6,747.02 5,819 Optimal value 

10 8,258.01 14,545  7,714.24 8,403 Optimal value 

11 7,360.57 15,218  6,498.73 1,137 Optimal value 

12 8,615.89 20,191  8,382.35 30,089  

13 7,236.78 19,295  7,513.61 22,955  

14 8,444.39 16,224  7,508.69 15,087  

15 7,084.75 19,375  7,040.39 353 Optimal value 

16 8,243.94 14,416  7,804.34 519 Optimal value 

17 7,941.98 15,000  7,301.47 9,492 Optimal value 

18 8,652.95 14,465  7,820.74 15,002  

19 8,217.27 15,143  7,839.24 15,097  

20 8,143.69 15,675  8,025.45 3,106 Optimal value 

 

It appears that the lower bounds for 𝛼 = 3 are tighter and in many cases the model is 

solved to optimality. This is because the central allocation problem is simpler for 𝛼 =
3 where the locations of the pre-committed tasks of each contractor are more 

clustered.  

 

The values in Table 9 are either optimal values for the central planner problem or 

even better (super optimal). Let us now examine the total cost generated by the 

suggested mechanism. We begin with presenting the total cost of the allocations 

generated by applying all variations of Stage A only, without applying Stage B. 
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Total cost for all variations of Stage A for 𝛼 = 1 are presented in Table 10. For each 

instance, the best result is highlighted. Optimal allocations are marked by *.  

Table 10: Total cost for the system where 𝛼 = 1 – Stage A 

Instance 

number 

Vickrey 

auctions 

Sequential 

combinatorial 

auctions 

Vickrey 

auctions 

with small 

clusters 

Sequential 

negotiations 

with 100% of 

tasks working 

time cost as 

initial prize  

Sequential 

negotiations 

with 150% of 

tasks working 

time cost as 

initial prize 

Heuristic 

(baseline) 

Lower 

Bound 

1 8,286.50 8,236.02 8,337.15 8,256.81 8,266.58 8,731.69 7,779.69 

2 8,247.68 8,233.19 8,525.96 8,280.96 8,334.31 8,788.40 8,049.80 

3 * 6,947.65 * * 6,947.65 * 7,165.67 * 6,947.65 * 7,309.80 7,734.98 6,947.65 

4 8,754.40 8,845.24 9,052.40 8,788.95 8,906.53 9,559.13 8,446.17 

5 9,502.72 9,398.03 9,650.53 9,419.45 9,439.62 10,040.73 8,779.09 

6 7,135.19 7,212.65 7,286.18 7,163.86 7,214.22 7,743.36 7,092.55 

7 7,752.48 7,632.09 7,981.50 7,686.71 7,839.27 8,234.74 7,186.92 

8 8,382.21 8,301.97 8,447.85 8,359.60 8,487.59 8,669.23 8,144.45 

9 8,229.64 8,073.02 8,131.98 8,152.05 8,179.99 8,392.12 7,498.11 

10 8,375.01 8,442.16 8,505.77 8,375.01 8,454.86 8,704.11 8,258.01 

11 7,591.17 7,564.64 7,480.08 7,603.17 7,590.47 7,854.78 7,360.57 

12 8,959.38 8,845.67 8,898.85 8,865.63 9,049.52 9,377.40 8,615.89 

13 7,778.82 7,645.04 7,828.87 7,739.59 7,753.32 8,464.54 7,236.78 

14 8,746.91 8,698.67 8,906.58 8,735.79 8,821.91 9,386.67 8,444.39 

15 7,585.07 7,429.68 7,619.71 7,570.47 7,871.63 7,626.25 7,084.75 

16 8,854.39 8,849.32 9,108.57 8,852.16 8,850.17 9,738.38 8,243.94 

17 8,483.17 8,276.70 8,377.09 8,147.31 8,404.00 8,236.28 7,941.98 

18 8,948.65 8,994.01 9,264.23 8,945.85 8,999.72 9,639.17 8,652.95 

19 8,761.50 8,714.72 9,101.39 8,704.65 8,802.92 9,312.26 8,217.27 

20 8,480.37 8,400.98 8,542.93 8,440.42 8,428.70 8,835.62 8,143.69 

 

Total cost for all variations of Stage A for 𝛼 = 3 are presented in Table 11. The 

structure of this table is the same as Table 10 above.  

 

 

 

 

 

 

 

 

 

 

 



59 

 

Table 11: Total cost for the system where 𝛼 = 3 – Stage A 

Instance 

number 

Vickrey 

auctions 

Sequential 

combinatorial 

auctions 

Vickrey 

auctions 

with 

small 

clusters 

Sequential 

negotiations 

with 100% 

of tasks 

working 

time cost as 

initial prize  

Sequential 

negotiations 

with 150% 

of tasks 

working 

time cost as 

initial prize 

Heuristic 

(baseline) 

Lower 

Bound 

1 8,071.56 7,985.52 8,309.70 8,025.02 8,027.67 8,401.74 7,824.62 

2 * 7,221.82 *  * 7,221.82 * 7,437.61 7,250.86 7,287.23 7,912.04 7,221.82 

3 7,089.41 7,179.43 7,525.25 7,158.86 7,082.64 7,781.13 6,997.63 

4 7,404.30 * 7,380.88 * 7,539.89 7,404.30 7,465.77 8,027.10 7,380.88 

5 7,764.26 7,821.84 7,941.08 7,796.30 7,894.23 8,189.30 7,742.64 

6 7,447.29 7,376.49 7,535.43 7,550.65 7,592.08 7,646.72 7,275.30 

7 7,232.81 7,137.19 7,380.34 7,171.33 7,239.81 7,814.13 6,983.97 

8 7,510.27 7,563.11 7,487.17 7,595.83 7,914.25 7,896.91 7,472.00 

9 6,771.11 6,780.42 6,833.99 6,792.17 6,890.50 7,026.31 6,747.02 

10 7,792.16 7,821.31 8,051.45 7,897.59 8,071.67 7,744.66 7,714.24 

11 6,506.42 6,542.59 6,933.40 6,538.46 6,773.85 6,972.02 6,498.73 

12 8,594.27 8,566.44 8,762.16 8,607.65 8,714.79 9,001.12 8,382.35 

13 7,847.28 7,817.55 8,163.41 7,845.06 7,823.25 8,526.62 7,513.61 

14 7,552.96 7,571.87 7,846.32 7,576.37 7,598.47 7,847.23 7,508.69 

15 * 7,040.39 *  * 7,040.39 * 7,177.01 7,079.17 7,616.42 7,136.32 7,040.39 

16 7,852.01 7,830.63 7,929.45 7,837.26 8,315.46 8,093.60 7,804.34 

17 7,357.13 7,353.42 7,492.69 7,328.63 7,381.37 7,380.08 7,301.47 

18 8,133.10 8,056.60 8,254.56 8,070.49 8,244.09 8,095.92 7,820.74 

19 8,281.50 8,216.80 8,339.41 8,202.17 8,218.23 8,560.44 7,839.24 

20 8,201.28 8,027.63 8,416.53 8,076.99 8,255.83 8,178.86 8,025.45 

 

The optimality gap of a solution with total cost 𝑇𝐶 is defined as: 100% ×

(1 −
𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑

𝑇𝐶
). This is an upper bound on the price of anarchy. The price of 

anarchy for all variations of Stage A for 𝛼 = 1 is presented in Table 12. In the last 

two rows we present the sample average of the results and its standard deviation.  
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Table 12: Prices of anarchy where 𝛼 = 1 – Stage A 

Instance 

number 

Vickrey 

auctions 

Sequential 

combinatorial 

auctions 

Vickrey 

auctions 

with 

small 

clusters 

Sequential 

negotiations 

with 100% of 

tasks working 

time cost as 

initial prize  

Sequential 

negotiations 

with 150% of 

tasks working 

time cost as 

initial prize 

Heuristic 

(baseline) 

1 6.12% 5.54% 6.69% 5.78% 5.89% 10.90% 

2 2.40% 2.23% 5.58% 2.79% 3.41% 8.40% 

3 0.00% 0.00% 3.04% 0.00% 4.95% 10.18% 

4 3.52% 4.51% 6.70% 3.90% 5.17% 11.64% 

5 7.61% 6.59% 9.03% 6.80% 7.00% 12.57% 

6 0.60% 1.67% 2.66% 1.00% 1.69% 8.40% 

7 7.30% 5.83% 9.96% 6.50% 8.32% 12.72% 

8 2.84% 1.90% 3.59% 2.57% 4.04% 6.05% 

9 8.89% 7.12% 7.79% 8.02% 8.34% 10.65% 

10 1.40% 2.18% 2.91% 1.40% 2.33% 5.13% 

11 3.04% 2.70% 1.60% 3.19% 3.03% 6.29% 

12 3.83% 2.60% 3.18% 2.82% 4.79% 8.12% 

13 6.97% 5.34% 7.56% 6.50% 6.66% 14.50% 

14 3.46% 2.92% 5.19% 3.34% 4.28% 10.04% 

15 6.60% 4.64% 7.02% 6.42% 10.00% 7.10% 

16 6.89% 6.84% 9.49% 6.87% 6.85% 15.35% 

17 6.38% 4.04% 5.19% 2.52% 5.50% 3.57% 

18 3.30% 3.79% 6.60% 3.27% 3.85% 10.23% 

19 6.21% 5.71% 9.71% 5.60% 6.65% 11.76% 

20 3.97% 3.06% 4.67% 3.52% 3.38% 7.83% 

Average 4.57% 3.96% 5.91% 4.14% 5.31% 9.57% 

Standard 

deviation 
0.58% 0.45% 0.59% 0.52% 0.50% 0.71% 

 

The price of anarchy for all variations of Stage A for 𝛼 = 3 is presented in Table 13. 

The structure of this table is the same as Table 12 above. 
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Table 13: Prices of Anarchy where 𝛼 = 3 – Stage A 

Instance 

number 

Vickrey 

auctions 

Sequential 

combinatorial 

auctions 

Vickrey 

auctions 

with 

small 

clusters 

Sequential 

negotiations 

with 100% of 

tasks working 

time cost as 

initial prize  

Sequential 

negotiations 

with 150% of 

tasks working 

time cost as 

initial prize 

Heuristic 

(baseline) 

1 3.06% 2.01% 5.84% 2.50% 2.53% 6.87% 

2 0.00% 0.00% 2.90% 0.40% 0.90% 8.72% 

3 1.29% 2.53% 7.01% 2.25% 1.20% 10.07% 

4 0.32% 0.00% 2.11% 0.32% 1.14% 8.05% 

5 0.28% 1.01% 2.50% 0.69% 1.92% 5.45% 

6 2.31% 1.37% 3.45% 3.65% 4.17% 4.86% 

7 3.44% 2.15% 5.37% 2.61% 3.53% 10.62% 

8 0.51% 1.20% 0.20% 1.63% 5.59% 5.38% 

9 0.36% 0.49% 1.27% 0.66% 2.08% 3.97% 

10 1.00% 1.37% 4.19% 2.32% 4.43% 0.39% 

11 0.12% 0.67% 6.27% 0.61% 4.06% 6.79% 

12 2.47% 2.15% 4.33% 2.62% 3.81% 6.87% 

13 4.25% 3.89% 7.96% 4.23% 3.96% 11.88% 

14 0.59% 0.83% 4.30% 0.89% 1.18% 4.31% 

15 0.00% 0.00% 1.90% 0.55% 7.56% 1.34% 

16 0.61% 0.34% 1.58% 0.42% 6.15% 3.57% 

17 0.76% 0.71% 2.55% 0.37% 1.08% 1.07% 

18 3.84% 2.93% 5.26% 3.09% 5.14% 3.40% 

19 5.34% 4.59% 6.00% 4.42% 4.61% 8.42% 

20 2.14% 0.03% 4.65% 0.64% 2.79% 1.88% 

Average 1.63% 1.41% 3.98% 1.74% 3.39% 5.70% 

Standard 

deviation 
0.37% 0.30% 0.48% 0.31% 0.44% 0.76% 

 

The average optimality gaps for 𝛼 = 3 are lower than for 𝛼 = 1. Therefore, it seems 

that all variations of Stage A perform better for 𝛼 = 3. This can be an indication to a 

weakness of the mechanism for 𝛼 = 1. Another possible explanation for the higher 

optimality gap may be the fact that the lower bounds for the  𝛼 = 1 instances are 

looser. In our view the latter explanation is more likely because while many of the 

𝛼 = 3 instances were solved to optimality there was only one optimal solution for the 

𝛼 = 1 instances. All of the proposed mechanisms performed well in both cases. The 

average optimality gap ranges between 3.96% to 5.91% in the 𝛼 = 1instances and 

between 1.41% and 3.98% in the 𝛼 = 3 instances. 

 

For both values of 𝛼, the sequential combinatorial auctions, sequential negotiations 

with 100% of tasks working time cost as initial prize and Vickrey auction produce 

good allocations compared to their alternatives.  

 

The sequential combinatorial auctions divide the problem into small number of 

relatively large sub-problems (𝑛𝑚𝑎𝑥 = 8 while 𝑛 = 20) and each sub-problem is 

solved exactly to optimality.  
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The procedure of the sequential negotiation announces all tasks to contractors (one 

contractor at a time) and the latter commits on a subset of the proposed tasks. Low 

initial prizes, combined with moderate increasing rate of the prizes, ensure that tasks 

are, in general, allocated efficiently. 

 

An interesting finding is concerned with the Vickrey auction. A priori, we would 

anticipate it to result in worse allocations than does the combinatorial auction or the 

sequential negotiation, since according to the Vickrey auction, only one task per 

auction is allocated based on the task's marginal cost. So, what can be the reason for 

the Vickrey auction to perform well? 

 

We try to find an answer to that question by examining the dynamics of the Vickrey 

auction in details. Table 14 summarizes the announced tasks, winning contractors, 

winning contractors' bids and second bid (winner's payment) for 𝛼 = 1 and for 𝛼 = 3 

for the 5th instance (as an example). In the last two rows we present the sample 

average and median in the experiments. 

 

Table 14: Dynamics of Vickrey auction for 𝛼 = 1 and for  𝛼 = 3 – 5th instance 

 𝛼 = 1 𝛼 = 3 

Task 

announced 

Winning 

contractor 

Lowest 

bid 

Second-

lowest bid 

𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑖𝑑

𝑓𝑖𝑟𝑠𝑡 𝑏𝑖𝑑
 

(%) 

Winning 

contractor 

Lowest 

bid 

Second-

lowest 

bid 

𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑖𝑑

𝑓𝑖𝑟𝑠𝑡 𝑏𝑖𝑑
 

(%) 

6 2 96.81 97.11 100.31% 4 107.8 112.31 104.18% 

17 3 126.15 138.97 110.16% 1 143.6 171.53 119.45% 

29 3 118 122.19 103.55% 1 128.95 157.38 122.05% 

16 1 84.95 88.95 104.71% 1 80.71 88.95 110.21% 

25 3 77 85.95 111.62% 2 77 116.76 151.64% 

8 4 128.38 130.08 101.32% 2 130.08 175.07 134.59% 

24 2 146.15 203.15 139.00% 2 141.95 218.01 153.58% 

27 3 44.52 46 103.32% 2 30.02 92.6 308.46% 

7 3 202.39 227.36 112.34% 2 179.26 346.52 193.31% 

35 3 284.73 331.38 116.38% 2 276.44 488.56 176.73% 

2 2 180.44 181.01 100.32% 1 203.97 245.82 120.52% 

5 1 171.48 178.83 104.29% 3 194.80 254.57 130.68% 

23 3 227.09 242.05 106.59% 3 152.62 436.14 285.77% 

10 3 98.58 206.32 209.29% 3 70.67 458.7 649.07% 

9 3 166.31 183.13 110.11% 3 131.94 344.45 261.07% 

13 1 415.57 442.95 106.59% 3 253.11 619.3 244.68% 

34 4 200.58 205.57 102.49% 1 256.53 263.36 102.66% 

37 2 121.04 121.64 100.50% 4 103.98 163.65 157.39% 

12 4 209.84 321.28 153.11% 4 137.12 386.7 282.02% 

14 2 255.07 266.11 104.33% 2 260.7 298.65 114.56% 

average  167.75 191.00 115.02%  153.06 271.95 196.13% 

median  156.23 182.07 105.65%  139.53 250.19 152.61% 

 

For 𝛼 = 3, considerable difference between the first and second bids exists. This 

indicates that the winning contractor's route is much closer to the allocated task than 

all the other routes. This is a property of the solution caused by the initial short routes 
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of contractors serving their pre-committed tasks. Given this setting, it's reasonable 

that the contractor whose route is the nearest to a task (to whom the task is allocated 

by the Vickrey auction) is in fact the contractor to whom the task should be allocated 

when the allocation problem is solved centrally. This is evident if we examine the 

actual optimal routing of the 5th instance compared to the initial routes of the 

contractors (previously displayed for this instance). These are given in Figure 9a – 9b. 

 

 
(a) 

 

 
(b) 

Figure 9a – 9b: Optimal routing for the 5th instance compared to the initial route 

The order by which tasks are announced in the Vickrey auction is also helpful in 

achieving good allocations for 𝛼 = 3. The next announced task is the nearest to the 

task previously announced. In an optimal solution for 𝛼 = 3, tasks located at the same 

area are generally allocated to the same contractor. Announcing tasks from the same 

area one after another brings us closer to the optimal solution since it allows the 

contractor that has committed to a certain task to commit to a nearby task and not, for 

example, to a faraway task. Hence, an allocation similar to the optimal one is 

generated.  

 

For 𝛼 = 1, the differences between the first bids and second bids are very small (for 

half of the tasks the difference is below 5%). This indicates that contractors' routes are 

long and intersect one another. In this case, one might expect that considering only 

one task at a time may be far from the optimal solution. However, based on the 

summary given above, it seems that even if a certain task was allocated to a contractor 

that is not the one serving it in the optimal solution, the cost does not increase 

considerably. This is the result of the similarity between the contractors' routes. Here 

as well, we note that announcing tasks one after another enables a contractor to 

commit on a set of nearby tasks (one by one) and by doing so to create a good 

solution (even if it is somewhat different from the optimal one).   

 

As anticipated, if the initial prizes in the sequential negotiation are high, tasks are 

allocated to contractors that are not the contractors that serve them in the optimal 

solution. This is evident both for 𝛼 = 1 and for 𝛼 = 3 when comparing between 

optimality gaps of the two versions of the sequential negotiation protocol. 
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The Vickrey auction with small clusters performs poorer than other options. This is 

the case since a contractor commits on a set of tasks in each iteration. This 

commitment lowers his ability to commit to the following tasks, even if these tasks 

are much closer to his original route. Hence, the generated allocation is relatively far 

from optimal.  

 

Naturally, the heuristic allocation that does not directly consider the pre-committed 

tasks of the contractors yields worse allocations. Nonetheless, considerable 

differences in its performance for 𝛼 = 1 and 𝛼 = 3 are noticed. For 𝛼 = 3, the pre-

committed tasks of each contractor are close to his locations. Allocating tasks to 

contractors on a basis of closeness to depot, as the heuristic does, is likely to maintain 

the routes short and the allocation close to optimal. This is clearly not the case for 

𝛼 = 1, where pre-committed tasks are spread almost randomly and often distant from 

their contractors.  

 

Value of cooperation 

Let us now consider the value of cooperation for all variations of Stage A. The value 

of cooperation is equal to the savings when the system applies the suggested 

mechanism compared to the default status. If the default status' cost is equal to 

𝑇𝐶(𝑑𝑒𝑓𝑎𝑢𝑙𝑡) and the cost of the suggested allocation is 𝑇𝐶 then the value of 

cooperation is equal to 𝑇𝐶(𝑑𝑒𝑓𝑎𝑢𝑙𝑡)  − 𝑇𝐶. Note that this expression has little since 

if it is not normalized with the maximal value of cooperation. The maximal value of 

cooperation is equal to the difference between the default status' cost and the optimal 

cost of the central planner, 𝑇𝐶(𝑑𝑒𝑓𝑎𝑢𝑙𝑡)  − 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑. In other words, the value 

of cooperation is to be defined as    

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑇𝐶(𝑑𝑒𝑓𝑎𝑢𝑙𝑡) −𝑇𝐶

𝑇𝐶(𝑑𝑒𝑓𝑎𝑢𝑙𝑡) −𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
. 

The value of cooperation for the 𝛼 = 1 and 𝛼 = 3 instances is presented in Tables 15 

and 16. In the last two rows we present the sample average of the results and its 

standard deviation.  
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Table 15: Value of cooperation for 𝛼 = 1 – Stage A 

Instance 

number 

Vickrey 

auctions 

Sequential 

combinatorial 

auctions 

Vickrey 

auctions 

with 

small 

clusters 

Sequential 

negotiations 

with 100% of 

tasks working 

time cost as 

initial prize  

Sequential 

negotiations 

with 150% of 

tasks working 

time cost as 

initial prize 

Heuristic 

(baseline) 

1 69.93% 72.93% 66.93% 71.70% 71.12% 43.52% 

2 87.86% 88.74% 70.78% 85.81% 82.54% 54.67% 

3 100.00% 100.00% 86.53% 100.00% 77.63% 51.37% 

4 77.71% 71.14% 56.16% 75.21% 66.71% 19.51% 

5 56.92% 63.15% 48.12% 61.88% 60.68% 24.89% 

6 97.14% 91.93% 87.00% 95.21% 91.83% 56.30% 

7 58.83% 67.60% 42.16% 63.62% 52.51% 23.73% 

8 82.81% 88.61% 78.06% 84.44% 75.18% 62.05% 

9 51.13% 61.59% 57.65% 56.31% 54.45% 40.27% 

10 91.71% 86.95% 82.44% 91.71% 86.05% 68.38% 

11 83.83% 85.69% 91.62% 82.99% 83.88% 65.35% 

12 68.31% 78.80% 73.89% 76.96% 59.99% 29.74% 

13 69.55% 77.07% 66.74% 71.76% 70.99% 31.03% 

14 78.50% 81.93% 67.15% 79.29% 73.17% 33.02% 

15 62.17% 73.92% 59.55% 63.27% 40.50% 59.05% 

16 68.19% 68.46% 54.95% 68.31% 68.41% 22.14% 

17 52.93% 70.89% 62.16% 82.14% 59.81% 74.40% 

18 79.21% 76.02% 57.02% 79.41% 75.62% 30.66% 

19 59.72% 63.18% 34.57% 63.93% 56.66% 18.96% 

20 78.30% 83.42% 74.27% 80.87% 81.63% 55.40% 

Average 73.74% 77.60% 65.89% 76.74% 69.47% 43.22% 

Standard 

deviation 
3.29% 2.44% 3.49% 2.70% 3.00% 4.12% 
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Table 16: Value of cooperation for 𝛼 = 3 – Stage A 

Instance 

number 

Vickrey 

auctions 

Sequential 

combinatorial 

auctions 

Vickrey 

auctions 

with 

small 

clusters 

Sequential 

negotiations 

with 100% of 

tasks working 

time cost as 

initial prize  

Sequential 

negotiations 

with 150% of 

tasks working 

time cost as 

initial prize 

Heuristic 

(baseline) 

1 83.50% 89.25% 67.58% 86.61% 86.43% 61.43% 

2 100.00% 100.00% 85.76% 98.08% 95.68% 54.44% 

3 94.06% 88.23% 65.84% 89.56% 94.50% 49.27% 

4 98.07% 100.00% 86.91% 98.07% 93.01% 46.79% 

5 98.30% 93.77% 84.39% 95.78% 88.08% 64.87% 

6 88.53% 93.25% 82.65% 81.64% 78.88% 75.23% 

7 73.63% 83.76% 57.99% 80.14% 72.88% 12.01% 

8 96.88% 92.58% 98.76% 89.91% 63.96% 65.38% 

9 98.19% 97.49% 93.47% 96.61% 89.23% 79.04% 

10 94.46% 92.38% 76.01% 86.95% 74.57% 97.84% 

11 99.45% 96.86% 68.92% 97.16% 80.33% 66.16% 

12 82.66% 84.94% 68.92% 81.57% 72.80% 49.37% 

13 80.13% 81.90% 61.30% 80.26% 81.56% 39.67% 

14 96.49% 94.99% 73.25% 94.64% 92.89% 73.18% 

15 100.00% 100.00% 86.11% 96.06% 41.43% 90.25% 

16 96.06% 97.83% 89.66% 97.28% 57.77% 76.10% 

17 95.21% 95.53% 83.56% 97.67% 93.13% 93.24% 

18 76.59% 82.32% 67.48% 81.28% 68.27% 79.37% 

19 67.90% 72.59% 63.69% 73.66% 72.49% 47.65% 

20 84.94% 99.81% 66.50% 95.59% 80.27% 86.86% 

Average 90.25% 91.87% 76.44% 89.93% 78.91% 65.41% 

Standard 

deviation 
2.26% 1.73% 2.70% 1.79% 3.20% 4.82% 

 

The value of cooperation is derived from the total cost for the contactors. Therefore, 

variations of Stage A that minimize the total cost maximize also the value of 

cooperation. These are the combinatorial auction, the Vickrey auction and the 

sequential negotiation with minimal initial prizes (roughly 90% of the maximal value 

for 𝛼 = 3 and 75% of the maximal value for 𝛼 = 1). Here too, we believe that the 

less tight lower bounds for 𝛼 = 1 result in the value of cooperation to be lower than 

for 𝛼 = 3. 

Value of considering pre-committed tasks 

The value of considering pre-committed tasks in the suggested mechanism is the 

difference in the value of cooperation between the heuristic allocation (which 

considers contractors' depots and company's tasks only) and the variations of Stage A 

that do consider pre-committed tasks. The ratio between the latter and the former is 

presented for 𝛼 = 1 and for 𝛼 = 3 in Tables 17-18. In the last three rows we present 

the sample average, sample median and standard deviation of the sample average. 
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Table 17: Value of considering pre-committed tasks for 𝛼 = 1 – Stage A 

Instance 

number 

Vickrey 

auctions 

Sequential 

combinatorial 

auctions 

Vickrey 

auctions 

with small 

clusters 

Sequential 

negotiations with 

100% of tasks 

working time cost 

as initial prize  

Sequential 

negotiations with 

150% of tasks 

working time cost 

as initial prize 

1 160.68% 167.56% 153.78% 164.73% 163.39% 

2 160.70% 162.33% 129.46% 156.97% 150.98% 

3 194.69% 194.69% 168.47% 194.69% 151.13% 

4 398.26% 364.59% 287.81% 385.45% 341.87% 

5 228.66% 253.69% 193.31% 248.57% 243.75% 

6 172.54% 163.31% 154.53% 169.12% 163.12% 

7 247.94% 284.88% 177.69% 268.12% 221.32% 

8 133.45% 142.80% 125.80% 136.09% 121.17% 

9 126.95% 152.93% 143.15% 139.82% 135.19% 

10 134.12% 127.16% 120.56% 134.12% 125.84% 

11 128.28% 131.12% 140.19% 126.99% 128.35% 

12 229.66% 264.93% 248.43% 258.73% 201.70% 

13 224.11% 248.33% 215.05% 231.21% 228.73% 

14 237.70% 248.09% 203.34% 240.10% 221.56% 

15 105.27% 125.17% 100.84% 107.14% 68.58% 

16 308.08% 309.27% 248.25% 308.61% 309.07% 

17 71.14% 95.27% 83.54% 110.40% 80.39% 

18 258.37% 247.96% 185.99% 259.01% 246.65% 

19 314.98% 333.24% 182.31% 337.17% 298.81% 

20 141.33% 150.56% 134.05% 145.98% 147.34% 

Average 198.85% 208.39% 169.83% 206.15% 187.45% 

median 181.12% 183.62% 161.50% 181.91% 163.26% 

Standard 

deviation 
18.66% 17.85% 12.00% 18.37% 17.25% 
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Table 18: Value of considering pre-committed tasks for 𝛼 = 3 – Stage A 

Instance 

number 

Vickrey 

auctions 

Sequential 

combinatorial 

auctions 

Vickrey 

auctions 

with small 

clusters 

Sequential 

negotiations with 

100% of tasks 

working time cost 

as initial prize  

Sequential 

negotiations with 

150% of tasks 

working time cost 

as initial prize 

1 135.92% 145.28% 110.01% 140.98% 140.69% 

2 183.67% 183.67% 157.51% 180.15% 175.74% 

3 190.89% 179.06% 133.62% 181.76% 191.78% 

4 209.59% 213.71% 185.73% 209.59% 198.78% 

5 151.52% 144.54% 130.09% 147.64% 135.77% 

6 117.68% 123.95% 109.86% 108.52% 104.84% 

7 612.83% 697.18% 482.68% 667.06% 606.65% 

8 148.19% 141.61% 151.07% 137.53% 97.84% 

9 124.24% 123.35% 118.27% 122.24% 112.90% 

10 96.55% 94.43% 77.69% 88.88% 76.22% 

11 150.33% 146.42% 104.17% 146.86% 121.42% 

12 167.42% 172.04% 139.60% 165.21% 147.45% 

13 202.00% 206.47% 154.54% 202.34% 205.61% 

14 131.86% 129.82% 100.10% 129.33% 126.94% 

15 110.81% 110.81% 95.42% 106.44% 45.91% 

16 126.23% 128.55% 117.82% 127.83% 75.92% 

17 102.12% 102.46% 89.62% 104.74% 99.88% 

18 96.49% 103.71% 85.02% 102.40% 86.01% 

19 142.49% 152.35% 133.67% 154.58% 152.13% 

20 97.79% 114.91% 76.56% 110.05% 92.41% 

Average 164.93% 170.72% 137.65% 166.71% 149.74% 

median 143.07% 139.21% 118.04% 139.25% 124.18% 

Standard 

deviation 
25.47% 29.45% 19.79% 28.12% 26.62% 

 

For all variations of Stage A, the value of considering pre-committed tasks decreases 

for 𝛼 = 3. This strengthens our conjecture that the heuristic does work better for 𝛼 =
3.  

 

Effect of Stage B 

Stage B enables the contractors to reduce their total cost by exchanging tasks, which 

allows, in turn, to increase the value of cooperation. Two versions of Stage B are 

considered: with money transfers (the complete version) and without money transfers 

(partial version).  

 

The optimality gaps of the generated solutions for all the combinations of the six 

variations of Stage A and two variations of Stage B (2 × 6 = 12) and for two values 

of 𝛼 (𝛼 = 1,3) are presented in Tables 19-20. In the last two rows we present the 

sample average of the results and its standard deviation. 
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The effect of Stage B can be evaluated by the improvement of the optimality gap as: 

100% × (1 −
𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑔𝑎𝑝 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝐵

𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑔𝑎𝑝 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝐴
). Clearly, this ratio is not defined if the 

optimality gap of Stage A is 0. In such a case there is no need to run Stage B. The 

Stage B effect for all variations of Stage A and Stage B and for both values of  𝛼 is 

presented in Tables 21-22. In the last two rows we present the sample average of the 

results and its standard deviation. 
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Table 19: Optimality gaps for 𝛼 = 1 – after Stage B 

Instance 

number 

Vickrey 

auctions 

without 

money 

transfers 

Vickrey 

auctions 

with 

money 

transfers 

Sequential 

combinatorial 

auctions 

without 

money 

transfers 

Sequential 

combinatorial 

auctions with 

money 

transfers 

Vickrey 

auctions 

with 

small 

clusters 

without 

money 

transfers 

Vickrey 

auctions 

with 

small 

clusters 

with 

money 

transfers 

Sequential 

negotiations  

with100% 

initial prize 

without 

money 

transfers 

Sequential 

negotiations 

with 100% 

initial prize 

with money 

transfers 

Sequential 

negotiations  

with150% 

initial prize 

without 

money 

transfers 

Sequential 

negotiations  

with150% 

initial prize 

with money 

transfers 

Heuristic 

(baseline) 

without 

money 

transfers 

Heuristic 

(baseline) 

with 

money 

transfers 

1 6.12% 4.98% 5.54% 5.35% 6.51% 6.08% 4.85% 4.77% 5.35% 4.24% 6.78% 4.24% 

2 2.40% 2.40% 2.23% 2.23% 4.30% 3.45% 2.79% 2.79% 3.41% 2.50% 4.16% 3.76% 

3 0.00% 0.00% 0.00% 0.00% 3.04% 1.09% 0.00% 0.00% 4.95% 3.05% 10.00% 2.10% 

4 3.52% 3.52% 4.51% 3.92% 5.17% 3.86% 3.90% 3.52% 5.17% 4.43% 4.45% 3.50% 

5 7.38% 6.48% 6.59% 6.44% 8.01% 7.06% 6.80% 6.42% 6.73% 6.32% 8.96% 8.30% 

6 0.60% 0.60% 1.67% 1.45% 2.20% 2.00% 1.00% 1.00% 1.69% 1.69% 3.00% 1.84% 

7 6.98% 5.84% 5.83% 5.66% 8.30% 7.11% 6.00% 5.55% 8.32% 7.13% 7.89% 5.81% 

8 2.84% 2.84% 1.90% 1.90% 3.59% 2.53% 2.57% 2.57% 4.04% 3.07% 4.69% 3.39% 

9 8.89% 7.94% 7.12% 7.07% 7.53% 7.17% 8.02% 7.43% 8.34% 6.48% 8.75% 7.57% 

10 1.40% 1.40% 1.90% 1.43% 2.91% 1.76% 1.40% 1.40% 2.33% 1.63% 4.28% 1.43% 

11 3.04% 2.58% 2.70% 1.24% 1.60% 1.37% 2.75% 2.75% 2.77% 1.99% 4.37% 2.31% 

12 3.83% 3.83% 2.60% 2.01% 2.22% 2.22% 2.82% 2.74% 4.79% 2.92% 5.92% 4.48% 

13 6.47% 6.47% 5.34% 5.08% 6.02% 5.77% 6.14% 5.83% 6.66% 6.14% 9.80% 5.50% 

14 2.95% 2.66% 2.53% 2.53% 5.19% 3.70% 3.34% 2.41% 4.28% 2.57% 6.70% 2.71% 

15 6.60% 4.75% 4.64% 4.64% 7.02% 5.87% 6.42% 5.32% 9.67% 6.12% 6.21% 4.93% 

16 6.89% 6.89% 6.84% 6.84% 9.25% 8.18% 6.87% 6.85% 6.85% 6.83% 13.77% 8.83% 

17 5.86% 3.50% 4.04% 3.60% 5.19% 3.14% 2.52% 2.52% 3.28% 2.59% 3.57% 3.20% 

18 3.30% 3.30% 3.79% 3.70% 6.26% 3.80% 3.27% 3.27% 3.85% 3.38% 5.57% 3.62% 

19 6.21% 5.54% 5.71% 5.71% 8.27% 5.72% 5.60% 5.12% 6.65% 5.13% 7.64% 5.83% 

20 3.78% 3.71% 3.06% 3.01% 3.61% 3.13% 2.98% 2.91% 3.38% 3.01% 3.40% 2.38% 

Average 4.45% 3.96% 3.93% 3.69% 5.31% 4.25% 4.00% 3.76% 5.13% 4.06% 6.50% 4.29% 

Standard 

deviation 
0.56% 0.49% 0.46% 0.48% 0.53% 0.50% 0.50% 0.47% 0.50% 0.43% 0.63% 0.49% 
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Table 20: Optimality gaps for 𝛼 = 3 – after Stage B 

Instance 

number 

Vickrey 

auctions 

without 

money 

transfers 

Vickrey 

auctions 

with 

money 

transfers 

Sequential 

combinatorial 

auctions 

without 

money 

transfers 

Sequential 

combinatorial 

auctions with 

money 

transfers 

Vickrey 

auctions 

with 

small 

clusters 

without 

money 

transfers 

Vickrey 

auctions 

with 

small 

clusters 

with 

money 

transfers 

Sequential 

negotiations  

with100% 

initial prize 

without 

money 

transfers 

Sequential 

negotiations 

with 100% 

initial prize 

with money 

transfers 

Sequential 

negotiations  

with150% 

initial prize 

without 

money 

transfers 

Sequential 

negotiations  

with150% 

initial prize 

with money 

transfers 

Heuristic 

(baseline) 

without 

money 

transfers 

Heuristic 

(baseline) 

with 

money 

transfers 

1 3.06% 2.08% 2.01% 2.01% 4.18% 4.17% 1.70% 1.70% 2.53% 2.22% 5.34% 1.84% 

2 0.00% 0.00% 0.00% 0.00% 2.90% 2.70% 0.40% 0.40% 0.90% 0.74% 6.10% 1.39% 

3 1.29% 1.29% 2.53% 2.53% 7.01% 4.24% 2.25% 1.40% 1.20% 1.05% 3.80% 1.10% 

4 0.32% 0.32% 0.00% 0.00% 2.11% 2.11% 0.32% 0.32% 1.14% 1.14% 3.49% 2.55% 

5 0.00% 0.00% 0.42% 0.42% 2.50% 2.41% 0.69% 0.37% 1.92% 1.63% 5.45% 4.37% 

6 2.31% 2.11% 1.37% 1.37% 3.45% 2.50% 3.65% 2.44% 4.17% 3.93% 3.87% 1.91% 

7 3.44% 2.74% 2.15% 1.71% 5.37% 3.86% 2.61% 2.61% 3.53% 3.04% 4.42% 1.62% 

8 0.51% 0.51% 1.20% 0.98% 0.20% 0.20% 1.63% 1.63% 5.59% 0.88% 4.12% 0.45% 

9 0.36% 0.29% 0.49% 0.49% 1.27% 1.00% 0.66% 0.58% 2.08% 0.23% 2.40% 0.32% 

10 1.00% 1.00% 1.37% 0.65% 1.65% 1.94% 2.32% 1.15% 3.31% 1.79% 0.39% 0.39% 

11 0.12% 0.12% 0.67% 0.67% 6.27% 4.46% 0.61% 0.61% 1.05% 1.05% 5.19% 0.39% 

12 1.74% 1.74% 2.15% 2.15% 3.15% 3.15% 2.47% 1.70% 3.81% 1.65% 2.50% 1.95% 

13 4.25% 3.92% 3.59% 3.36% 7.61% 5.27% 3.45% 3.45% 3.96% 3.19% 8.57% 3.19% 

14 0.59% 0.59% 0.83% 0.27% 1.92% 0.43% 0.39% 0.39% 1.18% 1.18% 1.19% 0.75% 

15 0.00% 0.00% 0.00% 0.00% 1.90% 1.53% 0.55% 0.55% 4.38% 0.65% 0.59% 0.59% 

16 0.61% 0.61% 0.34% 0.34% 1.58% 1.58% 0.42% 0.42% 1.13% 0.41% 2.85% 1.54% 

17 0.76% 0.76% 0.71% 0.71% 2.55% 1.86% 0.37% 0.37% 1.08% 1.08% 1.07% 0.08% 

18 3.84% 3.84% 2.93% 2.93% 4.26% 4.26% 3.09% 3.09% 5.14% 3.50% 3.40% 2.78% 

19 4.79% 4.68% 4.59% 4.59% 4.87% 4.53% 4.42% 4.41% 4.61% 4.59% 5.37% 4.69% 

20 2.14% 1.31% 0.03% 0.03% 4.65% 1.29% 0.00% 0.00% 2.79% 1.76% 0.26% 0.26% 

Average 1.56% 1.40% 1.37% 1.26% 3.47% 2.67% 1.60% 1.38% 2.78% 1.79% 3.52% 1.61% 

Standard 

deviation 
0.36% 0.33% 0.30% 0.30% 0.46% 0.34% 0.31% 0.28% 0.36% 0.28% 0.50% 0.31% 
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Table 21: Improvement ratio for 𝛼 = 1 – after Stage B 

Instance 

number 

Vickrey 

auctions 

without 

money 

transfers 

Vickrey 

auctions 

with 

money 

transfers 

Sequential 

combinatorial 

auctions 

without 

money 

transfers 

Sequential 

combinatorial 

auctions with 

money 

transfers 

Vickrey 

auctions 

with 

small 

clusters 

without 

money 

transfers 

Vickrey 

auctions 

with 

small 

clusters 

with 

money 

transfers 

Sequential 

negotiations  

with100% 

initial prize 

without 

money 

transfers 

Sequential 

negotiations 

with 100% 

initial prize 

with money 

transfers 

Sequential 

negotiations  

with150% 

initial prize 

without 

money 

transfers 

Sequential 

negotiations  

with150% 

initial prize 

with money 

transfers 

Heuristic 

(baseline) 

without 

money 

transfers 

Heuristic 

(baseline) 

with 

money 

transfers 

1 0.00% 18.59% 0.00% 3.49% 2.69% 9.03% 16.06% 17.47% 9.23% 27.95% 37.86% 61.08% 

2 0.00% 0.00% 0.00% 0.00% 22.96% 38.25% 0.00% 0.00% 0.00% 26.76% 50.47% 55.22% 

3 0.00% 0.00% 0.00% 0.00% 0.00% 64.30% 0.00% 0.00% 0.00% 38.49% 1.80% 79.32% 

4 0.00% 0.00% 0.00% 13.09% 22.87% 42.39% 0.00% 9.65% 0.00% 14.38% 61.75% 69.96% 

5 3.03% 14.92% 0.00% 2.15% 11.26% 21.77% 0.00% 5.59% 3.85% 9.63% 28.68% 33.93% 

6 0.00% 0.00% 0.00% 12.66% 17.07% 24.76% 0.00% 0.00% 0.00% 0.00% 64.34% 78.07% 

7 4.34% 20.00% 0.00% 3.00% 16.58% 28.56% 7.76% 14.60% 0.00% 14.32% 37.99% 54.35% 

8 0.00% 0.00% 0.00% 0.00% 0.00% 29.60% 0.00% 0.00% 0.00% 23.98% 22.58% 43.92% 

9 0.00% 10.68% 0.00% 0.71% 3.41% 8.01% 0.00% 7.34% 0.00% 22.23% 17.88% 28.96% 

10 0.00% 0.00% 12.95% 34.44% 0.00% 39.62% 0.00% 0.00% 0.00% 30.01% 16.41% 72.10% 

11 0.00% 15.06% 0.00% 53.88% 0.00% 14.52% 13.73% 13.73% 8.54% 34.22% 30.49% 63.35% 

12 0.00% 0.00% 0.00% 22.70% 30.34% 30.34% 0.00% 2.56% 0.00% 38.96% 27.09% 44.85% 

13 7.16% 7.16% 0.00% 4.92% 20.46% 23.75% 5.55% 10.28% 0.00% 7.78% 32.44% 62.05% 

14 14.78% 23.12% 13.35% 13.35% 0.00% 28.63% 0.00% 27.74% 0.00% 39.96% 33.21% 73.00% 

15 0.00% 27.93% 0.00% 0.00% 0.00% 16.45% 0.00% 17.10% 3.28% 38.79% 12.59% 30.61% 

16 0.00% 0.00% 0.00% 0.00% 2.56% 13.87% 0.00% 0.26% 0.00% 0.27% 10.30% 42.45% 

17 8.20% 45.13% 0.00% 11.08% 0.00% 39.45% 0.00% 0.00% 40.26% 52.85% 0.00% 10.46% 

18 0.00% 0.00% 0.00% 2.51% 5.06% 42.44% 0.00% 0.00% 0.00% 12.26% 45.60% 64.63% 

19 0.00% 10.87% 0.00% 0.00% 14.92% 41.15% 0.00% 8.51% 0.00% 22.96% 35.06% 50.40% 

20 4.74% 6.64% 0.00% 1.75% 22.76% 33.06% 15.14% 17.26% 0.00% 11.02% 56.59% 69.59% 

Average 2.11% 10.00% 1.31% 8.99% 9.65% 29.50% 2.91% 7.61% 3.26% 23.34% 31.16% 54.42% 

Standard 

deviation 
0.91% 2.82% 0.93% 3.19% 2.36% 3.16% 1.29% 1.88% 2.10% 3.33% 4.24% 4.25% 

 



73 

 

Table 22: Improvement ratio for 𝛼 = 3 – after Stage B 

Instance 

number 

Vickrey 

auctions 

without 

money 

transfers 

Vickrey 

auctions 

with 

money 

transfers 

Sequential 

combinatorial 

auctions 

without 

money 

transfers 

Sequential 

combinatorial 

auctions with 

money 

transfers 

Vickrey 

auctions 

with 

small 

clusters 

without 

money 

transfers 

Vickrey 

auctions 

with 

small 

clusters 

with 

money 

transfers 

Sequential 

negotiations  

with100% 

initial prize 

without 

money 

transfers 

Sequential 

negotiations 

with 100% 

initial prize 

with money 

transfers 

Sequential 

negotiations  

with150% 

initial prize 

without 

money 

transfers 

Sequential 

negotiations  

with150% 

initial prize 

with money 

transfers 

Heuristic 

(baseline) 

without 

money 

transfers 

Heuristic 

(baseline) 

with 

money 

transfers 

1 0.00% 31.94% 0.00% 0.00% 28.40% 28.65% 31.75% 31.75% 0.00% 12.25% 22.29% 73.21% 

2 0.00% 0.00% 0.00% 0.00% 0.00% 7.04% 0.00% 0.00% 0.00% 17.50% 30.08% 84.08% 

3 0.00% 0.00% 0.00% 0.00% 0.00% 39.59% 0.00% 37.75% 0.00% 12.20% 62.24% 89.11% 

4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 56.70% 68.29% 

5 100.00% 100.00% 58.07% 58.07% 0.00% 3.41% 0.00% 46.81% 0.00% 15.14% 0.00% 19.81% 

6 0.00% 8.49% 0.00% 0.00% 0.00% 27.50% 0.00% 33.00% 0.00% 5.84% 20.25% 60.74% 

7 0.00% 20.47% 0.00% 20.19% 0.00% 28.05% 0.00% 0.00% 0.00% 13.96% 58.40% 84.77% 

8 0.00% 0.00% 0.00% 18.46% 0.00% 0.00% 0.00% 0.00% 0.00% 84.34% 23.47% 91.72% 

9 0.00% 18.17% 0.00% 0.00% 0.00% 21.32% 0.00% 12.57% 0.00% 89.19% 39.65% 92.03% 

10 0.00% 0.00% 0.00% 52.75% 60.68% 53.76% 0.00% 50.33% 25.17% 59.57% 0.00% 0.00% 

11 0.00% 0.00% 0.00% 0.00% 0.00% 28.86% 0.00% 0.00% 74.06% 74.06% 23.60% 94.31% 

12 29.33% 29.33% 0.00% 0.00% 27.38% 27.38% 5.69% 35.19% 0.00% 56.84% 63.66% 71.68% 

13 0.00% 7.90% 7.60% 13.63% 4.46% 33.82% 18.35% 18.35% 0.00% 19.37% 27.85% 73.14% 

14 0.00% 0.00% 0.00% 67.43% 55.48% 90.09% 56.41% 56.41% 0.00% 0.00% 72.41% 82.72% 

15 0.00% 0.00% 0.00% 0.00% 0.00% 19.77% 0.00% 0.00% 42.05% 91.47% 56.28% 56.28% 

16 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 81.67% 93.26% 20.35% 57.00% 

17 0.00% 0.00% 0.00% 0.00% 0.00% 27.28% 0.00% 0.00% 0.00% 0.00% 0.00% 92.59% 

18 0.00% 0.00% 0.00% 0.00% 18.89% 18.89% 0.00% 0.00% 0.00% 31.77% 0.00% 18.29% 

19 10.30% 12.32% 0.00% 0.00% 18.76% 24.46% 0.00% 0.38% 0.00% 0.37% 36.31% 44.34% 

20 0.00% 38.91% 0.00% 0.00% 0.00% 72.17% 100.00% 100.00% 0.00% 36.81% 86.35% 86.35% 

Average 6.98% 13.38% 3.28% 11.53% 10.70% 27.60% 10.61% 21.13% 11.15% 35.70% 35.00% 67.02% 

Standard 

deviation 
5.26% 5.48% 2.98% 4.99% 4.33% 5.33% 5.84% 6.28% 5.78% 7.93% 5.98% 6.30% 
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Tables 19-20 show that applying Stage B can significantly improve the tasks’ 

allocation obtained in Stage A. As expected, allowing money transfers in Stage B 

results in a consistently larger improvement compared with the simpler version where 

no money transfers are allowed. The combinatorial auction method remains the best 

protocol for Stage A, even after these improvements. 

 

From Tables 21-22 we observe that, as expected, the contribution of Stage B, is 

significant if the allocation of Stage A is far from the optimum. For the Vickrey 

auction with small clusters, the effect of Stage B is approximately 10% without 

money transfers and 30% with money transfers. The heuristic allocation improves 

even more. The improvement ratio of Stage B is more than 30% without money 

transfers and well over 50% with money transfers (for 𝛼 = 3 it is equal to 67%). In 

fact, applying the heuristic method and then Stage B results in a fairly good allocation 

for both values of 𝛼. The value of considering pre-committed tasks in this case 

decreases significantly.  

 

Profitability of Outsourcing 

So far, we have seen that the suggested mechanism yields good allocation of tasks and 

hence creates a large value of cooperation. What we have not discussed yet is the 

distribution of this value between the parties. This distribution is determined by the 

sum of rewards the contractors are paid for their services in each variation of Stage A. 

 

Profitability of outsourcing from the company's perspective can be evaluated by 

comparing the sum of rewards it pays the contractors with its default cost when no 

outsourcing is applied. The sum of rewards paid in each variation of Stage A (except 

the heuristic allocation) for 𝛼 = 1 and for 𝛼 = 3 is presented in Table 23. 
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Table 23: Sum of rewards paid in all variations of Stage A for 𝛼 = 1 and for 𝛼 = 3 

  𝛼 = 1 𝛼 = 3 

Instance 

number 

Total cost 

for the 

company 

without 

outscoring 

Vickrey 

auctions 

Sequential 

combinatorial 

auctions 

Vickrey 

auctions 

with 

small 

clusters 

Sequential 

negotiations 

with 100% of 

tasks working 

time cost as 

initial prize  

Sequential 

negotiations 

with 150% of 

tasks working 

time cost as 

initial prize 

Vickrey 

auctions 

Sequential 

combinatorial 

auctions 

Vickrey 

auctions 

with 

small 

clusters 

Sequential 

negotiations 

with 100% of 

tasks working 

time cost as 

initial prize  

Sequential 

negotiations 

with 150% of 

tasks working 

time cost as 

initial prize 

1 4,392.91 4,986.97 4,076.66 3,941.50 3,333.79 3,791.93 4,491.27 4,191.61 4,008.68 3,250.98 3,758.82 

2 3,887.04 3,889.50 3,468.10 3,372.46 2,645.86 3,299.75 4,714.52 3,743.33 3,557.90 2,531.88 3,067.73 

3 4,000.97 4,417.05 3,633.19 3,987.20 2,523.39 3,459.84 4,271.20 3,866.12 3,748.33 2,768.00 3,248.44 

4 3,753.33 3,502.63 3,432.49 3,366.05 2,855.76 3,312.19 4,598.11 3,914.50 4,131.26 2,708.14 3,194.07 

5 4,311.26 3,820.03 4,059.55 3,805.90 3,422.42 3,950.19 5,439.03 4,308.69 4,181.19 3,264.02 3,837.11 

6 3,930.30 4,881.09 3,748.99 3,671.98 2,640.33 3,095.22 4,400.93 3,591.28 3,500.52 2,866.88 3,267.82 

7 3,708.15 3,512.09 3,386.37 3,500.59 3,005.65 3,759.77 3,744.23 3,657.88 3,962.04 3,127.90 3,718.89 

8 4,285.52 4,758.86 4,218.43 4,324.04 3,297.29 3,885.36 5,178.90 4,602.44 4,404.32 3,338.27 4,319.52 

9 3,988.73 3,735.99 3,523.08 3,764.14 3,307.53 3,840.50 4,607.65 3,984.34 3,815.85 2,841.17 3,375.95 

10 4,474.78 4,328.95 4,263.55 4,051.55 3,356.29 3,878.68 4,709.60 4,633.20 4,494.02 3,426.24 4,078.84 

11 3,609.71 3,679.59 3,199.72 3,423.01 2,549.26 3,126.29 4,673.00 3,773.20 3,606.34 2,356.10 2,973.98 

12 4,031.77 4,512.44 3,999.00 3,982.84 3,363.94 3,808.93 4,740.36 3,967.82 3,798.39 3,227.94 3,596.76 

13 3,858.65 3,441.84 3,425.31 3,377.40 2,744.18 3,167.43 3,440.94 3,460.56 3,510.05 2,616.49 3,162.01 

14 3,866.91 3,444.29 3,367.07 3,302.48 2,899.54 3,383.21 3,637.70 3,731.07 3,341.36 2,829.65 3,240.36 

15 3,400.73 3,436.71 3,339.25 3,324.04 2,703.58 3,876.95 4,740.53 3,777.64 3,725.54 2,571.42 4,018.56 

16 4,255.02 4,634.42 3,891.81 3,942.08 3,128.61 3,532.51 5,536.77 4,535.71 4,432.11 3,277.81 4,616.91 

17 3,843.58 4,142.57 3,404.01 3,585.66 3,046.29 3,674.46 4,172.28 3,909.49 3,737.89 2,866.56 3,500.20 

18 3,752.76 3,521.20 3,540.56 3,314.30 2,754.52 3,269.81 4,553.71 3,672.47 3,774.98 2,811.95 3,344.43 

19 3,700.60 3,592.03 3,547.10 3,376.92 3,006.45 3,844.58 4,090.82 3,711.06 3,409.69 2,838.60 3,441.91 

20 4,416.40 4,054.22 4,225.46 3,958.63 3,326.25 4,053.79 5,232.09 4,666.76 4,573.02 3,444.88 4,184.35 

 

Sum of rewards as a percentage of the company's original cost without outsourcing is presented in Table 24. In the last three rows we present the 

sample average, sample median and standard deviation of the sample average. 
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Table 24: Sum of the rewards paid in all variations of Stage A as a percentage of the company's original cost 

 𝛼 = 1 𝛼 = 3 

Instance 

number 

Vickrey 

auctions 

Sequential 

combinatorial 

auctions 

Vickrey 

auctions 

with small 

clusters 

Sequential 

negotiations 

with 100% of 

tasks working 

time cost as 

initial prize  

Sequential 

negotiations 

with 150% of 

tasks working 

time cost as 

initial prize 

Vickrey 

auctions 

Sequential 

combinatorial 

auctions 

Vickrey 

auctions 

with small 

clusters 

Sequential 

negotiations 

with 100% of 

tasks working 

time cost as 

initial prize  

Sequential 

negotiations 

with 150% of 

tasks working 

time cost as 

initial prize 

1 113.52% 92.80% 89.72% 75.89% 86.32% 102.24% 95.42% 91.25% 74.01% 85.57% 

2 100.06% 89.22% 86.76% 68.07% 84.89% 121.29% 96.30% 91.53% 65.14% 78.92% 

3 110.40% 90.81% 99.66% 63.07% 86.48% 106.75% 96.63% 93.69% 69.18% 81.19% 

4 93.32% 91.45% 89.68% 76.09% 88.25% 122.51% 104.29% 110.07% 72.15% 85.10% 

5 88.61% 94.16% 88.28% 79.38% 91.62% 126.16% 99.94% 96.98% 75.71% 89.00% 

6 124.19% 95.39% 93.43% 67.18% 78.75% 111.97% 91.37% 89.06% 72.94% 83.14% 

7 94.71% 91.32% 94.40% 81.06% 101.39% 100.97% 98.64% 106.85% 84.35% 100.29% 

8 111.05% 98.43% 100.90% 76.94% 90.66% 120.85% 107.40% 102.77% 77.90% 100.79% 

9 93.66% 88.33% 94.37% 82.92% 96.28% 115.52% 99.89% 95.67% 71.23% 84.64% 

10 96.74% 95.28% 90.54% 75.00% 86.68% 105.25% 103.54% 100.43% 76.57% 91.15% 

11 101.94% 88.64% 94.83% 70.62% 86.61% 129.46% 104.53% 99.91% 65.27% 82.39% 

12 111.92% 99.19% 98.79% 83.44% 94.47% 117.58% 98.41% 94.21% 80.06% 89.21% 

13 89.20% 88.77% 87.53% 71.12% 82.09% 89.17% 89.68% 90.97% 67.81% 81.95% 

14 89.07% 87.07% 85.40% 74.98% 87.49% 94.07% 96.49% 86.41% 73.18% 83.80% 

15 101.06% 98.19% 97.74% 79.50% 114.00% 139.40% 111.08% 109.55% 75.61% 118.17% 

16 108.92% 91.46% 92.65% 73.53% 83.02% 130.12% 106.60% 104.16% 77.03% 108.51% 

17 107.78% 88.56% 93.29% 79.26% 95.60% 108.55% 101.71% 97.25% 74.58% 91.07% 

18 93.83% 94.35% 88.32% 73.40% 87.13% 121.34% 97.86% 100.59% 74.93% 89.12% 

19 97.07% 95.85% 91.25% 81.24% 103.89% 110.54% 100.28% 92.14% 76.71% 93.01% 

20 91.80% 95.68% 89.63% 75.32% 91.79% 118.47% 105.67% 103.55% 78.00% 94.75% 

Average 100.94% 92.75% 92.36% 75.40% 90.87% 114.61% 100.29% 97.85% 74.12% 90.59% 

median 98.56% 92.13% 91.95% 75.60% 87.87% 116.55% 99.92% 97.12% 74.76% 89.06% 

Standard 

deviation 
2.28% 0.85% 1.02% 1.25% 1.91% 2.90% 1.24% 1.57% 1.10% 2.28% 
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The sum of the prizes the company pays the contractors increases as 𝛼 increases for 

the three sealed-bid auctions, i.e., for Vickrey, sequential combinatorial and Vickrey 

auction done with small clusters. This is true, since payments for the sealed-bid 

auctions are determined by the winner's contribution to the system and that the 

contribution is much higher if contractors' routes are small and separate, i.e. for large 

values of 𝛼. However, 𝛼 does not significantly affect the sum of prizes awarded in the 

sequential negotiation mechanism.  

 

For 𝛼 = 1, all the variations of Stage A other than the vickrey auction are profitable 

for the company, since the sum of prizes it pays the contractors is smaller than its 

default cost without outsourcing. Sequential negotiation with low initial prizes is the 

most profitable allocation method from the company's perspective. For 𝛼 = 3, the 

sequential combinatorial auction is marginally no longer profitable for the company. 

However, note that this conclusion is based on a conservative assumption saying that 

the cost structure of the company is identical to those of the contractors. In practice, 

most of the companies outsource tasks that are out of their core business because they 

believe that these tasks can be carried out more efficiently by specialized contractors. 

 

Vickrey auction, for both values of 𝛼, is the least profitable for the company. For both 

values of 𝛼, the sum of prizes that the company pays the contractors is larger than its 

original cost. What can be the reason? 

 

Vickrey auction yields the largest sum of rewards to contractors (for both values of 

𝛼), since the reward, which is the second-lowest bid, is equal to the marginal cost of 

one task. Sum of the marginal costs, that is the sum of rewards the company pays, is 

usually significantly greater than the cost of a combined set of tasks (certainly when 

these tasks are located closely). When the company does offer a set of tasks jointly, 

then the sum of prizes it pays decreases, even if the payment is set by the Vickrey 

procedure, as is the case for Vickrey auction done with small clusters.         

 

Let us now compare the profits of the company and the contractors for both values of 

𝛼. The profit for the contractors is equal to the sum of prizes net of their increase in 

costs. The profit for the company is equal to its original cost without outsourcing net 

of the sum of prizes it awards to the contractors. These are presented in Tables 25-26. 

The sum of the profit for the company and the profit for contractors is equal to the 

value of cooperation. 

 

Note: in the rest of this section we consider profits for contractors and profits for the 

company generated after stage A. Stage B increases the value of cooperation and 

hence, the contractors profits. However, we do not address it in this section since it 

does not change the company's profits.  
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Table 25: Profits of the company and the contractors - 𝛼 = 1 

 

Vickrey auctions 
Sequential combinatorial 

auctions 

Vickrey auctions with 

small clusters 

Sequential negotiations with 100% 

of tasks working time cost as initial 

prize 

Sequential negotiations with 150% 

of tasks working time cost as initial 

prize 

Instance 

number 
company contractors company contractors company contractors company contractors company contractors 

1 -594.06 1772.92 316.25 913.09 451.41 676.8 1059.12 149.43 600.98 597.80 

2 -2.46 1433.94 418.94 1027.03 514.58 638.62 1241.18 157.02 587.29 757.56 

3 -416.08 2034.95 367.78 1251.09 13.77 1387.07 1477.58 141.29 541.13 715.58 

4 250.7 823.84 320.84 662.86 387.28 389.26 897.57 142.42 441.14 481.27 

5 491.23 464.95 251.71 809.16 505.36 303.01 888.84 150.61 361.07 658.21 

6 -950.792 2397.3 181.31 1187.738 258.32 1037.198 1289.97 127.86 835.08 532.40 

7 196.06 612.174 321.778 606.846 207.56 371.654 702.50 171.51 -51.62 773.06 

8 -473.34 1618.38 67.09 1158.19 -38.52 1117.92 988.23 179.42 400.16 639.50 

9 252.74 512.57 465.65 456.28 224.59 638.38 681.20 161.70 148.23 666.73 

10 145.83 1147.84 211.23 1015.29 423.23 739.68 1118.49 175.18 596.10 617.72 

11 -69.88 1265.72 409.99 812.38 186.7 1120.23 1060.45 123.39 483.42 713.12 

12 -480.666 1221.096 32.769 821.368 48.927 752.03 667.83 166.35 222.84 427.45 

13 416.81 821.41 433.34 938.66 481.25 706.92 1114.47 162.98 691.22 572.50 

14 422.62 681.73 499.84 652.75 564.43 380.25 967.37 148.10 483.70 545.65 

15 -35.98 858.046 61.48 915.976 76.69 710.736 697.15 139.52 -476.22 1011.72 

16 -379.4 1688.22 363.21 950.68 312.94 741.7 1126.41 184.64 722.51 590.53 

17 -298.99 907.52 439.57 375.43 257.92 456.69 797.29 147.10 169.12 518.58 

18 231.56 894.99 212.2 868.99 438.46 372.51 998.24 131.11 482.95 592.53 

19 108.57 698.38 153.5 700.23 323.68 143.38 694.15 169.65 -143.98 909.51 

20 362.18 852.64 190.94 1103.27 457.77 694.49 1090.15 164.62 362.61 903.88 
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Table 26: Profits of the company and for the contractors - 𝛼 = 3 

 

Vickrey auctions 
Sequential combinatorial 

auctions 

Vickrey auctions with 

small clusters 

Sequential negotiations with 100% 

of tasks working time cost as initial 

prize 

Sequential negotiations with 150% 

of tasks working time cost as initial 

prize 

Instance 

number 
company contractors company contractors company contractors company contractors company contractors 

1 -98.36 1347.79 201.30 1134.17 384.23 627.06 1141.93 154.04 634.09 659.23 

2 -827.48 2342.59 143.71 1371.40 329.14 970.19 1355.16 130.92 819.31 630.40 

3 -270.23 1723.00 134.85 1227.91 252.64 764.30 1232.97 150.36 752.53 707.02 

4 -844.78 2035.87 -161.17 1375.68 -377.93 1433.42 1045.19 145.90 559.26 570.36 

5 -1127.77 2377.78 2.57 1189.86 130.07 943.12 1047.24 170.73 474.15 645.89 

6 -470.63 1798.20 339.02 1059.35 429.78 809.65 1063.42 160.79 662.48 520.30 

7 -36.08 730.76 50.27 740.02 -253.89 801.04 580.25 175.90 -10.74 698.42 

8 -893.38 2082.30 -316.92 1453.00 -118.80 1330.82 947.25 156.11 -34.00 818.94 

9 -618.92 1927.05 4.39 1294.44 172.88 1072.38 1147.56 139.52 612.78 575.97 

10 -234.82 1562.36 -158.42 1456.81 -19.24 1087.49 1048.54 173.57 395.94 652.09 

11 -1063.29 2454.05 -163.49 1518.07 3.37 960.40 1253.61 105.11 635.73 487.60 

12 -708.59 1718.86 63.95 974.15 233.38 609.00 803.83 193.06 435.01 454.74 

13 417.71 927.62 398.09 976.97 348.60 680.60 1242.16 105.39 696.64 672.72 

14 229.21 988.60 135.84 1063.06 525.55 398.90 1037.26 157.14 626.55 545.75 

15 -1339.80 2323.33 -376.91 1360.43 -324.81 1171.71 829.31 115.43 -617.83 1025.33 

16 -1281.75 2444.54 -280.69 1464.86 -177.09 1262.44 977.21 200.33 -361.89 1061.23 

17 -328.70 1436.15 -65.91 1177.07 105.69 866.20 977.02 158.93 343.38 739.83 

18 -800.95 1822.72 80.29 1017.98 -22.22 922.53 940.81 143.57 408.33 502.44 

19 -390.22 1325.61 -10.46 1010.55 290.91 586.57 862.00 152.72 258.69 739.97 

20 -815.69 1807.31 -250.36 1415.64 -156.62 933.00 971.52 144.39 232.05 705.02 

 

The relative distribution of the value of cooperation between the contractors and the company as a percentage of total value of cooperation is 

presented in Tables 27-28. In the last three rows we present the sample average, sample median and standard deviation of the sample average. 
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Table 27: Sharing the value of cooperation - 𝛼 = 1 

 

Vickrey auctions 
Sequential combinatorial 

auctions 

Vickrey auctions with 

small clusters 

Sequential negotiations with 100% 

of tasks working time cost as initial 

prize 

Sequential negotiations with 150% 

of tasks working time cost as initial 

prize 

Instance 

number 
company contractors company contractors company contractors company contractors company contractors 

1 -50.39% 150.39% 25.73% 74.27% 40.01% 59.99% 87.64% 12.36% 50.13% 49.87% 

2 -0.17% 100.17% 28.97% 71.03% 44.62% 55.38% 88.77% 11.23% 43.67% 56.33% 

3 -25.70% 125.70% 22.72% 77.28% 0.98% 99.02% 91.27% 8.73% 43.06% 56.94% 

4 23.33% 76.67% 32.62% 67.38% 49.87% 50.13% 86.31% 13.69% 47.82% 52.18% 

5 51.37% 48.63% 23.73% 76.27% 62.52% 37.48% 85.51% 14.49% 35.42% 64.58% 

6 -65.73% 165.73% 13.24% 86.76% 19.94% 80.06% 90.98% 9.02% 61.07% 38.93% 

7 24.26% 75.74% 34.65% 65.35% 35.83% 64.17% 80.38% 19.62% -7.15% 107.15% 

8 -41.34% 141.34% 5.48% 94.52% -3.57% 103.57% 84.63% 15.37% 38.49% 61.51% 

9 33.02% 66.98% 50.51% 49.49% 26.03% 73.97% 80.82% 19.18% 18.19% 81.81% 

10 11.27% 88.73% 17.22% 82.78% 36.39% 63.61% 86.46% 13.54% 49.11% 50.89% 

11 -5.84% 105.84% 33.54% 66.46% 14.29% 85.71% 89.58% 10.42% 40.40% 59.60% 

12 -64.92% 164.92% 3.84% 96.16% 6.11% 93.89% 80.06% 19.94% 34.27% 65.73% 

13 33.66% 66.34% 31.58% 68.42% 40.50% 59.50% 87.24% 12.76% 54.70% 45.30% 

14 38.27% 61.73% 43.37% 56.63% 59.75% 40.25% 86.72% 13.28% 46.99% 53.01% 

15 -4.38% 104.38% 6.29% 93.71% 9.74% 90.26% 83.32% 16.68% -88.93% 188.93% 

16 -28.99% 128.99% 27.64% 72.36% 29.67% 70.33% 85.92% 14.08% 55.03% 44.97% 

17 -49.13% 149.13% 53.93% 46.07% 36.09% 63.91% 84.42% 15.58% 24.59% 75.41% 

18 20.55% 79.45% 19.63% 80.37% 54.07% 45.93% 88.39% 11.61% 44.91% 55.09% 

19 13.45% 86.55% 17.98% 82.02% 69.30% 30.70% 80.36% 19.64% -18.81% 118.81% 

20 29.81% 70.19% 14.75% 85.25% 39.73% 60.27% 86.88% 13.12% 28.63% 71.37% 

Average -2.88% 102.88% 25.37% 74.63% 33.59% 66.41% 85.78% 14.22% 30.08% 69.92% 

Median 5.55% 94.45% 24.73% 75.27% 36.24% 63.76% 86.39% 13.62% 41.73% 58.27% 

Standard 

deviation 
8.43% 3.19% 4.75% 0.78% 7.89% 
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Table 28: Sharing the value of cooperation - 𝛼 = 3 

 

Vickrey auctions 
Sequential combinatorial 

auctions 

Vickrey auctions with 

small clusters 

Sequential negotiations with 100% 

of tasks working time cost as initial 

prize 

Sequential negotiations with 150% 

of tasks working time cost as initial 

prize 

Instance 

number 
company contractors company contractors company contractors company contractors company contractors 

1 -7.87% 107.87% 15.07% 84.93% 37.99% 62.01% 88.11% 11.89% 49.03% 50.97% 

2 -54.62% 154.62% 9.49% 90.51% 25.33% 74.67% 91.19% 8.81% 56.52% 43.48% 

3 -18.60% 118.60% 9.90% 90.10% 24.84% 75.16% 89.13% 10.87% 51.56% 48.44% 

4 -70.93% 170.93% -13.27% 113.27% -35.81% 135.81% 87.75% 12.25% 49.51% 50.49% 

5 -90.22% 190.22% 0.22% 99.78% 12.12% 87.88% 85.98% 14.02% 42.33% 57.67% 

6 -35.45% 135.45% 24.24% 75.76% 34.68% 65.32% 86.87% 13.13% 56.01% 43.99% 

7 -5.19% 105.19% 6.36% 93.64% -46.40% 146.40% 76.74% 23.26% -1.56% 101.56% 

8 -75.14% 175.14% -27.90% 127.90% -9.80% 109.80% 85.85% 14.15% -4.33% 104.33% 

9 -47.31% 147.31% 0.34% 99.66% 13.88% 86.12% 89.16% 10.84% 51.55% 48.45% 

10 -17.69% 117.69% -12.20% 112.20% -1.80% 101.80% 85.80% 14.20% 37.78% 62.22% 

11 -76.45% 176.45% -12.07% 112.07% 0.35% 99.65% 92.26% 7.74% 56.59% 43.41% 

12 -70.14% 170.14% 6.16% 93.84% 27.70% 72.30% 80.63% 19.37% 48.89% 51.11% 

13 31.05% 68.95% 28.95% 71.05% 33.87% 66.13% 92.18% 7.82% 50.87% 49.13% 

14 18.82% 81.18% 11.33% 88.67% 56.85% 43.15% 86.84% 13.16% 53.45% 46.55% 

15 
-

136.22% 
236.22% -38.32% 138.32% -38.35% 138.35% 87.78% 12.22% -151.62% 251.62% 

16 
-

110.23% 
210.23% -23.70% 123.70% -16.32% 116.32% 82.99% 17.01% -51.75% 151.75% 

17 -29.68% 129.68% -5.93% 105.93% 10.87% 89.13% 86.01% 13.99% 31.70% 68.30% 

18 -78.39% 178.39% 7.31% 92.69% -2.47% 102.47% 86.76% 13.24% 44.83% 55.17% 

19 -41.72% 141.72% -1.05% 101.05% 33.15% 66.85% 84.95% 15.05% 25.90% 74.10% 

20 -82.26% 182.26% -21.49% 121.49% -20.17% 120.17% 87.06% 12.94% 24.76% 75.24% 

Average -49.91% 149.91% -1.83% 101.83% 7.03% 92.97% 86.70% 13.30% 26.10% 73.90% 

Median -50.97% 150.97% 0.28% 99.72% 11.50% 88.51% 86.86% 13.15% 46.86% 53.14% 

Standard 

deviation 
9.78% 4.01% 6.51% 0.84% 11.42% 
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The results above show that the suggested mechanism is always profitable to the 

contractors (even before applying Stage B). In fact, the profit for the contractors is 

very high in the sequential combinatorial auctions, which appears to be the most 

efficient mechanism.  

 

Note that it is possible to achieve a relatively efficient allocation profitable to all 

parties (even under our conservative assumption) by using the Vickery auction with 

small clusters and then apply stage B. This may be the most attractive line of action 

since it is also computationally less involved than the combinatorial auction. 

 

5.4.3 Summary 

The allocations generated by the suggested mechanism are close to the optimal 

allocation of tasks to contractors that a central planner could have found. This follows 

from rather small optimality gaps of the obtained solutions. The average optimality 

gaps and their standard deviations are presented in Table 29. 

Table 29: Average optimality gaps for generated allocations  

𝜶 = 𝟑 𝜶 = 𝟏   

Stage B -

with 

money 

transfers 

Stage B -

no money 

transfers 

Stage 

A 

Stage B -

with 

money 

transfers 

Stage B - 

no money 

transfers 

Stage 

A 
  

1.40% 1.56% 1.63% 3.96% 4.45% 4.57% Average 
Vickrey auctions 

0.33% 0.36% 0.37% 0.49% 0.56% 0.58% Std. 

1.26% 1.37% 1.41% 3.69% 3.93% 3.96% Average Sequential 

combinatorial 

auctions 0.30% 0.30% 0.30% 0.48% 0.46% 0.45% Std. 

2.67% 3.47% 3.98% 4.25% 5.31% 5.91% Average 
Vickrey auctions 

with small clusters 
0.34% 0.46% 0.48% 0.50% 0.53% 0.59% Std. 

1.38% 1.60% 1.74% 3.76% 4% 4.14% Average Sequential 

negotiations with 

low initial prizes 0.28% 0.31% 0.31% 0.47% 0.50% 0.52% Std. 

1.79% 2.78% 3.39% 4.06% 5.13% 5.31% Average Sequential 

negotiations with 

high initial prizes 0.28% 0.36% 0.44% 0.43% 0.50% 0.50% Std. 

1.61% 3.52% 5.70% 4.29% 6.5% 9.57% Average 
Heuristic 

0.31% 0.50% 0.76% 0.49% 0.63% 0.71% Std. 
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Another feature of our mechanism is a high value of cooperation. Average values and 

standard deviations are presented in Table 30 (percentage of the gap between the 

default status and a lower bound of the central planner solution).  

Table 30: Average value of cooperation for generated allocations 

𝜶 = 𝟑 𝜶 = 𝟏   

Stage B -

with 

money 

transfers 

Stage B -

no money 

transfers 

Stage 

A 

Stage B -

with 

money 

transfers 

Stage B - 

no 

money 

transfers 

Stage A   

91.79% 90.77% 90.25% 77.55% 74.44% 73.74% Average 
Vickrey auctions 

1.93% 2.15% 2.26% 2.62% 3.19% 3.29% Std. 

92.79% 92.13% 91.87% 79.27% 77.81% 77.6% Average Sequential 

combinatorial 

auctions 1.71% 1.73% 1.73% 2.55% 2.47% 2.44% Std. 

84.48% 79.63% 76.44% 76.21% 69.63% 65.89% Average 
Vickrey auctions 

with small clusters 
1.91% 2.56% 2.70% 2.61% 3.08% 3.49% Std. 

92% 90.76% 89.93% 78.96% 77.48% 76.74% Average 
Sequential 

negotiations with 

low initial prizes 1.69% 1.80% 1.79% 2.41% 2.67% 2.70% Std. 

89.48% 83% 78.91% 77.31% 70.70% 69.47% Average Sequential 

negotiations with 

high initial prizes 1.69% 240.31% 3.20% 2.25% 2.88% 3.00% Std. 

90.53% 79.67% 65.41% 75.74% 62.98% 43.22% Average 
Heuristic 

1.87% 2.71% 4.82% 2.70% 3.16% 4.12% Std. 

 

Table 31 presents the value of considering pre-committed tasks, i.e., the gap between 

the allocation yielded by the mechanism and the allocation obtained from a baseline 

heuristic. As shown, Stage B significantly increases the value of cooperation for all 

methods and in particular for the heuristic allocation. Therefore, the value of 

considering pre-committed tasks significantly decreases. The average values of 

considering pre-committed tasks and their deviations are presented in Table 31. 
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Table 31: Average values considering pre-committed tasks 

𝜶 = 𝟑 𝜶 = 𝟏   

Stage B -

with 

money 

transfers 

Stage B -

no money 

transfers 

Stage A 

Stage B -

with 

money 

transfers 

Stage B - 

no 

money 

transfers 

Stage A   

101.83% 115.73% 164.93% 102.86% 122.5% 198.85% Average 
Vickrey auctions 

2.41% 4.00% 25.47% 1.71% 7.33% 18.66% Std. 

102.94% 117.52% 170.72% 105.37% 128.94% 208.39% Average Sequential 

combinatorial 

auctions 2.15% 3.75% 29.45% 2.25% 6.99% 17.85% Std. 

93.67% 101.29% 137.65% 101.17% 113.94% 169.83% Average Vickrey auctions 

with small 

clusters 2.08% 3.75% 19.79% 2.18% 6.15% 12.00% Std. 

102.09% 115.81% 166.71% 104.92% 127.48% 206.15% Average 
Sequential 

negotiations with 

low initial prizes 2.20% 3.82% 28.12% 1.84% 6.81% 18.37% Std. 

99.23% 106.35% 149.74% 102.94% 116.12% 187.45% Average Sequential 

negotiations with 

high initial prizes 1.95% 4.67% 26.62% 2.20% 6.69% 17.25% Std. 

 

Stage B with money transfers eliminates large share of the value of considering pre-

committed tasks in Stage A. This implies that a viable protocol is to apply the 

heuristics at Stage A and then apply Stage B with money transfers.  Such an approach 

will yield an allocation that is only slightly less efficient than the ones obtained by the 

other alternatives and it is much easier to implement. 

 

The value of cooperation is distributed in a way that generally benefits the 

contractors. In some cases, the company is even worse off compared to the default 

status. Average values of the distribution of the value of cooperation between 

contractors and the company after Stage A and their standard deviations are presented 

in Table 32. 
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Table 32: Distribution of value of cooperation between contractors (after Stage A)  

𝜶 = 𝟑 𝜶 = 𝟏   

contractors company contractors company   

149.91% -49.91% 102.88% -2.88% Average 
Vickrey auctions 

9.78% 8.43% Std. 

101.83% -1.83% 74.63% 25.37% Average Sequential 

combinatorial 

auctions 4.01% 3.19% Std. 

92.97% 7.03% 66.41% 33.59% Average Vickrey auctions 

with small 

clusters 6.51% 4.75% Std. 

13.3% 86.7% 14.22% 85.78% Average Sequential 

negotiations with 

low initial prizes 0.83% 0.78% Std. 

73.9% 26.1% 69.92% 30.08% Average Sequential 

negotiations with 

high initial prizes 11.42% 7.89% Std. 

 

In vickrey auction the company is significantly worse off (compare to the default 

protocol) while the contractors are much better off. It is likely that this cannot be a 

stable solution. 
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6 Conclusions and future research 

The Decentralized Field Service Routing Problem addresses a company that should 

serve a set of tasks. The company is interested in providing this service to its clients 

by outsourcing the tasks to contractors at a smallest cost. The contractors are 

interested in maximizing their net profit.  

 

For solving the decentralized problem, a solution mechanism, which suggests good 

solutions both from the society's point of view and from all the agents' points of view, 

is required.   

 

6.1 Conclusions 

We adopt a general framework of a 2-stage task allocation mechanism for the DFSRP.  

In the first stage, an initial allocation of service tasks to contractors is generated, and 

in the second, the contractors trade tasks between themselves. 

 

Three of the procedures used in the first stage, namely, sequential Vickrey auctions, 

sequential combinatorial auctions and the sequential negotiation protocol yielded 

fairly good allocations from the society's point of view. That is, the cost of the 

generated allocations' is close to the optimal cost that could be obtained by a central 

planner. The sequential combinatorial auction mechanism is the first application of 

the GVA in the area of field service routing.  To the best of our knowledge this is the 

first strategy proof mechanism used to solve a decentralized routing problem.    

 

The Vickrey auctions are shown to be efficient and can be calculated easily. However, 

this mechanism is unprofitable from the company's point of view and thus unlikely to 

be implemented in practice.  At the same time, the Vickrey auctions with small 

clusters are shown to be profitable but relatively inefficient. 

 

Unprofitability from the company's point of view is a characteristic of the generated 

solution that is evident when comparing the sum of rewards the company paid to the 

optimal cost of serving all tasks by herself. However, recall that in this work the cost 

was estimated quite conservatively by assuming the company has the same cost 

structure as the contractors. Furthermore, the option of serving all tasks solely is 

usually not available for the companies. Note that outsourcing is often applied as a 

method that deals with a large variety in the required workload. Outsourcing is an 

alternative to employing a large enough service team on a regular basis which may 

result in large operational costs and low utilization of the team when the workload is 

less than maximal.  
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The typical alternative to outsourcing based on a collaborative mechanism (such as 

the ones proposed in this study) is outsourcing using simple heuristic methods for the 

allocation of the tasks. The heuristic solution is generally far from optimal and causes 

companies to transfer higher payments to the contractors that compensate for the 

inefficient solution. Note that the implementation of combinatorial auctions in real life 

in the area of freight transportation services has proven to save millions of dollars (see 

Porter (2002)). We believe that this can be the case for field service routing and 

scheduling as well. 

 

However, if for some reason, combinatorial auctions (or other collaborative 

mechanisms) cannot be implemented, the solution generated by simple heuristics can 

be improved significantly by applying the second stage of the proposed mechanism, 

in which contractors are able to exchange tasks among themselves. Even though Stage 

B may encourage a speculative behavior of the agents, no party can be worse off due 

to the outcome of this stage and it enables increasing the profits of some parties. 

 

Recall that a realistic setting of the DFSRP is likely to include a larger number of 

contractors or a larger number of tasks when compared to the instances presented in 

this thesis. More than often, both are larger. With respect to the sealed bid allocation 

mechanisms, we believe that the larger the number of contractors is, the payment 

made by the company to the contractors is smaller. Note that this payment is based on 

the contribution of each contractor to the system which is likely to be smaller as more 

contractors are included. Additionally, a larger number of contractors further reduces 

the ability of a single contractor to apply speculative considerations in the sequential 

negotiation procedure. That is, all allocation procedures are likely to be more 

sustainable as the number of contractors increases. A larger number of contractors is 

also likely to enlarge the number of relatively efficient solutions. In this context, a 

larger number of tasks has the same effect, although it may cause the various 

optimization problems to be significantly more involved.  

 

Hence, the computational complexity of the various mechanisms should be 

considered when deciding on the appropriate one. For example, although the Vickrey 

auction on small clusters yields inefficient solutions, it can be carried out quite easily 

and is profitable, even under our conservative assumptions, for all parties. Its relative 

computational simplicity may make this mechanism more appealing for all parties, 

than, say, the combinatorial auctions. The latter yield efficient solutions but require a 

very involved procedure of calculating an exponential number of bids.       

 

6.2 Future research 

The decentralized problem stated in this work does not consider time windows in 

which tasks should begin and end and does not consider possible differences in the 

skills of the contractors. However, these are very common in real life problems. 

Therefore, a natural direction for future research is to include these features. 
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Additional characteristics of the field scheduling problem such as state regulation, 

labor union agreements etc. are also to be considered.  

 

The problem formulated and solved in this thesis suggests that a single client (the 

company) purchases services from multiple suppliers (the contractors). Another 

possible configuration consists of multiple clients, that is different companies, that are 

interested in purchasing some services from the contractors. We believe the 

decentralized problem implied by the multi-client configuration can also be solved 

using the mechanisms suggested in this work. For that end, these need to be adapted. 

The most important adaptation is finding a method to determine the payments of each 

client to the contractors. An even more general setting of the problem should deal 

with multiple clients that are the customers themselves that are interested in choosing 

their service provider.      

   

The DFSRP studied in this thesis is a static problem where all the tasks are known in 

advance. In practice, information about the required tasks is received dynamically 

over time. Therefore, a great value can be obtained from formulating and solving the 

dynamic version of the problem. Clearly, this is a much more involved problem.  

 

6.2.1 Future research – Stage A 

Several allocation procedures for Stage A have been presented in this work. In the 

sequential combinatorial auctions, the proposed procedure groups the tasks into 

clusters and then each cluster's tasks are announced in a combinatorial auction. 

Clustering is a reasonable way by which computational complexity of the problem 

can be reduced.  

 

Additional work can be done as to increase the size of the cluster even further, and 

thus enabling a solution closer to optimum. This requires reducing the running time of 

the calculation of the bids by several orders of magnitudes. A reduction of this sort 

can be achieved by calculating the bids using heuristic methods instead of by integer 

programming. However, an increase in the cluster's size makes the winner 

determination problem, which is NP-Hard, extremely hard to solve. In this case, a 

solution of the problem by carefully tailored algorithms is recommended (see for 

example Sandholm (2002)).  

 

Furthermore, recall that the number of clusters reduces as the size of each cluster 

increases. Further work exploring the relation between the number of clusters and the 

optimality of the allocations is desirable. Note that the high efficiency generated by 

applying the Vickrey auction, which is a combinatorial auction done on clusters with 

size 1, indicates that this relation may not be trivial.   
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The characterization of clusters may affect the optimality of the generated solution. 

This thesis suggests that each cluster should be homogeneous in the locations of its 

members. However, homogeneousness of this sort does not necessarily contribute to 

creating the best allocations.  Thus, further research employing the sequential 

combinatorial auctions with non-homogenous clusters is recommended. This will 

enable us to find the clusters with the most suitable properties for the mechanism.  

 

For the sequential negotiation procedure, additional research is required in order to 

find the optimal strategies of the contractors when speculations are considered. Next, 

a comparison between the contractors' profits when following their optimal strategies 

and their profits following myopic strategies can be helpful in gaining insights 

regarding the usefulness of the no-speculation assumption that is the base of the 

sequential negotiation mechanisms. 

 

6.2.2 Future research – stage B 

In Stage B, we implemented a task exchange procedure in which the contractors are 

required to consider all possible exchanges (of size 1) of company's tasks they own 

with company's tasks they do not own. Applying various algorithmic considerations 

may save the need to consider most of the possible exchanges and therefore reduce 

the running time significantly. Additionally, Stage B can be generalized as to include 

the exchange of more than one task at a time. This will increase the number of 

possible exchanges and therefore stresses the importance of applying some 

algorithmic considerations to speed-up the computations. 

 

The value sharing mechanism proposed for Stage B does not ensure truthful biddings. 

Thus, a further goal is to design a strategy proof value sharing mechanism. However, 

a mechanism not requiring external subsidy is recommended. Nonetheless, if a 

strategy proof mechanism cannot be devised, one may consider an adapted version of 

Stage B where unprofitable exchanges are not allowed. Since the net profit from each 

exchange would be non-negative, this version does not require any money transfers 

and thus, cancels the need to design a value sharing mechanism. However, it may 

yield less efficient solutions.  
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 תקציר

בצע מיקור חוץ של משימות השירות שלהן בבית הלקוח לקבלנים מומחים לחברות גדולות נוטות 
קטנים יותר. הקבלנים הינם ישויות עסקיות עצמאיות מהחברות המקצות להן משימות. לכן, 

הפרקטיקה הנהוגה שיתוף של מידע פרטי בין הצדדים השונים אינו אפשרי. כתוצאה מכך, 
מבוצעת על ידי החברה על בסיס כללים ש לקבלנים במציאות היא הקצאה של משימות

היוריסטיים כאלו ואחרים, דוגמת חלוקה לאזורים. הקצאה היוריסטית מהסוג הזה מתעלמת 
לחלוטין ממשימות של חברות אחרות אשר הוקצו לקבלנים בשלב קודם. כך מתקבלת הקצאת 

י אשר מתמודד עם ילה. במחקר זה מפותח אלגוריתם שיתופי מבוזר דו שלבמשימות שאינה יע
    הבעיה ופותר אותה באופן קרוב לאופטימלי. 

 

השלב הראשון של האלגוריתם מיועד ליצירת הקצאה ראשונית, לא בהכרח אופטימלית של 
הן המשימות לקבלנים. במסגרת המחקר, מימשנו כמה פרוצדורות להקצאת המשימות, וביני

הפרוצדורה של  דרתיים.מכרזי ויקרי סדרתיים, מכרזים קומבינטוריים סדרתיים וכן מו"מ ס
 Generalized Vickreyהמכרזים הקומבינטוריים הסדרתיים מממשת את מנגנון ויקרי המוכלל )

auction בעיית מקסום אחד מהיישומים של מנגנון זה הינו פתרון . 70-וה 60-בשנות ה( אשר פותח
סך ערך ההקצאה של פריטים רבים )ושונים( בקרב סוכנים מתחרים בעלי פונקציות ערך שונות. 

גורם לכך שאמירת אמת מצד הסוכנים לגבי בבעיה הייחודיות במנגנון זה הינה שיישומו 
 העדפותיהם הינה אסטרטגיה שלטת במשחק הנוצר. 

 

נם לבין עצמם על מנת להפחית את עלויותיהם. בשלב השני, הקבלנים רשאים להחליף משימות בי
 –לשלב זה הוגדרו ומומשו שתי גרסאות במחקר זה. האחת, כשהעברות כספים מותרות, והאחרת 

 כשהעברות כספים אינן מותרות.  

 

הקצאת המשימות שהמנגנון מוליד נמדדת באמצעות מספר מדדי ביצוע. מצאנו כי פרוצדורות 
ההקצאה הממומשות בשלב הראשון מביאות להקצאה יעילה יחסית של המשימות לקבלנים וכי 
השלב השני אף משפר הקצאה זו. ההקצאה המתקבלת באמצעות המנגנון היא יעילה הרבה יותר 

ת מיישום היוריסטיקת מדף סבירה. למעשה, עלות ההקצאה בהשוואה להקצאה המתקבל
המתקבלת קרובה מאוד לגבול התחתון של עלות ההקצאה האופטימלית. כלומר, עלות חוסר 

 הסדר הינה קטנה מאוד.  
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