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Abstract 

Recently, cities around the globe introduced systems that allow people to rent a 

bicycle at one of many automatic rental stations scattered in the city, use them for a 

short travel and return them at any other station in the city. A typical Bike-Sharing 

system in a large city consists of hundreds of stations and thousands of bicycles.  

One major issue, reported by operators of Bike-Sharing systems, is the availability 

of bicycles and lockers. The service level provided by the system may be adversely 

affected, either due to lack of bicycles in the origin stations, or due to lack of lockers 

in the destinations. Operators employ fleets of trucks to reposition bicycles among the 

stations in order to satisfy the fluctuating demand for bicycles and vacant lockers. 

Optimal operation of such a fleet poses an intricate stochastic inventory routing 

problem.  

In this study we solve the inventory part of this problem. Namely, we develop a 

method to prescribe the number of bicycles to be added or removed from a station 

every time it is visited by a repositioning truck so as to minimize the shortage. 

Additionally, we study the strategic problem of determining the optimal stations 

capacity based on forecasted demand patterns. We calculate an efficiency frontier for 

the expected shortage (of bicycles or lockers) versus the station capacity. 

Both the operational and strategic problems are complicated by the fact that the 

demand patterns are non homogenous, asymmetric and the frequency of events in 

each station is relatively low. Hence, the system cannot be assumed to reach steady 

state and thus an analysis of its transient behavior is required. 

We model the system as a series of continuous time Markov chains, each 

representing a time interval during which the demand rates for bicycles and lockers is 

assumed to be constant. The probabilities of a station being empty or full at each time 

interval are calculated. Based on these probabilities, an expected total penalty for 

bicycles or lockers shortage is calculated. 

The procedure is very fast and its output agrees well with the estimation obtained 

by a simulation model with numerous replications. We show that the optimal 

inventory level prescribed by our procedure is robust with respect to inaccuracies in 

the demand forecast. 

We analyze the expected total penalty as a function of the initial inventory and 

prove its convexity. This constitutes the basis for convenient analyses in cases where 
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the events frequency is general and does not fit the Markovian assumptions of our 

model. Moreover, it allows optimization of the initial inventory level of a station in 

the system subject to various constraints. 
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1.  Introduction and literature review 

A Bike-Sharing system is a municipal system that users can access 24 hours a day. 

One can gain access to a bicycle either by inserting a credit card or by paying a 

periodical fee for a membership card. The bicycles can then be returned at any of the 

stations in the city (Posner 2008, TMD Encyclopedia 2008). A typical Bike-Sharing 

System consists of a fleet of bicycles, a network of automated stations where bicycles 

are stored, and bicycle redistribution and maintenance programs (TMD Encyclopedia 

2008). The Systems are particularly appropriate in large cities where the demand for 

short trips is high and it is possible to have a dense network of stations, but may also 

be feasible in suburban areas and campuses (TMD Encyclopedia 2008).  

A Bike-Sharing system has many advantages over other modes of public 

transportation for short-distance urban trips (Demaio 2004, Demaio 2008, TMD 

Encyclopedia 2008):  

• Bicycles are relatively inexpensive to purchase and maintain. 

• Bicycles generally do not add to vehicular congestion. 

• Bicycles do not create noise and pollution in their operation. 

• Bicycles provide the user with the added benefit of exercise. 

However, in comparison to other modes of transportation, bicycles have their 

drawbacks (Demaio 2004): 

• They can be uncomfortable in harsh weather. 

• They can be used in ways unsafe to riders and pedestrians. 

• They may be inaccessible to people with certain disabilities. 

• They may be difficult to use in some topography. 

• They are more appropriate for shorter distances. 

• They can be subject to vandalism and theft.  

For a bicycle to be a significant component of the urban transportation system, the 

city must provide a proper infrastructure of bicycle paths. Data collected by the city of 

Portland, Oregon, demonstrates a strong correlation between a connected bikeway 

system constructed to the highest standards, and increases in bicycle use. The count 

data shows an enormous increase over time in bicycle use in the city parts with the 

improved facilities (Birk and Geller 2005). The quantity and quality of the facilities 

were recognized as the key factors. In the 1995 Harris Poll survey, 20% of Americans 

said they would commute by bicycle or on foot more regularly if more improved 
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facilities were provided (Oregon Department of Transportation, 1995).  Various 

modal plans have been established in many cities around the world for providing 

guidelines to cities and counties for developing local bicycle and pedestrian 

infrastructure. The plans establish policies and implementation strategies, design 

methods, maintenance and safety information. Finally, targets are defined and proper 

guidance is given for achieving them (see Oregon Department of Transportation, 

1995, Minnesota Transportation Department 2005).  

There have been three generations of Bike-Sharing systems over the past 40 years. 

The first attempt to implement a Bike-Sharing program dates back to 1968 with the 

first generation Bike-Sharing system in Amsterdam, The Netherlands. Bicycles 

painted in white were scattered throughout the city. Individuals were to find a bicycle, 

ride it to their destination, and leave it for the next user. However, the bicycles were 

stolen and the system collapsed within days. In 1995 in Copenhagen, Denmark, a 

second generation of Bike-Sharing systems was launched with improvements. These 

bicycles were specially manufactured for intense utilitarian use and could be picked 

up and returned at specific locations throughout the central city with a coin deposit. 

However, theft of bicycles in these second generation systems continued to be a 

problem due to the anonymity of the customers (Demaio 2004, Demaio 2008). This 

gave a rise to a third generation of Bike-Sharing systems – the smart bike. Smartening 

earlier Bike-Sharing systems with electronic lockers or bicycle locks, 

telecommunication systems, and smartcards or magnetic stripe cards, has allowed 

better tracking because the customer’s identity is known. Customers not returning a 

bicycle within the allotted time for its use are charged for the replacement cost of the 

bicycle. These technological features offer great improvements over earlier systems, 

which had no high-tech features for checkout or return, and relied solely on customer 

honesty (Demaio 2004). In addition, such systems gather demand data online.  

Analyses of this data may be used for future design decisions and for ongoing 

operational ones. 

Froehlich et al. (2009) use the data collected from third generation Bike-Sharing 

systems to explore patterns of user behavior. They provide a spatiotemporal analysis 

of 13 weeks of bicycle station usage from the Bicing system in Barcelona, apply 

clustering techniques to identify shared behaviors across stations and show how these 

behaviors relate to location, neighborhood, and time of day. Their models are able to 

predict station usage with an average error of only two bicycles and can classify 
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station state (full, empty, or in-between) with 80% accuracy up to two hours into the 

future. Their experiments indicate that 10 to 15 weekdays of historic data are enough 

to build station models. 

Two models of Bike-Sharing exist - one designed for community use and the other 

for residential use. In the community Bike-Sharing model, an individual checks out a 

bicycle from one of many locations and returns it to another location. The residential 

Bike-Sharing model requires bicycles to be returned at the same location from where 

they were checked out. The residential model, which is used in Japan, is designed for 

denser cities where living and bicycle parking spaces are at a premium (Demaio 

2004). The focus of this study is on community Bike-Sharing.  

Bike-Sharing programs across Europe are used by both tourists and residents. The 

systems, in general, are quite successful (Becker 2008). The largest system is Vélib 

launched in July 2007 in Paris. As of July 2010 there are about 1800 renting stations, 

25,000 bicycles and the average usage increased up to about 166,500 rentals a day. 

Beyond Europe, the interest in the concept of public bicycles is also rising, e.g. in 

the US (Richard 2008), in Canada (http://www.bixisysteme.com/accueil), Australia 

(Gardiner 2008), Argentina (Diaz 2008), China (Woodland 2008) or Israel (Bar-Eli 

2009). During the last years the number of cities that already implemented Bike-

Sharing systems or plans to do so, increased. The success of the concept was proven 

in Lyon, Paris, Munich and Barcelona, where large scale and automated bicycle rental 

services have been implemented and offer thousands of public bicycles to the citizens. 

As of December 2010, there are about 238 Bike-Sharing services around the world. In 

2009 the number was about 160, which shows a 49% increase. Additionally, there are 

another 53 services that are in planning stages and may soon be operational (see 

Figure 1 for the increase in the number Bike-Sharing systems since 2004) suggesting 

that nearly every large city wants to offer such a service. The successes of the new 

systems can be attributed to their dense coverage of the cities and to the information 

technology that allow coping with theft and improving their operations. 

Environmental issues awareness is also a factor in the success of Bike-Sharing 

systems. Cities around the world have begun to embrace Bike-Sharing as a way to 

improve quality of life and meet greenhouse gas reduction targets (Posner 2008, 

Demaio 2010). 
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As the interest in Bike-Sharing systems increased, more companies became 

involved in the industry (Demaio 2008). Companies such as ASK (http://www.ask-

rfid.com) provide smart cards with an embedded microchip that allows users to rent 

bicycles in a third generation Bike-Sharing system (Collins 2005). Nonprofit 

organizations as BIKES BELONG or HUMANA whose goal is to maximize bicycle 

funding for healthier communities, cleaner air, less traffic and thriving bicycle 

businesses are trying to increase awareness for the advantages of using bicycles 

through Bike-Sharing (Tucker 2008). Another example for the arising industry is 

consulting groups such as Alta Bicycle Share (http://www.altabicycleshare.com) that 

designs, deploys, and manages bicycle share systems. 

Shortage of bicycles and vacant lockers are the main complaint voiced by users of 

Bike-Sharing systems. In Brussels, for example, a voluntary group of users created a 

web service that pulls inventory data from the city's Bike-Sharing (Villo) website in 

order to monitor the shortage and create a public pressure on the operator to improve 

it. According to the group’s web site (http://www.wheresmyvillo.be), their main cause 

is to make “JCDecaux (the operator) drastically improve the availability of bicycles 

and parking spaces, through better reallocation of bicycles”. Their website displays 

statistics about the proportion of time in which at least one bicycle (resp., locker) was 

available in each station during the last seven days. As of October 14, 2010, the ten 

worst stations, out of the system’s 180 stations, could not provide a single bicycle 

more than 33% of the time (resp., provide a single locker more than 23% of time).  

The riders complain that the system's lockers can run out toward the end of the 

morning rush hour, leaving customers temporarily stranded. Likewise, the lockers are 

Fig 1. Number of Bike-Sharing systems across the world since 2004 
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sometimes full, so riders have to search for parking (Rosental 2008, Price 2008). The 

operator of Vélib in Paris estimates that 93 percent of trips end satisfactorily.  

Vélib uses 23 light flatbed trucks with the capacity of carrying 20 bicycles, and 2 

heavy trucks with the capacity of carrying 62 bicycles to shift bicycles among the 

stations, and to move bicycles back upstream after and during rush hour (Price 2008). 

In hilly cities, many riders prefer to ride downhill but to use other modes of 

transportation uphill. Thus, the stations that are situated at high locations become 

empty quickly, while lower stations become full. In such situations, the operator must 

regularly transfer bicycles uphill. 

Another possible method to balance the Bike-Sharing system is by using 

economic incentives. For example, the Vélib operators in Paris give extra riding time 

for the riders who drop the bicycles at stations uphill. Vélib operators are also 

considering to add lockers at popular stations and to increase redistribution at night 

(Price 2008, "Epic Bike-Sharing Post" 2008).  

Among other reasons, the distribution problem is an important factor for which the 

location of rental stations should be well planned according to the expected demand. 

A methodical redistribution of bicycles is needed to guarantee the availability of 

bicycles and avoid frustration for users (Niches 2008).  

To the best of our knowledge, the distribution method in the operating Bike-

Sharing systems is ad-hoc and heuristic. That is, the current operation of these 

systems is probably non-optimal. In general, the research existing on Bike-Sharing is 

not extended. Moreover, there are only a few papers that deal with management of the 

inventory levels in Bike-Sharing systems (Demaio 2004). 

A more general problem relative to the distribution of bicycles at each station is 

the decision regarding the frequencies and the routes that the trucks should follow. 

Several papers considered this routing problem with static repositioning, i.e. it is 

assumed that bicycles are moved during slack hours when the system is nearly 

inactive. 

Chemla et al. (2010) consider a static routing problem that is a variation of the 

Many to Many Pickup and Delivery Problem. They consider a single truck and 

assume that each station can be visited several times and no time limit is imposed on 

the truck to satisfy the whole demand. An initial and desired inventory of bicycles at 

each station is given. The goal is to find the minimal cost route that can bring the 

system to a desirable state. They describe a branch-and-cut algorithm for solving a 
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relaxation of the problem and show how to build a feasible solution based on the one 

obtained by this relaxation. In addition, the same algorithm is used to prove that the 

solutions obtained with the relaxations are often the optimal ones. An upper bound of 

the optimal solution of the problem is obtained by a tabu search.  

Raviv et al. (2010) consider an inventory-routing problem of determining the 

routes that repositioning trucks should follow, and the number of bicycles that should 

be removed or placed in each station at each visit of the vehicles. As opposed to 

pickup and delivery problems such as the problem suggested by Chemla et al, the 

quantities picked-up or delivered to a station are not given. The quantities Raviv et al 

use are derived from the model formulated in this paper. They use an objective 

function that considers the users satisfaction and present several approaches for 

modeling the problem as a Mixed Integer Linear programming based on different 

assumptions. Based on the solution of a variety of instances, one approach is found to 

be very effective in solving problems with up to 60 nodes and two vehicles. 

Nair and Miller-Hooks (2010) formulate the Vehicle Sharing Programs (VSP) 

fleet management problem as a stochastic MIP. They suggest static redistribution at 

the beginning of the planning horizon. The goal is to minimize the redistribution 

operation cost so that a required service level (a proportion of all short term demand 

scenarios) is provided, given the initial inventory levels in each station. The service 

level offered is quantified using a framework that they develop.  The stochastic MIP 

has a non convex feasible region. Two solution techniques are presented: One 

technique is based on enumeration. The main idea is to transform the non convex 

feasible space to a disjunctive set of convex spaces. This transformation leads to a 

family of MIPs, one for each convex set. The second technique achieves quicker 

performance using a cone generation method. This technique is constrained to the 

assumption that the random demand vector is uncorrelated. In an application of the 

proposed framework to a car sharing system in Singapore, the operational strategies 

were found to be robust in simulation studies. 

Literature on the similar shared mobility systems of motor vehicles, called Car-

Sharing, is more extensive, (see for example Kek et al 2006, Barth et al. 2004, Mukai 

and Watanabe 2005, Uesugi et al. 2007). However, these studies offer little guidance 

for Bike-Sharing, as the technologies and issues are quite different (Demaio 2004).  

Over the last decade, car sharing has emerged as an alternative to owning a 

vehicle. Most of this form of transportation has been taking place in Europe, North 



 

 7

America, Japan and Singapore. Conventional car sharing systems usually requires 

users to pickup and return vehicles at the same stations. Stiff competitions from public 

transportation systems and competing car sharing companies have prompted some 

operators to provide users with the flexibility in return stations (one-way car sharing 

systems) and some car sharing systems provides users with flexibility in return time 

(Kek et al 2006). A key issue that arises from such systems is similar to the Bike-

Sharing systems problem - the dynamically disproportionate distribution of vehicles 

across stations, with no prior knowledge. As a result, periodic relocation becomes 

necessary to ensure an even distribution of vehicles to serve customer demands. These 

systems differ from Bike-Sharing systems in two key aspects (Kek et al 2006, Barth et 

al. 2004, Mukai and Watanabe 2005): 

• Due to the size of a car, it cannot be relocated by a truck.  The cars are being 

distributed one by one. 

• The cars are usually reserved in advanced, thus it is usually known when a 

customer is coming, where the pickup location is and where the drop-off location 

is. 

Kek et al. (2006) suggested a novel three-phase Optimization-Trend Simulation 

(OTS) decision support tool for one-way car sharing systems. The tool assists the 

operators to find a set of near-optimal manpower and relocation parameters for their 

vehicle relocation systems. Two Level of Service indicators are used- Full-Port Time 

(FPT) for time periods that a station is completely full, and Zero-Vehicle Time (ZVT) 

for the time periods that a station is completely empty. Simulation tests, based on a set 

of real operational data, have produced statistics that indicate a better system 

performance than the existing system. The three-phase OTS tool recommends a set of 

parameters for vehicle relocation operations, enabling a reduction in staff cost, an 

improvement of ZVT and a maintenance of the low FPT level.  

Mukai and Watanabe (2005) focused on location balances of cars in a one-way car 

sharing system. They proposed a relocation algorithm for waiting cars based on 

virtual spring forces. The algorithm divides a service area equally for keeping 

homogeneity of location balances among waiting cars, dynamically. Results of a 

simulation experiment show that the algorithm is effective for these kinds of systems. 

Uesugi et al. (2007) present a one-way car sharing system method for optimizing 

car assignment according to distribution balance of parked cars. The optimization is 
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done by assignment of the optimal number of cars to group of users with similar ride-

on and drop-off stations. It is assumed that users make reservations (including ride-on 

and drop-off stations), i.e. the demand for cars and for parking spaces is deterministic. 

The decision of the number of assigned cars is based on a square residual error sum 

for the number of parked cars and the optimum number of parked cars. Thus, groups 

of users select the number of using vehicles which minimizes a residual sum of 

squares between a ride-on station and a drop-off station. Future work of this paper 

must also consider a proper incentives system, so that users will behave according to 

the proposed model. 

Barth et al. (2004) introduce two user-based relocation mechanisms called trip 

joining or trip splitting in a one-way car sharing system. When the system realizes that 

it is becoming imbalanced, it urges users to take separate vehicles when more vehicles 

are needed at the destination station (trip splitting). Conversely, if two users are at the 

origin station at the same time traveling to the same destination, the system can urge 

them to rideshare (trip joining). This concept has been implemented both on a real 

world university campus shared vehicle system and in a high-fidelity computer 

simulation model. The model results show that there can be as much as a 42% 

reduction in the number of relocations using these techniques.  

Inventory models studied in the Reverse Logistics literature have some relevance 

for inventory management of a Bike-Sharing system. Reverse Logistics focus on two 

alternatives for fulfilling the demand - order the required raw materials externally or 

overhaul old products returned by users. Typically, the producer has little control on 

the return flow in terms of quantity, quality and timing (Fleischmann et al. 1997). In 

Reverse logistics inventory models, the total demand and return events during the 

planning horizon is of interest. This is due to the minor proportion of old products 

returned by users relative to the overall products sold and due to the availability of 

external products for purchasing during the planning horizon. However, 

considerations of inventory management of a Bike-Sharing system are different in the 

sense that the order of events (rents and returns) is crucial. This is because the flow of 

products (bicycles and lockers) is stochastic (in opposed to the classical reverse 

logistic literature where ordering is possible), and thus cannot be predicted or 

controlled.  

Mahadevan et al. (2003) studied a single remanufacturing facility that receives a 

stream of returned products according to a Poisson process. The assumption is that 
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demand is uncertain and also follows a Poisson process. The decision problems for 

the remanufacturing facility are when to release returned products to the 

remanufacturing line and how many new products to manufacture. They employed a 

‘‘push’’ policy that combines these two decisions. Modeling the system using 

simulation, the authors observed the quasi-convexity of the objective function in the 

decision variable, and found some unusual behavior, such as costs decreasing when 

lead times increase. Thus, they developed several heuristics based on traditional 

inventory models. The two first approaches rely on an approximation of the 

manufacturing and remanufacturing sources by a single aggregate channel. The third 

approach explicitly considers the impact of both channels separately. They also 

investigated the performance of the system as a function of return rates, backorder 

costs and manufacturing and remanufacturing lead times, and developed approximate 

lower and upper bounds on the optimal solution.  

Fleischmann et al. (2002) present an inventory model comprising Poisson demand 

and returns.  Purchase orders arrive after a fixed lead-time, and any un-served demand 

is backlogged. In addition, there are returns of items into the inventory according to a 

Poisson process independent of demand. For this model, the authors have shown 

optimality of an (s,Q) policy for ordering new items and have pointed out how to 

determine optimal values of the control parameters.  

Fleischmann and Kuik (2003) considered a single inventory point facing 

independent stochastic demand and item returns. Using general results on Markov 

decision processes, they showed average cost optimality of an '(s; S) order policy' in 

this model. The key result concerns a transformation of the model into an equivalent 

traditional '(s; S) model' without return flows, using a decomposition of the inventory 

position. 

We conclude that while shortage of bicycle and vacant lockers is a major concern 

for user and operators of Bike-Sharing systems, only few studies considered the 

optimal management of stock levels in a these systems.  

In this study we introduce an inventory model for a Bike-Sharing rental station, 

assuming stochastic and non-stationary check-out and return processes. We introduce 

a method to analyze this model, discover some of its important structural properties 

and derive some managerial insights. We focus on optimal decisions in two levels: 

1. Operational Level – this is the 'Replenishment Problem', which decides upon the 

optimal initial inventory level at the station to be replenished at each truck visit, 
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so that the inconvenience of the users (i.e, abandonment or waiting time caused 

due to shortage of bicycles or lockers) will be minimized. The decision is based 

on forecasted information of the expected demand and the time of the next visit 

of the distribution truck in the station. The goal is to devise a method to 

calculate this optimal initial inventory level and to devise and evaluate fast 

approximation methods to carry out these calculations. 

2. Strategic Level– this is the 'Capacity Problem', which decides upon the capacity 

of the stations where the tradeoff is infrastructure cost (sidewalk space and 

equipment) vs. minimum users discomfort for a given capacity. 
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2. Problem definition, assumptions and research goal 

2.1   Environment characteristic 

We consider the following basic inventory management problem: the inventory level 

of a station is reviewed periodically (say every night), during the period between the 

reviews there are rental events (i.e., arrival of users at a station who wish to rent a 

bicycle) and return events (i.e., arrival of users who return a bicycle). Both arrival 

processes are general stochastic and non-homogenous over time. When a user wishing 

to rent a bicycle arrives at the station and no bicycles are available, he may either 

abandon or wait until one becomes available. Similarly, if a user wishes to return a 

bicycle arrives at a station with no vacant locker, he may either wait or abandon and 

go to another station. Clearly, both types of shortage events are undesirable. A penalty 

cost is associated with user abandonments and with user waiting time. These penalties 

are special cases of shortage and backlogging costs. 

In this study we are interested in analyzing the expected cost due to such shortage 

events as a function of the initial inventory set by the truck at the review time. This 

model is different from the classical models of the reverse logistics literature in the 

sense that the order of events (rents and returns) is crucial. This calls for an analysis 

method that is typical for queuing systems. However, the fact that the state of the 

system is externally controlled (by replenishing the station) requires transient rather 

than steady state analysis, as discussed in §3.1. 

The goal of the operator in a Bike-Sharing system is to balance each station so it 

will be able to meet the fluctuating demand for bicycles, but also to provide enough 

vacant lockers to allow the riders to return their bicycles. The number of lockers in 

each station is tightly constrained due to area shortage (this area is typically allocated 

at the expense of sidewalk space or parking spots).  

Our model assumes that the station is served by a repositioning truck at fixed 

intervals, say every night. The truck can either add some bicycles to the station or 

remove some. 

As mentioned earlier, operating a Bike-Sharing system requires taking decisions 

on the frequencies and the routes that the trucks should follow. The problem studied 

here is a sub-problem of this inventory routing problem studied by Raviv et al (2010). 

Indeed, their objective function is constructed based on preliminary results of this 

study. 
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2.2 Objective function 

The objective is to decide upon the optimal initial inventory level at the station to be 

replenished at each truck visit. A solution is measured by the expected total penalty 

between two consecutive visits of the truck. This total penalty consists of four 

penalties:  

1. Bicycle shortage penalty which is charged for each potential customer 

(referred to as a renter) that arrives at the empty station and decides to 

abandon. 

2. Bicycle backlogging penalty which is charged for waiting time of renters who 

decided to wait for a bicycle. 

3. Bicycle surplus penalty that is charged for each user who tries to return a 

bicycle (referred to as returner) at a fully occupied station and decides to 

abandon and return the bicycle at other station 

4. Locker backlogging penalty which is charged for waiting time of returner who 

decides to wait for a bicycle. 

 

2.3  Problem formulation 

In this section we introduce our notation and formalize the description presented in 

previous sections.  

 

Decision variable 

OX    The initial inventory level which is set by the truck. 

 

Note that for the problem of determining the optimal capacity of a station discussed in 

the sequel, the station's capacity is also a decision variable in some of our models 

below. 

 

State Variables 

tI   System's state, i.e. the inventory level (number of bicycles available) in  

the station at time t. If ≤ ≤t0 I C  then tI  is the number of bicycles in 

the system. If tI 0≤  then the station is empty and there are tI−  users 
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waiting in the queue for a bicycle. If ≥tI C  then the station is full and 

there are −tI C  users waiting in the queue for a locker. The state 

increases by one whenever a returner arrives and decreases by one 

whenever a renter arrives. At all other times tI  is constant.  

 

Parameters 

Ap   Bicycle shortage penalty 

Wp   Bicycle backlogging penalty (per time unit) 

Ah   Bicycle surplus penalty  

Wh   Locker backlogging penalty (per time unit) 

µ( )t   The expected bicycle demand rate at the station at time t 

λ( )t   The expected bicycle return rate at the station at time t 

C   The station capacity, i.e. the number of lockers in a station 

T  Time horizon, i.e. the time until the next visit of the truck. 

IC(C)  Infrastructure cost (for the planning horizon) as a function of the 

station's capacity. We expect this function to be non-decreasing in 

reality, due to extra cost that is charged for more lockers. This function 

may be a step function with a fixed price for different ranges of the 

capacity.  

( )tIβ   Probability that a renter arriving at the station at time t decides to join 

the queue at the station and to wait for service. 1- ( )tIβ  is the 

probability that the renter abandons. ( )tIβ  is assumed to be an 

increasing function of the current system's state and ( ) 1=tIβ  for 

>tI 0 . This reflects the fact that the tendency of a renter to join the 

queue is determined by his expected waiting time, which is affected by 

the particular time of his arrival and the current length of the queue. If 

a renter arrives at the station when bicycles are available he will 

definitely join the (empty) queue.  

( )tIσ   Probability that a returner arriving at the station at time t decides to 

join the queue at the station and to wait for service. 1- ( )tIσ  is the 

probability that the returner abandons. ( )tIσ  is assumed to be a 
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decreasing function of the current system state and ( ) 1=tIσ  for 

<tI C . If a returner arrives at the station when lockers are available he 

will definitely join the (empty) queue. 

 

Next we introduce two abstract mathematical models that are aimed to minimize 

the total cost incurred at a station. 

 

1. The Replenishment problem: 

( )Min   F , , , h , ( ), ( ), C, T, 
O

A A W W
O

X
p h p t t Xµ λ    (1)  

where ( )F , , , h , ( ), ( ), C, T, A A W W
Op h p t t Xµ λ is the total expected cost given the 

above parameters and the initial inventory X0. This model supports the operational 

challenge faced by the operators of the repositioning fleet. That is to decide what 

should be the inventory level set by the truck when visiting  a station of capacity C 

with forecasted demand processes µ( )t and λ( )t , assuming the next visit at the station 

is expected after T units of time and that the capacity constraint of the trucks is not 

binding. 

2. Capacity problem objective function:  

  ( )�

,
Min   F , , , h , ( ), ( ), C, T, ,IC

O

A A W W
O

X C
p h p t t Xµ λ    (2)  

This model supports a medium term design problem of deciding the capacity of a 

station, assuming that the station will be reviewed periodically (say every night) and 

that the typical demand patterns during each cycle are given by demand processes 

µ( )t  and λ( )t . For this model the infrastructure cost for the planning horizon, IC, 

must be known.  

Note that these models are based on a single station analysis and independently in 

other close by stations. That is, the interaction within a network of stations is not 

modeled in this paper.
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3. The Replenishment problem 

In this section the Replenishment problem objective function is analyzed, whereas the 

Capacity problem objective function is considered in Chapter 4.  

 

3.1 Steady state considerations 

The majority of research in the queuing theory field focuses on steady-state analysis. 

The usefulness of this kind of analysis stems from the fact that many systems 

approach their asymptotic behavior quickly (Halfin and Whitt 1981, Whitt 1984).  

Many service systems reveal significant time variation in the arrival rates. 

However, queuing models with non stationary arrival processes are difficult to 

analyze. A common engineering practice is to use the stationary Erlang loss model 

with a constant arrival rate obtained as an average over an appropriate time interval 

during which the system is most heavily loaded, e.g., a busy hour. With this peak hour 

approach, the assumed arrival rate in the model is usually greater than or equal to the 

real arrival rate the majority of the time, so that the computation results tends to be 

conservative (Davis et al. 1996). A more detailed way to analyze a queuing system is 

to divide the arrival process to subintervals, where each is characterized by 

approximately constant arrival rates (Massey and Whitt 1996). It is then assumed that 

the system approaches steady state at the beginning of each subinterval. 

Consequently, relevant measurement can be calculated.   

In the Replenishment problem, assuming Poisson stochastic processes of renters 

and returners with demand rates of µ( )t and tλ( ) respectively, the problem can be 

presented as a ∞M/M/1/  birth and death process, as shown in Figure 2. 

The birth rate is tλ( )  for all states in which vacant lockers are available in the 

stations (hence ( ) 1=tIσ ) and ( ) ( )tt Iλ σ  for tI C≥ . Similarly, the death rate is 

( ) ( )tt Iµ β   for ≤t OI (X ) 0  and ( )tµ  otherwise.  

 

 

 

 

 

 

 

λ σ(t) (C)  λ σ +(t) (C 1)  λ σ +(t) (C 2)λ(t ) λ(t )  λ(t ) 

µ β −(t) ( 2) µ β −(t) ( 1)  µ β(t ) (0) µ(t )  µ(t )  µ(t )  µ(t )  

-2 C+1 C 1 0 C+2 -1 
   

 

Queue of returners 
Queue of renters 

Fig 2. The Replenishment problem as death and birth process 
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However, for a Bike-Sharing environment, steady state analysis is unsuitable for a 

number of reasons. First, the demand for bicycles and lockers is asymmetric, i.e. if the 

process would stabilize there is a high probability that the station's state would be 

either empty or full. The system's operators want to avoid such situations, and thus 

replenish the bicycles in the station. Namely, the replenishment action prevents the 

system from approaching steady state. Second, steady state analysis is reasonable 

when: 1) the time line can be divided into intervals during which the arrival processes 

are approximately homogenous; 2) the rate of events is high enough so that the system 

approaches its steady state very quickly, with respect to the current rates.  However, if 

the behavior of the system is very different than steady state behavior during a large 

share of each interval, this kind of analysis is useless. This is the case for a Bike-

Sharing system environment since the variation in arrival rate is very different for 

each hour of the day, while the expected number of renters and returners arrivals per 

hour is typically small. 

As a result, a transient analysis of the process must be considered. This analysis is 

hard to perform analytically, thus an efficient numerical approximation method is 

needed.  

In §3.3 our approximation method is presented. In §3.3.2.8 a comparison between 

steady state and transient state analysis is made on a number of test problems to 

support the claim that the former is inappropriate for this setting.  

 

3.2 Objective function convexity 

In this section we consider three different cases of the Replenishment problem and 

show that in some interesting settings the expected total penalty function is convex 

with respect to the initial inventory, OX . In §3.4 we discuss some important merits of 

this observation for Bike-Sharing system’s operators.  

 

3.2.1 Users with no patience  

We first consider the special case of the Replenishment Problem where 

β = ∀ ≤t t(I ) 0, I 0  and σ = ∀ ≥t t(I ) 0, I C . That is, all renters abandon an empty 

station, and all returners abandon a full station. No user waits at the station for an 

available bicycle or a vacant locker. 
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Note that if the rental station network is dense, this case is likely to be a good 

approximation of the reality since users may abandon the station and seek service in 

neighboring stations. 

Assume a stochastic arrival process A of potential renters and arrival process B of 

returners. Any realization of these two processes (jointly) is called a scenario. 

Let us denote the inventory level at time t, given initial inventory level OX  and 

scenario s by t OI (s,X ) . 

We denote the expected number of shortage events (shortage in bicycles) during 

the interval [ ]0,T  as a function of the initial inventory at time 0 by OG (X )−  and the 

expected number of surplus events (shortage in lockers) during this interval by 

OG (X )+ . Clearly, OG (X )−  is a non-increasing function of OX  while OG (X )+   is a 

non-decreasing one.  

The expected total penalty in a station during the interval [ ]0,T  is then given by: 

 

(3)        − += ⋅ + ⋅A A

O O OF(X ) p G (X ) h G (X )  

 

To prove the convexity of OF(X )  we will first prove some properties of 
OG (X )−  

and 
OG (X )+ .  

Let us define { }=t Omin t :I (s,X ) 0  as ΘL O(s,X )  and { }=t Omin t :I (s,X ) C as 

ΘU O(s,X ) . Note that ΘL O(s,X )  (resp.,ΘU O(s,X ) ) is the first time where the station is 

empty (resp.,  full) under arrival scenario s assuming initial inventory level of OX . Let 

us use the convention that if no such event occurs, Θ =L O(s,X ) T  (resp., 

Θ =U O(s,X ) T ). 

 

Lemma 1: if p be the probability of all the scenarios where Θ + < ΘL O U O(s,X 1) (s,X )  

(i.e., the process { }+t O t
I (s,X 1)  hits zero for the first time before the process 

{ }t O t
I (s,X )  hits C for the first time), then O OG (X 1) G (X ) p− −+ − = − . 

Proof:  First note that if at time t, =t OI (s,X ) C  [resp., + =t OI (s,X 1) 0 ] then  

= +' 'O Ot t
I (s,X ) I (s,X 1)  for all ≥'t t . 

An example of that for the case where Θ + < ΘL O U O(s,X 1) (s,X )  is presented in 

Figure 3. The figure describes two processes: The first has initial inventory level of 
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OX =2 and the second has initial inventory level of OX +1=3. The times of events in 

the example are marked with a circle. At time 
1t  the first pair of bicycles is taken 

from the station and at time 
2t  a second pair is taken. At this point, =

2t
I (s,2) 0 . At 

time 
3t  a renter arrives at the station. Due to lack of bicycles in the station for the 

process that begins with initial inventory level of OX =2, the first shortage event 

occurs. For the process that begins with initial inventory level of OX =3, the last pair 

of bicycles is taken. From this point on, = +' 'O Ot t
I (s,X ) I (s,X 1)  for all ≥' 3t t . We can 

see an example of that when at time 4t  a pair of bicycles is returned to the station. 

 

 

 

 

 

 

 

 

 

Now we consider the following sets of scenarios: 

 

1S  The set of all scenarios s where Θ + ≥ΘL O U O(s,X 1) (s,X ) , i.e. the first shortage 

event of { }t O t
I (s,X )  occurs after the first surplus event of { }+t O t

I (s,X 1) or 

there were no shortage and surplus events. 
 

2S  The set of all scenarios s where Θ + < ΘL O U O(s,X 1) (s,X ) , i.e. the first shortage 

event of { }t O t
I (s,X ) in the interval [0,T) occurs prior to the first surplus event 

of { }+t O t
I (s,X 1)  

 

Let us denote the number of shortage events in a particular scenario s assuming 

initial inventory level OX  by Og (s,X )− .  

In a member s of S1, { }t O t
I (s,X )  and { }+t O t

I (s,X 1)  coincide at the first surplus 

event. If such an event occurs it occurs before the first shortage event and hence 

  

O Og (s,X 1) g (s,X ) 0− −+ − = ,     (4) 

 

Fig 3. Example of the Replenishment problem - users with no patience 
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i.e., the number of shortage events in { }t O t
I (s,X )   equals the number of shortages in 

{ }+t O t
I (s,X 1) . 

In member s of S2, 
 
{ }t O t
I (s,X )  and { }+t O t

I (s,X 1)  coincide immediately after the 

first shortage events and hence 

 

(5)                 O Og (s,X 1) g (s,X ) 1− −+ − = −  

 

i.e., the number of shortage events in { }t O t
I (s,X )  is greater exactly by one than the 

number of shortages in { }+t O t
I (s,X 1) . 

Now, to calculate 

− − − −
∈ ∪ ∈ ∪

+ − ≡ + ⋅ − ⋅∫ ∫
1 2 1 2

O O O O

s S S s S S

G (X 1) G (X ) g (s,X 1) f (s) ds g (s,X ) f (s) ds    (where f(s) 

is the density function over all scenarios): 

)6(

[ ] [ ] [ ]
[ ] [ ]

− − − − − −

− − − −

+ − = + − = + −

= + − ∈ ⋅ ∈ + + − ∈ ⋅ ∈

= + − ⋅ ∈ =−

O O S O S O S O O

S O O 1 1 S O O 2 2

2

G (X 1) G (X ) E g (s,X 1) E g (s,X ) E g (s,X 1) g (s,X )

E g (s,X 1) g (s,X ) | s S P(s S ) E g (s,X 1) g (s,X ) | s S P(s S )

0 ( 1) P(s S ) p

  

The first equality is by the definition of G_( OX ). The second is due to linearity 

property of the expectation operator. The third equality is obtained by conditioning on 

all possible sets of scenarios that were introduced before. We then substitute (4) and 

(5) in the expectation and exploit the definition of the probability p.  

  

Lemma 2: For any integer O0 X C 2≤ ≤ −   the following inequality holds 

[ ] [ ]O O O OG (X 1) G (X ) G (X 2) G (X 1)− − − −+ − ≤ + − + . 

Proof: By Lemma 1 it is enough to show that the probability that 

Θ + ≤ΘL O U O(s,X 1) (s,X )  is not smaller than the probability that
 

Θ + ≤ Θ +L O U O(s,X 2) (s,X 1) . To see this, observe that in any scenario where 

Θ + ≤ Θ +L O U O(s,X 2) (s,X 1)  also Θ + < ΘL O U O(s,X 1) (s,X )
 
. This is due to the fact that 

in all the scenarios where the process { }+t O t
I (s,X 1)  hits zero before it hits C, the 

process { }t O t
I (s,X )  does so also.  
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Lemma 3 let �p  be the probability of all scenarios where Θ + > ΘL O U O(s,X 1) (s,X ) , 

then + ++ − = �O OG (X 1) G (X ) p . 

Proof:  consider the following sets of scenarios: 

1S  
The set of all scenarios s where Θ + > ΘL O U O(s,X 1) (s,X ) , ∈t [0,T) . 

2S  The set of all scenarios s where Θ + ≤ ΘL O U O(s,X 1) (s,X ) . 

 

Let us denote the number of shortages in scenario s assuming initial inventory 

level OX  by 
Og (s,X )+ . 

In member s of S1, { }t O t
I (s,X )  and { }+t O t

I (s,X 1)  coincide immediately after the 

first surplus event and hence 

(7)                 O Og (s,X 1) g (s,X ) 1+ ++ − = 

In member s of S2, { }t O t
I (s,X )  and { }+t O t

I (s,X 1)  coincide at the first shortage 

event and hence 

(8)                 + ++ − =O Og (s,X 1) g (s,X ) 0      

Now to calculate 

+ + + +

∈ ∪ ∈ ∪

+ − ≡ + ⋅ − ⋅∫ ∫
1 2 1 2

O O O O

s S S s S S

G (X 1) G (X ) g (s,X 1) f (s) ds g (s,X ) f (s) ds  : 

(9) 

[ ] [ ] [ ]
[ ] [ ]

+ + + + + +

+ + + +

+ − = + − = + −

= + − ∈ ⋅ ∈ + + − ∈ ⋅ ∈

= ⋅ ∈ + = �

O O S O S O S O O

S O O 1 1 S O O 1 2

1

G (X 1) G (X ) E g (s,X 1) E g (s,X ) E g (s,X 1) g (s,X )

E g (s,X 1) g (s,X ) /s S p(s S ) E g (s,X 1) g (s,X )/ s S p(s S )

1 p(s S ) 0 p

 

The equalities are obtained in a similar way as in Lemma 1.  

 

Lemma 4: For any integer O0 X C 2≤ ≤ −   the following inequality holds 

[ ] [ ]O O O OG (X 1) G (X ) G (X 2) G (X 1)+ + + ++ − ≤ + − +  

Proof: By Lemma 3 it is enough to show that the probability that 

Θ + > Θ +L O U O(s,X 2) (s,X 1)  is not smaller than the probability that 

Θ + > ΘL O U O(s,X 1) (s,X ) . To see this, observe that in any scenario where 

Θ + > ΘL O U O(s,X 1) (s,X )
 
also Θ + > Θ +L O U O(s,X 2) (s,X 1)  .   
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Observe that a function { }→ℜ: 0,...,f C   is convex if and only if the series of 

differences { } { }∈ −
+ −

0,..., 1
( 1) ( )

i C
f i f i  is non-decreasing. This is equivalent to second 

order conditions in the continuous case.  The next corollary follows directly from the 

above observation together with Lemmas 2 and 4. 

 

Corollary 1: The functions  OG (X )−  and OG (X )+  are convex. 

We are ready to prove the main result of this section. 

 

Theorem 1: The expected total penalty function OF(X )  is convex. 

Proof: Recall that for any α β≥, 0 and any convex functions g(x ),h(x )  defined over 

the same domain, the function = α +βf (x ) g(x) h(x )  is also convex.  Now our claim 

follows directly from this observation and Corollary 5.  

 

We conclude by establishing bounds on the "marginal saving" obtained by adding 

or removing a single bicycle in the station. 

 

Corollary 2:  − ≤ + − ≤A A

O Op F(X 1) F(X ) h . 

Proof: let us look at the scenario where Θ + > ΘL O U O(s,X 1) (s,X ) . Let us denote the 

probability for such a scenario by 1p . Using the same arguments as in Lemma 1 and 3 

we know that: 

 

(10)        O Og (s,X 1) g (s,X ) 1+ ++ − =    

(11)        O Og (s,X 1) g (s,X ) 0− −+ − =  

  

Now let us look at the scenario where Θ + <ΘL O U O(s,X 1) (s,X ) . Let us denote the 

probability for such a scenario by 2p . Using the same arguments as in Lemma 1 and 3 

we know that: 

 

(12)        O Og (s,X 1) g (s,X ) 0+ ++ − =    

(13)                O Og (s,X 1) g (s,X ) 1− −+ − = −  
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Note that if no shortage events of { }t O t
I (s,X )  and no surplus events 

of{ }+t O t
I (s,X 1)  occurred during the interval [ ]0,T then:  

 

(14)        O Og (s,X 1) g (s,X ) 0+ ++ − =    

(15)                  
O Og (s,X 1) g (s,X ) 0− −+ − =  

 

Now, 

)16( 

[ ] [ ]− − + ++ − = ⋅ + − + ⋅ + −A A

O O O O O OF(X 1) F(X ) p G (X 1) G (X ) h G (X 1) G (X )  

= ⋅ − ⋅A A

1 2p h p p  

 

The results are based on the proofs of Lemma 1 and 3. 

Thus, 

)17(                                      .− ≤ + − ≤A A

O Op F(X 1) F(X ) h  

  

This result implies that by adding another pair of bicycles to the initial inventory 

level we can reduce the expected total penalty up to one shortage penalty or increase it 

up to one surplus penalty. 

 

3.2.2 Users with infinite patience 

Now let us consider the case where renters (resp., returners) who arrive at an empty  

station (resp., full) wait until they can rent (resp. return) the bicycles. 

In this case, we measure the expected total penalty by the expected total waiting time 

of customers in the station. When the station is replenished at time T, all the users that 

are waiting at the station are served (note that this assumption, although reasonable, is 

not necessarily true in practice). 

Note that in this case there is no point in counting the number of “lost sales” 

because users of the system do not abandon, consequently, if the system is stable 

everyone is served eventually.    

The expected total waiting time function is given by: 

 

)18(        − += ⋅ + ⋅W W

O O OF(X ) p H (X ) h H (X )  
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where OH (X )−  is the renters expected waiting time for bicycles during the interval 

[ ]0,T  as a function of the initial inventory at time 0, and OH (X )+  is the returners 

expected waiting time for vacant lockers during this interval. 

As in §3.2.1, the state of the system given initial inventory level OX and scenario s 

at time t is denoted by t OI (s,X ) . Note, however that in this case t OI (s,X )  may be 

negative or greater than C. This represents situations where users are waiting for 

bicycles or vacant lockers. For example, if = −t OI (s,X ) 3  , then given initial inventory 

level of OX  and scenario s, there are 3 renters waiting for bicycles at time t. Similarly, 

if = +t OI (s,X ) C 3 , then given initial inventory level of OX  and scenario s, there are 3 

returners waiting for vacant lockers at time t. 

An example for this case appears in Figure 4. The diagram describes two 

processes: The first has initial inventory level of OX =2 and the second has initial 

inventory level of OX +1=3. The difference between the states of these processes is 

always one. At time 1t  the first pair of bicycles is taken from the station, at time 2t  a 

second pair is taken. At time 3t  another renter arrives at the station, where in process 

{ }t t
I (s,2)  there are no bicycles. At this point, = − <

3t
I (s,2) 1 0 . At time 4t  process 

{ }t t
I (s,3)  also receives a negative value where =−

4t
I (s,3) 1 . As a result, the difference 

between the two processes stays fixed.  

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig 4. Example of the Replenishment problem - users with infinite patience 
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Lemma 5: For any integer O0 X C 2≤ ≤ −  the following inequality holds 

[ ] [ ]O O O OH (X 1) H (X ) H (X 2) H (X 1)− − − −+ − ≤ + − + . 

 

Proof: Let us fix a scenario of renters arrivals s and let us denote the expected total 

waiting time of renters under this scenario given initial inventory OX  by Oh (s,X )− .  

Note that the difference O Oh (s,X ) h (s,X 1)− −− +  [resp., − −+ −O Oh (s,X 1) h (s,X ) ] 

equals exactly to the total time during which  <t OI (s,X ) 0  [resp., + >t OI (s,X 1) C )].  

That is 

)19(        { }− − <− + = ∫ t O

T

O O I (s,X ) 0

0

h (s,X ) h (s,X 1) || dt   

where 

          { }<

<
= 
t O

t O

I (s,X ) 0

1 ,I (s,X ) 0
||

0 ,else
.

 

Similarly  

)20(         { }− − + <+ − + = ∫ t O

T

O O I (s,X 1) 0

0

h (s,X 1) h (s,X 2) || dt  

           

Now, note that 
{ }{ } { }{ }< + <

≥
t O t Ot t
I (s,X ) 0 I (s,X 1) 0

|| ||  because { } { }+ = +t O t Ot t
I (s,X 1) I (s,X ) 1  

and hence  

)21(   O O O Oh (s,X ) h (s,X 1) h (s,X 1) h (s,X 2)− − − −− + ≥ + − +  

and so  

)22(              O O O Oh (s,X 1) h (s,X ) h (s,X 2) h (s,X 1)− − − −+ − ≤ + − +  

 

Now, since this is true for every scenario, the inequality holds for the expectation 

as well.  

Lemma 6: For any integer O0 X C 2≤ ≤ −  the following inequality holds 

[ ] [ ]O O O OH (X 1) H (X ) H (X 2) H (X 1)+ + + ++ − ≤ + − + . 

 

Proof: Let us fix a scenario of returners arrival s and let us denote the expected total 

waiting time of returners under this scenario given initial inventory OX  by Oh (s,X )+ . 



 

 25

Note that the difference − −+ −O Oh (s,X 1) h (s,X )  equals exactly to the total time during 

which  <t OI (s,X ) 0  [resp., + >t OI (s,X 1) C )]. 

That is, 

)23(           

 
{ }+ + + >+ − = ∫ t O

T

O O I (s,X 1) C

0

h (s,X 1) h (s,X ) || dt      

Similarly 

)24(        

 
{ }+ + + >+ − + = ∫ t O

T

O O I (s,X 2 ) C

0

h (s,X 2) h (s,X 1) || dt  

  

Now, note that 
{ }{ } { }{ }+ > + >

≥
t O t Ot t
I (s,X 2) C I (s,X 1) C

|| ||  because 

{ } { }+ + = +t O t Ot t
I (s,X 1) 1 I (s,X 2)  and hence 

)25(         O O O Oh (s,X 1) h (s,X ) h (s,X 2) h (s,X 1)+ + + ++ − ≤ + − +  

 

Now, since this is true for every scenario, the inequality holds for the expectation 

as well.  

 

Corollary 3: As we previously mentioned, a function { }→ℜ: 0,...,f C   is convex if 

and only if the series of differences { } { }∈ −
+ −

0,..., 1
( 1) ( )

i C
f i f i  is non-decreasing. Thus, 

the functions OH (X )−  and OH (X )+  are convex. 

 

Theorem 2: The expected total penalty function OF(X )  is convex 

Proof: Recall that for any α β ≥, 0 and any convex functions g(x ),h(x )  defined over 

the same domain, the function = α + βf (x ) g(x) h(x )  is also convex.  Now our claim 

follows directly from this observation and Corollary 10.  

 

3.2.3 Users with finite patience 

Previously we saw that the two extreme cases of user behavior models, i.e., when all 

users are impatient and when all users have unlimited patience, resulting in convexity 

of the objective function. We point out that the convexity proofs above make no 

assumptions on the nature of the arrival process A and B.  In particular, our results are 

valid for non homogenous arrival processes and for non Markovian ones. 
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It is interesting to point out that the convexity property does not hold for more 

general user behavior models, i.e., when some users abandon and others choose to 

queue at the station. 

Consider for example the following deterministic scenario s - two arrivals of 

renters and no arrivals of returners. At time t=1, an impatient renter arrives and at 

time t=2 a renter with unlimited patience arrive. It is easy to check that: 

• With  =OX 2  the station will not be penalized for waiting time of users and for 

abandonments. 

• With  =OX 1  the station will accumulate total waiting of T-2 over the 

planning horizon and there will be no abandonment. 

• With  =OX 0  the station will accumulate total waiting of T-2 over the 

planning horizon and one renter will abandon  

Now, if we denote the expected total penalty function of renters under this 

scenario given initial inventory OX  by Of (s,X ) , then − = − Af (s,1) f (s,0) p  and 

( )− = − ⋅ −Wf (s,2) f (s,1) p T 2 . Clearly it is possible to choose parameters values such 

that − > −f (s,1) f (s,0) f (s,2) f (s,1) , which implies that Of (s,X )  is not convex. 

Nevertheless, we believe that with most real life stochastic demand processes, the 

objective function  is convex in the relevant domain, i.e. the marginal contribution of 

an additional bicycle at the station is decreasing. 

 

3.3   The Replenishment problem with Poisson arrival processes and 

users with no patience  

In this section we present an analysis of a station under the following assumptions:  

• The users have no patience, i.e., abandon immediately if bicycles or lockers are 

not available. 

• The renters and returners arrive at the station according to Poisson processes.   

These processes are not necessarily homogenies over time and their rates are 

represented by step functions (the rate in each time interval is stationary).  

• The arrival process of users is unaffected by the system state. In reality users may 

decide not to arrive at the station based on prior information about the system 

state obtained remotely, e.g., using the system’s web site. However, we assume 
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that such users should be considered as abandonees and hence our analysis is not 

affected.   

One can think of a station under these assumptions as an M/M/1/C queuing model 

with a service process equal to the arrival process of renters and arrival process equal 

to arrival process of returners. This system is depicted as a Markov chain in Figure 5. 

Recall, however, that in order to solve the Replenishment problem a transient analysis 

is needed. Note that the Poisson assumption is reasonable due to the fact that users 

arrive at the system independently.  

 

 

 

 

 

 

 

 

The rest of this section is organized as follows: In §3.3.1 we formulate the 

problem in terms of the above Markov chain. In §3.3.2 we develop an approximation 

procedure for this function and set an experimental study where we set up the 

algorithm's parameters, validate it and analyze its computing time. Next we compare a 

few of our results to calculations based on steady state analysis and illustrate its 

problematic nature for the Replenishment problem. Finally, we draw some operational 

insights from the results and check their sensitivity to inaccuracies in the input. 

 

3.3.1 Markov Chain Model for the Replenishment Problem 

Let π( t)  be the transition probability matrix for the interval [0,t]. Then, the 

formulation of the objective function is as follows: 

)26(  ( )
=

 µ λ ⋅µ ⋅π + ⋅λ ⋅π ∫ o o

T

A A A A

O X ,0 X ,C

t 0

F p ,h , ( t ), ( t ), C, T, X = p (t ) ( t ) h (t ) (t ) dt 

where, πi, j( t )  is the probability of the station to switch from state i at time 0 to state j 

at time t (calculation procedure for these probabilities is presented in §3.2.2). In 

particular, π
oX ,0 ( t)  is the probability that a station will be empty at time t assuming 

0 C 1  2 3 4 
µ(t ) µ(t ) µ(t ) µ(t ) µ(t )

λ(t )λ(t )λ(t )λ(t )λ(t )

Fig 5. The Replenishment problem with Poisson arrival processes and users with no  

           patience as death and birth process 
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initial inventory OX , and π
oX ,C  is the probability of having no vacant lockers at this 

time.  The term λ ⋅π
oX ,C( t) (t )  [resp., µ ⋅π

oX ,0(t ) ( t) ] represents the rate of returners 

(resp., renters) abandonments at time t.  The integration over the penalty accumulation 

rates yields the expected total penalty during the time period [0,T], representing the 

interval between consecutive visits of the repositioning truck. 

In the term of (26), the Replenishment problem is defined as  

 

)27(        ( )
∈

µ λ
o

A A

O
X {0,...,C}
min F p ,h , (t ), ( t ), C, T, X  

 

3.3.2 Approximation procedure 

Next we present a numerical approximation procedure for calculating 

( )µ λA A

OF p ,h , (t ), ( t ), C, T, X  as in (26) for a given set of parameters and for all 

values of { }∈OX 0,...,C  and hence to solve (27). Note that the value of the penalty 

function is of interest for all values of initial inventory and not only for the one that 

minimizes the function. This is due to the fact that in many cases it is impossible or 

too costly to set the initial inventory levels at all stations to their ideal values. 

The approximation is done by discretizing the time of the planning horizon into a 

short period of length d. Note however that it is important to make sure that the length 

of the intervals in which the arrival rates are given (and during each one of them the 

rates are assumed to be constant) is divisible by d. We also assume that T is divisible 

by d. Hence, d
Τ  is the number of time periods until the next visit of the truck. We 

start with straight forward discretization of the integral in (26). That is, 

 

)28(  ( )
Τ

=

 µ λ ≈ ⋅µ ⋅π + ⋅λ ⋅π ∑ o o

d
A A A A

O X ,0 X ,C

t 1

F p ,h , ( t ), ( t ), C, T, X p (t) ( t ) h (t ) ( t )  

 

In order to carry out the summation (28), one needs to calculate the transition 

probability matrix for all integer times t = 1,...,
d

Τ .  To this end we define and 

calculate the single period transition probability P(t) which is the transition 

probability matrix from the beginning of a period to its end.  Using these matrices, 

one can obtain π( t)  recursively. That is, 
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)29(                π = π − ⋅( t ) ( t 1) P(t )  

Next, P(t) can be approximated as follows (Ross 1997): 

  

)30(            
→∞

 = = + 
 

M

Rt

M

t
P(t ) e lim I R

M
  

  

where I is the Identity matrix and matrix R is defined as follows for each pair (i,j): 

 

)31(                            
≠

=  − ∀ ≠


∑
,

, ,

ij

ij
ik

k

q if i j
R q k i else  

 

where ijq is the instantaneous transition rate from i to j. 

If for example C=2 and ( )tµ = µ , ( )tλ =λ , matrix R would be: 

                                        

− 
 = − + 
 − 

0

( )

0

R

λ λ
µ λ µ λ

µ µ
 

In this example there are three possible states (0,1,2). To illustrate the construction of 

the matrix R, let us examine the second row (state 1). The Instantaneous transition 

rate to states 0 and 2 ( 10, 12q q  resp.) is µ  and λ  respectively and hence 

( )= = − + =10 11 12, ,R R Rµ µ λ λ . 

 The approximation procedure is based on the formulation of the objective 

function and the approximation formula calculation of the transition probabilities 

given above. The calculation performed by the procedure is efficient due to its use of 

matrix calculation. It uses shortage and surplus penalty vectors for every possible OX , 

so that the calculation for all possible initial states is done by only one calculation.  

The algorithm was implemented in Matlab, see code in Appendix A. 
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3.3.2.1   Control parameters 

From (28) and (30) we conclude that the objective function values are mainly affected 

by two parameters: 

d  The length of each time period over the planning Horizon. 

M The value that is used for approximating the limit from the transition 

probabilities matrix approximation formula. 

 

The value of d determines the level of discretization being used for the objective 

function approximation. As mentioned, d
Τ  is the number of time periods until the 

next visit of the truck. The smaller d is, the finer the discretization level is and the 

better the approximation is. It is required to find such a value for d so that the 

approximation will be good enough and the calculation time will be reasonable.  

For the M parameter, the higher M is, the more accurate the transition 

probabilities matrix approximation is. In (30) we showed that theoretically →∞M .  

There is a need to find a reasonable value of M (in the computation time sense) so that 

the value of each cell of the matrix P(t)  will be approximately converged, i.e. if we 

were to increase the value of M, the outcome would be approximately the same. 

 

3.3.2.2   Experimental study 

We conducted an experimental study in order to calibrate, verify and validate the 

approximation procedure. The experimental study is organized as follows: in §3.3.2.3 

the experiment environment is defined and test problems are presented. In §3.3.2.4 we 

look for proper values for the control parameters (calibration and verification). This is 

done so we can produce an approximately converged solution on the one hand, and so 

that the computing time will be reasonable, on the other hand. In §3.3.2.5 the 

procedure's results validity is tested by a comparison to the results of a simulation 

model. This study is important as a performance evaluation of the algorithm. Next in 

§3.3.2.6 we discuss the procedure and the simulation computing time. This concerns 

us due to the fact that this operational decision occurs in a dynamic environment and 

it is essential to have fast performances. In §3.3.2.7 we draw some operational 

insights concerning the nature of the optimal initial inventory level of the test 

problems considered. In §3.3.2.8 we perform a numerical comparison between steady 
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state analysis and our procedure. Finally, in §3.3.2.9 we perform a sensitivity analysis 

of the results by exploring the influence of noise in the system.  

 

3.3.2.3   Experimental Design   

To evaluate the presented approximation procedure, several test problems were 

solved. These test problems represent a variety of renters and returners demand 

patterns in a realistic size station (30 lockers in a station). The problems that were 

examined present several possible cases of demand processes in a single station. A 

short description of each problem appears in Table 1 and graphs which present the 

renters and returners demand patterns are shown in Figures 6-10. 

The renters and returners demand data describes the rate of arrival events in time 

intervals. The basic time interval used in these experiments is fifteen minutes. 

We assume that the bicycles replenishment operation is carried out between 

midnight and 6am, while the system is idle. The demand is then realized during an 

eighteen hours horizon, 6am until midnight. While Bike-Sharing systems operate 

24/7, the actual demand observed during the nights of weekdays in most systems is 

negligible. Thus, the renters and returners demand data is given for an eighteen hour 

planning horizon (in 72 time intervals of fifteen minutes). The actual data used in our 

experiment is presented in Appendix B.   

We assume that the shortage penalty and the surplus penalty are equal to 1 

( = =A Ap h 1 ). That is, the expected total penalty equals the number of renters arriving 

to an empty station and the number of returners arriving to a full capacity station. 

The results are being tested by their expected total penalty for each initial OX  and 

more importantly, by the optimal OX  selected. 
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Table 1. Test problems description  

Problem Description 

Homogenous – symmetric Homogenous and identical rate of 

demand (85 renters and returners arrivals 

each)  

  

Homogenous – non symmetric Homogenous and not identical rate of 

renters and returners demand.  The 

renters demand is 1.2 times stronger than 

the returners demand (102 renters arrivals 

and 85 returners arrivals) 

  

Peaks – symmetric Symmetric peaks - Morning peak of 

renters demand and afternoon peak of 

returners demand. Typical for a suburban 

station (85 renters and 85 returners) 

  

Peaks – non symmetric Non symmetric peaks - Morning peak of 

renters demand and afternoon peak of 

returners demand. The afternoon peak is 

twice as strong as the morning peak (85 

renters arrivals and 170 returners arrivals) 

  

Random symmetric Random demand processes (85 renters 

and 85 returners) 
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Fig 6. Homogenous – symmetric renters and returners 

demand 

Fig 8. Peaks – symmetric renters and returners demand 

 

Fig 9. Peaks – non symmetric renters and returners demand 

 

Fig 10. Random symmetric renters and returners demand 

 

Fig 7. Homogenous – non symmetric renters and returners 

demand 
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3.3.2.4   Convergence verification for the transition probability matrix 

In §3.3.2.1 the need to find a proper value for the control parameter M in the 

approximation procedure was explained. The target is to find such a value that will 

produce an approximately converged solution, on the one hand, and will be computed 

in reasonable time, on the other hand.  

A set of experiments were conducted considering the test problems using the 

approximation procedure using M values of 300 and 1000. A comparison of the 

results has been made for four of the problems with 1 and 15 minutes discretization 

levels (namely, d =1 and d=15). As previously mentioned, the data basic time interval 

is fifteen minutes. Hence, when the discretization level is less than 15 minutes, each 

rate is divided by 15 d  and the result will appear 15 d  times. For example, if the 

discretization level is 5 minutes (d=5), then =15 3d  and each rate will appear 3 

times. In this case, the value of  d
Τ  is 216. A proper procedure has been written for 

this purpose (see Appendix C). 

The results are shown in Tables 2-7 and in Figures 6-11. As one can see, the 

difference between the tested problems results with M = 300 and M = 1000 is 

negligible for all the tested problems.  More importantly, the optimal OX  was the 

same in each comparison that was made. The most significant differences were found 

in the homogenous non-symmetric problem with a discretization level of 1 minute. 

Nevertheless, even in this case the average difference is 1.17%  (with standard 

deviation of 0.91% ) which is fairly small. Moreover, the optimal policy is also 

identical in this case. 

 From the results, we conclude that M = 300 is a proper value to use in the model, 

so that the values in the transition probabilities matrix will approximately converge. 

Note that we prefer using M = 300 in order to achieve better computing time. 

The next stage will be the quality validation of the results the model produces. 
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3.3.2.5   Validation of the approximation procedure results 

Our main goal in this subsection is to evaluate the accuracy of the approximation 

procedure. Since no analytical method to resolve the Replenishment problem is 

available, we check whether the results obtained from our procedure agree with 

estimates obtained from a simulation study that is based on numerous replications. We 

note that since such a simulation takes a long time to run, it is not a viable alternative 

to operators of Bike-Sharing systems who have to solve the Replenishment problem 

on a regular basis for hundreds of stations in an ever changing environment. The 

validity study is based on a comparison between the results for the test problems 

calculated by the approximation procedure and by a simulation model. The simulation 

model includes one station with a capacity of 30 lockers. When a renter arrives to the 

station, a query regarding the number of bicycles available in the station is being 

made - if there are bicycles available, the current bicycles counter decreases by 1 and 

if there are no bicycles available, the shortage penalty is updated.  

When a returner arrives at the station, a query regarding the number of lockers 

available in the station is being made - if there are lockers available, the current 

bicycles counter increases by 1 and if there are no lockers available, the surplus 

penalty is updated. The arrival rates of renters and returners are taken from the 

demand data for the tested problem (see Appendix B). The data collected during the 

simulation run is the expected shortage penalty, the expected surplus penalty and the 

expected total penalty. The simulation model was built using the ROCKWELL 

ARENA 12.0 simulation package. The simulation length was set to 18 hours without 

a warm-up period due to the fact that we are interested in the transient state and not in 

the steady state, as was explained in §3.1. The expected total penalty was estimated 

based on 1000 replications for all of the problems except for the Peaks – non 

symmetric problem where 3000 replications were used, to be further explained. The 

95% confidence intervals were calculated and appeared to be narrow. The shortage 

penalty and surplus penalty are set to 1 (as in the procedure experiments), so the 

expected total penalty equals the number of renters arriving at an empty station and 

the number of returners arriving at a full capacity station. The simulation model was 

applied to each possible level of initial inventory in order to estimate the whole total 

penalty function.  Common streams of random numbers (inter arrival times) were 

used for the entire model configuration, i.e., all possible initial inventories. 
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Another goal in this set of experiments is to compare different discretization 

levels. We conjecture that the greater the discretization level is, the better the 

approximation is. The discretization levels that were explored are 1, 5 and 15 minutes.  

From the results presented in Tables 8-10, Figures 17-21 and Appendix D, we 

conclude that the majority of the results is in the confidence level of 95% for all the 

problems.  

The 15 minutes discretization produces valid results for the homogenous problems 

(symmetric and non – symmetric) except for the margins (0 and C), and the 

optimal OX agrees with the simulation. In the peaks problems (symmetric and non – 

symmetric) most of the results are outside of the confidence interval, but are very 

close to the interval margins (less then 3%). The fact that the optimal OX  equals to 

the simulation results in the symmetric case and off by one locker (26 instead of 25) 

in the non-symmetric case supports that. In the Random - symmetric problem case, the 

situation is the same as the Peaks – symmetric problem and the optimal OX agrees with 

the simulation. 

The 1 and 5 minutes discretization levels produce valid results in all cases (except 

the full station margin in the peaks – non symmetric problem in the 1 minute 

discretization).  

An encouraging phenomenon was discovered when running the simulation with 

3000 replications in the Peaks – non symmetric problem. We have noticed that the 

more replications the simulation is based on, the better the 1 minute discretization 

becomes. Thus we conclude that the approximation procedure is highly precise, so 

even the simulation model is less accurate in some cases.  

As for the comparison between the various discretization levels, we see that in 

each discretization level, the results behave the same in all of the problems except for 

slight changes. Tables 11-13 show the comparison between all the discretization 

levels in two aspects: The largest differences in the expected total penalty and the gap 

between the optimal initial inventory level. In the two homogenous problems (the 

symmetric and non-symmetric) the difference between the expected total penalty of 

the 1 minute and 5 minutes, or the 5 minutes and 15 minutes discretization for any 

given OX  is less than 4%, and less than 1% for OX , that are not in the margins (0 and 

C). If we compare the 1 minute and 15 minutes discretization for any given OX , the 
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difference is less then 6%, and less then 2% for OX  that are not in margins (0 and C). 

More importantly, all of the discretization levels agree on the same optimal OX . 

In the Peaks – symmetric problem, the difference between the expected total 

penalty of the 1 minute and 5 minutes or the 5 minutes and 15 minutes discretization 

for any given OX  is less then 5%, and for the 1 minute and 15 minutes, the difference 

is less than 7%. Here also all of the discretization levels agree on the same 

optimal OX . 

The Peaks –non symmetric problem produced slightly smaller differences than the 

symmetric peaks problem, with less than 2% differences in the expected total penalty 

for the 1 minute and 5 minutes, or the 5 minutes and 15 minutes discretization, and 

less than 3% for the 1 minute and 15 minutes. Even though, here the 15 minutes 

discretization level does not agree with the 1 and 5 minutes discretization level on the 

optimal OX  (26 for the 15 minutes discretization and 25 for the 1 and 5 minutes 

discretizations). This difference is not meaningful of course, due to the small 

difference in the optimal OX  value (3.22%). 

The Random – symmetric problem produced differences that are smaller than 8% 

for the 1 minute and 5 minutes or the 5 minutes and 15 minutes discretization and less 

than 11% for the 1 minute and 15 minutes.. More importantly, all of the discretization 

levels agree on the same optimal OX . 

Figures 17-21 show the expected total penalty as a function of OX . We see that the 

lines are in the exact same trend, a fact that strengthens the model validity. 

Empirically, the higher the discretization level is, the smaller the expected total 

penalty is, clearly seen from the graphs. However, the location of the simulation graph 

between the model's graphs is not permanent. Notice that the differences are minor 

and thus this insight is not very significant. Moreover, note that we calculate the 

penalties with respect to the state at the end of each time interval. If we would 

calculate those penalties with respect to the state in the middle of each time interval, 

we expect the results of different discretization levels to be closer. We elaborate on 

this issue in the Conclusions and future research Chapter.  

In conclusion, the approximation procedure is proven valid in a 95% confidence 

level and the differences between the various discretization levels are minor 

considering the expected total penalty and negligible considering the optimal OX . 
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Hence, we conclude that the algorithm is appropriate for the use of decision makers in 

a dynamic environment such as a Bike-Sharing system. 

Another interesting phenomenon observed from the results is that the graphs 

produced by the approximation procedure are not always convex at the margin. This 

phenomenon can be observed visually in the 15 minutes discretization level graphs. 

A possible explanation can be that due to the low probability of being at the 

margin at each time interval, the margins of the graph are the outcome of summing 

very small numbers and hence larger numerical errors occur. 

A possible work around for this issue, if one wishes to use the convexity property in 

optimizing the initial inventory in the whole system (subject to some constraints), is to 

approximate the non-convex fragments by linear functions.



 

 42

 

 

 

 

 

 

 

 

 

 

 

Problem 

Discretizatio

n level 

[minutes] 

Number of 

results in the 

95% 

confidence 

interval 

*

OX  

Gap 

 

 

Homogenous - 

symmetric 

 

15 30/31 0 

 

 

Homogenous - 

symmetric 

 

5 31/31 0 

 

 

Homogenous - 

symmetric 

 

1 31/31 0 

 

 

Homogenous – 

non symmetric 

 

15 30/31 0 

 

Homogenous – 

non symmetric 

 

5 31/31 0 

 

Homogenous – 

non symmetric 

 

1 31/31 0 

Problem 

Discretization 

level 

[minutes] 

Number of 

results in the 

95% 

confidence 

interval 

*

OX
 

Gap 

 

 

Random - 

symmetric 

 

15 1/31 0 

 

 

Random - 

symmetric 

 

5 31/31 0 

 

 

Random - 

symmetric 

 

1 31/31 0 

Problem 
Discretization level 

[minutes] 

Number of 

results in the 

95% 

confidence 

interval 

*

OX
 

Gap  

 

 

Peaks - 

symmetric 

 

15 3/31 0 

 

 

Peaks - 

symmetric 

 

5 31/31 0 

 

 

Peaks - 

symmetric 

 

1 31/31 0 

 

 

Peaks – non 

symmetric 

 

15 1/31 1 

 

Peaks – non 

symmetric 

 

5 31/31 0 

 

Peaks – non 

symmetric 

 

1 30/31 0 

Table 8. Homogenous problems comparison to simulation 

 

Table 9. Peaks problems comparison to simulation Table 10. Random problem comparison to simulation 
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Problem 

Discretization 

level 

comparison 

[minutes] 

Largest  

expected total 

penalty  

difference 

*

OX  

Gap 

 

 

Homogenous - 

symmetric 

 

1 and 5 1.36% 0 

 

 

Homogenous - 

symmetric 

 

5 and 15 2.86% 0 

 

 

Homogenous - 

symmetric 

 

1 and 15 4.26% 0 

 

 

Homogenous – 

non symmetric 

 

1 and 5 1.93% 0 

 

Homogenous – 

non symmetric 

 

5 and 15 3.77% 0 

 

Homogenous – 

non symmetric 

 

1 and 15 5.78% 0 

Problem 

Discretizatio

n level 

comparison 

[minutes] 

Largest  
expected total 

penalty  

difference 

*

OX

 

Gap 

 

 

Random - 

symmetric 

 

1 and 5 3.19% 0 

 

 

Random - 

symmetric 

 

5 and 15 7.94% 0 

 

 

Random - 

symmetric 

 

1 and 15 10.89% 0 

Problem 

Discretization level 

comparison 

[minutes] 

Largest  

expected total 

penalty  

difference 

*

OX
 

Gap  

 

 

Peaks - 

symmetric 

 

1 and 5 1.73% 0 

 

 

Peaks - 

symmetric 

 

5 and 15 4.57% 0 

 

 

Peaks - 

symmetric 

 

1 and 15 6.22% 0 

 

 

Peaks – non 

symmetric 

 

1 and 5 0.62% 1 

 

Peaks – non 

symmetric 

 

5 and 15 1.56% 0 

 

Peaks – non 

symmetric 

 

1 and 15 2.16% 0 

Table 11. Homogenous problems discretization levels 

comparison  

Table 12. Peaks problems discretization levels comparison  

 

Table 13. Random problem discretization levels 

comparison  
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3.3.2.6   Computing time 

Another important factor that must be examined for decision making in a dynamic 

environment such as Bike-Sharing system is the run time of the computation model. 

A comparison between the approximation model and the simulation computing time 

is shown in Table 14.  As shown in the table, the model produces efficient computing 

time, where the results were obtained in mean time of 0.0968, 0.256 and 1.27 seconds 

in the 15, 5 and 1 minutes discretization levels respectively, on an Intel Pentium 4, 2.4 

GHz personal computer.  

Comparison with the simulation model results reveals an enormous difference. 

The simulation model solves the problem for each OX  separately, so a complete 

solution (all possible OX ) requires 31,000 replications in the 1000 replications per 

one OX case, and 93,000 replications in the 3000 replications per one OX case. This 

produces extremely high run times, so the mean run time for a single alternative of the 

OX  takes 7 minutes, and the complete problem solution takes a mean time of 3.5 

hours in the 1000 replications case. In the 3000 replications case, the mean run time 

for a single alternative of the OX  takes 20 minutes and the complete problem solution 

takes a mean time of 10 hours. The standard deviations of the run times are negligible 

in both cases (the approximation procedure and the simulation model) and therefore 

do not appear in the table.  

We conclude from these results that the simulation model can only be in use for 

validation purpose and it is not highly recommended for decision makers. The short 

run time of the approximation procedure makes it much more attractive for decision 

makers who use the model in a dynamic environment. 

Note that the test problems we considered focus on a station with a capacity of 30 

lockers, which is the typical size in Bike-Sharing systems. Nevertheless, stations with 

larger capacities exist in these systems and it is worth mentioning that our procedure 

yields quicker calculations in these cases also. Let us define the number of feasible 

initial inventory levels as m, the average renters rate as µ  and the average returners 

rate asλ .  The complexity of the simulation model is affected by the capacity of the 

station, the planning horizon length and by the number of events. The mean 

complexity of each repetition of the simulation is ( )⋅ ⋅ µ + λO(T m [ ]) . Note that it is 

very likely that in larger stations there will be more events. Conversely, our 
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approximation procedure is affected by the capacity of the station (due to matrix 

multiplications, see (29)) the planning horizon length and the discretization level (and 

not by the number of events). Hence, the complexity is expected to be O(Τ ⋅ 3m
d

).   

To verify that our procedure is indeed quicker than the simulation model, even 

when a larger station is considered, we performed the procedure on all the 5 test 

problems (15 minutes discretization level), but in this case we considered a station 

with 70 lockers, which is the largest capacity existing in Bike-Sharing systems. The 

mean computing time was 0.4782 seconds. Hence, our procedure is recommended 

also for larger stations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14. Mean computing time of the approximation 

procedure and the simulation model 

Method 
Computing 

time  

 

Approximation 

procedure – 15 

minutes 

discretization 

 

0.0968 Sec 

 

Approximation 

procedure –5 

minutes 

discretization 

 

0.256 Sec 

 

Approximation 

procedure – 1 

minutes 

discretization 

 

1.27 Sec 

 

Simulation 

 
3.5 Hours 
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3.3.2.7   Operational insights  

After the model was validated, we drew some operational insights concerning the 

nature of the optimal initial inventory level of the test problems, enabling decision 

makers to develop an intuition for making good decisions. As we believe that part of 

our test problems could represent a realistic behavior of a Bike-Sharing station, some 

of these insights can be helpful in practice.   

Tables 15-19 show the results of the expected total penalty for every OX  and 

Figures 22-36 contain the proper graphs which include expected shortage penalty, 

expected surplus penalty and expected total penalty for every OX . The experiments 

show that the results are very intuitive.  

In the Homogenous – symmetric problem, it is seen that the optimal OX  is right in 

the center of the station. The intuition is the equality of the renters and returners 

demand rates, which makes the middle of the station the "safest" place that guarantees 

the lowest expected shortage and surplus penalties. It is also seen that the expected 

shortage and surplus penalties are perfectly antisymmetric to each other, e.g. the 

expected shortage penalty for a station with { }= ∈OX x, x 0,...,30  equals the expected 

surplus penalty for a station with = −OX 30 x  and vice versa. 

  In the Homogenous – non symmetric problem, the optimal OX  is 25 out of 30 

lockers. This is also not a surprising result. The ratio between the full capacity (30) 

and the optimal OX  (25) equals exactly to the ratio between the homogenous renters 

and returners demand rates (which is 1.2). The renters demand rate intensity is bigger 

than the returners demand rate intensity and thus the optimal OX  is closer to a full 

station.  

The optimal OX  for the Peaks – symmetric problem is full capacity (30). This 

makes sense due to the intensity of morning peak demand of renters. The afternoon 

peak of returners demand is practically meaningless (shown in Figures 28-30) so that 

the expected surplus penalty approximately does not change at all as a function of 

OX . It is intuitive to set OX  to full capacity, assuring us the lowest expected shortage 

penalty. We know that the afternoon peak will cause multitude surplus events, but 

these are difficult to prevent because the station will be nearly empty in any case after 

the morning rush.  
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The Peaks –non symmetric problem is a good example of testing the effect of the 

afternoon peak. We purposely set the return rate to be twice as big as the demand rate 

so we can be convinced that the afternoon peak has a negligible effect on the decision 

of the optimal OX . Indeed, the optimal OX  is 26 in the 1 and 5 minutes discretization 

solution and 25 in the 15 minutes discretization solution, i.e. even when the difference 

between the afternoon peak and the morning peak is significantly large, the optimal 

OX  is very close to full capacity.  

The case of the Random – symmetric problem is aimed to examine how the 

approximation procedure handles unstable renters and returners demand processes, 

where the amount of customer arrivals and bicycles return is equal on the planning 

horizon. We see that as the Homogenous – symmetric problem, when there are no 

significant peaks in the renters or returners demand and the problem is symmetric, the 

optimal OX  is in the area of the center of the station. In this case the optimal OX  is 

exactly in the center (15). 
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3.3.2.8   Comparison between the transient state and steady state analyses 

A standard approach in the modeling of service systems is to assume that the system 

is operated in its steady state. If the stochastic processes that govern the system are 

changing over time, the analysis is conducted separately for each short period for 

which in the processes are more or less homogenous. This approach is very fruitful 

for systems with high demand volume, such as call centers. This is due to the fact that 

when the rate of events (e.g., arrival of customers) is high, the system approaches its 

steady state behavior quickly, consequently the transient behavior can be neglected.  

However, steady state analysis is not useful for inventory systems such as a bicycle 

rental station.  These systems are governed by manipulating their state (e.g., changing 

the inventory level) every certain time and it is not likely, or desirable, to have the 

system approach its steady state before the next control operation. 

In order to illustrate the problem of using steady state analysis for the 

Replenishment problem discussed in §3.1, we compare our approximation procedure 

results for three test problems to the results received while using steady state 

considerations. 

From the discussion in §3.1,  assuming a Poisson stochastic arrival process of 

renters and returners with demand rates of µ( )t and tλ( ) respectively, we can think of 

the Replenishment problem as a M/M/1/C birth and death process. The appropriate 

formula for nP (t)�  (the probability of being at state n in the steady state of time interval 

t) is (Ross 1997): 

)32(       

( ) ( )
( )

+

 λ λ− µ µ
λ ≠ µ

 λ−=  µ

 λ =µ +

n

C 1

n

( t ) ( t)1
(t ) (t )

, ( t ) ( t )
( t )1P (t)

(t )

1
, (t ) (t)

C 1

�  

 

Let us denote the expected total penalty function using steady state considerations 

by ( )µ λA AF p ,h , (t ), ( t), C, T  . Note that due to the fact that the system is in steady 

state, the function is not affected by the initial state ( OX ). 
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Now,  

 

)33(  ( ) ( ) ( )− +µ λ = ⋅ µ + ⋅ λA A A A A AF p ,h , (t ), (t ), C, T p G p , (t ), C, T h G h , (t ), C, T  

 

where ( )− µAG p , (t ), C, T and ( )+ λAG h , (t), C, T  are the expected number of shortage 

and surplus events respectively, during the interval [ ]0,T . 

Now, 

)34(           ( )−
=

µ = µ ⋅∑ �
T

A

0

t 0

G p , (t ), C, T (t) P (t )  

)35(                    ( )+
=

λ = λ ⋅∑ �
T

A

C

t 0

G h , (t), C, T (t) P (t )   

and hence 

 

)36(    ( )
=

 µ λ = ⋅µ ⋅ + ⋅λ ⋅ ∑ � �
T

A A A A

0 C

t 0

F p ,h , (t ), ( t ), C, T p (t) P (t ) h (t) P (t )  

 

Note that when the arrival processes are homogenous (µ = µ λ = λ( t) , ( t) ), then 

= ∀� �
n nP (t) P , t  is constant and hence 

 

)37(             ( )  µ λ = ⋅ ⋅µ ⋅ ⋅λ ⋅ 
� �A A A A

0 CF p ,h , , , C, T T p P ,h P  

  

First, we consider the two homogenous problems. In the homogenous – symmetric 

problem we have 85 renters arrivals and 85 returners arrivals. In the homogenous - 

non symmetric problem we have 102 renters arrivals and 85 returners arrivals. The 

planning horizon is 18 hours. In the two first rows of Table 20, a comparison of the 

expected total penalty is made between the steady state analysis and our 

approximation procedure's results for the optimal initial inventory level with 1 minute 

discretization level (as presented in §3.3.2.7), considering a 18 hours planning 

horizon. It is apparent from the table that the steady state analysis yields different 

results, compared to the results of the approximation procedure that have been 

validated by the simulation study in §3.3.2.5. From these comparisons, we show that 

the transient state analysis is the appropriate way for solving the Replenishment 

problem by illustrating that indeed the initial inventory level has great influence on 

the expected total penalty. 
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Second, we consider the 'peak – symmetric' problem. Assuming an extremely long 

planning horizon of 500 days (a total of 42,500 renters arrivals and 42,500 returners 

arrivals), we compare the result of our approximation procedure (1 minute 

discretization level) with the result using steady state analysis. The complete results of 

the approximation procedure (for all initial inventory levels) and the steady state 

calculation (for every time interval) are presented in Appendix E. From the 

comparison presented in the third row of Table 20, we can see that the expected total 

penalty received using the approximation procedure is significantly different 

compared to the expected total penalty received using steady state analysis. In order to 

validate the result calculated by the approximation procedure, we conducted a 

simulation experiment (using the same model presented in §3.3.2.5), but this time 

with a planning horizon of 500 days and assuming no replenishment conducted during 

this period. A 95% confidence interval for the expected total penalty during the period 

was calculated based on 50 replications. The interval is  [ ]12,561 , 12,666.6  and thus 

our approximation procedure's result is valid. This last experiment demonstrates the 

fact that even without intervention in the state of the system by replenishment, the 

transient analysis  proposed in this study is appropriate while the steady state analysis 

is not. A possible explanation for the significant difference of the results achieved by 

the two methods is that the steady state analysis predicts high shortage (of bicycles or 

lockers) during peak hours, while in reality the renters and returners peaks may 

balance each other. 

In conclusion, we illustrated that steady state considerations are not the 

appropriate method for the problem. This may be an important lesson for the analyzer 

of service systems in any environment where the demand rate is low relative to the 

length of the period during which the rate can be assumed to be constant. Indeed, 

steady state analysis is useful for systems with relatively high rate events, such as 

large scale call centers. 

It is also important to mention that while one could suggest that steady state 

considerations can be used for a capacity decision (due to the fact that this analysis 

does not consider the initial state of the process), it is apparent from the 

aforementioned results that this is not the case.  
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3.3.2.9   Sensitivity analysis 

After testing the model validity, an important experiment is the sensitivity of the 

model. In such a dynamic environment as a Bike-Sharing system, it is clear that 

changes of the expected demand rates will occur. Inaccurate estimations of the 

demand rates can cause changes in the optimal initial inventory levels. Hence, an 

analysis for the original solution’s quality is needed, i.e. to verify that the optimal OX  

for the expected rates will be good enough also for rates which contain these 

inaccuracies. It is important to understand that this analysis is performed in terms of 

resistance for inaccuracies in the estimations. However, when significant changes in 

the rates appear, there is a need for new estimations that are proper to the current state 

that is available in the online control system.  

 

3.3.2.9.1   Random inaccuracies 

Inaccuracies in estimations are very common in dynamic systems. Very often these 

inaccuracies are random, i.e. the estimates are not biased in a specific direction 

(positive or negative). For the purpose of testing the quality of the solution for random 

inaccuracies, two problems were tested so that inaccuracies that are uniformly 

distributed between [-10%, 10%] were made in each one of the expected renters and 

returners rates per time unit. The results of these problems were compared to the 

problems with the expected rates. The problems that were tested are the    

Expected total 

penalty  –

Approximation 

procedure optimal 

result  

(1 min. disc.) 

Expected total 

penalty -  

steady state 

analysis 

Planning 

horizon 

(days) 

Problem 

3.0022 

( )*

OX 15=  
5.484 18 

Homogenous - 

symmetric 

 

4.9159 

( )*

OX 25=  
17.354 18 

Homogenous – 

non symmetric 

 

12,645.1 

( )*

OX 30=  
35,018.54 500 

Peaks - 

symmetric 

 

Table 20. Comparison of steady state analysis to the approximation procedure 
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homogenous – non symmetric problem and the Peaks – symmetric problem with 1 

minute discretization level.  

Figures 37 and 39 show the Homogenous – non symmetric problem and the   

Peaks – symmetric problem demand rates respectively after the inaccuracies were 

made. Tables 21-22 and Figures 38 and 40 show the results (the estimated demand 

patterns appear in figures 7,8 and the estimated results appear in figures 27,30). 

The difference in the expected total penalty is less than 1% for all possible OX in 

both cases and the optimal OX agrees with the original in both cases also. 

From these experiments we conclude that the model's solutions are not sensitive 

for random changes in the expected demand rates, so it could fit to real use from this 

point of view also. 
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3.3.2.9.2   Renters and returners arrival volume inaccuracies 

Another common phenomenon which occurs in service systems is the difficulty to 

estimate the arrival volume for the planning horizon (Steckley et al. 2009). Thus, the 

shrinkage or the inflation of the arrival volume in practice, compared to the 

estimations, can occur. We assume that due to the fact that all of the rates are equally 

biased, the optimal solution would remain approximately in the same position as the 

optimal solution for the expected rates. This is because the renters and returners 

demands balance each other. In this subsection two problems (the homogenous – non 

symmetric problem and the Peaks – non  symmetric problem) were tested so that the 

renters and returners demand rates in practice were shrunk or inflated up to 20% (in 

5% intervals) compared to the estimations. Figures 41 and 43 describe the optimal 

OX  of the homogenous – non symmetric problem and the Peaks – non symmetric 

problem respectively, for every change of rates, including when the rates are as 

expected. The graphs presented in Figures 42 and 44 show the difference between the 

optimal expected total penalty calculated by the procedure on the basis of the 

estimated demand, and the optimal expected total penalty in practice. On the 

horizontal axis we see the rates increase / decrease. The vertical axis presents the 

difference between the expected total penalty in practice (that is based on the optimal 

OX  that was calculated for the expected rates) and the actual optimal expected total 

penalty (that could have been achieved if the rates were estimated correctly).  

In Figure 41 we see that for the homogenous – non symmetric problem the optimal 

OX is in most cases the same, as can be expected in the case of homogenous rates. In 

the -10%, -15% and -20% shrinkage cases, the change is of only one locker (24 

instead of 25). This can be explained by the decrease in the intensity of the renters 

demand rate (which is 1.2 times bigger than the returners demand rate) allowing the 

placement of less bicycles in the station. In Figure 42 an important meaning to the 

differences mentioned above is seen. In the cases in which the optimal OX  remains 

the same, there is naturally no difference between the optimal expected total penalty 

in practice and the optimal expected total penalty calculated by the procedure. In the -

10%, -15% and -20% shrinkage cases, we see that the differences are minor and are 

always less then 2%. In Table 23, the largest possible change in the expected total 

penalty caused by an improper decision (compared to the optimal one) is presented 

for each one of the inflation and shrinkage cases. It is shown that extreme changes 
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could be made by a wrong decision. This strengthens the conclusion that the expected 

optimal solution is not sensitive with inaccuracies while other policies might be very 

sensitive. 

In Figure 43 we see that for the Peaks – symmetric problem the optimal 

OX remains the same as the rates are inflated, and decreases by one locker for all 

cases as the rates decrease. This can be explained by the behavior of the morning peak 

of renters demand. It was previously mentioned that the morning peak is the dominant 

factor in the calculation of the optimal OX , due to the need of placing the proper 

amount of bicycles for the users that arrive at the station in the morning. When the 

peak's intensity decreases, the afternoon peak has bigger influence on the optimal OX  

calculation, and indeed we see that the optimal OX decreases. However, Figure 44 

shows that the differences of the expected total penalty are minor (less then 1.8 % for 

all cases).  

Exactly as for the homogenous – non symmetric problem case, it is seen in Table 

24 that extreme changes can be made by a wrong decision. This outcome also 

supports the quality of the expected optimal solution. 

This second set of experiments brings us to the conclusion that the approximation 

procedure produces qualitative results and it can be a reliable tool, also in the sense of 

shrinkage or inflation of the expected rates.   
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3.4   Practical implication from the expected total penalty function's 

convexity 

In this section we point out some implications for the expected total penalty function's 

convexity.  

First, when we are interested in the optimization of a single station and the arrival 

processes are non Markovian, our approximation procedure does not reflect the true 

nature of the expected total penalty function. In these cases, the penalty function 

would probably have to be calculated (or estimated) by simulation, allegedly for every 

possible initial inventory level, which is a very time consuming mission as was 

previously shown in §3.3.2.6. Nevertheless, due to the convexity of the expected total 

penalty function, convex optimization methods such as the Bisection or the 
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Dichotomous Search can be operated. That way, the optimization process would be 

much less time consuming.  

Second, the convexity property is very meaningful when we are interested in the 

optimization of the entire system under a bicycles quantity constraint. In this case, 

using the decreasing marginal benefit of adding a bicycle, we add each time the next 

pair of bicycles to the station that would benefit most, and repeat this procedure the 

number of times that is equal to the number of bicycles in the system. That way, we 

find the number of bicycles that should be replenished at each station. 

Moreover, the convexity property of the penalty function allows optimization of 

the inventory level of a station in the system subject to much more complex 

constraints. For example, Raviv et al. (2010) used a preliminary result from this study 

to solve a complex inventory routing problem that aims to reposition bicycles among 

stations in the system, during the night, so as to minimize the expected total penalty 

during the next day. 
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4.  The Capacity problem 

Recall that the bicycle rental station Capacity problem is associated with a long term 

decision regarding the optimal number of lockers in each station of a Bike-Sharing 

system. This decision is made by the operators of the system based on relevant data as 

the expected renters and returners demand rates at any specific station, the value of 

the service provided by the system and the infrastructure cost.  

Throughout this chapter we assume Poisson arrival processes and users with no 

patience. We use the same method as in §3.3.2 in order to estimate the expected 

penalty of each possible station size and select a size that minimizes the total cost. For 

that purpose we look at the values of the expected penalty associated with the optimal 

initial inventory level at each size.  

 

4.1   Formulation of the Capacity problem objective function 

Consistently with the assumption in §2.1 that the replenishment of bicycles is done 

every fixed period while the system is idle, say every eighteen hours (during the 

night), the capacity problem is formally stated as follows: 
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This definition is very similar to the definition of the Replenishment problem, 

except that here the capacity (C) is a decision variable and the infrastructure cost for 

the relevant capacity is taken into consideration, in addition to the expected total 

penalty. 

 

4.2   Calculation tool 

The calculation of the objective function is based on the approximation procedure 

presented in Chapter 3. Given a capacity C = c, the expected total penalty calculation 

based on the expected shortage penalty and the expected surplus penalty is actually 

the same as in Chapter 3. The approximation procedure is performed for each value of 

C in a required range specified by the operator. As a result, we obtain an efficiency 

frontier which describes the optimal expected total penalty for every given capacity in 

the range that was required. We conjecture that the marginal benefit of each locker in 
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the station is decreasing, i.e. it decreases slower as C increases. The decreasing 

expected total penalty is due to the fact that the bigger the station's capacity is, the 

better (i.e., the smaller) the expected total penalty is. The reason for the Decreasing 

marginal benefit is due to the decrease in the probability of using an extra locker 

when the station capacity is big enough. For example, a station with a capacity of 45 

lockers with a total of 85 bicycle requests and 85 bicycles returns a day, would not 

improve the expected total penalty significantly if the capacity increases to 46 lockers. 

The difference is even smaller in the transition to a capacity of 47 lockers and so on.  

The optimum capacity on the specified range can be revealed if the operator has 

the information regarding the infrastructure cost (IC). In that case, the expected total 

penalty function and the IC function are summed together so that the expected total 

cost function is received. It is important to notice that the IC and the expected total 

penalty functions are both scaled per one day.  

It is worth mentioning that the discretization level for this objective function 

calculation is less important due to the minor changes in the values of the optimal 

expected total penalties and the optimal OX  for a given capacity C = c. Hence, it 

would not make significant changes in the results. 

In addition to the importance of the IC data, it is very important that the operator 

will have a reliable forecast of the renters and returners demand patterns. While the 

total number of renters and returners per day can be identical in two stations, if their 

patterns are different, the result can be significantly different. To illustrate the last 

observation, the expected total penalties as a function of the station capacity 

(assuming optimal initial inventory levels) were calculated for the homogenous –

symmetric and the peaks – symmetric problems. The discretization level was set to 1 

minute and the IC was set to 1 per locker per day, that is IC(C) = C. In both of these 

problems, the daily total number of renters and returners are equal to 85 each, but the 

demand patterns are significantly different, as shown in Figures 6 and 8.  

Figure 45 shows the result for the homogenous –symmetric problem – as predicted 

the expected total penalty function has a decreasing marginal benefit. It is seen that 

the optimum capacity is 13 with 7 as the optimal OX . Consequently, it is not profitable 

to build a station with a capacity larger than 13. It is worth mentioning that the 

optimal OX  is 7, so that the optimal replenishment is when the station is 

approximately half full, as in the 30 lockers case. 
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As for the peaks – symmetric problem – we see in Figure 46 that as in the 

homogenous –symmetric problem, the expected total penalty function has a 

decreasing marginal benefit, although the decrease is slower than the homogenous –

symmetric case. This is due to the dominant morning peak – there is a better chance 

that an extra locker will be in use. The optimum capacity is 38 with 37 as optimal OX , 

i.e. almost full as in the 30 lockers case. 

As we explained above, we see that the optimum capacities for the two test 

problems are significantly different, although the daily total number of renters and 

returners are identical. Hence, this tool is important for the use of the system's 

operators before planning the station capacity and when all the data mentioned in this 

chapter is available. 
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Note that it is also possible to extend this model to consider demand cycles that 

are longer than the review cycles. For example, a weekly demand cycle in a system 

that is reviewed every night with different demand patterns during the weekend. 
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5.  Conclusions and future research 

5.1 Conclusions  

Bike-Sharing systems are an emerging industry that grew rapidly over the last few 

years. The number of cities that already implemented Bike-Sharing systems, or plans 

to do so, increased significantly and success was proven in major cities throughout the 

world. As the interest in Bike-Sharing systems increased, companies offering 

complementary services as equipment or consulting became more involved in the 

industry. Usage of Bike-Sharing systems is useful to reduce congestion and parking 

problems in city centers, to reduce air pollution and noise, to encourage healthy life 

style and to offer an economical transportation alternative. It is also a good 

complement to other modes of the mass transit systems.  

It appears that one of the main problems of the system voiced by users and 

operators is the lack of bicycles or of lockers in the stations. Consequently, a crucial 

factor for the success of the system is its ability to meet opposite forces of fluctuating 

demand for bicycles and for vacant lockers at each station. Therefore, an optimal 

replenishment is required so that users inconvenience will be minimized. In this study 

we focused on the inventory part of the problem, i.e. our goal was to find an optimal 

initial inventory level to be set at each station.  

From our review of the Reverse Logistics literature, we found that the proposed 

models do not consider the dynamics within the planning horizon, which is of interest 

in Bike-Sharing systems. Furthermore, we found that one-way car sharing systems 

differ by nature from Bike-Sharing systems so that proposed car sharing models 

cannot be adopted.  

Based on the aforementioned review conclusions, we developed a new method to 

prescribe the optimal level of the initial inventory. We modeled the system as a series 

of continuous time Markov chains, each representing a time interval during which the 

demand rates for bicycle and lockers was assumed to be constant. The probabilities of 

a station being empty or full at each time interval were calculated, namely, the 

transient state of the system was of interest. Based on these probabilities, an expected 

total penalty based on the number of unsatisfied customers was calculated.  

A set of experiments was designed with focus on the impatient user behavior 

model. Through these experiments we wanted to validate our model. Since our model 

is a discrete approximation of continuous time reality, we considered three 
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discretization levels – 1, 5, and 15 minutes. We then compared the model's result for a 

set of test problems to a simulation study with 95% confidence level. From the results, 

we have concluded that our model is valid due to identical graph trends and identical 

optimal policies (except for one case with a gap of one locker). Moreover, the results 

of the 1 and 5 discretization levels were almost always in the confidence level.  

The computation time required to resolve the model using the proposed method is 

a very small fraction of the time required for estimation using simulation with an 

adequate number of replications. For example, for a 30 lockers station with 

discretization level of 1 minute, the running time of the proposed method is 10,000 

times smaller than simulation. 

Additionally, we performed a sensitivity analysis to examine the performance of 

the optimal policy under errors in the forecasted demand for bicycles and lockers. We 

considered random and biased errors in the forecast, and in both cases we found that 

the optimal solution is robust under small errors.  

In addition, the convexity of the Replenishment problem's objective function was 

proven for impatient and infinitely-patient user behavior models.   

The model that was formulated in this study can contribute to researchers that deal 

with the routing problem of the replenishment operation, which consists of the 

decision on the routes that the dedicated fleet of trucks should follow. Indeed, Raviv 

et al. (2010) construct their objective function based on results of this study. 

In addition to the immediate contribution to the domain of Bike-Sharing systems 

management, we believe that some of the concepts developed in this study are 

relevant to other inventory management environments. This method may be 

applicable to other inventory management problems where the dynamics within the 

planning horizon are of interest and the demand is stochastic with low volume. 

Furthermore, we showed that steady state considerations are not advisable in these 

environments and hence transient analysis is required.  

Finally, we offer a solution for the long term Capacity problem, i.e. the number of 

lockers in each station. The solution is based on our model and we calculate an 

efficiency frontier for the expected total penalty versus the station capacity. This 

flexible calculation tool contributes to operators that face this problem and can 

estimate the demand and the infrastructure cost in each area. 
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5.2 Future research  

Since our work is the first to address this problem, it can be extended in many 

different directions. One is to examine our model on real demand data. As the field of 

Bike-Sharing is emerging, we see that interest of operators for collaboration is rising 

so that practical contribution can be achieved. A natural extension in this direction is 

to consider different demand patterns in different days of the week. This would yield 

a practical contribution so that a weekly replenishment plan could be outlined and 

also the capacity of each station could be determined.   

Practical contribution can be also achieved by examining a variety of demand 

patterns from real data. Operational insights obtained by this examination can be 

especially useful when designing a new system and the demand volume and pattern in 

each area can only be roughly estimated. Accordingly, stations capacity and 

preliminary replenishment plans can be outlined. 

During the study we saw that finer discretization yields more accurate results at the 

expense of the computation time. Another possible direction is to reduce the gap 

between the results achieved in different discretization levels. If the results of gross 

discretization levels would be very close to those of finer ones, significant calculation 

time can be saved when considering the optimal initial inventory levels of the stations 

in the entire system. In our model we use the transition probability to the end of each 

discretized period. If we would use the transition probability to the midpoint of each 

discretized period, we would expect the results of different discretization levels to be 

closer and more accurate. this  is done in the following way: 
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Still on the length of the transition, it is possible to build bounds for the expected 

total penalty cost. A lower bound can be constructed as  
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and an upper bound can be constructed as  
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The bounds are valid due the fact that during each period the mean rate of renters 

(resp. returners) abandonments accumulation is either non-increasing or non-

decreasing, depending on the relation between µ(t )  and λ(t ) . For example, if the 

renters arrival rate is greater than the returners arrival rate, µ > λ(t ) ( t) , the probability 

of the station being empty, π
oX ,0  increases during the period, while the probability of 

the station being full, π
oX ,C  decreases. Calculating the number of abandonments based 

on the lower probability between the results is a lower bound, while using the higher 

probabilities results is an upper bound.  

In addition, a more relevant extension when considering real data is to experiment 

the model when users have limited patience, i.e. a user that is not serviced 

immediately would not definitely leave as he may wait for service. We formulated 

this problem in §2.3. The objective function of this extended model is 
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The first summation term represents the expected user inconvenience accumulated 

when the station is empty and, possibly, there is a queue of renters. During such time, 

abandonments occurred at a rate of  ( )µ ⋅ −β t(t ) 1 (I )  and each bears a penalty of Ap . 

In addition, the total waiting time of renters is accumulated in a rate that is equal to 

the queue length, -j. The second summation term represents the expected user 

discomfort accumulated when there are no vacant lockers at the station and, possibly, 

there is a queue of returners. During such time, abandonments occurred at a rate of  

( )λ ⋅ −σ t( t) 1 (I )  and each bears a penalty of Ah . In addition, the total waiting time of 

returners is accumulated in a rate that is equal to the queue length, C-j. As a 

preparation for future research, we wrote a proper MATLAB procedure considering 
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the three aforementioned extensions. We assumed that users patience (referred to as 

UP in the sequel) is exponentially distributed and then transforms the infinite chain 

(Figure 2) to a finite one by truncating states that are not likely to occur. We defined a 

renter's and a returner's probability to join a queue as follows: 
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Namely, a user will join a queue if his patience is greater than the expected waiting 

time in the queue. Note that a more accurate calculation could be based on the rate of 

the returns and rentals, not only during the current period, but also during future 

periods. Additionally, from the left of the chain (queue of renters) we decided to 

truncate all the states that admit
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all states where the approximated probability that another renter who is willing to join 

the queue will appear before a returner will appear is negligible (this statement is 

exact if the arrival rates are constant). Similarly, from the right of the chain (queue of 

returners) we truncate all the states that admit
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transition rate from the left most remaining state to the state immediately to its right 

was adjusted toλ −µ ⋅β t(t ) ( t ) (I ) . Similarly, the transition rate at the opposite side of 

the chain was modified to µ −λ ⋅σ t(t ) ( t ) (I ) . After the truncation the approximated 

objective function is 
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where L (resp., U) denotes an upper bound on the length of the queue of renters (resp., 

returners). For the procedure, see Appendix F. We also calculated lower and upper 

bounds in a similar way as in (40) and (41) (for the procedure see Appendix G). 

Currently we have preliminary results based on one of our test problems (peaks-

symmetric) and under the assumption that renters and returners patience is 

exponentially distributed with a mean of 10 minutes. From the results (shown in 

Figure 47 and Appendix H) we see that the expected total penalty cost for the 1 and 

15 discretization levels is almost the same (the largest difference is 0.3233%). Future 

research should thoroughly examine this extended model's results on real data. 

While this study focuses on a single station, another extension can be the 

consideration of a network of stations, i.e. to decide upon the optimal initial inventory 

level considering the influence of stations in close proximity to each other. For 

solving this problem, the total amount of lockers in the network must be considered 

and proper assumptions on user’s transition rate between the stations must be made. 

Finally, another direction is to solve the Replenishment problem under a dynamic 

repositioning assumption. This policy is good when facing extreme peaks of demand 

that cannot be efficiently handled by static repositioning (for example when the 

amount of renters is much different from the amount of returners during various hours 

of the day). For that purpose optimal visiting times must be decided upon. 

Fig. 47. Peaks – symmetric problem - users with limited patience  
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Appendix A: The approximation procedure for the Replenishment 

problem (written in MATLAB) 

 

Main procedure 

 
Procedure for calculating matrix R from the approximation formula 

Procedure for calculating the single period transition probability matrix, P(t) 
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Table 25. Homogenous – symmetric problem demand rates 

Appendix B: Renters and returners demand rates for the 

test problems  

 

 

 

Time 
Renters 

rate 

Returners 

rate 
Time 

Renters 

rate 

Returners 

rate 

6:00-6:15 1.1806 1.1806 15:00-15:15 1.1806 1.1806 

6:15-6:30 1.1806 1.1806 15:15-15:30 1.1806 1.1806 

6:30-6:45 1.1806 1.1806 15:30-15:45 1.1806 1.1806 

6:45-7:00 1.1806 1.1806 15:45-16:00 1.1806 1.1806 

7:00-7:15 1.1806 1.1806 16:00-16:15 1.1806 1.1806 

7:15-7:30 1.1806 1.1806 16:15-16:30 1.1806 1.1806 

7:30-7:45 1.1806 1.1806 16:30-16:45 1.1806 1.1806 

7:45-8:00 1.1806 1.1806 16:45-17:00 1.1806 1.1806 

8:00-8:15 1.1806 1.1806 17:00-17:15 1.1806 1.1806 

8:15-8:30 1.1806 1.1806 17:15-17:30 1.1806 1.1806 

8:30-8:45 1.1806 1.1806 17:30-17:45 1.1806 1.1806 

8:45-9:00 1.1806 1.1806 17:45-18:00 1.1806 1.1806 

9:00-9:15 1.1806 1.1806 18:00-18:15 1.1806 1.1806 

9:15-9:30 1.1806 1.1806 18:15-18:30 1.1806 1.1806 

9:30-9:45 1.1806 1.1806 18:30-18:45 1.1806 1.1806 

9:45-10:00 1.1806 1.1806 18:45-19:00 1.1806 1.1806 

10:00-10:15 1.1806 1.1806 19:00-19:15 1.1806 1.1806 

10:15-10:30 1.1806 1.1806 19:15-19:30 1.1806 1.1806 

10:30-10:45 1.1806 1.1806 19:30-19:45 1.1806 1.1806 

10:45-11:00 1.1806 1.1806 19:45-20:00 1.1806 1.1806 

11:00-11:15 1.1806 1.1806 20:00-20:15 1.1806 1.1806 

11:15-11:30 1.1806 1.1806 20:15-20:30 1.1806 1.1806 

11:30-11:45 1.1806 1.1806 20:30-20:45 1.1806 1.1806 

11:45-12:00 1.1806 1.1806 20:45-21:00 1.1806 1.1806 

12:00-12:15 1.1806 1.1806 21:00-21:15 1.1806 1.1806 

12:15-12:30 1.1806 1.1806 21:15-21:30 1.1806 1.1806 

12:30-12:45 1.1806 1.1806 21:30-21:45 1.1806 1.1806 

12:45-13:00 1.1806 1.1806 21:45-22:00 1.1806 1.1806 

13:00-13:15 1.1806 1.1806 22:00-22:15 1.1806 1.1806 

13:15-13:30 1.1806 1.1806 22:15-22:30 1.1806 1.1806 

13:30-13:45 1.1806 1.1806 22:30-22:45 1.1806 1.1806 

13:45-14:00 1.1806 1.1806 22:45-23:00 1.1806 1.1806 

14:00-14:15 1.1806 1.1806 23:00-23:15 1.1806 1.1806 

14:15-14:30 1.1806 1.1806 23:15-23:30 1.1806 1.1806 

14:30-14:45 1.1806 1.1806 23:30-23:45 1.1806 1.1806 

14:45-15:00 1.1806 1.1806 23:45-00:00 1.1806 1.1806 

 

 

 

 



 

 84

 

 

 

 

Time 
Renters 

rate 

Returners 

rate 
Time 

Renters 

rate 

Returners 

rate 

6:00-6:15 1.4167 1.1806 15:00-15:15 1.4167 1.1806 

6:15-6:30 1.4167 1.1806 15:15-15:30 1.4167 1.1806 

6:30-6:45 1.4167 1.1806 15:30-15:45 1.4167 1.1806 

6:45-7:00 1.4167 1.1806 15:45-16:00 1.4167 1.1806 

7:00-7:15 1.4167 1.1806 16:00-16:15 1.4167 1.1806 

7:15-7:30 1.4167 1.1806 16:15-16:30 1.4167 1.1806 

7:30-7:45 1.4167 1.1806 16:30-16:45 1.4167 1.1806 

7:45-8:00 1.4167 1.1806 16:45-17:00 1.4167 1.1806 

8:00-8:15 1.4167 1.1806 17:00-17:15 1.4167 1.1806 

8:15-8:30 1.4167 1.1806 17:15-17:30 1.4167 1.1806 

8:30-8:45 1.4167 1.1806 17:30-17:45 1.4167 1.1806 

8:45-9:00 1.4167 1.1806 17:45-18:00 1.4167 1.1806 

9:00-9:15 1.4167 1.1806 18:00-18:15 1.4167 1.1806 

9:15-9:30 1.4167 1.1806 18:15-18:30 1.4167 1.1806 

9:30-9:45 1.4167 1.1806 18:30-18:45 1.4167 1.1806 

9:45-10:00 1.4167 1.1806 18:45-19:00 1.4167 1.1806 

10:00-10:15 1.4167 1.1806 19:00-19:15 1.4167 1.1806 

10:15-10:30 1.4167 1.1806 19:15-19:30 1.4167 1.1806 

10:30-10:45 1.4167 1.1806 19:30-19:45 1.4167 1.1806 

10:45-11:00 1.4167 1.1806 19:45-20:00 1.4167 1.1806 

11:00-11:15 1.4167 1.1806 20:00-20:15 1.4167 1.1806 

11:15-11:30 1.4167 1.1806 20:15-20:30 1.4167 1.1806 

11:30-11:45 1.4167 1.1806 20:30-20:45 1.4167 1.1806 

11:45-12:00 1.4167 1.1806 20:45-21:00 1.4167 1.1806 

12:00-12:15 1.4167 1.1806 21:00-21:15 1.4167 1.1806 

12:15-12:30 1.4167 1.1806 21:15-21:30 1.4167 1.1806 

12:30-12:45 1.4167 1.1806 21:30-21:45 1.4167 1.1806 

12:45-13:00 1.4167 1.1806 21:45-22:00 1.4167 1.1806 

13:00-13:15 1.4167 1.1806 22:00-22:15 1.4167 1.1806 

13:15-13:30 1.4167 1.1806 22:15-22:30 1.4167 1.1806 

13:30-13:45 1.4167 1.1806 22:30-22:45 1.4167 1.1806 

13:45-14:00 1.4167 1.1806 22:45-23:00 1.4167 1.1806 

14:00-14:15 1.4167 1.1806 23:00-23:15 1.4167 1.1806 

14:15-14:30 1.4167 1.1806 23:15-23:30 1.4167 1.1806 

14:30-14:45 1.4167 1.1806 23:30-23:45 1.4167 1.1806 

14:45-15:00 1.4167 1.1806 23:45-00:00 1.4167 1.1806 

 

 

 

 

 

Table 26. Homogenous – non symmetric problem demand rates 
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Time 
Renters 

rate 

Returners 

rate 
Time 

Renters 

rate 

Returners 

rate 

6:00-6:15 0.9389 0.5735 15:00-15:15 0.769 0.912 

6:15-6:30 1.4959 0.5829 15:15-15:30 0.7643 0.9214 

6:30-6:45 2.0269 0.5923 15:30-15:45 0.7596 0.9308 

6:45-7:00 2.5163 0.6017 15:45-16:00 0.7549 0.9402 

7:00-7:15 2.9453 0.6111 16:00-16:15 0.7502 1.4904 

7:15-7:30 3.2974 0.6205 16:15-16:30 0.7455 2.0195 

7:30-7:45 3.559 0.6299 16:30-16:45 0.7407 2.5072 

7:45-8:00 3.72 0.6393 16:45-17:00 0.736 2.9346 

8:00-8:15 3.7744 0.6487 17:00-17:15 0.7313 3.2853 

8:15-8:30 3.72 0.6581 17:15-17:30 0.7266 3.546 

8:30-8:45 3.559 0.6675 17:30-17:45 0.7219 3.7065 

8:45-9:00 3.2974 0.6769 17:45-18:00 0.7171 3.7607 

9:00-9:15 2.9453 0.6863 18:00-18:15 0.7124 3.7065 

9:15-9:30 2.5163 0.6957 18:15-18:30 0.7077 3.546 

9:30-9:45 2.0269 0.7051 18:30-18:45 0.703 3.2853 

9:45-10:00 1.4959 0.7145 18:45-19:00 0.6983 2.9346 

10:00-10:15 0.9436 0.7239 19:00-19:15 0.6936 2.5072 

10:15-10:30 0.8587 0.7333 19:15-19:30 0.6888 2.0195 

10:30-10:45 0.854 0.7427 19:30-19:45 0.6841 1.4904 

10:45-11:00 0.8492 0.7521 19:45-20:00 0.6794 0.9402 

11:00-11:15 0.8445 0.7615 20:00-20:15 0.6747 0.9108 

11:15-11:30 0.8398 0.7709 20:15-20:30 0.67 0.8814 

11:30-11:45 0.8351 0.7803 20:30-20:45 0.6652 0.852 

11:45-12:00 0.8304 0.7897 20:45-21:00 0.6605 0.8226 

12:00-12:15 0.8257 0.7991 21:00-21:15 0.6558 0.7933 

12:15-12:30 0.8209 0.8085 21:15-21:30 0.6511 0.7639 

12:30-12:45 0.8162 0.8179 21:30-21:45 0.6464 0.7345 

12:45-13:00 0.8115 0.8273 21:45-22:00 0.6417 0.7051 

13:00-13:15 0.8068 0.8367 22:00-22:15 0.6369 0.6757 

13:15-13:30 0.8021 0.8461 22:15-22:30 0.6322 0.6464 

13:30-13:45 0.7974 0.8556 22:30-22:45 0.6275 0.617 

13:45-14:00 0.7926 0.865 22:45-23:00 0.6228 0.5876 

14:00-14:15 0.7879 0.8744 23:00-23:15 0.6181 0.5582 

14:15-14:30 0.7832 0.8838 23:15-23:30 0.6133 0.5288 

14:30-14:45 0.7785 0.8932 23:30-23:45 0.6086 0.4995 

14:45-15:00 0.7738 0.9026 23:45-00:00 0.6039 0.4701 

 

 

 

 

 

Table 27. Peaks – symmetric problem demand rates 
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Time 
Renters 

 rate 

Returners 

 rate 
Time 

Renters 

 rate 

Returners 

 rate 

6:00-6:15 0.9389 1.147 15:00-15:15 0.769 1.8239 

6:15-6:30 1.4959 1.1658 15:15-15:30 0.7643 1.8427 

6:30-6:45 2.0269 1.1846 15:30-15:45 0.7596 1.8615 

6:45-7:00 2.5163 1.2034 15:45-16:00 0.7549 1.8803 

7:00-7:15 2.9453 1.2222 16:00-16:15 0.7502 2.9808 

7:15-7:30 3.2974 1.241 16:15-16:30 0.7455 4.0391 

7:30-7:45 3.559 1.2598 16:30-16:45 0.7407 5.0143 

7:45-8:00 3.72 1.2786 16:45-17:00 0.736 5.8691 

8:00-8:15 3.7744 1.2974 17:00-17:15 0.7313 6.5707 

8:15-8:30 3.72 1.3162 17:15-17:30 0.7266 7.0919 

8:30-8:45 3.559 1.335 17:30-17:45 0.7219 7.4129 

8:45-9:00 3.2974 1.3538 17:45-18:00 0.7171 7.5213 

9:00-9:15 2.9453 1.3726 18:00-18:15 0.7124 7.4129 

9:15-9:30 2.5163 1.3914 18:15-18:30 0.7077 7.0919 

9:30-9:45 2.0269 1.4102 18:30-18:45 0.703 6.5707 

9:45-10:00 1.4959 1.4291 18:45-19:00 0.6983 5.8691 

10:00-10:15 0.9436 1.4479 19:00-19:15 0.6936 5.0143 

10:15-10:30 0.8587 1.4667 19:15-19:30 0.6888 4.0391 

10:30-10:45 0.854 1.4855 19:30-19:45 0.6841 2.9808 

10:45-11:00 0.8492 1.5043 19:45-20:00 0.6794 1.8803 

11:00-11:15 0.8445 1.5231 20:00-20:15 0.6747 1.8216 

11:15-11:30 0.8398 1.5419 20:15-20:30 0.67 1.7628 

11:30-11:45 0.8351 1.5607 20:30-20:45 0.6652 1.7041 

11:45-12:00 0.8304 1.5795 20:45-21:00 0.6605 1.6453 

12:00-12:15 0.8257 1.5983 21:00-21:15 0.6558 1.5865 

12:15-12:30 0.8209 1.6171 21:15-21:30 0.6511 1.5278 

12:30-12:45 0.8162 1.6359 21:30-21:45 0.6464 1.469 

12:45-13:00 0.8115 1.6547 21:45-22:00 0.6417 1.4102 

13:00-13:15 0.8068 1.6735 22:00-22:15 0.6369 1.3515 

13:15-13:30 0.8021 1.6923 22:15-22:30 0.6322 1.2927 

13:30-13:45 0.7974 1.7111 22:30-22:45 0.6275 1.234 

13:45-14:00 0.7926 1.7299 22:45-23:00 0.6228 1.1752 

14:00-14:15 0.7879 1.7487 23:00-23:15 0.6181 1.1164 

14:15-14:30 0.7832 1.7675 23:15-23:30 0.6133 1.0577 

14:30-14:45 0.7785 1.7863 23:30-23:45 0.6086 0.9989 

14:45-15:00 0.7738 1.8051 23:45-00:00 0.6039 0.9402 

 

 

 

 

 

 

Table 28. Peaks – non symmetric problem demand rates 
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Time 
Renters 

rate 

Returners 

rate 
Time 

Renters 

rate 

Returners 

rate 

6:00-6:15 2.1469 1.8302 15:00-15:15 1.9121 1.1564 

6:15-6:30 0.5223 1.2399 15:15-15:30 1.1866 1.3981 

6:30-6:45 1.3712 0.8085 15:30-15:45 0.4579 0.4563 

6:45-7:00 1.0981 1.5338 15:45-16:00 1.5187 0.829 

7:00-7:15 2.014 1.193 16:00-16:15 1.8938 1.7097 

7:15-7:30 1.722 0.971 16:15-16:30 0.0444 1.4861 

7:30-7:45 1.0314 1.516 16:30-16:45 1.5394 1.0064 

7:45-8:00 0.0418 1.3561 16:45-17:00 0.8575 1.2394 

8:00-8:15 1.856 1.7348 17:00-17:15 1.8795 1.7335 

8:15-8:30 1.0048 2.0885 17:15-17:30 1.1361 0.1292 

8:30-8:45 1.3906 1.1406 17:30-17:45 1.6031 1.3159 

8:45-9:00 1.7894 1.9211 17:45-18:00 0.9691 0.1097 

9:00-9:15 2.0829 0.3775 18:00-18:15 0.6883 0.9066 

9:15-9:30 1.668 2.1385 18:15-18:30 0.4285 0.6657 

9:30-9:45 0.3983 0.5925 18:30-18:45 0.4371 1.9085 

9:45-10:00 0.9167 0.5508 18:45-19:00 1.5415 0.0328 

10:00-10:15 2.1138 1.9115 19:00-19:15 0.6841 1.6762 

10:15-10:30 2.0718 1.6093 19:15-19:30 1.224 2.119 

10:30-10:45 0.927 0.298 19:30-19:45 0.3409 2.161 

10:45-11:00 2.0193 0.0257 19:45-20:00 1.577 1.7218 

11:00-11:15 0.1308 1.9511 20:00-20:15 0.855 0.9574 

11:15-11:30 0.7973 0.4347 20:15-20:30 1.9433 1.0876 

11:30-11:45 1.8374 0.652 20:30-20:45 1.9289 0.467 

11:45-12:00 0.0223 1.4437 20:45-21:00 1.3412 1.4045 

12:00-12:15 0.3138 0.6208 21:00-21:15 1.122 0.6985 

12:15-12:30 0.4582 1.0242 21:15-21:30 2.0331 2.0956 

12:30-12:45 0.449 0.1414 21:30-21:45 1.8565 1.586 

12:45-13:00 1.3643 2.1572 21:45-22:00 1.4572 0.8992 

13:00-13:15 0.615 1.272 22:00-22:15 1.8483 1.6251 

13:15-13:30 0.4492 0.9244 22:15-22:30 1.4918 0.5848 

13:30-13:45 0.0345 1.1252 22:30-22:45 0.7727 0.9602 

13:45-14:00 1.6874 0.7289 22:45-23:00 0.6547 2.0373 

14:00-14:15 1.0057 0.9449 23:00-23:15 0.771 1.4915 

14:15-14:30 2.1055 0.4932 23:15-23:30 1.2068 0.4639 

14:30-14:45 1.053 1.2655 23:30-23:45 1.643 1.8318 

14:45-15:00 0.946 1.6596 23:45-00:00 0.6989 1.3724 

 

 

 

 

 

 

Table 29. Random – symmetric problem demand rates 
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Appendix C: Renters and returners demand rates discretization 

converting procedure  

 

** This procedure is used to convert the demand data to the required discretization level 
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 - The result is in the confidence interval 

 - The result is not in the confidence 

CI = confidence interval 

Appendix D: Complete results of the simulation study 

compared to the results of the approximation procedure   

 

 

 

 

OX  
(((( ))))O

F X - CI 

(simulation) 

(((( ))))O
F X - 

(simulation) 

(((( ))))O
F X + CI 

(simulation) 

Standard 

Deviation 

15 min. disc. 

compatibility 

5 min. disc. 

compatibility 

1 min. disc. 

compatibility 

0 9.6274 10.101 10.5746 7.6411  * * 

1 8.6874 9.157 9.6266 7.5766 * * * 

2 7.8258 8.287 8.7482 7.4410 * * * 

3 7.0312 7.481 7.9308 7.2571 * * * 

4 6.2977 6.734 7.1703 7.0393 * * * 

5 5.6348 6.056 6.4772 6.7957 * * * 

6 5.0468 5.451 5.8552 6.5214 * * * 

7 4.5268 4.913 5.2992 6.2310 * * * 

8 4.0784 4.446 4.8136 5.9309 * * * 

9 3.678 4.028 4.378 5.6469 * * * 

10 3.3357 3.669 4.0023 5.3775 * * * 

11 3.0548 3.373 3.6912 5.1339 * * * 

12 2.831 3.141 3.451 5.0016 * * * 

13 2.675 2.975 3.275 4.8402 * * * 

14 2.579 2.869 3.159 4.6789 * * * 

15 2.525 2.815* 3.105 4.6789 * * * 

16 2.548 2.838 3.128 4.6789 * * * 

17 2.64 2.93 3.22 4.6789 * * * 

18 2.794 3.094 3.394 4.8402 * * * 

19 3.005 3.315 3.625 5.0016 * * * 

20 3.252 3.582 3.912 5.3242 * * * 

21 3.569 3.909 4.249 5.4856 * * * 

22 3.938 4.298 4.658 5.8083 * * * 

23 4.369 4.749 5.129 6.1309 * * * 

24 4.8785 5.277 5.6755 6.4294 * * * 

25 5.4562 5.872 6.2878 6.7085 * * * 

26 6.1116 6.543 6.9744 6.9602 * * * 

27 6.8243 7.27 7.7157 7.1910 * * * 

28 7.6108 8.068 8.5252 7.3765 * * * 

29 8.4786 8.944 9.4094 7.5088 * * * 

30 9.4226 9.892 10.3614 7.5733 * *  *  

Table 30. Homogenous –symmetric problem validation 

 

* 

 

Appendix D: Complete results of the simulation study compared to the 

results of the approximation procedure    
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 - The result is in the confidence interval 

 - The result is not in the confidence 

CI = confidence interval 

 

 

 

 

 

 

 

 

 

 

 

 

 

OX  
(((( ))))O

F X - CI 

(simulation) 

(((( ))))O
F X - 

(simulation) 

(((( ))))O
F X + CI 

(simulation) 

Standard 

Deviation 

15 min. disc. 

compatibility 

5 min. disc. 

compatibility 

1 min. disc. 

compatibility 

0 20.8009 21.51 22.2191 11.4406 * * * 

1 19.8087 20.517 21.2253 11.4277 * * * 

2 18.8298 19.536 20.2422 11.3938 * * * 

3 17.8695 18.572 19.2745 11.3341 * * * 

4 16.9212 17.619 18.3168 11.2583 * * * 

5 15.9879 16.68 17.3721 11.1663 * * * 

6 15.0685 15.754 16.4395 11.0599 * * * 

7 14.1748 14.852 15.5292 10.92 * * * 

8 13.3023 13.97 14.6377 10.772 * * * 

9 12.4583 13.115 13.7717 10.595 * * * 

10 11.6513 12.295 12.9387 10.385 * * * 

11 10.8757 11.505 12.1343 10.153 * * * 

12 10.128 10.742 11.356 9.9063 * * * 

13 9.4188 10.016 10.6132 9.6352 * * * 

14 8.7476 9.327 9.9064 9.348 * * * 

15 8.1142 8.675 9.2358 9.0479 * * * 

16 7.511 8.053 8.595 8.74466 * * * 

17 6.9493 7.472 7.9947 8.43327 * * *  

18 6.437 6.94 7.443 8.1154 * * * 

19 5.9714 6.455 6.9386 7.8024 * * * 

20 5.5689 6.033 6.4971 7.4878 * * * 

21 5.2337 5.679 6.1243 7.1845 * * * 

22 4.9652 5.393 5.8208 6.9021 * * * 

23 4.771 5.183 5.595 6.6472 * * * 

24 4.6606 5.059 5.4574 6.42781 * * * 

25 4.636 5.026* 5.416 6.29228 * * * 

26 4.712 5.092 5.472 6.13094 * * * 

27 4.91 5.28 5.65 5.9696 * * * 

28 5.263 5.633 6.003 5.9696 * * * 

29 5.797 6.177 6.557 6.13094 * * * 

30 6.537 6.917 7.297 6.13094   *  *  

Table 31. Homogenous – non symmetric problem validation 
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 - The result is in the confidence interval 

 - The result is not in the confidence 

CI = confidence interval 

 

 

 

 

 

 

 

 

 

 

 

 

 

OX  
(((( ))))O

F X - CI 

(simulation) 

(((( ))))O
F X - 

(simulation) 

(((( ))))O
F X + CI 

(simulation) 

Standard 

Deviation 

15 min. disc. 

compatibility 

5 min. disc. 

compatibility 

1 min. disc. 

compatibility 

0 50.6785 51.354 52.0295 10.8986 * * * 

1 49.6785 50.354 51.0295 10.8986 * * * 

2 48.6785 49.354 50.0295 10.8986 * * * 

3 47.6785 48.354 49.0295 10.8986  * * 

4 46.6785 47.354 48.0295 10.8986  * * 

5 45.6785 46.354 47.0295 10.8986  * * 

6 44.6785 45.354 46.0295 10.8986  * * 

7 43.6785 44.354 45.0295 10.8986  * * 

8 42.6785 43.354 44.0295 10.8986  * * 

9 41.6785 42.354 43.0295 10.8986  * * 

10 40.6785 41.354 42.0295 10.8986  * * 

11 39.6785 40.354 41.0295 10.8986  * * 

12 38.6785 39.354 40.0295 10.8986  * * 

13 37.6785 38.354 39.0295 10.8986  * * 

14 36.6785 37.354 38.0295 10.8986  * * 

15 35.6785 36.354 37.0295 10.8986  * * 

16 34.6785 35.354 36.0295 10.8986  * * 

17 33.6785 34.354 35.0295 10.8986  * * 

18 32.6807 33.356 34.0313 10.8953  * * 

19 31.6917 32.366 33.0403 10.8792  * * 

20 30.7137 31.386 32.0583 10.8469  * * 

21 29.7376 30.408 31.0784 10.8163  * * 

22 28.7677 29.436 30.1043 10.7824  * * 

23 27.8037 28.47 29.1363 10.7501  * * 

24 26.8498 27.514 28.1782 10.7162  * * 

25 25.9169 26.578 27.2391 10.6662  * * 

26 24.9987 25.656 26.3133 10.6049  * * 

27 24.1241 24.777 25.4299 10.5339  * * 

28 23.3424 23.989 24.6356 10.4323  * * 

29 22.774 23.414 24.054 10.3258  * * 

30 22.6732 23.309* 23.9448 10.2580  *  *  

Table 32. Peaks –symmetric problem validation 
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 - The result is in the confidence interval 

 - The result is not in the confidence 

CI = confidence interval 

 

 

 

 

 

 

 

 

 

 

 

 

 

OX  
(((( ))))O

F X - CI 

(simulation) 

(((( ))))O
F X - 

(simulation) 

(((( ))))O
F X + CI 

(simulation) 

Standard 

Deviation 

15 min. disc. 

compatibility 

5 min. disc. 

compatibility 

1 min. disc. 

compatibility 

0 107.2215 107.769 108.3165 15.2999  * * 

1 106.2229 106.7703 107.3177 15.2971  * * 

2 105.2243 105.7717 106.3191 15.2971  * * 

3 104.2271 104.7743 105.3215 15.2915  * * 

4 103.2319 103.779 104.3261 15.2887  * * 

5 102.2402 102.787 103.3338 15.2803  * * 

6 101.2498 101.7963 102.3428 15.2720  * * 

7 100.2607 100.807 101.3533 15.2664  * * 

8 99.275 99.821 100.367 15.2580  * * 

9 98.2976 98.843 99.3884 15.2412  * * 

10 97.3312 97.8757 98.4202 15.2161  * * 

11 96.3777 96.921 97.4643 15.1825  * * 

12 95.4379 95.9797 96.5215 15.1406  * * 

13 94.5237 95.0637 95.6037 15.0903  * * 

14 93.6487 94.1863 94.7239 15.0232  * * 

15 92.8013 93.3363 93.8713 14.9506  * * 

16 91.9954 92.5277 93.06 14.8751  * * 

17 91.2501 91.779 92.3079 14.7801  * * 

18 90.5643 91.0897 91.6151 14.6823  * * 

19 89.9365 90.4583 90.9801 14.5817  * * 

20 89.3804 89.899 90.4176 14.4923  * * 

21 88.9097 89.4257 89.9417 14.4196  * * 

22 88.5453 89.059 89.5727 14.3554  * * 

23 88.2701 88.7823 89.2945 14.3134  * * 

24 88.1046 88.6157 89.1268 14.2827  * * 

25 88.0485 88.5597* 89.0709 14.2855  * * 

26 88.1007 88.613 89.1253 14.3162  * * 

27 88.2898 88.803 89.3162 14.3414  * * 

28 88.6529 89.1677 89.6825 14.3861  * * 

29 89.2044 89.721 90.2376 14.4364  * * 

30 89.9853 90.503 91.0207 14.4671 * *    

Table 33. Peaks –non symmetric problem validation 

 

* 
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 - The result is in the confidence interval 

 - The result is not in the confidence 

CI = confidence interval 

 

 

 

 

 

 

 

 

 

 

 

OX  
(((( ))))O

F X - CI 

(simulation) 

(((( ))))O
F X - 

(simulation) 

(((( ))))O
F X + CI 

(simulation) 

Standard 

Deviation 
15 min. disc. 

compatibility 

5 min. disc. 

compatibility 

1 min. disc. 

compatibility 

0 10.1381 10.648 11.1579 8.2268  * * 

1 9.1756 9.683 10.1904 8.1864  * * 

2 8.2767 8.778 9.2793 8.0880  * * 

3 7.445 7.937 8.429 7.9380  * * 

4 6.6911 7.171 7.6509 7.7427  * * 

5 6.0188 6.484 6.9492 7.5056  * * 

6 5.4066 5.856 6.3054 7.2507  * * 

7 4.8709 5.303 5.7351 6.9715  * * 

8 4.4193 4.833 5.2467 6.6747  * * 

9 4.0181 4.414 4.8099 6.3875  * * 

10 3.6937 4.072 4.4503 6.1035  * * 

11 3.4301 3.792 4.1539 5.8389  * * 

12 3.2259 3.573 3.9201 5.6001  * * 

13 3.0814 3.416 3.7506 5.3985  * * 

14 2.9786 3.304 3.6294 5.2500  * * 

15 2.9292 3.249* 3.5688 5.1597  * * 

16 2.9436 3.261 3.5784 5.1210  * * 

17 3.0072 3.326 3.6448 5.1435  * * 

18 3.1323 3.456 3.7797 5.2226  * * 

19 3.3339 3.665 3.9961 5.3420  * * 

20 3.5802 3.922 4.2638 5.5146  * * 

21 3.877 4.232 4.587 5.7276  * * 

22 4.2477 4.617 4.9863 5.9583  * * 

23 4.6917 5.076 5.4603 6.2003  * * 

24 5.1984 5.598 5.9976 6.4472  * * 

25 5.7503 6.166 6.5817 6.7069  * * 

26 6.3753 6.806 7.2367 6.9489  * * 

27 7.0667 7.511 7.9553 7.1684  * * 

28 7.8321 8.288 8.7439 7.3555  * * 

29 8.6942 9.157 9.6198 7.4668  * * 

30 9.6125 10.08 10.5475 7.5427 * *  *  

Table 34. Random –symmetric problem validation 

 

* 
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Appendix E: complete results of the comparison between the 

steady state analysis and the approximation procedure for 

the 'peak – symmetric' problem  

 

 

 

 

OX  (((( ))))O
G X−−−−  (((( ))))O

G X++++  (((( ))))O
F X  

0 6349.1 6323.7 12672.8 

1 6348.1 6323.7 12671.8 

2 6347.1 6323.7 12670.8 

3 6346.1 6323.7 12669.8 

4 6345.1 6323.7 12668.8 

5 6344.1 6323.7 12667.8 

6 6343.2 6323.7 12666.9 

7 6342.2 6323.7 12665.9 

8 6341.2 6323.7 12664.9 

9 6340.2 6323.7 12663.9 

10 6339.2 6323.7 12662.9 

11 6338.2 6323.7 12661.9 

12 6337.2 6323.7 12660.9 

13 6336.2 6323.7 12659.9 

14 6335.2 6323.7 12658.9 

15 6334.2 6323.7 12657.9 

16 6333.2 6323.7 12656.9 

17 6332.2 6323.7 12655.9 

18 6331.2 6323.7 12654.9 

19 6330.2 6323.8 12654 

20 6329.2 6323.8 12653 

21 6328.2 6323.8 12652 

22 6327.2 6323.8 12651 

23 6326.2 6323.8 12650 

24 6325.3 6323.8 12649.1 

25 6324.3 6323.9 12648.2 

26 6323.3 6323.9 12647.2 

27 6322.4 6324 12646.4 

28 6321.5 6324.1 12645.6 

29 6320.8 6324.4 12645.2 

30 6320.3 6324.8 12645.1* 

Table 35. Approximation procedure results 
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Time 

(per one day) 
Renters rate 

Returners 

rate 

Expected total 

penalty per one 

day 

Expected total 

penalty for 500 

days 

6:00-6:15 0.9389 0.5735 0.3654 182.7001 

6:15-6:30 1.4959 0.5829 0.913 456.5 

6:30-6:45 2.0269 0.5923 1.4346 717.3 

6:45-7:00 2.5163 0.6017 1.9146 957.3 

7:00-7:15 2.9453 0.6111 2.3342 1167.1 

7:15-7:30 3.2974 0.6205 2.6769 1338.45 

7:30-7:45 3.559 0.6299 2.9291 1464.55 

7:45-8:00 3.72 0.6393 3.0807 1540.35 

8:00-8:15 3.7744 0.6487 3.1257 1562.85 

8:15-8:30 3.72 0.6581 3.0619 1530.95 

8:30-8:45 3.559 0.6675 2.8915 1445.75 

8:45-9:00 3.2974 0.6769 2.6205 1310.25 

9:00-9:15 2.9453 0.6863 2.259 1129.5 

9:15-9:30 2.5163 0.6957 1.8206 910.3 

9:30-9:45 2.0269 0.7051 1.3218 660.9 

9:45-10:00 1.4959 0.7145 0.7814 390.7 

10:00-10:15 0.9436 0.7239 0.219819 109.9094 

10:15-10:30 0.8587 0.7333 0.127293 63.6467 

10:30-10:45 0.854 0.7427 0.114274 57.1369 

10:45-11:00 0.8492 0.7521 0.10171 50.85484 

11:00-11:15 0.8445 0.7615 0.090002 45.00106 

11:15-11:30 0.8398 0.7709 0.079334 39.6668 

11:30-11:45 0.8351 0.7803 0.070023 35.01172 

11:45-12:00 0.8304 0.7897 0.062414 31.20689 

12:00-12:15 0.8257 0.7991 0.056833 28.41655 

12:15-12:30 0.8209 0.8085 0.053532 26.76591 

12:30-12:45 0.8162 0.8179 0.052731 26.36558 

12:45-13:00 0.8115 0.8273 0.054428 27.21386 

13:00-13:15 0.8068 0.8367 0.058516 29.25808 

13:15-13:30 0.8021 0.8461 0.064775 32.38749 

13:30-13:45 0.7974 0.8556 0.072971 36.48544 

13:45-14:00 0.7926 0.865 0.082724 41.3621 

14:00-14:15 0.7879 0.8744 0.093631 46.81574 

14:15-14:30 0.7832 0.8838 0.105465 52.7325 

14:30-14:45 0.7785 0.8932 0.117984 58.99189 

14:45-15:00 0.7738 0.9026 0.130997 65.49835 

Table 36. Steady state results 
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Time 

(per one day) 
Renters rate 

Returners 

rate 

Expected total 

penalty  per one 

day 

Expected total 

penalty for 500 

days 

15:00-15:15 0.769 0.912 0.144454 72.2268 

15:15-15:30 0.7643 0.9214 0.158059 79.0295 

15:30-15:45 0.7596 0.9308 0.171829 85.91469 

15:45-16:00 0.7549 0.9402 0.185711 92.85564 

16:00-16:15 0.7502 1.4904 0.7402 370.1 

16:15-16:30 0.7455 2.0195 1.274 637 

16:30-16:45 0.7407 2.5072 1.7665 883.25 

16:45-17:00 0.736 2.9346 2.1986 1099.3 

17:00-17:15 0.7313 3.2853 2.554 1277 

17:15-17:30 0.7266 3.546 2.8194 1409.7 

17:30-17:45 0.7219 3.7065 2.9846 1492.3 

17:45-18:00 0.7171 3.7607 3.0436 1521.8 

18:00-18:15 0.7124 3.7065 2.9941 1497.05 

18:15-18:30 0.7077 3.546 2.8383 1419.15 

18:30-18:45 0.703 3.2853 2.5823 1291.15 

18:45-19:00 0.6983 2.9346 2.2363 1118.15 

19:00-19:15 0.6936 2.5072 1.8136 906.8 

19:15-19:30 0.6888 2.0195 1.3307 665.35 

19:30-19:45 0.6841 1.4904 0.8063 403.15 

19:45-20:00 0.6794 0.9402 0.260822 130.411 

20:00-20:15 0.6747 0.9108 0.236143 118.0716 

20:15-20:30 0.67 0.8814 0.211486 105.743 

20:30-20:45 0.6652 0.852 0.186974 93.48699 

20:45-21:00 0.6605 0.8226 0.16246 81.23008 

21:00-21:15 0.6558 0.7933 0.138255 69.12744 

21:15-21:30 0.6511 0.7639 0.114405 57.20229 

21:30-21:45 0.6464 0.7345 0.091521 45.7605 

21:45-22:00 0.6417 0.7051 0.070623 35.31135 

22:00-22:15 0.6369 0.6757 0.05357 26.78475 

22:15-22:30 0.6322 0.6464 0.04286 21.4302 

22:30-22:45 0.6275 0.617 0.041056 20.52776 

22:45-23:00 0.6228 0.5876 0.049082 24.54122 

23:00-23:15 0.6181 0.5582 0.065208 32.60411 

23:15-23:30 0.6133 0.5288 0.086224 43.11186 

23:30-23:45 0.6086 0.4995 0.109579 54.78938 

23:45-00:00 0.6039 0.4701 0.133914 66.95684 

Total   70.03709 35018.54 
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Appendix F: Users with limited patience procedure 

 

Main procedure 
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Upper truncation procedure 

 

  Lower truncation procedure 

 

  Renter's probability to join the queue procedure 

 

  Returner's probability to join the queue procedure 
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Appendix G: Users with limited patience – upper and lower bounds 

procedure 
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Appendix H: Users with limited patience – results from the 

Homogenous – symmetric problem 

 

 

 

 

 

OX  

Total 

expected 

penalty cost - 

15 min. disc. 

Total 

expected 

penalty cost - 

1 min. disc. 

Difference 

(%) 

0 150.1149 150.2102 0.0635 

1 147.4636 147.5422 0.0533 

2 144.7823 144.8995 0.0809 

3 142.1346 142.2702 0.0954 

4 139.4983 139.649 0.1080 

5 136.8682 137.0323 0.1199 

6 134.2414 134.4175 0.1312 

7 131.6154 131.8023 0.1420 

8 128.9881 129.1849 0.1526 

9 126.3577 126.5634 0.1628 

10 123.7224 123.9364 0.1730 

11 121.0807 121.3021 0.1829 

12 118.431 118.6593 0.1928 

13 115.772 116.0064 0.2025 

14 113.1023 113.3423 0.2122 

15 110.4209 110.6658 0.2218 

16 107.727 107.9762 0.2313 

17 105.0201 105.2729 0.2407 

18 102.3004 102.5561 0.2500 

19 99.5688 99.8268 0.2591 

20 96.8274 97.0869 0.2680 

21 94.0796 94.3399 0.2767 

22 91.3305 91.5908 0.2850 

23 88.5874 88.8469 0.2929 

24 85.8605 86.1184 0.3004 

25 83.165 83.4207 0.3075 

26 80.5287 80.7815 0.3139 

27 78.0137 78.2631 0.3197 

28 75.7808 76.0258 0.3233 

29 74.2446 74.4726 0.3071 

30 74.3062 74.5001 0.2609 

Table 37. Peaks – symmetric problem - users with limited 

patience results 


