Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m

YONGXIANG REN,1,* ZHE WANG,1 PEICHENG LIAO,1 LONG LI,1 GUODONG XIE,1 HAO HUANG,1 ZHE ZHAO,1 YAN YAN,1 NISAR AHMED,1 ASHER WILLNER,1 MARTIN P. J. LAVERY,2 NIMA ASHRAFI,3 SOLYMAN ASHRAFI,3 ROBERT BOCK,4 MOSHE TUR,5 IVAN B. DJORDJEVIC,6 MARK A. NEIFELD,6 AND ALAN E. WILLNER1

1Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA
2School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
3NxGen Partners, Dallas, Texas 75219, USA
4R-DEX Systems, Marietta, Georgia 30068, USA
5School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel
6Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721, USA

*Corresponding author: yongxior@usc.edu

Received 5 October 2015; revised 1 December 2015; accepted 9 December 2015; posted 22 December 2015 (Doc. ID 247005); published 29 January 2016

We experimentally demonstrate and characterize the performance of a 400-Gbit/s orbital angular momentum (OAM) multiplexed free-space optical link over 120 m on the roof of a building. Four OAM beams, each carrying a 100-Gbit/s quadrature-phase-shift-keyed (QPSK) data channel are multiplexed and transmitted. We investigate the influence of channel impairments on the received power, intermodal crosstalk among channels, and system power penalties. Without laser tracking and compensation systems, the measured received power and crosstalk among OAM channels fluctuate by 4.5 dB and 5 dB, respectively, over 180 s. For a beam displacement of 2 mm that corresponds to a pointing error less than 16.7 μrad, the link bit error rates are below the forward error correction threshold of 3 × 10−3 for all channels. Both experimental and simulation results show that power penalties increase rapidly when the displacement increases.

© 2016 Optical Society of America

OCIS codes: (060.2605) Free-space optical communication; (060.4230) Multiplexing.

http://dx.doi.org/10.1364/OL.41.000622

There is increased interest in utilizing advanced multiplexing of multiple data streams to increase the data capacity of a free-space optical (FSO) system [1–3]. Multiplexing in wavelength and polarization, known as wavelength-division multiplexing (WDM) and polarization-division multiplexing (PDM) respectively, have previously been employed for FSO transmission [3,4].

Another potential approach is to use space-division multiplexing (SDM), with which the total capacity of the communication system can be increased by a factor equal to the number of transmitted orthogonal modes [5,6]. A spatial modal basis set for SDM that has gained interest is orbital angular momentum (OAM) [5–8]. OAM beams with different \(l \) values (\(l \) is an unbounded integer) are mutually orthogonal [8,9], so that beams carrying different OAM can act as independent data channels for efficiently multiplexing multiple information-bearing signals in an SDM-based communication system [5].

It has been shown that OAM multiplexing might be more sensitive to system alignment as it relies more critically on a common optical axis to achieve low intermodal crosstalk [10]. OAM multiplexing has been employed to demonstrate high-capacity FSO transmission links in laboratory settings [6,7]. These experiments were generally conducted over short distances of ∼1 m, without taking into account system misalignment and other potential channel effects. Recent reports have shown the transmission of a single low-data rate OAM channel with no multiplexing over practical distances, including a 3-km link by encoding information in the intensity pattern of OAM superpositions [11,12]. However, the experimental study of the issues related to multiplexing and transmitting multiple OAM beams for high-speed FSO systems has not been reported so far.

In this Letter, we explore the potential of using OAM multiplexing to achieve high-capacity data transmission beyond lab-scale distances. We experimentally demonstrate and investigate the performance of an FSO link employing OAM multiplexing that is performed over 120 m on the roof of a building. Four OAM modes with \(\ell = \pm 1, \pm 3 \), each carrying a 100-Gbit/s quadrature-phase-shift-keyed (QPSK) data channel are transmitted, thus allowing for a total capacity of 400-Gbit/s [13]. We measure the beam jitter (tip/tilt aberrations) of the link and characterize its effects on system performance. Without laser tracking and compensation system used at the
receiver, the received signal power and crosstalk among the OAM channels fluctuate by 4.5 dB and 5 dB, respectively, over 180 s. For a beam displacement of 2 mm that corresponds to a pointing error less than 16.7 μrad, the bit error rates (BERs) of the link can achieve below the forward error correction (FEC) threshold of 3.8×10^{-3} for all channels. We vary the displacement of the received beams, and we find that power penalties increase rapidly when displacement is increased, which is in agreement with our simulation results.

The experimental setup is presented in Fig. 1. The optical setup containing the transmitter and the receiver is placed on the roof of a building [shown in Fig. 1(a)], which is about 20 m above the ground. The transmitter and the receiver are located on the same optical bench at Site #1. Two flat mirrors placed 30-m away at Site #2 and a flat mirror on the optical bench at Site #1 are used to reflect the OAM beams twice, achieving a 120-m propagation path, as shown in Fig. 1(b1). The transmitting and receiving apertures are around 40 cm apart from each other, so that the return paths do not coincide with the forward paths.

The OAM transmitter optics is shown in Fig. 1(b2). A 100-Gbit/s QPSK signal at 1550 nm is produced, amplified and split into two copies, one of which is delayed using a 10-m length of single-mode fiber (SMF) to decorrelate the data sequence. These two polarized signal copies are sent to two collimators, each converting the SMF output to a collimated free-space Gaussian beam with a diameter of 3 mm. The two beams are launched onto two reflective spatial light modulators (SLMs 1 and 2, respectively), to create two different OAM beams with either $\ell = +1$ or $+3$. These two OAM beams are spatially combined using a beam splitter (BS-1). The multiplexed OAM beams are then split into two identical copies by BS-2, one of which is reflected three times using mirrors arranged to introduce a ∼300 ps delay between the two copies. Due to the “mirror” image relationship of reflection, the state number of an OAM beam changes its sign after an odd number of reflections [9]. As a result, another two OAM beams with opposite ℓ values ($\ell = -1$ and -3) are obtained, which are then combined with the original OAM beams $\ell = +1$ and $+3$ using BS-3. Next, the resulting four multiplexed OAM beams ($\ell = \pm 1$ and ± 3) are sent through a 1:4 beam expander to enlarge their transmitted beam sizes. Specifically, the beam sizes become ~ 1.32 cm for OAM beams $\ell = \pm 1$ and ~ 1.76 cm for $\ell = \pm 3$. The expansion of transmitted beams is performed to ensure that most of the received OAM beams can be captured by the receiver aperture. Subsequently, the expanded OAM beams are combined with a red Gaussian beam at 635 nm, which serves as a beacon for the convenience of system alignment. This 635 nm beam has a 0.7 mm beam size and a ~ 25 mrad divergence angle.

The OAM beams at 1550 nm and the Gaussian beam at 635 nm pass through a 2-inch transmitter aperture and then propagate for 30-m in free space. Two flat mirrors, with diameters of 2 in. and 3 in., respectively, are mounted on an optical table at Site #2 to reflect the incoming beams twice toward the transmitter’s direction. After three reflections and 120-m propagation, the OAM beams $\ell = \pm 1$ and $\ell = \pm 3$ at the receiver have beam sizes of ~ 4.6 cm, and ~ 6.0 cm, respectively. In the receiver optics shown in Fig. 1(b3), the OAM beams are then collected by a beam reduction system, which has a 3-inch entrance aperture and consists of two lenses with focal lengths of 300 and 50 mm. The sizes of the OAM beams are reduced sixfold to match the dimensions of the SLM-based OAM detection module that followed. SLM-3 is loaded with the inverse spiral phase hologram that converts the OAM beam of a particular channel chosen for detection back into a flat-phase beam. This beam is then coupled into an SMF sent for coherent detection and offline digital signal processing. Fiber coupling losses are ∼6 dB for OAM $\ell = \pm 1$ and ∼8 dB for OAM $\ell = \pm 3$, which can be potentially reduced by further optimization of the coupling optics.

The experimental measurements are performed under clear weather conditions at night. We expect that daylight would not significantly affect the system if the experiment had been carried out during the daytime, since daylight that resides in visible wavelength range could be filtered out by wavelength filters. Figures 2(a1)–2(a4) show captured intensity profiles of the generated OAM beams and their superpositions at the transmitter. After propagation over 120-m, the sizes of the OAM beams $\ell = \pm 1$ and $\ell = \pm 3$ at the receiver are much larger than the effective area of the CCD camera. Therefore, we use a near-IR detector card and a regular camera to capture their intensity profiles as shown in Figs. 2(b1) and 2(b2). The intensity profiles of the OAM beams and their superpositions after beam reduction are shown in Figs. 2(c1)–2(c4). As the OAM beams $\ell = \pm 3$ are of a similar size as the effective aperture of the receiver, an aperture diffraction effect caused by truncation is observed in Figs. 2(c2) and 2(c4). Figures 2(d1)–2(d4) depict the intensity profiles of demultiplexed beams when only the OAM channel $\ell = +3$ is transmitted. We see that the received beam is converted into a flat-phase beam with a high intensity at the beam center (Gaussian-like beam) only when an inverse spiral phase of $\ell = +3$ is loaded onto SLM-3 for demultiplexing. It appears that the received beams do not suffer from atmospheric turbulence-induced distortions [14–17]. However, during the measurements, we noticed dynamic wandering of the beams at the receiver. This might result from the wind effects and time-dependent platform variations [18–20].

Due to beam jitter, the received power and crosstalk for each channel fluctuate [19,20]. To quantify the beam jitter, we measure the statistics of beam displacement d with respect to the
propagation axis after beam reduction, as depicted in Fig. 3(a).
This is obtained by calculating the centroids of 1000 CCD image sequences (captured before SLM-3) of OAM beam \(\ell = +3 \) over 180 s. It is observed that the maximum displacement at CCD plane is around 0.55 mm. Considering sixfold beam reduction, the maximum beam displacement at the receiver is then estimated to be 3.3 mm, which corresponds to an angular pointing error of 27.5 μrad. The pointing error corresponding to displacement \(\Delta d \), can be calculated by \(\Delta d/L \) with \(L = 120 \) m being the link distance. The fluctuations of received signal and crosstalk from other channels into OAM channel \(\ell = +3 \) are presented in Figs. 3(b) and 3(c). The crosstalk is calculated by measuring the received power values when only OAM channel \(\ell = +3 \) is turned off and when only OAM channel \(\ell = +3 \) is turned on. These two sequential measurements are performed every second and are repeated 60 times. The durations for power and crosstalk measurements are 180 and 60 s, respectively. We see that the signal power and crosstalk of channel \(\ell = +3 \) vary by up to 3.8 dB and 10.2 dB, respectively, during this period. To illustrate the effects of beam jitter on system performance, Fig. 3(d) presents the instantaneous BERs of channel \(\ell = +3 \) in 180 s at a fixed optical signal-to-noise ratio (OSNR) of \(\sim 21 \) dB. The recovered QPSK constellations of OAM channel \(\ell = +3 \) under three different conditions are also shown in the inset. We see that the instantaneous BERs fluctuate temporally and link outage occurs (BERs larger than FEC threshold) under large jitter conditions.

We then characterize the power leakage and crosstalk among all four OAM channels. Table 1 shows the measured average power-transfer matrix among channels over 5 min. Next, we turn on all four OAM channels and the measured BER curves are shown in Fig. 4(a). Each BER point is averaged over a 60-s period. Because of interchannel crosstalk, the BERs for all four channels exhibit slight error-floor phenomenon. We see that the power penalties at the FEC threshold for all four channels \(\ell = -3, -1, +1, \) and \(+3 \), compared to the back-to-back case (bypassing the link setup) are 7.7 dB, 4.3 dB, 4.4 dB, and 4.6 dB, respectively. To investigate the maximal beam jitter that the system allows, we intentionally adjust the displacement of the received beams with respect to the receiver axis. In this case, the total misalignment is a combination of this static displacement and the random time-varying jitter. It is expected that this misalignment would cause power coupling among neighboring channels, resulting in interchannel crosstalk. The measured BERs and crosstalk values for OAM channels \(\ell = +1 \) and \(+3 \) at an SNR of 21 dB as a function of various lateral displacement are depicted in Fig. 4(b). It is found that a maximum beam displacement of \(\sim 2 \) mm (16.7 μrad pointing error) can be tolerated to achieve BERs below \(3.8 \times 10^{-3} \).

Figure 5(a) shows the measured BERs (averaged over 60 s) for OAM channel \(\ell = +3 \) under \(\Delta d = 0, 1.0, \) and 2.0 mm. We see that the BER performance degrades more rapidly when \(\Delta d \) is larger than 1.0 mm, which is also corroborated by the power penalty of OAM channel \(\ell = +3 \) (at the FEC threshold), as shown in Fig. 5(a) inset. It is clear that the power penalty is larger than 10 dB at \(\Delta d = 2.0 \) mm. We also observe that power penalties increase rapidly when \(\Delta d \) is larger than 1.0 mm. In general, a pointing error of the order of μrad could be reduced to nrad level using a commercially available laser tracking system [10,20,21], which would improve system performance.

Figure 5(b) shows the simulated relative penalty for OAM channel \(\ell = +3 \) (at the FEC threshold) as in Fig. 4(a). Each BER point is averaged over a 60-s period. We see that the BER performance degrades more rapidly when \(\Delta d \) is larger than 1.0 mm, which is also corroborated by the power penalty of OAM channel \(\ell = +3 \) (at the FEC threshold), as shown in Fig. 5(b). It is clear that the power penalty is larger than 10 dB at \(\Delta d = 2.0 \) mm. We also observe that power penalties increase rapidly when \(\Delta d \) is larger than 1.0 mm. In general, a pointing error of the order of μrad could be reduced to nrad level using a commercially available laser tracking system [10,20,21], which would improve system performance.

Table 1. Power Transfer Over 5 min for Each OAM Channel (dBm)

<table>
<thead>
<tr>
<th>Power</th>
<th>RX (\ell = -3)</th>
<th>RX (\ell = +1)</th>
<th>RX (\ell = -3)</th>
<th>RX (\ell = +3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX (\ell = -1)</td>
<td>-8.5</td>
<td>-29.0</td>
<td>-26.3</td>
<td>-34.1</td>
</tr>
<tr>
<td>TX (\ell = +1)</td>
<td>-27.5</td>
<td>-9.0</td>
<td>-27.5</td>
<td>-28.4</td>
</tr>
<tr>
<td>TX (\ell = -3)</td>
<td>-22.5</td>
<td>-32.5</td>
<td>-11.3</td>
<td>-45.8</td>
</tr>
<tr>
<td>TX (\ell = +3)</td>
<td>-34.5</td>
<td>-24.5</td>
<td>-43.2</td>
<td>-11</td>
</tr>
</tbody>
</table>
share a similar trend, and power penalty increases dramatically as lateral displacement exceeds a certain value.

Our experiment was performed on a building roof under clear weather conditions, and the effects of atmospheric turbulence seem to be weak, according to our measured intensity profiles. The main channel impairment, namely, beam jitter, would be more severe over a longer distance or if the transmitter and receiver had been placed on different buildings [18,19]. Meanwhile, the increased turbulence effects in a longer link would introduce additional beam jitter (i.e., beam wandering). The beam jitter caused by the two factors, each with a temporal bandwidth of ~0.1–1 kHz [14] could be corrected with commercially available pointing- and tracking-control technology [21].

We believe that our experiment could be potentially scaled to a larger number of OAM channels over a km-long distance through careful system design [10]. In general, the number of accommodated OAM beams is limited by various factors, including aperture sizes and channel condition. Given a fixed transmitter and receiver aperture size, a larger OAM \(l \) value results in a larger beam size at the receiver, such that the recovered power decreases. In addition, atmospheric turbulence may present a critical issue for long-distance scenarios or under bad weather conditions [1,14]. Turbulence-induced high-order aberrations cause changes in the received power of each OAM channel and inter-channel crosstalk behaviors [15–17]. This might severely limit the number of OAM beams that can be used for transmission. In this case, turbulence mitigation approaches might be required [22].

Funding. Air Force Office of Scientific Research (AFOSR); NxGen Partners.

Acknowledgment. We thank Dr. Michael Kendra for fruitful discussions.

REFERENCES