Algorithms for the Multi-item Multi-vehicles Dynamic Lot Sizing Problem
Shoshana Anily,' Michal Tzur?
" Faculty of Management, Tel Aviv University, Tel Aviv, Israel. E-mail: anily@post.tau.ac.il

2 Department of Industrial Engineering, Tel Aviv University, Tel Aviv, Israel. E-mail: tzur@eng.tau.ac.il

Received 31 August 2004; revised 31 August 2005; accepted 30 September 2005
DOI 10.1002/nav.20129
Published online 28 December 2005 in Wiley InterScience (www.interscience.wiley.com).

Abstract: We consider a two-stage supply chain, in which multi-items are shipped from a manufacturing facility or a central
warehouse to a downstream retailer that faces deterministic external demand for each of the items over a finite planning horizon.
The items are shipped through identical capacitated vehicles, each incurring a fixed cost per trip. In addition, there exist
item-dependent variable shipping costs and inventory holding costs at the retailer for items stored at the end of the period; these
costs are constant over time. The sum of all costs must be minimized while satisfying the external demand without backlogging.

In this paper we develop a search algorithm to solve the problem optimally. Our search algorithm, although exponential in the
worst case, is very efficient empirically due to new properties of the optimal solution that we found, which allow us to restrict
the number of solutions examined. Second, we perform a computational study that compares the empirical running time of our
search methods to other available exact solution methods to the problem. Finally, we characterize the conditions under which each
of the solution methods is likely to be faster than the others and suggest efficient heuristic solutions that we recommend using

when the problem is large in all dimensions. © 2005 Wiley Periodicals, Inc. Naval Research Logistics 53: 157-169, 2006.

Keywords: inventory/transportation; multi-item; search algorithm

1. INTRODUCTION AND LITERATURE
REVIEW

In multi-stage supply chains, items must be shipped from
one stage to the next, incurring transportation costs that are
sometimes quite significant relative to the total item’s cost.
Typically, a vehicle that is used to transfer items from one
stage to the next incurs a fixed cost, which is independent of
the exact identity of the items. However, the existence of
multiple items poses a challenge in determining their com-
position in each delivery, since different items typically face
a different stream of external demands and incur different
holding cost rates. Moreover, despite the economies of scale
associated with dispatching full vehicles, it may sometimes
be beneficial to dispatch a partially loaded vehicle.

We consider a two-stage supply chain, in which multiple
items are shipped from a manufacturing facility or a central
warehouse to a downstream retailer that faces deterministic
external demand for each of the items over a finite planning
horizon. The items are shipped through identical capacitated

Correspondence to: S. Anily (anily @post.tau.ac.il); M. Tzur
(tzur @eng.tau.ac.il)

© 2005 Wiley Periodicals, Inc.

vehicles (any number of vehicles per period may be used),
each incurring a fixed cost per trip. In addition, there exist
item-dependent variable shipping costs as well as inventory
holding costs at the retailer for items stored at the end of the
period; these cost parameters are constant over time. The
sum of all costs must be minimized while satisfying the
external demand without backlogging.

We refer to this problem as the MIMV (Multi-Item with
Multiple Vehicles) problem, as coined by Anily and Tzur
[1]. Other related problems may involve only one item
(SIMV) or a limit of one vehicle per period only (MISV).
The special case of one item and one capacitated vehicle is
known as the Capacitated Dynamic Lot Sizing (CDLS)
Problem; see, e.g., Florian and Klein [3]. More recently,
Kaminsky and Simchi-Levi [5] studied a variation of the
CDLS, arising from a two-stage manufacturing model, and
Van Hoesel et al. [10] studied a serial supply chain in which
production, inventory, and transportation decisions are in-
tegrated in the presence of production capacities. In the
production setting where the problem is applicable in a
similar way, the content of a vehicle is referred to as a
batch. A literature review on capacitated dynamic lot sizing
problems, with and without batching considerations, can be

158 Naval Research Logistics, Vol. 53 (2006)

found in the paper by Anily and Tzur [1]. Here we only
mention the most relevant and recent works.

Most of the literature deals with the single-item case. The
SIMV problem was investigated by Pochet and Wolsey [8],
who considered time-varying setup, inventory holding, and
variable production costs. The authors designed an O(T?)
algorithm, where T is the number of periods, which is based
on finding a shortest path in an appropriately defined net-
work. Lee [6] addressed the SIMV problem in which there
exists a separate setup cost per order and presented an
O(T*) procedure for the problem.

The literature on problems that consider multi-items is
quite sparse. Federgruen, Meissner, and Tzur [2] studied the
MISV problem, where the capacity limits, as well as the
cost parameters, vary over time. They developed and ana-
lyzed a class of so-called progressive interval heuristics,
which under mild parameter conditions can be designed to
be g-optimal for any &€ > 0, with a running time that is
polynomially bounded in the size of the problem. Pryor,
White, and Kapuscinski [9] presented a heuristic for the
MIMYV problem, which generalizes a heuristic algorithm
due to Lippman [7] for the single-item case. They also
presented a generalization of a search algorithm, which
determines the optimal solution for the problem; no com-
plexity bound is specified and no computational results are
available with respect to their algorithm. Yano and Newman
[11] analyzed a more general problem than the MIMV
problem, in which the demand for the items dynamically
becomes available. However, their algorithm doesn’t nec-
essarily generate the optimal solution for the special case of
our problem, as demonstrated in Section 2. Anily and Tzur
[1] developed for the MIMV problem an exact dynamic
programming algorithm, which is based on properties of the
optimal solution and is using an innovative way to partition
the problem into sub-problems. The dynamic programming
algorithm is polynomial for a fixed number of items, but
exponential when the number of items is part of the input.

The complexity of the MISV and MIMV problems when
the number of items is part of the input is still an open
question, even when the capacities and cost parameters are
constant over time. This is in contrast to the CDLS problem
(single item with a single batch) that is polynomial for the
constant capacity case (see [3]), but is known to be NP-hard
for the time-varying capacities case; see [4]. Anily and Tzur
[1] proved that the MIMYV problem is at least as hard as the
MISV problem, both under constant capacity and cost pa-
rameters, by showing how a solution to the former may be
used to obtain a solution to the latter. Therefore, the results
obtained in this paper for the MIMV problem are applicable
for the MISV problem as well.

In this paper, we analyze the MIMYV problem and provide
the following contributions. First, we develop a search
algorithm to solve the problem optimally. Our search algo-

rithm, although exponential in the worst case, is very effi-
cient empirically due to new properties of the optimal
solution that we found, which allow us to reduce signifi-
cantly the number of solutions examined. Second, we per-
form a computational study that compares the empirical
running times of available exact solution methods to the
MIMYV problem, including our new search algorithm, the
DP algorithm of Anily and Tzur [1], and the solution of the
CPLEX algorithm to a straightforward MILP formulation of
the problem. We characterize the conditions under which
each of the above algorithms is likely to be faster than the
others and suggest efficient heuristic methods that we rec-
ommend using when the problem is large in all dimensions.

The rest of the paper is organized as follows: in the next
section we introduce the notation and review known results
for the problem, which are needed later in the paper. In
Section 2 we present our new search algorithm, which is an
enumeration procedure, based on two simple extreme solu-
tions and their properties. In addition, we propose that the
two extreme solutions may be used as a basis for heuristics.
Section 3 is devoted to a numerical study of our search
algorithm, as well as its comparison to the recent DP algo-
rithm of Anily and Tzur [1] and the CPLEX algorithm
applied to a straightforward MILP formulation of the prob-
lem. We also examine the efficiency of the heuristic proce-
dures. Finally, in Section 4 we draw conclusions.

Notation and Preliminaries

The MIMYV problem is defined by the following param-
eters:

M = number of items;
T = number of periods in the planning horizon;
d;, = demand for item i in period #; we assume that all
demands are integers.
= cost of shipping a unit of item i;
cost of holding in inventory at the retailer a unit
of item i at the end of each period; #; = 0.
K = setup cost of dispatching a vehicle (or part of it);
C = capacity of a vehicle, i.e., the number of units
that may be loaded in one vehicle.

=3
1

We assume that all items have the same weight/volume;
therefore, the identity of the items in the vehicle is not
important for capacity considerations. All demands must be
met on time (no backlogging allowed) either from shipment
in the same period or from the period’s initial inventory.
Any number of vehicles may be used in each period; there-
fore, the problem is always feasible. The objective is to find
an optimal shipping policy that minimizes the sum of dis-
patching, variable shipping, and holding costs.

Anily and Tzur: Dynamic Lot Sizing Problem 159

In the following we present a straightforward MILP for-
mulation for the MIMV problem. In Section 3 we compare
the solution obtained by applying CPLEX to this formula-
tion to alternative algorithms for the MIMV problem.

Let

X,(t) = shipping quantity of item i in period ¢, 1 =
i=Mand 1 =t =T;

Y(#) = number of vehicles dispatched in period ¢,
1l=r=T,

I,(t) = inventory of item i at the end of period 7, 1 =
i=MadO0=1t=T.

We assume without loss of generality /,(0) = 0 and
I(T) =0forl =i =M.
We also define

X(t) = total shipping quantity of all items in period ¢,
ie, X() = 3™, X(), 1 =t =T,

I(t) = total inventory of all items at the end of period
tyie, I(1) = XY, I, 1 =t =T.

D1y, 1) = 2172;11 dip and D(1y, 1) = 2L, Di(1y, 1,) be
the total demand in periods #,, ..., t, — 1 where D(¢,
) = 0 Vit

Then, a MILP formulation of the MIMV problem, de-
noted (P1), is

(P1) Min Y (EM (pXit) + hI() + KY(t))
=1\ i=1
S.t.

I(t)y = I(t — 1) + X,(t) — d,, I=t=T,1=i=M

X(t) = Eff] X,(0) l=t=T
X(1) = CY(1) I=i=T
1,0) = 0, I(T) = 0 l<i=M
I,(1) = 0, X,(t) = 0 |<t=T,|<i=M
Y(t) integer 1=t=T.

Since the variable production costs are constant over time
and the total number of units shipped is given by the total
demand, the total variable shipment cost of a feasible solu-
tion is constant and therefore ignored in our future analysis.
It remains to consider the setup cost for dispatching vehicles
and the holding costs. In the rest of this section we state
results that were proved by Anily and Tzur [1] and are
needed in our future analysis.

We use the term “a full vehicle” to refer to a vehicle that
is loaded with C units and the term “a partial vehicle” to
refer to a non-empty vehicle loaded with fewer than C units.
Therefore, a shipment of X(7) units in any period ¢ consists
of LX(t)/CJ full vehicles. If X(rf)mod C > 0 then the
shipment consists, in addition, of a partial vehicle of quan-
tity X(#)mod C.

We assume that the items are numbered in a non-de-
scending order of their holding cost rates, i.e., 0 < h; < h,

< --- < h,,. This is without loss of generality since dif-
ferent items with identical holding cost rates can be com-
bined into a single item; they are identical for all computa-
tional purposes.

LEMMA 1: For any optimal shipping quantities
X(1), ..., X(T) and associated optimal inventory quanti-
ties [(t),] =i =M, and 1 = ¢ = T, the following hold:

1) I(r— 1)(X()modC) =0 1=t=T

() X0 — > (dy,— Lt —1)*

X()mod C if X(/mod C > 0
<lc if X()mod C = 0

Gii) X =[ber+1D/Clc 1 =t=T

@iv) L, <C 1=t=T.

PROOF: See Lemma | by Anily and Tzur [1].

LEMMA 2: Given a vector (X(1), ..., X(T)) of aggre-
gate (over items) shipping quantities in each period, the
Scheduling Algorithm, described in Appendix A, computes
the best detailed schedule for each period, that is, deter-
mines the shipment quantities of each item in each period.
Its complexity is O(TM) given that the items are ordered in
a non-descending order of their inventory holding costs.

PROOF: See the discussion following Lemma 2 in [1].

An optimal policy may be obtained by solving a shortest
path problem on a network withnodes 1,2, ..., 7 + 1.In
the proposed network there exist arcs connecting pairs of
nodes 7, and 7, where 1 = ¢, < t, = T + 1; An arc
connecting node 7, to node t, represents the best schedule
between period 7, and period 7, — 1 given I(t; — 1) =
I(t, — 1) =0and I(1) >0 fort; — 1 <7<1t, — 1. 1Its
cost consists of all setup and inventory holding costs in-
curred in periods ¢, t; + 1, ..., 7, — 1. We know from
Lemma 1(i) that the total setup cost of arc (¢, 1,) is Kl D(t,,
1,)IC 1 since except for period ¢, in which a partial vehicle
may be dispatched, the shipping in all other periods should
be in full vehicles.

It remains to determine the total holding costs on the arcs,
which turns out to be the hard part, whose complexity is still
unknown; see the Introduction. Given the optimal holding
(and therefore total) cost on each arc, the optimal solution
can be obtained by applying a shortest path algorithm that
requires O(T?) time. Our search algorithm, described in the
next section, focuses on finding the optimal holding cost of

160 Naval Research Logistics, Vol. 53 (2006)

an arc (t,, t,), which satisfies I(t;, — 1) = I(t, — 1) =0
and I(7) > 0 for¢t; — 1 < 7 <1, — 1. It uses the result
of the next lemma, which identifies arcs in the network that
violate properties of the optimal solution and thus can be
removed.

LEMMA 3: Suppose that the optimal shipping quantities
X*(1), ..., X*(T) imply that arc (¢, t,) is used in the
optimal solution, that is, the associated inventory levels
satisfy I(t; — 1) = I(t, — 1) = O and I(1) > O for ¢, —
1 <7<t — 1. Then,

(a) X*(t;)mod C = D(t, t,)mod C

(b) D(t,, t, + 1) = X*(t,) = [D(,, 1, + D/C]C.
Thus, potential arcs in the network that don’t satisfy
parts (a) and (b) of the lemma may be removed.
Equivalently, we can state that arcs (¢, #,) that don’t
satisfy parts (¢) and (d) below may be removed from
the network:

(c) If D(¢,, t,)mod C # 0O then D(t,, t,)mod C = D(t,,
t; + I)mod C.

(d) If D(¢y, t; + I)'mod C = O then t, = t; + 1.

PROOF: See Lemma 5 and its corollaries in [1].

2. THE SEARCH ALGORITHM

In this section we develop a search algorithm to find an
optimal shipping schedule and associated holding cost of an
arc in the network defined in the previous section. Although
the search algorithm is non-polynomial in general, we show
in the next section that it is capable of solving quite large
problems. This is achieved due to properties of the optimal
solution that we identify (in addition to those mentioned in
the previous section), which allow us to consider only a
small fraction of all possible solutions. In Section 3 we
present a numerical study that analyzes the factors that most
affect the running time of the search algorithm and com-
pares it to two other methods.

The search algorithm is based on the observation that
finding the holding cost of an arc (¢, t,) in the network is
determined by finding a vector (X(¢,), ..., X(t, — 1)) of
aggregate (over all items) shipping quantities in each period.
We refer to such a vector as a schedule. Given this vector,
the best detailed schedule (i.e., by items) for each period can
be obtained by applying the Scheduling Algorithm, dis-
cussed in the previous section. Therefore, it remains to find
the best vector of aggregate shipping quantities for an arc in
the network.

Below we present two specific schedules, which will be
used as a basis for constructing candidates for the best
vector of aggregate shipping quantities. The first one, con-
structed by Algorithm_DS, described below, is called a

delaying schedule (DS) since it delays the shipping of
vehicles as much as possible. The second schedule, con-
structed by Algorithm_AS, described below, is called an
advancing schedule (AS) since it ships vehicles as early as
possible.

The schedules DS and AS ship in each period the mini-
mum number of units that is required in order to cover the
remaining demand in the period (given the shipments and
item allocation in previous periods), while satisfying Lem-
mas 1 and 3. The difference between the two schedules can
be viewed as a difference in the priority rules used for
allocation of units shipped for future periods: schedule DS
first gives priority to items required in early periods, and
within a period it gives priority to the least expensive items.
Schedule AS first gives priority to the least expensive items,
and for a given item it gives priority to early periods. The
actual allocation of the items, that is, their shipment quan-
tities in each period, as well as the total cost incurred in
periods ¢, ..., t, — 1 for schedules DS and AS, are
obtained by applying the Scheduling Algorithm on these
schedules for periods 7, ..., t, — 1.

It may seem at first that schedule DS may be optimal, as
it delays shipments as much as possible. Indeed, for the
SIMV problem (i.e., M = 1) the DS schedule is optimal for
all feasible arcs. Yano and Newman [11] proposed such a
schedule for solving the MIMV problem. However, the
following example by Pryor, White, and Kapuscinski [9]
demonstrates that this schedule is not necessarily optimal
for all arcs in the network. Consider an arc of four periods
and two items with C = 10, A, = 1, h, = 100, demand
for item 1: 0, 0, 6, 6 in periods 1-4, respectively, and
demand for item 2: 4, 4, 0, 0 in periods 1-4, respectively.
According to schedule DS, which delays shipment as much
as possible, we ship 10 units in periods 1 and 3 and none in
periods 2 and 4. More specifically, we ship 8 units of item
2 and 2 units of item 1 in period 1 and 10 units of item 1 in
period 3. However, the optimal solution for this instance is
to ship 10 units in each of the first two periods (4 units of
item 2 and 6 units of item 1 in each period).

We use the same example to demonstrate the mechanism
of schedule AS. In period 1 we ship a total of 10 units
according to Lemma 3 and need to determine how to allo-
cate these units between the two items. We first allocate 4
units to item 2 since those units are demanded in period 1.
Then, as priority is given to the least expensive item, the
remaining 6 units are of item 2. In period 2 we ship again a
total of 10 units, since no item 2 units are available in
inventory. The allocation is again 4 units of item 2 (de-
manded in period 2) and 6 units of item 1 (the remaining
demand). For this example, schedule AS achieves the opti-
mal solution.

Indeed, an optimal schedule must balance between ship-
ping the least expensive items and shipping the items that

Anily and Tzur: Dynamic Lot Sizing Problem 161

are required early. Assuming zero inventory at the begin-
ning of periods ¢, and f,, we denote by XB(¢)), ...,
XB(t, — 1) the schedule constructed by Algorithm_DS for
periods #,, ..., t, — 1 (referred to as schedule B), and by
XA(t,), ..., XA(t, — 1) the schedule constructed by
Algorithm_AS for periods ¢, ..., t, — 1 (referred to as
schedule A). We denote the corresponding ending invento-
ries at periods ¢, ..., t, — 1 by IB(¢,), ..., IB(t, — 1),
and by IA(t)), ..., IA(t, — 1), respectively.

A formal description of the algorithms is given in Ap-
pendix B. Lemma 4 below presents important properties of
schedules DS and AS on an arc (¢, t,), which are the basis
for a central result stated in Theorem 1. These results are
used in enumerating all candidates for optimal schedules on
a specific arc.

LEMMA 4:

(i) Schedules B and A are both feasible for arc (¢,, 7,).

(i) The ending inventory in each of the periods 7, ; +
1, ..., t, — 2 under schedule B (representing DS)
is less than C, i.e., IB(t) < Cforallt, =t =t, —
2.

(iii) Any optimal production schedule Z(t,), Z(t, +
1), ..., Z(, — 1) for arc (t,, t,) satisfies Z(t,) =
XB(t,) = XA(1)), and 322} Z(r) = 327
XB(7) = E’f;,ll XA(7). Moreover, if we let IZ(t) be
the inventory level at the end of period ¢ for schedule
Z, then IB(t)mod C = IA(t)mod C = IZ(t)mod C
forallt, =t =1t, — 2.

PROOF:

(1) Define for each period and each item the item’s net
demand as the demand minus the available inven-
tory at the beginning of the period of that item, if
positive, and zero otherwise. Define also the peri-
od’s net demand as the sum of all items’ net demand
in that period. Then, schedules B and A are feasible
by construction, since in every period the amount
shipped according to these schedules is at least as
large as the period’s net demand.

(i1) For period ¢,, the claim is satisfied by Lemma 3(b).
For other periods it is satisfied by construction of
schedule B, since the units in inventory are first
allocated to satisfy the next period’s demand, and
the shipment quantity in each period equals the
minimum number of full vehicles that satisfy the net
demand of the period.

(iii) The equation XB(t,) = XA(t,) is true by construc-
tion, and according to Lemma 3(a) any optimal
schedule Z for arc (t,, t,) must satisfy Z(t,) =
XB(t,) = XA(t,). Then, the total shipping quantity

in periods t,, ..., t, — 1 for schedules B, A, and
Z must be equal to the total demand in these periods,
namely, D(1,, 1,); therefore, 32°! Z(r) = 3¢
XB(1) = E’f;,f XA(T). Moreover, both B and A (by
construction) and Z (by Lemma 1(i) and 1(ii)) ship
in every period ¢, t; < t = t, — 1 only full vehicles
(the minimum number of full vehicles that covers
the net demand in the period). Thus, IB(¢), IA(t),
and IZ(t) have the same residual modulo C for t;, =
t=1t, — 2. O

We are now ready to state in Theorem 1 a central result
that provides bounds on the aggregate quantities (over all
items) shipped by an optimal solution in each period.

THEOREM 1: Any optimal schedule Z(t,), Z(t, +
1), ..., Z(t, — 1) for arc (1, t,) satisfies 27, XB(7) =
2, Z(r) =32, XA(7) forevery 1,1, =t =1, —

p—

PROOF: Note first that by Lemma 4(ii), Z(¢,)
XB(1,) = XA(t,), and 327! Z(7) = 227! XB(7) = 222/
XA(7); therefore, we must prove the theorem for ¢, + 1 =
t =t, — 2. Lett be in that interval, thatis: ¢, + 1 = ¢ =
t, — 2. Note that since /B(¢) < C (Lemma 4(ii)) and /B(t)
and IZ(t) have the same residual modulo C (Lemma 4(ii1))
then either IB(t) < IZ(t) or IB(t) = IZ(t). Combining that
with the fact that the consumed demand under both sched-
ules is identical proves that 27 _, XB(7) = X/_, Z(7).

It remains to show that 27 _, Z(7) = X[_, XA(7) for
any 7, t; + 1 =t =t, — 2. Assume by contradiction that
there exists some 7, 7, + 1 =t = #, — 2, for which 2/}
Z(7) = 27, XA(7) and 3, _, Z(t) > 3._, XA(7). Our
assumption implies that IZ(+ — 1) = [IA(t — 1) and
1Z(t) > IA(t), and therefore Z(t) > XA(t).

Denote by IZ'(r — 1) and IZ*(t — 1) the units out of
I1Z(t — 1) that are allocated to period ¢ and to periods later
than 7, respectively. Define similarly JA'(r — 1) and
IA%(t — 1) as the units out of JA(r — 1) that are allocated
to period ¢ and to periods later than 7, respectively. Assum-
ing as above IZ(t — 1) = IA(t — 1), we distinguish
between two cases:

(a) IZ%(t — 1) = IA%(+ — 1). In this case, since under
schedule Z no more than C — 1 units are shipped in
period ¢ to inventory and /Z(f)mod C = [A(f)mod
C, it is impossible to obtain IZ(¢) > IA(t), a con-
tradiction to the assumption.

(b) 1Z*(t — 1) > IA*(+ — 1). This implies that IZ'(r —
1) < IA'(+ — 1). Let KA and KZ be the most
expensive item held in inventory at the end of period
t — 1 under schedules A and Z, respectively. Then,
I1Z'(t — 1) < IA'(t — 1) implies KZ = KA. Now,
according to the definition of schedule A the entire

162 Naval Research Logistics, Vol. 53 (2006)

demand (up to period #,) of items I, ..., KA — 1 is
held in inventory; therefore, IZ,(t — 1) = IA,(t — 1)
fori = 1,..., KA — 1, where IZ(t — 1) and

IA,(t — 1) are the amount of inventory of item i
carried at the end of period + — 1 under schedule Z
and A, respectively. In addition, according to the
definition of KZ, no units of items KZ + 1, ..., M
are held in inventory at the end of period t — 1;
therefore, IZ,(t — 1) = IA,(t — 1) for all items i =
KZ + 1,..., M. Finally, if KZ = KA then IZ-
kAt — 1) < TAg,(t — 1) since IZ'(t — 1) <
IA'(t — 1) and by the optimality of Z it is preferable
to hold in inventory less expensive items. Combining
the last three statements with KZ = KA we obtain:
1Z(t — 1) = 1At —) foralli =1,..., M.

Using Lemma 1(ii) on schedule Z and the above relation-
ships, we obtain IZ(1) < XY, (I1Z(t — 1) —d,)" + C =
SM (At — 1) — d,)" + C = IA(1) + C. Therefore,
1Z(t) < IA(t) + C and since IZ(t)mod C = IA(t)mod C,
we have IZ(t) = IA(t), contradicting our assumption. [

Theorem 1 forms the basis for enumerating and evaluat-
ing all possible schedules for an arc in the network. The next
two lemmas, which are based on Theorem 1, are used to
enhance the entire algorithm for the MIMV problem.
Lemma 5 is useful in reducing the number of arcs that must
be considered in the shortest path network, while Lemma 6
is useful in reducing the number of schedules that must be
evaluated for a given arc.

LEMMA 5: If Algorithm_AS on arc (¢, 1,), | = t; <
t, =T + 1, produces a schedule A for which period 7, t, =
t < t, — 1, is the first period after ;, — 1 with IA(¢) = 0
then arc (z,, t,), as well as all arcs (¢,, 7) with 7 > ¢ and
D(t,, t,)mod C = D(¢;, T)mod C can be eliminated from
the network.

PROOF: Suppose that Algorithm_AS on arc (¢,, t,), 1
t, <t, =T+ 1 produces a schedule A for which ¢, t,
t <t, — 1, is the first period after r;, — 1 with IA(¢) = 0.
We first claim that applying Algorithm_AS on any arc (7,
7) with 7 > ¢ and D(t,, t,)mod C = D(¢,, T)ymod C will
produce a schedule A’ that is identical to schedule A on
periods 7, t; + 1, ..., t. This follows from the observa-
tion that schedule A does not ship during periods ¢, ¢, +
1, ..., t any unit for consumption in periods later than
period ¢, combined with the definition of the algorithm and
the fact that D(¢,, t,)mod C = D(t,, 7)mod C.

Then, by Theorem 1, any optimal schedule Z on arc (7,
t,) or arc (t,, 7) as defined above, must have IZ(t) = O,
which means that there is no optimal solution for these arcs
for which the inventory levels at the end of all periods

=
=

ty,...,t, — 2ort,..., T — 2 respectively, are all
strictly positive. O

Recall that according to Lemma 1(iii), any candidate for
an optimal solution Z(¢,), Z(¢t; + 1), ..., Z(t, — 1) on
arc (t,, t,), must satisfy Z(t) = |—D(t, t+ 1)/C—|C fort, =
t =1t, — 1. We show in Lemma 6 how to obtain tighter
bounds on the optimal shipping quantity in each period.
Toward that, recall the following.

1. Any optimal schedule Z(¢,), Z(t;, + 1),...,
Z(t, — 1) for arc (t,, t,) satisfies Z(t,) =
XB(t;) = XA(t,), and in all other periods ¢, t; <
t=1t, — 1, Z(t)ymod C = 0 (Lemma 4(iii) and
Lemma 1(i)).

2. The ending inventory levels IB(t,), ..., IB(t, —
1) (obtained under schedule DS) are the minimum
ending inventory levels that can be obtained under
an optimal policy (Theorem 1).

3. The ending inventory levels TA(t,), ..., IA(t, —
1) (obtained under schedule AS) are the maximum
ending inventory levels that can be obtained under
an optimal policy (Theorem 1).

LEMMA 6:

(i) An upper bound U(t + 1) on the optimal shipping
quantity in period ¢ + 1 is obtained by allocating
IB(t) (the minimum possible inventory level at the
end of period) to items, from the least to the most
expensive, where the allocation for item i is at most
D,(t + 1, t,). Given such allocation, the upper
bound U(t + 1) on the optimal shipping quantity in
period ¢ + 1 is obtained by rounding up the number
of vehicles required for the remaining demand in
period ¢ + 1.

(i) A lower bound L(t + 1) on the optimal shipping
quantity in period ¢ + 1 is obtained by allocating
min{/A(t), D(t + 1, t + 2)} (where IA(¢) is the
maximum possible inventory level at the end of
period) to period ¢t + 1. Given such allocation, the
lower bound L(r + 1) on the optimal shipping
quantity in period ¢ + 1 is obtained by rounding up
the number of vehicles required for the remaining
demand in period # + 1.

PROOF: Note that in (i) we are applying the mechanism
of Algorithm_AS, which advances shipment as much as
possible, to the minimum quantity /B(z). Therefore, the
demand that remains uncovered by the allocated units is the
maximum possible remaining demand in period r + 1.
Similarly, in (ii) we are applying in period ¢+ + 1 the
mechanism of Algorithm_DS, which delays shipment as
much as possible, to the maximum quantity JA(t). There-

Anily and Tzur: Dynamic Lot Sizing Problem 163

fore, the demand that remains uncovered by the allocated
units is the minimum possible remaining demand in period
t + 1. In both cases, we then ship the minimum number
of full vehicles that covers the remaining demand of

period ¢ + 1. O
The upper and lower bounds U(t + 1) and L(¢t + 1),
respectively, for + = ¢, + 1,..., ¢, — 1, described in

Lemma 6, are derived rigorously in Algorithm BOUNDS in
Appendix C.

COROLLARY 3: A candidate Z(¢,), Z(t; + 1), ...,
Z(t, — 1) for an optimal solution on arc (¢;, t,) must
satisfy: L(t) = Z(t) = U(t) fort, =t = t, — 1.

Summary of the Search Algorithm to Compute
an Arc Cost

To conclude this section, we suggest the following algo-
rithm to enumerate all possible candidates for an optimal
schedule on arc (¢,, t,). Note that the costs of arcs that are
not eligible by Lemmas 3 and 5 do not have to be computed.

1. Calculate schedules A and B.

2. Perform Algorithm BOUNDS to set the lower and
upper bounds of the shipping quantities.

3. Generate all possible schedules that are candidates
to be optimal, by considering all possible values of
Z that are between A and B as stated by Theorem 1,
but whose shipping quantities are in between the
bounds set by algorithm BOUNDS. This step is
performed similarly to a branch and bound algo-
rithm. The variables to branch over are the number
of vehicles used in each of the periods #,, ; +
1, ..., t,, which can vary within the limits set by
Theorem 1 and Algorithm BOUNDS. The branch
and bound structure is useful because those limits
are updated whenever considering a new period,
based on the values assigned to previous periods in
the path of the tree. Note, however, that no lower
and upper bounds for the objective value of the
problem are computed at the nodes of the tree and
therefore truncating the tree may be performed only
as a result of applying the bounds discussed above.
Finally, at each leaf of the tree, a vector of aggre-
gate shipping quantities is generated, whose cost
will be computed and compared to other candidate
solutions; see the next step.

4. For each schedule generated by Step 3, calculate its
cost according to the Scheduling Algorithm, and
choose the schedule whose cost is minimal.

The worst case complexity bound of the above algorithm
is very high, where most of the work is in generating all

possible schedules (Step 3 above). While the total amount
shipped in the first period is known exactly, the inventory at
the end of the period that is designated for the second period
may receive up to C — 1 values. Thus, the total amount
produced in the second period, which is the smallest number
of full vehicles that cover the net demand, may be one of
two values. In every subsequent period, there may be up to
C — 1 additional units of inventory and therefore one more
possible vehicle in the period. Thus, in the worst case, after
t periods there may be r + 1 possible values of total
shipment in the subsequent period, which results in com-
plexity of O((¢, — t;)!) = O(T!) possible schedules for
each subproblem. For each schedule, the Scheduling Algo-
rithm is calculated; therefore, the complexity of each sub-
problem is O(T!TM). Considering that there are o(T?)
subproblems to solve, the resulting complexity for the entire
search algorithm is O(T!T>M). In practice, the complexity
is much lower, as demonstrated in our numerical study,
presented in the next section.

In the next section we compare the search algorithm with
the DP algorithm developed in [1]. To keep this paper as
self contained as possible, we give here some basic infor-
mation on the DP algorithm. We first note that similar to
other dynamic lot sizing algorithms, it is based on finding a
shortest path in a network that has a node representing each
period and arcs that go from a lower to a higher node index.
The arc cost represents the cost of a subproblem whose
beginning and ending inventories are zero. Most of the work
in the algorithm is to find the arc costs (and then the effort
to find the shortest path is quadratic). Thus, the DP algo-
rithm is applied to each subproblem.

The DP algorithm is based on a decomposition of each
subproblem to segments of periods in which the ending
inventory of the j (say) most expensive items is zero. Then
it calculates gradually the cost of the segments in which j
increases; that is, more items have zero ending inventory. At
the end of the subproblem, all items have a zero ending
inventory. In this way, the DP algorithm is different from a
straightforward formulation, which would have required
considering a much larger number of subproblems. The
main property behind the saving in computations is the
following: when inventory is held, we first hold items with
the least expensive unit holding cost, unless holding more
expensive items may delay the shipping of an entire batch
(in which case, holding costs will be saved). The full details
of the DP algorithm are given in [1].

Heuristics

Schedules B and A that serve as a basis for the enumer-
ation procedure presented in this section are in fact good
schedules that may serve as heuristics by themselves or as a

164 Naval Research Logistics, Vol. 53 (2006)

basis for a heuristic. These schedules capture two different
attractive characteristics of the problem’s parameters; there-
fore, we expect that a procedure that combines them would
be very effective. We suggest and test two heuristics that are
based on schedules DS and AS. The basic heuristic calcu-
lates the costs of schedules DS and AS for the entire
problem and chooses the better of them. This is a very
simple heuristic and still quite efficient as we demonstrate in
the next section. The enhanced heuristic calculates sched-
ules DS and AS for every subproblem and chooses the
better of them to be the arc cost. Then, a shortest path
procedure is used to find the best schedule for the entire
problem based on the heuristically calculated arc costs. The
enhanced heuristic proved to be exceptionally good, as
demonstrated in the next section.

The simplicity and effectiveness of the above described
heuristic procedures make them an attractive alternative to
the exact and non-polynomial procedures. This is particu-
larly true for large or difficult problem categories.

3. NUMERICAL STUDY

In this section we describe a numerical study that we
performed with respect to the search algorithm of Section 2
and two other exact methods that solve the problem. We
also include results regarding the two heuristic procedures
mentioned at the end of Section 2. We had several goals in
performing the numerical study: first, we wanted to compare
the running time of the search algorithm to other existing
exact solution methods and to identify characteristics of the
problem parameters under which the search algorithm is
particularly useful. Second, we were interested in identify-
ing an approximate limit on problem sizes that can be
solved within a reasonable amount of time. Third, we
wanted to conduct a sensitivity analysis study, that is, to
learn how the problem parameters are likely to affect the
running time of the algorithm. Finally, we wanted to learn
what is the effectiveness of the suggested heuristics. We
used a Pentium III 1.2 GHz personal computer; the search
algorithm was programmed in Turbo C++ and the DP
algorithm was programmed in Pascal, and we used CPLEX
7.0 to solve (P1), the MILP presented in Section 1. Both
programs used simple data structures and basic search strat-
egies. However, the DP algorithm is harder to program due
to the complex decomposition structure. We put a limit of 5
hours on the running time of each instance by each of the
solution methods.

We conducted the numerical study with four data sets. In
the first data set we used 7 = 20 and M = 5, which are
conservative values for the parameters that are likely to
have the strongest effect on the running time. The other
parameters were chosen to what we call basic values as

Table 1. Average (standard deviation) in seconds for 7' = 20

and M = 5.
Search algorithm 0.08 (0.33)
DP algorithm 0.2 (0.68)

CPLEX(P1) 435.7 (2474.8)*

* Three instances did not finish within 5 hours.

follows: C = 20, K = 200, D ~ U]0, 20], and h ~ U[1,
2M]. We denote a specific set of parameter values as
problem category. Then, an additional 11 problem catego-
ries were generated where each category is obtained by
replacing one of the basic parameters by one of the follow-
ing 11 parameter specifications: C = 5, 10, 30, 40, D ~
ul1o0, 301, b ~ UI[3, 51, D ~ U[8, 12], h ~ U[1, 5],
K = 100, 300, 500. Throughout our numerical study we
generated and ran five independent instances that belong to
the same problem category (that is, for each instance dif-
ferent demand and holding cost realizations were used). For
data set 1 this resulted in a total of 60 runs for each of the
three exact solution methods. Our main conclusion from
data set 1 is that the CPLEX algorithm, applied to formu-
lation (P1) of Section 1, was significantly slower than the
search and the DP algorithms and also had a very high
variability in the solution time. We note, however, that (P1)
is a straightforward formulation of the problem and it is
possible that with a more sophisticated formulation the
performance of the CPLEX algorithm would be enhanced.
This is currently work in progress and is out of the scope of
this paper. From now on, we refer to the CPLEX algorithm
applied to formulation (P1) as CPLEX(P1). The search and
DP algorithms ran very fast and it was not possible to
identify significant trends as a function of the problem
category; therefore, the results are summarized in Table 1 in
an aggregated format. Table 1 shows the average time (in
seconds) and standard deviation (in parentheses) for each of
the three solution methods. Note that CPLEX(P1) was not
able to solve 3 of the 60 instances within the time limit of
5 hours.

In the second data set we investigated the effect of
increasing parameters 7 and M on the running times of all
three algorithms. We set all other parameters to their basic
values as described in data set 1 and changed either T or M,
as specified in Table 2. We can see from Table 2 that in all
problem categories, except one, CPLEX(P1) was signifi-
cantly slower than the other two solution methods. The
running times of all three algorithms increased considerably
when 7 was increased, but more significantly for
CPLEX(P1). While for T = 40 the running time of
CPLEX(P1) increased only moderately (and even outper-
formed the search algorithm in this category), for 7 = 50
the average solution time was 38.5 minutes for the three
instances that were solved, while two other instances could
not be solved within the limit of 5 hours. For 7 = 40 the

Anily and Tzur: Dynamic Lot Sizing Problem 165

Table 2. Average (standard deviation) time in seconds for problem set 2.

M =10 M = 20 M = 30 T =10 T =30 T =40 T =50
Search <0.01 (<0.01) 0.4 (0.5) 0.2(0.4) <0.01 (<0.01) 0.4 (0.5) 897.2 (1993.9) 406.2 (768.8)
Dp <0.01 (<0.01) 0.6 (0.9) 0.2 (0.4) <0.01 (<0.01) 0.6 (0.9) 207.6 (427.2) 346.4 (600.7)
CPLEX(P1) 4.6 (4.6) 20.8 (38.7) 5(7.3) 1.2 (0.4) 118.8 (138.6) 303.6 (319.2) 2312.3* (653.9)

* Two instances did not finish within 5 hours

solution time using the search algorithm was extremely high
for one instance (4464 seconds), which increased signifi-
cantly both the average and the standard deviation for this
category. Indeed, all algorithms are characterized by a very
high standard deviation of the solution time. The search and
the DP algorithms performed quite similarly for this set of
parameters, with an average solution time of 6.8 and 5.8
minutes, respectively, for 7 = 50.

We conclude from data sets 1 and 2 that the search and
the DP algorithms clearly dominate CPLEX(P1), with sig-
nificantly faster running times. Therefore, for the rest of our
numerical study we focused on those two algorithms only.
In problem set 3 we increased the T and M parameters
together, to identify approximately the limit of the problem
sizes that can be solved by these algorithms (all other
parameters are at their basic level). The results, summarized
in Table 3, indicate that problem sizes of up to 7 = 40 and
M = 40 were solved within a few minutes. When one or
more of these parameters was increased to 50, some in-
stances could not be solved within the time limit. We note
that for the categories T = 50 with M = 40 where one
instance could not be solved by both algorithms, and 7 =
50 with M = 50 where two instances could not be solved
by both algorithms, the instances that could not be solved
were the same ones for both algorithms. In most problem
categories (except for the largest, 7 = 50 with M = 50) the
search algorithm was on average faster than the DP algo-
rithm. In fact, we checked and found that this was also true
for the specific solution times of the vast majority of in-
stances. Among 41 instances that were solved by both
algorithms, for 39 the solution of the search algorithm was
faster than that of the DP algorithm and for 2 instances the
reverse was true. One more instance was solved by the DP

algorithm only, and 3 more instances were not solved by
either algorithm. The standard deviation of the running
times was usually proportional to the average, with a
similar coefficient of variation for both algorithms. We
conclude from this set of experiments that the search
algorithm usually outperforms the DP algorithm, with a
few exceptions.

The goal of the fourth and final data sets was to perform
sensitivity analysis on the running time as problem param-
eters other than 7" and M are varied. We ran again the search
and the DP algorithms; however, all trends that could be
identified with one of them was also identified in the other
one, and the relationship between the two algorithms re-
mained as in problem set 3. Therefore, we omit the results
of the DP algorithm and report on those obtained for the
search algorithm. In this data set we use 7 = 40 and M =
40, the rest of the parameters were set at their basic levels,
and then one parameter was varied in each problem cate-
gory, as indicated in Tables 4a and 4b. For comparison
purposes, we also denote the results of the basic category
(this is a category that we reported on in Table 3 under
the heading of 7'= 40 and M = 40). We divided this data
set into two parts, examining the impact of the parame-
ters C and D in data sets 4a and 4b, respectively. Overall,
as indicated in Tables 4a and 4b, the running time is very
sensitive to the capacity and demand problem parameters.
The running time increases when the vehicle capacity
increases or when the average demand per item de-
creases.

In Table 4a we observe that the time increases signifi-
cantly when the vehicle capacity increases. This effect may
be explained by the dependency of the search algorithm on

Table 3. Average (standard deviation) time in seconds for problem set 3.

T =30 T =30 T =30 T =30 T = 30 T = 40 T = 40 T =50 T = 50

M=10 M=20 M=30 M=40 M=50 M=40 M=50 M=40 M = 50
Search 3.6 4.8 26 4.6 28.8 91.6 152.8% 258.7% 6621 %%%
(3.6) 4.5) (3.6) (6.4) (53.1) (744) (178.9) (158) (6385.2)

DP 6.8 11 64.6 33.6 45.2 197.8 233.2%* 612.7* 6085.7%%%
(6.8) (10.7) (106) (54.2) (66) (1783) (228.6) (341.2) (7569.3)

* One instance did not finish within 5 hours.

** The average and standard deviation correspond to the four instances that were solved by the search algorithm; the fifth instance was

solved within 2998 seconds.
*#** Two instances did not finish within 5 hours.

166

Naval Research Logistics, Vol. 53 (2006)

Table 4a. Average (standard deviation) time in seconds for problem set 4a.
cC=5 Cc =10 Cc =15 C =20 C =25 C =30
Search alg. 1.6 2.0 14.2 91.6 501%* —
(0.5) (1.4) (21.8) (74.4) (784) —

* Two instances did not finish within 5 hours.

—, None of the instances in this category were solved within 5 hours.

the closeness of the bounds L(7) and U(¢)." Specifically, the
algorithm performs better when these bound are close, since
then the number of alternatives that must be examined
decreases. Indeed, when calculating the average per period
difference, given by the expression X/_, (U(t) — L(t))/T,
in a sample of complete instances and their subproblems
with T in the range of 38—-40, we found that this expression
increased steadily with the increase in the capacity. The
values obtained for instances with capacity levels of 15, 20,
25, and 30 were 6, 20.5, 54.3, and 71.6, respectively. We
believe that this trend explains the time increase when C
increases.

In Table 4b we present the sensitivity of the algorithm
with respect to the demand distribution of the items. In the
left four columns of the results we used an identical distri-
bution for all items and observe generally a decrease in time
when the average demand value increases. As above, this
may be explained by the expression X/_, (U(t) — L(t))/T,
which increased (in a sample similar to the above) as the
average demand decreased. The sensitivity with respect to
capacity and average demand suggests that the ratio be-
tween capacity and average demand affects the gap between
the upper and lower bound, which in turn affects the time of
the search algorithm. In the rest of the columns of Table 4b
we used different distributions for a certain percentage of
the items, as indicated. Although the trend is not entirely
consistent due to the high variability in the running time of
different instances, the general observation is that the run-

! We thank the Associate Editor for suggesting this explanation.

ning time is some weighted average of the running times
that are obtained with all items taken from the same distri-
bution.

We conclude from the numerical study that the search
and the DP algorithms are effective in solving problems that
are quite large. If, for example, periods represent days, then
a problem with 4-5 weeks and 5-6 days per week can
usually be solved in less than a minute. CPLEX(P1), while
capable of solving small problems, cannot be used within a
reasonable amount of time for problems of higher dimen-
sion. This result is not surprising, as CPLEX is a general
commercial software that is not designed particularly for
this type of problem and does not exploit its special struc-
ture, especially when formulation (P1) is used. The search
and DP algorithms both do exploit the structural properties
of an optimal solution and are indeed much more effective
in solving large problems. Throughout the numerical study
the search algorithm was faster than the DP algorithm for
most instances, with only a few instances where the reverse
was true. We found that both algorithms are sensitive to
some problem parameters (other than the obvious 7 and M)
so the largest problem size that we can expect to solve is
when both 7" and M are in the range of 30 to 50. Larger T
and M require relatively small vehicle capacity and larger
average per period demand.

It is interesting to recall that the complexities of the
search and the DP algorithms are O(T'T*M) and
O(T™">M), respectively. It is evident that both algorithms
are much faster in practice. Moreover, while the complexity
expression of the DP algorithm suggests that its running

Table 4b. Average (standard deviation) time in seconds for problem set 4b.

25% D ~ U 50% D ~ U 75% D ~ U
D ~U (3, 5] (3, 5] [3, 5]
D~U D~U [0, 20] D~U 75% D ~ U 50% D ~ U 25% D ~ U
[3, 5]* [8, 12] (Basic) [10, 30] [10, 30] [10, 30] [10, 30]
Search alg. 5430.0 354 91.6 1.2 1.6 1.8 —
(6303.1) (64.3) (74.4) 0.4) (0.55) (0.45)
25% D ~ U[8, 12] 50% D ~ U[8, 12] 75% D ~ U[8, 12]
75% D ~ U[10, 30] 50% D ~ U[10, 30] 25% D ~ U[10, 30]
Search alg. 1.6 1.4 14
(0.55) (0.55) (6.78)

* Three instances did not finish within 5 hours.

— none of the instances in this category were solved within 5 hours.

Anily and Tzur: Dynamic Lot Sizing Problem 167

Table 5. Performance of the heuristic solution.

Optimal = Optimal = Optimal = DS #
DS = AS DS # AS AS # DS Optimal # AS
36.6% 52.4% 2.7% 8.4%

time would increase very rapidly as M increases, the in-
crease in practice seems more moderate. The reason is that
by exploiting the properties of the problem along with the
specific problem parameters, many possibilities can be ex-
cluded from considerations. We also note that the search
algorithm is much easier to program than the DP algorithm.

Finally, we recall the suggested heuristics for problem
sizes that are larger than the limit indicated above. The basic
heuristic suggests to choose the better of the two extreme
solutions that are used in the search algorithm, namely, DS
and AS. To test the effectiveness of this heuristic we chose
six problem categories (the basic problem and the variations
of K = 100, K = 300, K = 500, C = 5, and C = 10,
total of 30 problem instances) from data set 4 (T = M =
40) that included a total of 12,300 sub-problems that needed
to be solved by one of the exact algorithms. Table 5 indi-
cates the percentage of these sub-problems that were solved
optimally by either the DS or the AS schedules, or both. It
is surprising to find out that only 8.4% of all sub-problems
were not solved to optimality by either the DS or the AS
schedules, or both. As expected, the DS schedule is partic-
ularly attractive, as it delays release of vehicles as much as
possible, and by that keeps relatively small amounts of
inventory.

The above results suggest that the enhanced heuristic
procedure in which we combine the shortest path procedure
with the above heuristic solution to each of the subproblems
may perform very well. We tested the enhanced heuristic on
10 instances from data set 4 (T = M = 40), which belong
to categories C = 20 and 25 (5 instances each). The results
were exceptionally good: in 9 of 10 instances the optimal
solution was achieved, and in the last instance the optimality
gap was negligible, only 0.01%. When the basic heuristic
was run for the same instances, none of the 10 instances was
solved optimally, and the average optimality gap was 0.3%
with a maximum optimality gap of 1.57%. We conclude that
both heuristics perform very well. The basic heuristic takes
linear time only, while the enhanced heuristic takes 0(T3)
since we need to find the solution of schedules DS and AS
(which takes linear time) for every subproblem (and there
are O(T?) subproblems). The increase in solution time for
the enhanced heuristic comes with a better performance.

4. CONCLUSIONS

In this paper we developed a new search method for the
MIMYV problem. Although the worst case complexity of the

search method is exponential, it performs quite well on
relatively large problems that we tested. We also note that
we chose to implement these algorithms in quite a straight-
forward way, so further efficiency improvements may be
possible by investing more efforts in producing a more
sophisticated code. We compared the search method to two
other exact solution methods for the problem, namely, the
commercial CPLEX algorithm applied to formulation (P1)
and the DP algorithm suggested by Anily and Tzur [1].
Neither of these algorithms for the MIMV problem was
evaluated before, and it was particularly interesting to find
out how the DP algorithm performs. Our conclusion from
the numerical study is that CPLEX(P1) may be used for
small problem sizes only, while both the search and the DP
algorithms are quite fast for large problems. The search
algorithm outperforms the DP algorithm in most cases.
Finally, we observed that a very simple heuristic provided
the optimal solution to over 90% of the sub-problems in-
vestigated. An enhanced heuristic performed extremely well
with a moderate increase in computation time. Therefore,
both heuristics could be useful for large or difficult problem
categories.

The analysis of the quite different three solution methods
provides a good overall treatment of the problem. We also
recall, as was shown in [1], that the above solution methods
for the MIMYV problem may also be used to solve the MISV
problem. As mentioned earlier, possible valid inequalities
and/or reformulations to the problem may enhance the ef-
ficiency of solving the problem via general mathematical
programming solvers; this is currently work in progress.

APPENDIX A
The Scheduling Algorithm

Given a vector (X(1), ..., X(7T)), the scheduling algorithm uses the
following procedure in order to determine the quantities X,(¢) for | =i =
M and 1 =t = T: start at the last period and allocate to it X(7') units by
giving priority to the most expensive items that are demanded in this period
(i.e., start with the most expensive item and allocate to it its demand,
continue with the next expensive item, down to the least expensive item).
If X(T) < D(T, T + 1) then shift the excessive demand in period 7, i.e.,
D(T, T + 1) — X(T) least expensive units, to period 7 — 1 and repeat
the process backward to period 1.

The algorithm below also performs a test, checking whether any part of
Lemma 1(i)—(iv) is violated; if any part is violated then the given vector is
not a candidate to be an optimal schedule for periods 1, . . ., T. Finally, the
algorithm performs a feasibility test, checking whether there exists a period
up to which the cumulative aggregate demand exceeds the cumulative
aggregate capacity.

The Scheduling Algorithm

Input. X(1) 1 =t =T
Output. An infeasibility message, or the best-detailed schedule and its
cost or a message that the schedule cannot be optimal.

168 Naval Research Logistics, Vol. 53 (2006)

Feasibility Test. (A feasible schedule exists if and only if 2!_, X(1) =
D(,t+ 1)forl =t=T—1and 3", X(t) = DA, T + 1).)
=1
while r=T—1 do begin

if X7 _, X(7) < D(1,t + 1) then goto (s)

t=t+1
endwhile
If 37_, X(1) # D(1,T + 1) then goto (s)

Construction of the best detailed schedule.

(no feasible solution exist)

(no feasible solution exist)

Begin (initialization step)
1(0)=0
fort=1,..., T
I(1)=0
fori=1,... M
dz”r:dit
I(1)=0
endfor;
endfor;
V=KX, [X(0)/C] (current cost consists of dispatching costs only)
t<T
(®) W< X(0)
F=0 (F counts the number of units shipped in each period for future
periods)
i< M

@ X(1) < min {d},, W)
If X,(r) < W then begin
W< W — X\t
i<—i—1
goto (a)
endif
otherwise do begin
if >1 do begin
di,—yy) = dj,—y + dj, — W (shift the remaining demand of i
L(t—1)=d;—W from period ¢ to period t—1)
F=F+I(t)—max{0,[,(t—1)—d,,}
I(t—1) = I(t—1) + [(t—1)
V=V+hI(t—1) (add holding cost of i from r—1 to 7 to V)
if i>1 do begin
for k=1,...,i—1 do begin
Ik(t_ 1):d1’u‘
diii—1y = i1y Ty
F=F+I(t)—max{0,/,(t—1)—d,,}
It—1)=I1t—1)+1(t—1)
V=V+h 1, (t—1) (add to V the holding cost of
item k from t—1 to ¢)
endfor;
endif;
endif;
endotherwise
if t=1 then F=1(1);
if [I(t—1)>0 and X(f)modC > 0] or F=C or I,,(t) =C or (F
=X(-)modC and X(1)modC >0) or [I(t—1)=0 and =M
d;modC = 0 and I(#)>0] then do begin
“it is not an optimal solution”
stop.
endif;
t<—1t—1
if =0 stop (the best allocation is found)
goto (b)
(s) “no feasible solution exist”
endAlgorithm

APPENDIX B
Algorithm_DS

Input. Two periods ¢, < t, for which D(t,, t,)mod C = D(¢t, t, +
I)mod C or D(¢,, t,)mod C = 0.

Output. The total production quantities XB(t,), ..., XB(t, — 1) and
the corresponding ending inventories at periods ¢, ..., t, — 1, that is:
IB(t,), ..., IB(t, — 1) for DS assuming /B(t;, — 1) = IB(t, — 1) =
0.
begin

XB(t,) = min {z: z = D(t,,t;+1) and zmodC = D(t,,t,)modC}

IB(t,) = XB(t,)—D(t,,t;+1)

t=t,+1

while + = t,—1 then do begin
if D(t,, t + 1) = 3=} XB(7) then XB(1)=0

T=1

Dttt + 1) — 22} XB(7)
otherwise XB(r) = C
IB(t) = 2\ _, XB(1) — D(t;, t + 1)
t=t+1
endwhile;
end.
The complexity of this procedure is O(t, — t,).

Algorithm_AS

Input. Two periods ¢, < 2 for which D(¢,, t,)mod C = D(t,, t; + 1)
mod C or D(t,, t,)mod C = 0.

Output. The total production quantities XA(t,), ..., XA(t, — 1)and the
corresponding ending inventories at periods r; — 1, ..., t, — 1, thatis:
IA(t,), ..., IA(t, — 1) for AS assuming IA(t, — 1) = IA(t, — 1) =
0.
begin
t=t,

IA(t,—1)=0
XA(t) = min {z: z = D(t,t+1) and zmodC = D(t,t,)modC}
while r=7,— 1

W=IA(t—1)+XA(t)—D(t,t+1)

IA(H)=IA(t— 1)+ XA(t)—D(t,t+1)

fori=1, ..., M do begin

while W>0 do begin
IA()=A,(t—1)—D(t,t+1)"
IA(t)=IA(t)+min{ W,D (t+1,t,) — 1A (1)}
W=W—(IA(—IAL1))

endwhile

endfor;

t=t+1

XA(D=[SM, (D(t,t+1)—1A,(t—1)*/CIC
endwhile;

The complexity of this procedure is O(M(t, — t,)).

APPENDIX C
Algorithm BOUNDS

Input. Two periods ¢, < t, for which D(t,, t,)mod C = D(t, t, +
1)mod C or D(t,, t,)mod C = 0. Schedule DS for the arc, i.e.,
XB(t,), ..., XB(t, — 1) and the corresponding IB(t,), ..., IB(t, — 1)
and schedule AS for the arc, i.e., XA(#)), ..., XA(t, — 1) and the
corresponding [A(t,), ..., IA(t, — 1).

Output. Upper bounds and lower bounds on the production quantity in
each period #, t; = t < t, for any schedule that is a candidate for an

Anily and Tzur: Dynamic Lot Sizing Problem 169

optimal solution. We denote the upper bounds by M(t,), ..., M(t, — 1),
and lower bounds by L(t,), ..., L(t, — 1)
begin
t=t,
M(t) = XB(t)
L(t) = XA(®D)
while 1<t,—1
W = IB(1)
for i=1, ..., M do begin
L(t)=min{W ; D,(t+1,1,)}
W=W—1I,1)
endfor;
t=t+1
M) =S¥ (D(r1+1)-L(—1)*/C]C
Lt =[(Dri+)—IAG—1)*/C C
endwhile;

ACKNOWLEDGMENTS

The authors are grateful to Lawrence Wolsey for helpful
discussions on the problem. They express their sincere
appreciation to the programming support of Eyal Pecht and
Ran Etgar. The research was supported by the Israel Insti-
tute of Business Research (IIBR), Faculty of Management,
Tel Aviv University.

REFERENCES

[1] S. Anily and M. Tzur, Shipping multiple-items by capacitated
vehicles—An optimal dynamic programming approach,
Transport Sci 39(2) (2005), 233-248.

[2] A. Federgruen, J. Meissner, and M. Tzur, Progressive inter-
val heuristics for multi-item capacitated lot-sizing problem,
Oper Res, to appear (2002).

[3] M. Florian and M. Klein, Deterministic production planning
with concave costs and capacity constraints, Manage Sci 18
(1971), 12-20.

[4] M. Florian, J.K. Lenstra, and A.H.G. Rinnooy Kan, Deter-
ministic production planning: Algorithms and complexity,
Manage Sci 26 (1980), 669-679.

[5] P. Kaminsky and D. Simchi-Levi, Production and distribu-
tion lot sizing in a two stage supply chain, IIE Trans 35(12)
(2003), 1065-1075.

[6] C.Y. Lee, A solution to the multiple set-up problem with
dynamic demand, IIE Trans 21(3) (1989), 266-270.

[7] S. Lippman, Optimal inventory policy with multiple set-up
costs, Manage Sci 16 (1969), 118-138.

[8] Y. Pochet and L.A. Wolsey, Lot-sizing with constant batch-
es: Formulation and valid inequalities, Math Oper Res 18
(1993), 767-785.

[9] K. Pryor, C.C. White, and R. Kapuscinski, Multi-item
inventory policies with capacitated delivery vehicles and
deterministic demand, Working Paper, University of
Michigan, 2000.

[10] S. Van Hoesel, H.E. Romeijn, D.R. Morales, and A.P.M.
Wagelmans, Integrated lot-sizing in serial supply
chains with production capacities, Manage Sci 51(11)
(2005), 1706-1719.

[11] C.A. Yano and A.M. Newman, Scheduling trains and con-
tainers with due dates and dynamic arrivals, Transport Sci
35(2) (2001), 181-191.

