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In bike-sharing systems, a small percentage of the bicycles become unusable every day. Currently, there
is no reliable on-line information that indicates the usability of bicycles. We present a model that esti-
mates the probability that a specific bicycle is unusable as well as the number of unusable bicycles in a
station, based on available trip transaction data. Further on, we present some information based
enhancements of the model and discuss an equivalent model for detecting locker failures.
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1. Introduction

Bike-sharing systems have become a common sight in many
cities around the world during the last decade. In some of the
major cities, this mode of transportation attracts a considerable
amount of commuters and tourists on a daily basis. For example,
the bike-sharing system in New-York, CitiBike, reported on an
average of 34,176 rides per day during August 2014 [8].

Bike-sharing systems are typically subsidized and regulated by
the local governments. Such systems should be designed and
operated in the most efficient possible way. The two main com-
ponents of the operating costs are due to repositioning and
maintenance activities. The planning of the repositioning activities
has received substantial attention in the literature, see, for
example [2,3] and the references therein.

Maintenance operations of bike-sharing systems have not been
so far at the focus of Operation Research or Operations Manage-
ment studies. We envision a framework for the planning of these
operations that includes three processes: (1) detection of unusable
bicycles; (2) analysis of the effect of the presence of unusable
bicycles on the quality of service provided to the users; (3) col-
lection of unusable bicycles to maintenance shops or repairing
them on-site. The first process is at the focus of this note, while the
following two are studied in [5,6], respectively.

The information systems installed in bike-sharing systems
present to the public on-line aggregated information about each
station. In particular, using smartphones or stations’ kiosks, users
may query the state of each station in terms of the number of
available bicycles and the number of available lockers. Internally,
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the information system stores a log of the transactions that were
carried out. Each transaction is featured by its type (renting,
repositioning, maintenance), start time, end time, start station ID,
start locker ID, end station ID, end locker ID, bike ID, User ID
(either a regular user of the system or a maintenance personnel),
etc. Some operators share a subset of the fields in this log with the
public, see for example the CitiBike trip history: http://www.citi
bikenyc.com/system-data.

In existing bike-sharing systems, information about unusable
bicycles is received either from users or from of repositioning
workers when they service the stations. The probability that a user
will report on an unusable bicycle is rather low if other bicycles
that are parked in the station can be rented. That is, a user will
typically complain about an unusable bicycle when there is no
alternative in the station. In addition, not all stations are serviced
by repositioning workers on a daily basis. Therefore an unusable
bicycle may be parked at a station for a long period of time before
being detected and collected.

In some systems, such as CitiBike, each locker is equipped with
a maintenance button that the users may push in order to signal to
the operator that the bicycle should be serviced. While through
this mechanism, more information about bicycles that should be
repaired is obtained, this also generates a fair amount of false
alarms. In the CitiBike system, about 36% of the reported bicycles
are actually usable [7] and, more importantly, many unusable
bicycles are not reported through this button by the users.

Undetected unusable bicycles appear in the information sys-
tems as available ones. This inaccuracy may adversely affect user's
route choices and result in an inferior service level. For example, a
user may go to a station with such undetected unusable bicycles
only to find out that there are actually no available usable bicycles
in the station. If the system could provide her with accurate
information in advance she could save time by planning her trip
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differently, e.g., start her trip at a neighboring station or select a
different mode of transportation.

The contribution of this note is as follows: we propose using
data that is already collected by existing bike sharing systems to
estimate the probability that each bicycle is usable. We formulate a
Bayesian model that makes use of on-line transactions data to
constantly update these probabilities and propose a method to
approximate these probabilities in real-time. Subsequently, we
present some possible extensions of the model and explain how
additional information such as user complaints can be incorpo-
rated in the model. In addition, we discuss how an equivalent
model can be used for detection of locker (dock) failures.

2. A Bayesian model

The goal of this study is to estimate the number of unusable
bicycles in a station and to continuously update this estimation in
real-time. We begin by focusing on each bicycle independently.
We assign a Probability of Unusability (PoU) to each bicycle in the
system and update it continuously. A good indication for unusa-
bility of a bicycle is the fact that it was not rented for a long period.
However, this probability also depends on other factors such the
number of renting transactions since the bicycle arrived at the
station and the availability of other bicycles in the station when
these transactions occurred. The model that will be presented next
makes use of the transaction data in order to estimate the PoU of
each bicycle in a single station.

We use the following notation:

i Bicycle ID

e Rent event

C Set of all lockers in the station, |C] is the capacity of the
station

Di Prior probability that bicycle i is returned to the sta-
tion unusable

S¢ Set of bicycles that are parked in the station right

before rent event e
g¢(m,S) The probability that right before rent event e there are
m usable bicycles in the set S

P¢(x)  The probability of scenario x at rent event e

P(x,y) The joint probability of scenarios x and y at rent event
e

24 The PoU of bicycle i right after the occurrence of rent
event e

We assume that when a bicycle is rented, it is usable, that is, a
user never rents an unusable bicycle. Formally, we assume
P¢(i usable|i rented) = 1 and P°(i rented|i unusable) = 0. However,
bicycle i may turn unusable during a ride, and therefore there is a
probability p; that the bicycle will be returned to the station
unusable. See discussion in Section 5.3 regarding the calculation of
this probability.

For simplicity of the presentation, we initially assume that the
users have no preferences regarding the locker from which the
bicycle will be rented. That is, a user uniformly selects a bicycle from
the usable bicycles that are parked in the station. In Section 5.1, we
discuss how user preferences regarding the lockers can be incorpo-
rated in the model.

Our goal is to update the PoU of bicycles that are parked in the
station. Given that at rent event e bicycle j was rented, we use
Bayes’ rule to calculate the probability that bicycle i (i#}) is
unusable. This calculation is carried out for any bicycle that is left
parked at the station:

Right before rent event e Rent event e Right after rent event e

v

Output:

e : e 7
rented P VieS*\{j}

| |
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Fig. 1. Updating the PoU at rent event e.

P¢(i unusable, j rented)

P¢(j rented) vieSAgr M)

p§ = P°(i unusable |j rented) =

Fig. 1 depicts the notation used right before, at and right after
rent event e. The updating of the PoU is carried out for bicycles
that are left parked in the station right after each rent.

To calculate (1), let us consider first the denominator. Given
that bicycle j is usable, the probability that it will be rented at rent
event e is given by:

1571 -1

1
Pe(j rented|j usable) = ——-q°(m,S°\ {j} 2
mX::O 1+m ( )

This expression is obtained by conditioning on the number of
usable bicycles in the station (m), excluding bicycle j, and multi-
plying the probability of having this number, g°(m, S° \ {j}), by the
uniform probability that j will be selected from within m+1 usable
bicycles.

Then, by definition: P°(j usable | j rented)=1, and equiva-
lently: P°(j rented,j usable) = P¢(j rented). Using Bayes’ rule, we
obtain the probability that bicycle j will be rented at event e:

P°(j rented) = P°(j rented, j usable) = P°(j usable) - P (j rented|j usable)

1% -1 1

_ _pe—1). . A€ e .

=(1=p") X mS ) 3
where p; -1 denotes the PoU of bicycle j right before rent event e.
Similarly to calculate nominator of (1) we condition in addition
over bicycle i and obtain the joint probability that bicycle i is
unusable and bicycle j is rented at rent event e:

151 -2

P°(i unusable, j rented) =p$ ' - <1 fp?") . -q°(m, S\ {i,j})

4
Egs. (3) and (4) contain an expression for the probability of the
number of usable bicycles m, excluding i and j, that are parked in
the station right before rent event e. Note that each bicycle that is
parked in the station has a different probability of being usable.
Therefore, this expression is the sum of Bernoulli variables with
different success probabilities, which is a Poisson Binomial dis-
tribution (see, for example, [4]), given by the following probability
mass function:
¢(ms)= > T (-pi7") I P!

SeFm(SC)kES keS\S

=0 1+m

where Fr;(S) denotes the collection of all subsets of set S with
cardinality m. Note that in Egs. (3) and (4) this probability is cal-
culated for all possible values of m and therefore the calculation
effort for evaluating (3) and (4) grows exponentially in S°. Thus,
the exact on-line updating of the PoU is impractical for large bike
sharing stations. However, we observe that a related quantity, the
expected number of usable bicycles, is easier to calculate as it is
merely the sum of the probabilities of usability of the bicycles in
the station:

E(usables in ) = " (1-pf~1)

ieS®
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In the following section we propose a method to approximate
the PoU, based on the expected number of usable bicycles in the
station.

3. Approximating the probability of unusability

Henceforth, we denote the approximated PoU of bicycle i after
rent event e by pj. Recall that we assume that bicycles are selected
uniformly from the set of available usable bicycles in the station.
We approximate the probability that bicycle j is rented, given that
it is usable, by assuming that the number of usable bicycles in the
station is known and equals its expectation. Specifically, given that
bicycle j is usable, the expected number of usable bicycles in the
station is one plus the expected number of bicycles in the
remaining set of available bicycles. Thus, Eq. (2) is approximated as
follows:

N 1 1

P°(j rented|j usable) = ~ =

§ rentedf usable) E(usables in S°| jusable) 14y o s (1 —f’i_l)
©)]

where the expected number of usable bicycles in the station right

before rent event e is approximated by:

E(usablesin $°\ (j}) = > (1_15’6;1) ©
ke S\(j}

Similarly to the calculation of Eq. (3), we multiply Eq. (5) by the
probability that bicycle j is usable, to obtain the approximated
probability that bicycle j is rented at rent event e:

P°(j rented) = P°(j rented, j usable) = P°(j usable) - P (j rented|j usable)

~e—1

_ 1-p;

- se—1
T+ ks (1 —Di )

Next, given that bicycle i is unusable, the expected number of

usable bicycles in the station is updated to exclude i and thus we
obtain an approximation of the following conditional probability:

Q)

~e—1

1-p;
l+Zkes‘f\(i,i) (1 715271)

And again, using Bayes' rule, we obtain an approximation of the
joint probability:

P°(j rented|i unusable) =

(1-p;7") B¢
T+3 ke soviy (1 —pi!

Finally, by dividing Eq. (8) by Eq. (7) we obtain an approx-
imation of the updated PoU:

P°(j rented, i unusable) =

®
)

R T+ s (1-95
p¢ = P°(i unusablelj rented) = p¢ " - = \m< ~e71)
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Using Eq. (6), we can rewrite Eq. (9) as:

€))

- e s
p¢ = P°(i unusablelj rented) = p¢ ' - %,]j [E(Nusables ln'S \ U}),
p;~ +E(usables in S°\ {j})

We observe that the PoU of a bicycle increases after every rent
event in which it is not selected. In addition, as the initial PoU of a
bicycle is its prior probability, it is easy to see that the PoU of a
bicycle increases also as its prior probability increases.

So far, our focus was on calculating the PoU for each bicycle
separately. However, it is typically more interesting for the
operators and the users to view all the bicycles in a station
aggregately. Similar to the above, our analysis also provides the

expected number of unusable bicycles in the station, given in by:

E (unusables in S°) = Zf)f’l (10)
ieS®

We note that the value calculated in (10) can be used as a
reliable estimator for the actual number of unusable bicycles after
a sufficient number of rent events. In the next section this will be
demonstrated numerically. The expected number of unusable
bicycles is a more concise measure, compared to the PoU of each
bicycle in the station. It can be used and understood by the
operators and by the users.

The approximation of the PoU and the expected number of
unusable bicycles in a station can be carried out after each rent
event in O(|C|) time, i.e., linearly in the station capacity. At each
rent event, these values can be updated in a fraction of a second.
Therefore, the estimated number of unusable bicycles can be dis-
played on-line to the operators and the users. In the following
section, we show that this is a very accurate approximation by
comparing it to the result of the exact calculation for small stations
with up to 15 lockers. Note that the complexity of the exact
method is O<|C| . 2'q> for each rent event, which is impractical for
on-line usage.

4. Numerical results

In this section, we present the results of a numerical experi-
ment carried out to test our proposed detection model. To simu-
late the on-line calculation of the PoU, we have used CitiBike trip
history transactions data from July-August 2014. Using this data,
we estimated the renting/returning rates on weekdays in each
station during 30 min periods along the day. We generated 100
demand realizations per station. Each demand realization consists
of a set of renting and returning events and their times of occur-
rence along a 2-day period. Each return event is supplemented
with a binary parameter that indicates whether the bicycle is
usable or not. For the experiment, we set the failure probability of
all bicycles to 0.01. That is, the unusability indicator value was
drawn from a Bernoulli distribution with parameter 0.01. In
addition, we assume that at the initial state of the station all
bicycles parked at the station are usable, as if replenishment
activities and collection of unusables were just executed. The
initial inventory level is set to the optimal level according to the
method of Kaspi et al. [5]. The demand realizations data used in
the simulation can be downloaded from http://www.eng.tau.ac.il/
~morkaspi/publications.html.

At a rent event, if there are available usable bicycles in the
station, one is selected uniformly and is removed from the set of
available bicycles. If there are no available usable bicycles in the
station the user is assumed to abandon the station. At return
events, if there are available lockers in the station, one is selected
uniformly and the bicycle is returned to that locker. If there are no
available lockers in the station the user is assumed to abandon the
station. If an unusable bicycle is returned to the station, it “occu-
pies” a locker, but is not entered to the set of available usable
bicycles in a station (and therefore will never be selected at a rent
event).

We compare the approximated expected number of unusable
bicycles (Eq. (10)) to a naive approach for assessing the expected
number of unusable bicycles in a station. The naive expectation is
obtained by summing the prior probabilities of the bicycles
returned to a station in a given time period. For example, assume
that the prior probability of all bicycles is 0.01 and that in a given
time period 200 bicycles were returned to the station. The naive
estimation of the number of unusable bicycles that were returned
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Table 1
Simulation results - average over 100 realizations for 20 stations in CitiBike.

Station ID  Capacity Number of rents  Number of returns  Unusable bicycles Naive MAD (Stdev) PoU MAD (Stdev) PoU better (out of 100)  P-value
134 35 393.67 403.61 434 1.56 (1.92) 0.39 (0.61) 85 <0.0001
145 36 392.96 404.82 4.09 1.38 (1.67) 0.50 (0.67) 80 <0.0001
132 35 366.35 364.71 3.85 1.42 (1.77) 0.37 (0.58) 87 <0.0001
135 42 251.89 256.65 2.54 1.22 (1.50) 0.14 (0.30) 94 <0.0001
139 35 208.78 206.55 1.90 113 (1.38) 0.15 (0.31) 88 <0.0001
144 27 179.65 177.77 1.52 0.98 (1.20) 0.31 (0.48) 92 <0.0001
142 42 176.33 182.24 1.89 1.11 (1.40) 0.32 (0.51) 87 <0.0001
133 27 163.04 175.27 1.93 1.04 (1.31) 0.54 (0.66) 73 <0.0001
138 39 108.53 110.37 1.30 0.84 (1.11) 0.21 (0.42) 80 <0.0001
137 28 100.81 112.66 113 0.84 (1.06) 0.60 (0.74) 59 0.0284
136 23 82.74 94.71 0.87 0.62 (0.84) 0.44 (0.51) 54 0.1841
127 27 76.70 90.85 0.89 0.69 (0.94) 0.46 (0.61) 57 0.0666
128 19 67.45 77.97 0.78 0.69 (0.86) 0.41 (0.50) 72 <0.0001
129 29 65.71 82.16 0.74 0.66 (0.81) 0.45 (0.56) 62 <0.0001
143 23 56.26 69.22 0.68 0.69 (0.81) 0.40 (0.53) 78 <0.0001
140 27 3830 4536 0.43 0.56 (0.67) 0.38 (0.54) 71 <0.0001
130 23 3333 36.09 0.31 0.47 (0.54) 0.45 (0.53) 53 0.2421
126 24 32.51 33.60 0.31 0.46 (0.51) 0.31 (0.43) 83 <0.0001
141 31 31.81 40.88 0.48 0.56 (0.69) 0.46 (0.61) 73 <0.0001
131 23 24.82 34.03 0.35 0.48 (0.55) 0.34 (0.48) 82 <0.0001
to the station would be 2. We note that this unbiased estimator of Table 2 ) ) N
the expected number of unusable bicycles by itself may provide a ~ Sensitivity analysis - actual failure probability 0.01.
Felatlvely gooq picture r.egardmg t.he amqunt of unusable bicycles Station ID Capacity PoU better (out of 100)
in a station. Given that in some bike sharing systems the number
of unusable bicycles is not assessed at all, using even this naive Assumed prior
method would be valuable. 0.001 0.005 0.01 0,02 0,05
In Table 1 we present simulation results for 20 arbitrarily ) : i ) i
selected stations. Simulation results of another 80 stations are 134 35 98 85 85 96 100
available online, as an electronic supplementary, at http://www. 145 36 99 87 80 99 100
eng.tau.ac.il/ ~ morkaspi/publications.html. In the first and second 132 35 100 92 87 97 100
1 f Table 1, the station ID and ity are presented 13 42 100 %8 o4 %8 100
columns o , the statio and capacity are presented, 139 15 08 36 38 % 100
respectively. The average (over 100 realizations) of the number of 144 27 94 83 92 93 100
bicycles that were rented and returned to the station in the 142 42 93 79 87 92 100
simulation are presented in the third and fourth column. Note that 133 27 90 73 73 20 100
the realized number of rent/return events was in most cases a bit 138 39 % % 80 86 100
- : 137 28 76 75 59 80 100
larger, but not all bicycles could be rented/returned due to bicycle/ 136 23 81 81 54 36 99
locker shortages. In the fifth column, the average number of 127 27 77 75 57 80 99
unusable bicycles that were returned to the station is presented. 128 19 80 80 72 82 98
For each demand realization, we calculate at the end of the 2-days 129 29 8 I 62 7 %
. c ’ 143 23 87 87 78 68 98
period the difference between the actual number of unusable 140 27 71 71 71 63 92
bicycles and its estimation obtained by the naive approach and by 130 23 54 53 53 51 45
the PoU approach. The mean absolute deviation (and the standard 126 24 82 82 83 82 89
deviation) of these differences are presented in the sixth and 141 31 3 3 B & 9
131 23 80 81 82 81 84

seventh columns, respectively. In addition, we count the number
of times in which the PoU estimation was closer to the actual value
as compared to the estimation of the naive approach. This number
is presented in the eighth column. The P-value of the sign-test
used to determine whether the PoU approach generates closer
estimation as compared to the naive approach is presented in the
last column.

As can be observed, both the mean absolute deviation and the
standard deviation of the PoU approach are significantly smaller
than those of the naive approach. In particular, as more rent events
occur in the station (the table is sorted in decreasing order of the
number of rent events), more information is accumulated by the
PoU approach and can be used to better estimate the number
unusable bicycles. The figures in the eighth and last columns
demonstrate the superiority of the PoU approach as compared to
the naive approach.

Recall that in the simulation, we set the actual failure prob-
ability to 0.01. The estimations presented in Table 1 are based on
the assumption that indeed the prior probability is 0.01. In reality,
the operator may not have an exact knowledge of the prior

probabilities. Next, we examine whether the PoU approach results
with better estimations as compared to the naive approach even if
the exact prior probabilities are unknown exactly. We conducted
the following analysis: we used the same demand realizations as
in Table 1 (using a failure probability of 0.01) but assumed dif-
ferent levels of prior probabilities in the calculation of the PoU and
naive based estimations.

In Table 2, we present the number of times (out of 100 reali-
zations) that the PoU based estimation was closer to the actual
values as compared to the naive approach. The first and second
columns of Table 2 are identical to those of Table 1. In the third to
seventh columns, we present these values for the following
assumed prior probabilities: 0.001, 0.005, 0.01, 0.02, and 0.05,
respectively.

Noticeably, as the assumed prior increases (or decreases) rela-
tive to the actual prior, the number of times the PoU approach
delivers better estimations increases. This demonstrates that the
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PoU approach is more robust with respect to the estimation of the
prior probability as compared to the naive approach and suggests
that the model is not sensitive to the exact nature of the failure
process.

A further validation of the detection model may be accom-
plished using real-time information regarding the actual number
of unusable bicycles in certain points of time, and comparing it to
the estimated one. Such information may be collected, for exam-
ple, when repositioning or maintenance staff visit the station.
Currently, the data required for such validation is not at our dis-
posal. Moreover, it is not available to the system operators that we
have been in contact with (CitiBike and Tel-O-Fun). To the best of
our knowledge, this kind of data is not collected by any bike-
sharing operator. Nevertheless, we emphasize that the demand
data, stations’ capacities and prior failure probabilities used in our
simulation model were obtained from a real-world system (Citi-
Bike). We believe that the characteristics of the simulation model
are close enough to the behavior of the system in reality in order
to demonstrate the effectiveness of the detection model.

Next, we present a numerical study carried out in order to test the
accuracy of the approximated PoU (Section 3) as compared to the
exact calculation (Section 2). We have used trip history transactions
from the Capital Bikeshare system in Washington DC, during the 2nd
quarter of 2013. We have selected 20 stations with capacities smaller
than 15, for which the exact calculation could be done in a reason-
able time. The preprocessing of the trip history data and the simu-
lation were executed in the same manner as described above.

In Table 3 we present the simulation results. The first five
columns present information about the realizations, as in Table 1.
In the two rightmost columns, we present the average and the
maximum absolute difference, over 100 realizations, between the
exact and the approximated calculations of the expected number
of unusable bicycles. Observing the rightmost two columns in the
table, one can notice that the exact and the approximated calcu-
lation of the PoU result with very similar estimations of the
number of unusable bicycles.

5. Extensions

In previous sections, we have made some simplifying
assumptions regarding the available data and the user preferences,

Table 3
Simulation results for 20 small stations in Capital Bikeshare.

Unusable
bicycles

Station ID Capacity Number Number
of rents  of
returns

Average Maximal
difference difference

73 14 151.89 151.11 1.46 0.0079 0.1683
118 14 134.81 136.56 1.35 0.0059 0.1147
183 13 128.74 127.95 1.34 0.0057 0.0576
187 14 119.29 118.01 0.97 0.0066 0.1049
186 14 118.32 123.33 1.30 0.0085 0.0958
201 1 115.52 113.97 1.16 0.0120 0.1117
188 10 113.77 114.15 1.08 0.0081 0.0949
126 13 84.08 84.31 0.77 0.0056 0.0545
136 14 76.64 80.10 0.77 0.0098 0.1626
155 1 47.31 41.89 0.53 0.0113 0.1346
209 14 46.63 46.19 0.56 0.0077 0.1269
163 11 4415 41.15 0.32 0.0092 0.0973
107 11 43.43 41.18 0.48 0.0108 0.1934
191 1 40.85 43.93 0.43 0.0079 0.0892
80 14 38.35 31.61 0.33 0.0091 0.1023
88 10 35.54 36.58 0.36 0.0166 0.1731
175 1 34.88 34.26 0.27 0.0065 0.1235
10 1 34.55 37.84 0.45 0.0148 0.1498
154 14 32.18 22.61 0.17 0.0030 0.0881
140 14 30.54 30.79 0.37 0.0140 0.1271

mainly for ease of the presentation. However, additional available
information can be used to fine-tune the estimation of the PoU of
each bicycle in the system. We now discuss some enhancements of
the model.

5.1. User preferences

So far, we have assumed for simplicity that a renter selects
uniformly a bicycle from within the set of usable bicycles in the
station. However, in some stations, we observe that some lockers
are much busier than others, probably due to their distance from
the station's kiosk or due to their accessibility to pedestrians.
Gathering information about users' preferences of lockers can
improve the estimations of the PoU. For example, if a locker is less
likely to be selected due to its distance from the station's kiosk,
there is a larger probability that a usable bicycle will be parked
there for a long period of time. On the other hand, if a preferred
locker in which a bicycle is parked is not selected, it is more likely
that the bicycle may be unusable.

Next, we introduce additional notation needed in order to
incorporate user locker preferences in the model:

I Locker id, e C

L(i) The locker in which bicycle i is parked

1(S) The set of lockers in which the set of bicycles S are
parked

a(l,L) The probability that locker [ will be selected from within
the set of lockers L= C

The values of locker selection probabilities a(l, L) satisfy >, _;a
(LLy=1vL and a(,LL)=0 VLVl € C\ L. The function a(l,L) may be
defined explicitly for each subset of lockers L or implicitly by some
oracle that is capable of calculating or estimating it. Eqs. (3) and
(4) can be re-written to accommodate users' locker preferences as
follows, respectively:

P¢(jrented) = (1 —p‘-’*‘) . Z a(LG),L(Su {j})

SeF(S”\{j})
“ma-p”" IO pp!
kes kes\(Sufi})

P(i unusable, j rented) =p¢~!- (1 *Pffl)

> aGni(su {j})

SeF(s\{ij})

Ta-p") I P!

keS kese\(su{ij})
Where F(S) denotes the collection of all subsets of set S. Note that
these equations are more complex as compared to (3) and (4),
since not only the number of usable bicycles that are parked in the
station is taken into account, but also the location of these
bicycles.

Similarly, the approximated conditional probability (5) can be

updated as follows:

a(lLg). L(S%))
(LG, LS + Y e 501y (LR, L(S)) - (1 - ﬁ,i’l)
an

Note that if a(L(i), L(S%)) =ﬁ vieS®, ie. all lockers have the
same probability to be selected, Eq. (11) is reduced back to Eq. (5).
In addition, given that all the bicycles in the station are usable, the
probability in Eq. (11) equals a(L(j), L?), namely, the probability that
locker 1(j) will be selected.

Due to the same mathematical arguments as in Section 3, we
obtain the following iterative equation for updating the PoU of

P°(j rented|j usable) =
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bicycle i after event e:
p¢ = P (i unusable| j rented )
. a(L(). L(S%)) + e s (Lo, L(S7)) - (1 —p,i*‘)
a(LGL LS\ {i}) + Lo s (i@t L(s\ {i}) - (1-B5 )
Note that if a(L(i), L(S°)) equals 0, we obtain p§ = p . In other
words, if the probability that a locker L(i) will be selected equals
zero or is close to zero, the fact that bicycle i was not selected in

event e does not provide information regarding the usability of
bicycle i.

~e—

5.2. Station idle time

Until now we considered methods to update the PoU only at
rent events. However, there may be situations in which for rela-
tively long periods of time no rent event occurs in a station, even
though bicycles are parked in it. This may be explained by one of
the following: (1) no renters have arrived at the station (2) renters
have arrived at the station but none of the bicycles were in a
usable condition and no rent transaction has occurred (3) the
station is malfunctioning. Recall that in the information system,
there is no direct evidence for any of these occurrences. Here we
present a method to update the PoU between rent events in order
to call the attention of the operators to situations (2) or (3).

The arrival rates of renters during different time periods along
the day can be estimated using trip history transaction data. If no
rent event occurs for a long period of time in a non-empty station
even though the estimated arrival rate of renters is high, the
probability that the parked bicycles in the station are unusable (or
cannot be rented due to station failure) increases.

Here we assume that the demand for bicycles is a time het-
erogeneous Poisson process. We denote by T the elapsed time
since the last rent event in a station, and let ty, t;, ...t (T = Z;": 1
t;) be the lengths of consecutive time intervals. The expected
number of arrivals of renters at each of these time intervals is
denoted by 4,4, ..., 1, then the probability that no renter
arrived until time T is:

m m
H1 exp(— i, tr) = exp < -> Mrtr>
r= r=1

Given that the elapsed time since the last rent event (e) is T, the
PoU of bicycle i is recalculated as follows. If no renter arrived at the
station, the PoU of bicycle i is p;. However, if one or more renters
arrived at the station but no rent event occurred, then bicycle i is
unusable. By conditioning over these two complementary events
and multiplying by their corresponding probabilities we can
update the PoU of any bicycle i in the station to:

m m
ﬁf~exp<— Z,U,—tr) +1- (1—exp<— Zﬂrfr>>
r=1 r=1

Note that this updating expression depends on the time in
which it is performed due to the dependency of yq, s, ..., 4, ON
this time. Noticeably, the PoU increases with the arrival rates in
the given time intervals and the length of these time intervals. This
update is effective until the next rent event at the station occurs.
Once a rent event occurs the PoU is updated as discussed above in
Section 3 or as in Section 5.1.

5.3. Enhancing the estimation of the prior probabilities

In this section, we discuss additional available information that
can be used to estimate the prior probabilities. A generic estimator
for the prior probability may be obtained by dividing the total
number of bicycles repaired in a given period by the total number

of the trips taken in the same period. However, the prior of each
specific bicycle can be better estimated given data features such
as: elapsed time since its last repair, accumulated riding time,
mileage, usage areas, users’ characteristics, etc. Specifically, it
might be reasonable to assume that the prior probability of a
bicycle that is returned from maintenance is close to zero. For a
discussion on classes of life distributions based on notions of
aging, see [1].

In addition to user's trips and maintenance activities, bicycles
may also be removed from a station for the purpose of rebalancing
the stations’ bicycle inventory levels (repositioning activities). If
the repositioning worker is instructed to check the condition of
each loaded/unloaded bicycle, we can assume that when the
bicycle is returned to a station at the end of the repositioning its
prior probability to be unusable is close to zero. Alternatively, the
calculation of the conditional probability may continue from the
calculated value right before the repositioning.

Other aspects that can be taken into account when estimating
the prior probability are the transactions' characteristics. For
example, a short time (less than two minutes) round-trip (iden-
tical start and end stations) transaction suggests that a user
unlocked a bicycle from a locker and almost immediately returned
it to the same station. This may indicate that the bicycle is unu-
sable. This kind of transaction is not rare; one may evaluate the
percentage of times this kind of transaction was followed by a
maintenance activity. This can be done by cross-checking trans-
action history and maintenance data.

Failure reports provided by users, i.e., by complaint calls or by a
maintenance button, installed on the locker, can also be incorpo-
rated into the model. In particular, if user complaints are con-
sidered highly reliable, the reported bicycles can be flagged as
unusable, i.e. pf = 1. Given such information, the unusable bicycle
can be removed from the set of available bicycles in the station,
and the PoU of the other bicycles can then be updated accordingly.

5.4. Locker failure detection

Another failure type that may decrease the quality of service is
locker failures. Specifically, the electro-mechanical locking system
may sometimes fail to work properly. When this occurs, the users
cannot rent or return the bicycles at such lockers. If the locker is
occupied with a bicycle, this bicycle will eventually be flagged as
unusable using our method. However, if the faulty locker is vacant it
will be left empty until the locking mechanism is repaired. Such type
of failure is not reported in the information system, and so the on-
line state of the stations presented to the users may not be accurate.
Currently, the operators cannot remotely detect such failures.

A complementary model equivalent to the one presented in
Sections 2 and 3 may be formulated in order to assess the usability
of vacant lockers. As a mirror scenario, the data to be used are the
returning transactions. On each return of a bicycle to a station, we
calculate the conditional probability that a locker is unusable given
that bicycles were not returned to it. And again, as more return
events occur in a station there is a greater probability that a locker
that is left empty is unusable.

6. Discussion

In this paper, we presented a method to detect unusable
resources (bicycles and lockers). Our approach introduces new
real-time estimation of the number of unusable bicycles and
lockers, which is currently not available to the operators. We
validated our detection model using a simulation model that is
based on data from a real-world system and demonstrated that it
predicts well, in real-time, the number of unusable bicycles in a
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station. This is achieved without any knowledge about the arbi-
trary stochastic process according to which unusable bicycles
arrive in a station. In addition, we presented several extensions of
the model that may enhance the quality of the model's predictions
based on more detailed data about the process that is available to
the operators.

As discussed in Section 4, a further validation of the detection
model can be accomplished using real-world data regarding
unusable bicycles and lockers. We call practitioners to collect and
make use of such data in their planning process. Retroactively, this
data can be used to continuously fine-tune the detection model.

One limitation of our model stems from the assumption that
bicycle failure is a binary property, i.e., a bicycle is either usable or
unusable. In reality, some bicycles that require maintenance due to
minor failures but may still be rented by the users. Bicycles in such
a condition cannot be detected by the proposed model. A different
detection model that considers the long-term transaction history
of the bicycles in the system can be devised to detect such failures.

The negative implication of the presence of unusable resources
is the reduction of the station capacity and the presentation of
misleading information to the users. Unusable bicycles/lockers
may have different effect on the quality of service in different
stations, depending on the capacity of the station and the demand
patterns. Evaluating this effect may assist in prioritizing the sta-
tions that should be visited by maintenance and repositioning
workers. Once this is determined, the next planning stage is to
determine the routes of the maintenance workers.
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