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We study the regulation of one-way station-based vehicle sharing systems through parking reservation
policies. We measure the performance of these systems in terms of the total excess travel time of all users
caused as a result of vehicle or parking space shortages. We devise mathematical programming based
bounds on the total excess travel time of vehicle sharing systems under any passive regulation (i.e., poli-
cies that do not involve active vehicle relocation) and, in particular, under any parking space reservation
policy. These bounds are compared to the performance of several partial parking reservation policies, a
parking space overbooking policy and to the complete parking reservation (CPR) and no-reservation (NR)
policies introduced in a previous paper. A detailed user behavior model for each policy is presented, and
a discrete event simulation is used to evaluate the performance of the system under various settings.
The analysis of two case studies of real-world systems shows the following: (1) a significant improve-
ment of what can theoretically be achieved is obtained via the CPR policy; (2) the performances of the
proposed partial reservation policies monotonically improve as more reservations are required; and (3)
parking space overbooking is not likely to be beneficial. In conclusion, our results reinforce the effective-
ness of the CPR policy and suggest that parking space reservations should be used in practice, even if

only a small share of users are required to place reservations.
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1. Introduction

In recent years, vehicle sharing systems (VSS) have become an
integral part of transportation services offered by numerous cities
around the world. Such systems consist of a fleet of vehicles dis-
persed across a city that users can rent for a short period of time.
This type of service may be considered an extension of traditional
public transport, which offers more flexibility and which enables
more multi-modal journeys. With this added flexibility, more cit-
izens can shift from private vehicles to public transportation ser-
vices, potentially decreasing traffic congestion levels, encouraging
more efficient land resource utilization (especially in city centers,
as fewer parking spaces are needed) and reducing air pollution and
greenhouse gasses emissions.

In this study, we focus on one-way station-based VSSs, such as
bike sharing and some car sharing systems. Such systems allow
users to rent a vehicle from any station throughout a city (given
that there is an available vehicle in that station), use it for a short
period of time and return it back to any station with an available
parking space. In the case of bike sharing systems, "parking spaces"
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are in fact docking poles. However, for the remainder of the pa-
per, we use the term parking space to refer to one unit of vehi-
cle storage of any kind. Some car-sharing systems are "free float-
ing" (rather than station-based). In such systems, vehicles can be
rented and returned at any point in the city. These systems do not
fall within the scope of this study. For a detailed description of the
structure of VSSs, the renting process, the types of users and the
different operating models, see surveys by DeMaio (2009), Jorge
and Correia (2013), Shaheen and Cohen (2007, 2012), Shaheen and
Guzman (2011), Shaheen, Guzman, and Zhang (2010) and Demaio
and Meddin (2014).

VSS operators face the difficult goal of meeting demands for ve-
hicles and available parking spaces. Indeed, online reports on the
number of vehicles in many VSSs show that stations frequently be-
come empty or full (see, for example, http://bikes.oobrien.com/).
This difficulty mainly arises from the characteristics of the de-
mands for journeys throughout the day. These demand processes
are typically stochastic, asymmetric and heterogeneous in time.
The system cannot satisfy demand when a user who wishes to
rent a vehicle arrives at an empty station or when a user who
wishes to return a vehicle arrives at a full station, i.e., a sta-
tion with no vacant parking spaces. The latter scenario is typically
perceived as more severe, as a user who is unable to return a
vehicle is “trapped” in the system because she cannot complete
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the renting transaction until she finds an available parking space.
Contrary to this situation, a user who cannot rent a vehicle may
decide to use an alternative mode of transportation.

One-way VSS managers should aim to improve the quality of
service provided to its users, subject to the availability of resources.
In this study, we measure the quality of service by the total excess
time users spend in the system as a result of vehicle or parking
space shortages. The excess time of a user is the difference be-
tween the actual time she spends in the system (her exiting mi-
nus entering time) and her ideal travel time, i.e., the riding/driving
time between her origin and destination stations. Indeed, we be-
lieve that time is a major consideration of commuters in an urban
public transit system and that time is associated with the main
costs incurred by commuters. This is especially true in cities where
regular commuters can buy a monthly or annual subscription to a
VSS and to public transit access.

The fact that a user may not be able to use a VSS for her jour-
ney or may only be able to use this system for part of a jour-
ney may cause her additional damages apart from the time she
loses. The cost of this damage, in units equivalent to the cost of
time, can be added to the measured excess time. For example,
if a user needs to take a taxi rather than renting a shared car,
the excess cost of the taxi fare (as compared to the cost of rent-
ing a shared vehicle) can be weighted and added to the excess
time. While we use the term excess time throughout the paper, it
can be replaced with the term excess cost to refer to more gen-
eral conditions. This observation broadens the scope of our dis-
cussion and allows it to capture systems with diverse characteris-
tics, e.g., both bike sharing and one-way station-based car-sharing
systems.

Alternative performance measures for the quality of service in-
clude the proportion of empty or full stations, the percentage of
users who receive an ideal service and the percentage of users who
do not use the system at all, i.e., those who abandon the system.
All of these measures are correlated with excess time (see Kaspi,
Raviv, & Tzur, 2014), but they do not directly represent inconve-
niences experienced by the user. Excess time is also applicable to
situations wherein an ideal service cannot be provided at the de-
sired origin and/or destination stations but where a substitute ser-
vice can be provided at nearby stations. For example, if no vehicle
is available at the desired origin station, a user may rent a vehicle
from a nearby station. In such a case, the excess time is the net
additional time incurred as a result of using alternative modes of
transportation from the desired origin station to the actual renting
station.

To reduce the occurrence of vehicle and parking space short-
ages, system operators may take strategic or operational action.
Strategic actions involve deploying more stations or expand-
ing existing stations (see, for example, George and Xia (2011),
Lin and Yang (2011), Correia and Antunes (2012), Lin, Yang and
Chang (2013), Shu, Chou, Liu, Teo, and Wang (2013), Correia, Jorge,
and Antunes (2014) and Boyaci, Zografos, and Geroliminis (2015).
Operational actions may involve dynamically changing fleet sizes
and actively or passively regulating systems.

By active regulation, we refer to the redistribution of vehicles
throughout a system’s stations using repositioning trucks (in the
case of bike sharing systems) or by designated drivers (in the case
of car sharing). Raviv and Kolka (2013), Schuijbroek, Hampshire,
and van Hoeve (2013) and Vogel, Saavedra, and Mattfeld (2014)
devise methods for determining the desired daily initial inven-
tories in the stations, that repositioning should aim to achieve.
Kek, Cheu, Meng, and Fung (2009), Nair and Miller-Hooks (2011),
Benchimol et al. (2011), Angeloudis, Hu, and Bell (2012), Chemla,
Meunier, and Wolfer-Calvo (2013a), Raviv, Tzur, and Forma (2013),
Erdogan, Laporte, and Calvo (2014), Erdogan, Battarra, & Calvo,
2015, Forma et al. (2015), and others study static repositioning

operations. Contardo, Morency, and Rousseau (2012), Jorge, Correia,
and Barnhart (2014), Kloimiillner et al. (2014) and Pessach, Raviv,
and Tzur (2014) study dynamic repositioning operations. However,
repositioning of vehicles may be a costly procedure, especially in
car sharing systems where each car is repositioned by a designated
driver.

By passive regulation, we refer to mechanisms used to redi-
rect demand to improve VSS performance. Such mechanisms do
not affect the true demand for journeys but may instead cause
users to rent (return) vehicles at stations different from their
true origin (destination) station. Fricker and Gast (2014) study a
system regulation under which each user declares two optional
destination stations and the system directs her to the less con-
gested one. Several studies focus on pricing regulations as means
of self-balancing VSSs (see, for example, Chemla, Meunier, Pradeau,
Wolfler Calvo, and Yahiaoui (2013b), Pfrommer, Warrington, Schild-
bach, and Morari (2014) and Waserhole, Jost, and Brauner (2013)).
We note that the study of Waserhole et al. (2013) does not fall
within our definition of passive regulations since they assume that
the demand is elastic to the price.

In a previous paper, Kaspi et al. (2014) proposed implementing
parking space reservations in one-way VSSs in order to improve
the quality of service provided by such systems. In particular, they
studied a complete parking reservation (CPR) policy in which all
users are required, upon renting a vehicle, to reserve a parking
space in their destination station. If a reservable parking space is
available (i.e., not occupied and not reserved), it is reserved for the
user, and will not be available to other users from the moment the
renting period starts to the moment the user returns the vehicle
to the reserved parking space. If upon renting a vehicle there are
no reservable parking spaces at the destination, the renting trans-
action is denied. The user may then try to make a reservation at
another station close to her destination or may decide to use an
alternative mode of transportation.

Under the CPR policy, a reserved parking space remains empty
until the user returns her vehicle. In the meantime, other users
cannot use this resource, i.e., it is blocked. The tradeoff in im-
plementing such a policy is that while some users are guaran-
teed an ideal service (as they will certainly be able to return
their vehicle at their desired destination) other users may receive
poorer service due to the blocking of parking spaces. In Kaspi et al.
(2014), the CPR policy was compared to the base policy entitled
no-reservations (NR), using a Markovian model with simplifying
assumptions and an enhanced discrete event simulation model.
Both policies are complete in the sense that all system users are
required to follow the same regulations. The results of the analysis
show that the CPR policy outperforms the NR policy with respect
to several service-oriented performance measures.

In this study, we examine whether and to what extent fur-
ther reductions of the total excess time may be achieved through
the use of any other passive regulation and through the use of
any other parking reservation policy in particular. We use math-
ematical programming models to devise lower bounds on the to-
tal excess time that users spend in the system under any pas-
sive regulation and under any parking reservation policy. We con-
sider the benefits of limiting requirements to make reservations to
only some journeys. We refer to these policies as partial reserva-
tion policies, which combine the two extreme (complete) policies
in different ways. We evaluate the performance of all policies and
compare them to the lower bounds.

We note that while mathematical programming may not be
perceived as a natural approach for analyzing such a system, it
is advantageous in its ability to process an extremely large num-
ber of possible occurrences. Conversely, in order to model the
VSS using stochastic tools (for example, closed queuing systems),
some simplifying assumptions are required to make the model
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tractable. Fricker and Gast (2014) and Kaspi et al. (2014) make
simplifying assumptions regarding user behaviors when users face
vehicle/parking space shortages. George and Xia (2011) assume
that station capacities are unlimited. Indeed, using these assump-
tions, tractable models are generated. However, they do not reflect
the true dynamics of VSSs, as interactions between neighboring
stations due to shortages are neglected.

This study focuses on improving VSSs from a user’s perspec-
tive. Indeed, operators have their own perspectives based on rev-
enues and costs, which play a crucial role when making strategic
decisions on system design, active regulation, pricing, etc. In the
short run, when a reservation is denied, the operator may indeed
lose revenue, thus potentially generating a conflict between the
user’s and operator’s goals. However, under an effective reserva-
tion policy, this would provide better service to users and thus in-
crease revenues in the long run. Therefore, when optimizing park-
ing reservation policies, it is reasonable to consider only the qual-
ity of service as an objective function.

The contributions of this paper are as follows. First, using math-
ematical programming models, we provide for the first time lower
bounds on the performance of a VSS, measured by the total excess
time, under any passive regulation and under any parking reserva-
tion policy. Second, we introduce the concept of partial reservation
policies. We examine three different partial policies that are each
based on a simple sound principle that is easy to control by the
system’s managers and communicate to the users. We define the
user behavior under these policies and examine their performance
using discrete event simulation of real world systems. Third, we
examine the potential benefit of parking space overbooking.

The remainder of the paper is organized as follows. In
Section 2, a generic description of the VSS is presented, and math-
ematical models are formulated to bound VSS’s performance under
passive regulations and under parking reservation policies in par-
ticular. In Section 3, a behavior model of VSS users is presented,
and the proposed partial parking reservation policies are described.
A utopian overbooking policy is presented at the end of this sec-
tion. A description of two real world VSSs and numerical results on
their performance are presented and discussed in Section 4. Con-
cluding remarks are provided in Section 5.

2. Lower bounds on the total excess time in a VSS

As noted in the introduction, the operational actions that a VSS
operator can take in order to deliver high quality service can take
two forms: active regulations and passive regulations. In this study,
we focus on passive regulations, i.e., mechanisms used to redirect
demand.

VSSs are decentralized systems, that is, each user makes deci-
sions regarding her planned itinerary so as to minimize her own
expected excess time. Such decisions depend on the availability of
vehicles or parking spaces at the system’s stations at the renting
time and on the user’s expectations regarding future availability.
In addition, user’s decisions are subject to the passive regulation
prescribed by the system. Under passive regulations, a system may
influence a user’s decisions by limiting her choices or by incen-
tivizing her to prefer certain itineraries. However, the system does
not assign itineraries to the users. For example, under the CPR pol-
icy, if a user cannot make a parking reservation at a certain station,
while she is not allowed to travel with a shared vehicle to that sta-
tion, she is free to determine her actual alternative itinerary. From
the operator’s point of view, the question is: how should a passive
regulation be designed so that the outcome of all users’ decisions
minimizes the expected total excess time?

A passive regulation can be formally defined as a mapping of
the state of the system and the demand for journeys to a set of
itineraries permitted for each journey. The set of possible passive

regulations is extensive. However, a major share of these regu-
lations may be difficult to implement or to communicate to the
users. In this study, we introduce and analyze regulations that take
the form of parking reservation policies, which are based on sim-
ple principles and which are easy to communicate to the users.
In order to assess potential improvements that may be achieved
through passive regulations in terms of the expected total ex-
cess time, we formulate mathematical programs that provide lower
bounds. First, we devise a lower bound on the expected total ex-
cess time under any passive regulation. Second, as this study fo-
cuses on parking reservation policies, we devise a tighter bound
designed specifically for any parking reservation policy.

The rest of this section is organized as follows. Section 2.1 in-
cludes a description of a VSS and presents assumptions concerning
the demand. Section 2.2 presents a mixed integer program (MILP)
whose optimal value is a lower bound on the excess time that may
be achieved under any passive regulation. Section 2.3 modifies the
MILP formulation to account for passive regulations that involve
only parking reservations, thus generating a tighter bound. A for-
mal proof for the validity of this lower bound is then presented.

2.1. Description of the VSS

In this section, we discuss information needed in order to
model a VSS. Such information is used in mathematical models
that are presented in this section and in the user behavior model
presented in Section 3. Information needed to describe the system
is as follows:

o The number of stations in the system

o The number of parking spaces in each station (referred to as
the station capacity)

The initial inventory level (number of vehicles) at each station
o The expected travel time between any two stations using
shared vehicles.

The expected travel time between any two stations using an
alternative mode of transportation.

Note that information on the locations of the stations is not
needed. In order to describe the relations between the stations,
it is enough to specify the traveling time between each pair of
stations. The distance between the stations, the topography of
the city, congested roads and other considerations are taken into
account in the traveling times. In some cases, due to vehicle or
parking space shortages, users may roam to nearby stations (using
an alternative mode of transportation) or may decide to abandon
the system altogether and make their entire journey using an
alternative mode of transportation. Therefore, traveling times
between any two stations using an alternative mode of transporta-
tion must be determined as well. Travelling times can represent
any additional cost or inconvenience incurred by the user over
the course of her journey in addition to the actual value of time
spent in the system. In bike sharing systems, walking constitutes
the alternative mode of transportation for most potential journeys.
This is also the case in car-sharing systems for roaming between
neighboring stations.

Demand for each journey is defined by the desired origin and
destination stations and by the desired starting time. An underly-
ing assumption of the models introduced in this paper is that all
journeys in a system start and end at VSS stations. In reality, users’
journeys start and end at general locations (GPS points) in a city.
However, such fine spatial granularity is not required when mak-
ing strategic decisions on reservation policies. Moreover, informa-
tion on exact origins/destinations is currently unavailable to VSS
operators. Finally, we assume that an alternative mode of trans-
portation is always available to users while a shared vehicle (resp.,
parking space) may or may not be available at the origin (resp.,
destination).
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Fig. 1. Examples of journey itineraries.

2.2. A lower bound on the total excess time under any passive
system regulation

Our goal in this section is to establish a lower bound on the
total excess time that results from users’ decisions under any pas-
sive regulation. Given the system'’s characteristics and journey de-
mand realization over a predetermined planning horizon (typically
a day), we formulate an optimization problem that centrally selects
the itineraries of the VSS’s users so as to minimize the total excess
time.

The solution value of this optimization problem is a lower
bound on the total excess time that may be achieved under any
passive regulation due to the following two assumptions on which
the optimization problem is based:

1. All demands for journeys are known in advance.

2. A central planner determines the itinerary of each user in a way
that benefits the entire system. The justification of this assump-
tion is that any solution selected by the central planner may be
selected by the users under some passive regulation.

In practice, each user determines her own itinerary based on
her individual objectives and based on information that she has
access to. Thus, the excess time of an optimal assignment obtained
by a central planner with full information is a lower bound on the
excess time resulting from any passive regulation policy, i.e., a pol-
icy that somehow limits user itinerary selection options. We note
that due to the system’s limited resources, this bound is typically
strictly positive and is thus better than the trivial bound of zero
excess time (no shortages of any type).

In practice, the demand for journeys is a stochastic process.
Therefore, the average solution value of the optimization problem
for numerous demand realizations, drawn from a given stochastic
process, serves as an estimator of a lower bound on the expected
total excess time under any passive regulation.

A demand realization is described by a set of journeys where
each journey is characterized by an “origin-destination-time” tu-
ple. Each journey can be materialized by one of several possible
itineraries. We assume that a possible itinerary can take one of the
following forms:

a) Use a shared vehicle from the origin to the desired destination.

b) Use a shared vehicle from the origin station to another sta-
tion with an available parking space and then use an alterna-
tive mode of transportation to reach the desired destination.

c) Use an alternative mode of transportation to reach a station
with an available vehicle and then use a shared vehicle from
this station to reach the desired destination.

d) Use an alternative mode of transportation to reach a station
with an available vehicle and then use a shared vehicle from
this station to another station with an available parking space.
Then, from this station, use an alternative mode of transporta-
tion to reach the desired destination.

e) Use an alternative mode of transportation from the origin to
the desired destination.

We refer to stations where vehicles are actually rented (resp.,
returned) as renting (resp., returning) stations. Upon attempting to
return a shared vehicle, a user may be required to wait at the re-
turning station until a parking space becomes available and to then
proceed with her itinerary (leave the system or continue with an
alternative mode of transport). We assume that users will not wait
for a vehicle to become available in a renting station, as informa-
tion on the number of vehicles in each station is available to them
in real time. Instead, users would roam to a nearby station or use
an alternative mode of transportation for the entire journey.

In Fig. 1, we present an example with several possible
itineraries that materialize the journey of a user who wishes to
travel from station A to station B. The travel time of each journey
segment is depicted on the corresponding arc, and itinerary excess
times (denoted by X) are presented below each graph. For exam-
ple, in Fig. 1(b), the excess time is 5 because the travel time is 12
(in comparison to a travel time of 7 in the case of the ideal jour-
ney shown in Fig. 1(a)). In Fig. 1(a)-(e), we, respectively present
examples of each of the five itineraries presented above. Note that
because the excess time associated with using an alternative mode
of transportation for an entire journey (as in 1(e)) is 14, itineraries
with longer excess time periods such as 1(f) will never be selected
by a user and can thus be disregarded by the central planner.

Each possible itinerary can be defined by its renting station, re-
turning station and renting time. The returning time is determined
by the renting time and by the traveling time between the two
stations. Waiting times at the returning stations are not considered
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Fig. 2. Network flow graph representing the flow of vehicles in the system.

when calculating itinerary times, as they are calculated separately.
In addition, a journey can be materialized by an itinerary that in-
cludes only an alternative mode of transportation. Clearly, such an
itinerary is not associated with renting and returning stations.

We define a set of possible events where each event is a time-
station tuple that refers to a renting or returning time and to the
location of a possible itinerary. We assume without loss of gener-
ality that at most one event can occur at each station at a given
time. At the time of each event, the state of the corresponding sta-
tion is defined by the number of vehicles parking at the station
and by the number of users that are (possibly) waiting to return
vehicles at the station.

The assignment of itineraries to users, carried out by the central
planner, is constrained by several considerations that are related
to the availability of vehicles and parking spaces at the stations.
In Fig. 2, we use a network flow graph to present vehicle move-
ments within a system over time. We use the possible itineraries
of a journey depicted in Fig. 1 as an example, assuming that the
journey starts at time 20. Each possible itinerary that involves ve-
hicle movement [itineraries (a)-(d) of our example] is depicted by
a black solid arc from a node that represents the renting time and
location to a node that represents the returning time and location.
The costs of these arcs are the excess times associated with their
itinerary and their capacities are 1. The use of an alternative mode
of transportation is not directly reflected by arcs in the network.
However, node times and arc costs are affected by the use of alter-
native modes of transportation. For example, for itinerary (c) de-
picted in Figs. 1 and 2, the use of a shared vehicle begins at sta-
tion D at time 26 even though the itinerary starts at station A at
time 20. The cost of this arc is 5, representing the excess time of
the itinerary.

To depict a full demand realization we construct a network such
as the one shown in Fig. 2, with a set of nodes and arcs created
for all possible itineraries of all demanded journeys. The nodes in
this network correspond to events. Each pair of consecutive nodes
on the time axis, which are associated with the same station, is
connected by two “horizontal” parallel arcs. The solid gray arc rep-
resents the number of vehicles parked in the station between the
two events, and the dashed arc represents the number of vehicles
(and drivers) waiting in the station for a vacant parking space dur-
ing this time interval. As the two nodes are consecutive, the num-
ber of vehicles parking and waiting in the station does not change
over this time interval. The cost of the parking arcs is zero, and

their capacity is equal to the capacity of the station. The per unit
cost of the waiting arcs equal to the time difference between their
end nodes and their capacity is not limited. For example, if the
flow on the waiting arc that connects nodes (B,27) and (B,32) has
a value of 3; the excess time incurred as a result of waiting in sta-
tion B between time periods 27 and 32 is 15.

The network also includes one source node for each station,
with a supply that represents the initial inventory of the station
and one sink node. The net demand of the rest of the nodes is
zero. A feasible assignment of itineraries to journeys is obtained as
a feasible integer flow on this network with additional side con-
straints. These constraints limit the total flow on all the itinerary
arcs associated with each journey to a maximum value of 1. A
solution where the total flow on the arcs associated with a cer-
tain journey takes a value of zero represents the selection of an
itinerary that involves an alternative mode only, e.g., Fig. 1(e). The
excess time incurred in such a solution is the sum of the flow costs
plus costs incurred as a result journeys that use alternative modes
only. Thus, our lower bound is obtained by minimizing this excess
time. We solve this optimization problem using the MILP formu-
lated below. Next, the notation used to formulate this model is
presented.

Indices:

s Station

t Time

j Journey

ik [tinerary

Parameters:

S Set of stations

] Set of journeys

G Capacity of station s

L0 Initial vehicle inventory of station s

E Set of possible events [(s, t) tuples]

I Set of possible itineraries of journey j, we also use I = jg I;

Xi The excess time of itinerary i (not including waiting time)

Ds ¢ The time difference between event (s, t) and the next event at
station s

B(s,t) The set of itineraries in which a vehicle is rented at station s
at time ¢

F(s, t) The set of itineraries in which a vehicle is returned at station s
at time ¢

(s, t) The event that precedes event (s, t) at station s

In addition, we define two artificial events (s,0) and (s, H) for
each station s that denote the beginning and end of the plan-
ning horizon, respectively. Note that X; represents the excess time
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associated with selecting itinerary i. This excess time includes the
additional time incurred by using alternative modes of transporta-
tion to materialize an entire journey or part of a journey. It does
not include additional excess time that the user may experience
as a result of waiting for a vacant parking space at the returning
station. This waiting time is reflected by the Ds; parameter. With-
out loss of generality, the set I; includes only journeys with excess
times that are not greater than the excess time of using alternative
mode for the entire journey.

Decision variables:

Ti 1 if itinerary i is selected, O otherwise

Ds.t Number of vehicles parking at station s immediately after
event (s,t)

Wy ¢ Number of users waiting to return a vehicle at station s

immediately after event (s, t)

With respect to the network flow model, the r; variables repre-
sent flows on the itinerary arcs. The ps variables represent flows
on the parking arcs, and the ws, variables represent flows on the
waiting arcs. The problem can now be formulated as an MILP
model. We refer to this model as the Passive Regulation Lower
Bound (PR-LB).

minimize Y " X;-ri+ Y Dsr-We; (1)
iel (s.t)eE

Subject to

Yri=1 VjeJ 2)

iel;
Doy + Wiy + D, Ti=Dse+Wse+ ». 1 Y(s,t)eE (3)

icF(s.t) ieB(s.t)

pso=L0 VseS (4)
pst <G V(s,t)eE (5)
Wso=0 VseS (6)
Wsy = 0 VseS (7)
r;€{0,1} Viel (8)
pst >0 V(s,t) eE 9)
wse >0 V(s,t)eE (10)

The objective function (1) sums the excess time of the selected
itineraries and the waiting times of all users who wait to return
their vehicle at their returning station. These are the two compo-
nents of the total excess time of all system users. Constraints (2)
assure that for each journey exactly one itinerary is selected. Con-
straints (3) are vehicle inventory balance equations: for each event
(s,t) the constraint asserts that the total flow of vehicles that en-
ter (left hand side) and leave (right hand side) are equal. Recall
that (s,t)’ is the event that precedes event (s,t) at the stations,
and thus Pisey T Wesey is the total number of vehicles parking and
waiting at the station immediately before event (s, t). Constraints
(4) set the initial vehicle inventory of each station. Constraints (5)
limit the number of parked vehicles in a station to the station ca-
pacity. Constraints (6) and (7) state that no user is waiting to re-
turn a vehicle at the beginning or at the end of the planning hori-
zon. Constraints (8) stipulate that the itinerary decision variables
are binary. Constraints (9) and (10) are non-negativity constraints

on the number of parked vehicles and waiting users after each
event.

In this model, the central planner may assign a user to any
of its given potential itineraries. In some cases, users may be re-
ferred to relatively distant rent or return stations, merely in order
to balance vehicle inventories to the system’s benefit and not nec-
essarily because the system cannot satisfy their demand via better
itineraries. In the next section, we extend the model to limit such
occurrences.

Theoretically, a user may begin her ride and return the vehi-
cle at any station. Therefore, the number of potential itineraries
of a journey is the square of the number of stations. However,
most of these potential itineraries would take longer to complete
than simply using an alternative mode of transportation for the en-
tire journey (i.e., abandoning the system). Under many regulations,
it is safe to assume that users will not accept such itineraries.
In the numerical experiment reported in Section 4, we let the
central planner consider only those potential itineraries that are
not longer than using the alternative mode of transportation for
the entire journey. Moreover, to reduce computational efforts re-
quired to solve the PR-LB model (1)-(10), we relaxed the integrality
constraints (8) and replaced them with non-negativity constraints.
This clearly preserves the result as a lower bound. In our nu-
merical experiment, we observed that the effect of this relaxation
on the obtained lower bound is negligible, see the discussion in
Section 4.

When restricting ourselves to itineraries that are not longer
than using the alternative mode of transportation, an alternative
lower bound on the total excess time could be obtained by in-
cluding the possible waiting times at the destination within the
itineraries and by removing the waiting variables (ws;) from the
model. Using such a formulation, we allow only travel and waiting
time sequences that are together shorter than those that involve
using the alternative mode of transportation for the entire jour-
ney. This further limits the decision space of the central planner
and thus may result in a tighter lower bound. However, this ap-
proach produces significantly more potential itineraries (and thus
decision variables). For the instances that we solved, we found the
total waiting time to be negligible relative to the total excess time.
Therefore, we believe that potential improvements to the lower
bound are insignificant.

Although this study focuses on parking reservation policies, the
above model serves as a lower bound on the excess time under any
passive regulation. In particular, as the input for this model include
all the demand for journeys the model it can also serve as a lower
bound for vehicle reservation policies, trip reservation policies, the
best of two regulation proposed by Fricker and Gast (2014), and
the pricing regulations proposed by Chemla et al. (2013b) and
Pfrommer et al. (2014).

2.3. A lower bound on the total excess time under any parking
reservation policy

In this section, we focus on a subset of all possible passive regu-
lations: parking reservation policies. A parking reservation involves
a process in which, when attempting to rent a vehicle, a user de-
clares her destination, and a trip is either allowed or denied by
the system. If a trip is allowed, a parking space is reserved to the
user at the desired destination. If a trip is denied, the user may try
to place reservations to other destinations until one is allowed. A
parking reservation policy is a set of rules that determine the fol-
lowing: in which subset of trips a user is required to place reserva-
tion, whether a reservation request is allowed or denied and when
a reservation in approved, whether a parking space is reserved for
the user temporarily or permanently (until her arrival at the des-
tination). The operator is allowed to overbook parking spaces that
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are currently not available. However, for a parking reservation pol-
icy to be enforceable and sustainable over time, the operator must
not deny parking reservation requests unjustifiably. Next, we for-
mally define the set of parking reservation polices studied in this

paper.

Definition 1. (A parking reservation policy). A passive regulation
whereby the operator can deny renting a vehicle only if there
are no reservable parking spaces at the destination at the renting
time.

Recall that under a parking reservation policy, reservations are
not always required. However, when they are required, the con-
dition of Definition 1 must hold. For example, the CPR and NR
policies are both legitimate parking reservation policies. In the CPR
policy, the reservation of a reservable space is always required. The
NR policy trivially satisfies the requirement of Definition 1, as un-
der this policy, no reservation is required, and thus reservations are
never denied.

Under any parking reservation policy, the set of possible
itineraries that can materialize journey j, I;, can be partitioned
into three subsets based on the state of the system when the jour-
ney begins. (I) Itineraries that cannot be denied under a parking
reservation policy. This set includes any itinerary with an avail-
able vehicle at its renting station at its renting time and a reserv-
able parking space at its returning station at the renting time. In
addition, the itinerary that consists of the alternative mode only
is always included in this set, as it is also an itinerary that can-
not be denied. (II) Itineraries that can be either denied or allowed
under a parking reservation policy. This set includes any itinerary
with available vehicles in its renting station at its renting time but
no reservable parking space at its returning station at the renting
time. The assignment of itineraries from this set may be materi-
alized through overbooking policies or partial reservation policies,
whereby some users start their journeys without making reserva-
tions at all. (IIl) Itineraries that cannot be permitted under a park-
ing reservation policy. This set includes any itinerary with no avail-
able vehicles at its renting station at the renting time. The parking
reservation policy dictates which of the itineraries in (II) are avail-
able to the user. The user, from her side, selects the itinerary from
(I) or from permitted itineraries in (II) that minimizes her excess
time.

Note that under a general passive regulation, a system may of-
fer a user any subset of itineraries through the union of (I) and (II),
as long as this subset includes the itinerary that uses the alterna-
tive mode only. However, under a parking reservation policy, the
offered subset must include all itineraries in (I) and possibly some
itineraries in (II). Thus, under these policies, a system has less con-
trol over users’ decisions.

The PR-LB model (1)-(10) is modified such that the central
planner may assign the shortest itinerary in (I) or a shorter
itinerary from (II) to each journey. Recall that in the original
model, any itinerary derived from the union of (I) and (II) can
be assigned. The partitioning of potential itineraries among sets
(I), (1), and (IlI) cannot be pre-defined as a model input. This is
because the selection of itineraries included in these subsets de-
pends on the system’s state at the decision time and on all de-
cisions made for journeys that begin prior to that journey. In-
stead, we modify the PR-LB model, (1)-( 10), by adding decision
variables and constraints to exclude itineraries that will not be
selected by users under any parking reservation policy. We refer
to this extended model as the Parking Reservation Policy Lower
Bound model (abbreviated PRP-LB). We use the same notation as
in the PR-LB model (1)-( 10) and add the following parameters and
decision variables:

Parameters:

0(i) A (s, t) tuple that represents the renting station and renting time
of itinerary i

D(i) A (s, t) tuple that represents the returning station and returning
time of itinerary i

J(@) The journey that can be materialized by itinerary i

T(s, t) Time of node (s,t)

S(s, t) Station of node (s, t)

Ri A set of itineraries for which a parking space may be reserved at
the returning station of itinerary i at the renting time of
itinerary i. That is, an itinerary k is in the set if:

e [t is of a different journey, J(k) # J(i)

e [t has the same returning station as itinerary i,
S(D(k)) = S(D(i)).

e The renting time of itinerary k is earlier than the renting time
of itinerary i, T(O(k)) < T(O(i))

e The returning time of itinerary k is later than the renting time
of itinerary i, T(D(k)) > T(O(i))

M A very large number (for example, twice the capacity of the
largest station)

Auxiliary decision variables:

[ 0 if a vehicle is available at station s at time t, otherwise it can
either be 0 or 1.
fi 0 if at renting time T(O(i)) there are some reservable parking

spaces at station S(D(i)). Otherwise, it can either be 0 or 1.

The PRP-LB model can thus be written as (1)-(10) with the fol-
lowing additional constraints:

eO(i)+fink Vi,kelj X <X Vje] (11)

M. (1—est) > pst+Wsr V(5,t) €E (12)

Gsooyy - fi < Pogiy + Woay + Z reViel (13)
keR;

est € {0,1} V(s,t) € E (14)

fie{0,1}Viel (15)

Constraints (11) stipulate that each journey must be material-
ized via the shortest possible itinerary, i.e., the one with the short-
est excess time permitted under a parking reservation policy. For
any itinerary k, if an itinerary i of the same journey with shorter
excess time that belongs to (I) exists, then itinerary k cannot be se-
lected. Recall that if itinerary i is in (I), then a vehicle is available
at its renting station (eq;,=0), and a parking space is available at
its returning station (f; = 0). In this case, the left hand side of (11)
is zero, and thus, r;, must be zero. Note that if itinerary i is in (II),
the right hand side of (11) is greater than zero. In this case, the
model may or may not assign itinerary k to the journey. Accord-
ing to constraints (12), a station can be considered "empty" for a
given time only if there are no vehicles parked or waiting during
that time. Constraints (13) assure that the f; variables are set to
zero if reservable parking spaces are available at the returning sta-
tion of itinerary i at the renting time. The decision variable ws is
added to the right hand side of constraints (12) and (13) to ensure
that the central planner will not “leave” vehicles waiting outside
of a station that is not full in order to gain more flexibility in se-
lecting possible itineraries. Constraints (14) and (15) stipulate that
variables es; and f; are binary.

The value of the solution of the PRP-LB model (1)-(15) provides
a tighter bound on the total excess time compared to the PR-LB
model (1)-(10), as the former is based on a super-set of its con-
straints, and parking reservation policies are a subset of any pas-
sive regulation. As in the case of PR-LB, this model was solved
while relaxing binary variable r;. Binary variables es; and f; were
not relaxed because if their integrality is not imposed, the resulting
relaxation is very weak. This is due to the effects of big-M terms
in constraints (12) and (13). Indeed, this model is more difficult to
solve (see Section 4).
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In the PRP-LB model (unlike the PR-LB), if vehicles are available
at the station at a renter’s arrival time, the system must offer one
to the user. Therefore, this model cannot provide a lower bound on
the performance of vehicle or trip reservation policies. Next, we
formally prove the validity of the optimal solution value of PRP-
LB as a lower bound on the total excess time under any parking
reservation policy.

Proposition 1. For any demand realization, the total excess time as-
sociated with the optimal assignment of itineraries to journeys under
PRP-LB is not greater than the excess time under any parking reser-
vation policy.

Proof. Consider the assignment of itineraries to journeys obtained
under a parking reservation policy (satisfying the conditions of
Definition 1). We refer to this assignment as A*. We claim that
such an assignment can be mapped to a feasible solution of PRP-
LB, and thus, the optimal solution of PRP-LB is a lower bound on
the excess time that results from any parking reservation policy.
First, note that because A* is a feasible assignment of itineraries
to journeys, it must satisfy constraints (2)-(10) when setting the
r; variables to represent the actual itineraries that were selected
by the users under policy A* and when setting the values of the
variables ps: and ws; to represent the number of vehicles that are
parking and waiting at the stations after each event (s,t), respec-
tively. Next, we show that the values of the binary variables e
and f; can be set so that the rest of the PRP-LB constraints can be
satisfied. First, we set the value of es; as follows:

ou — 0 psc+wse>0
5= )1 otherwise °

Such an assignment would immediately satisfy constraints (12)
for each event (s, t). Similarly, we set

0 Poi +Wpiy + X Tk < Csay
keR;

i= s

1 otherwise

which immediately satisfy constraints (13) for each itinerary i.
Now, it is left to show that with this assignments constraints
(11) are satisfied for each pair of itineraries of the same journey
(i, k) such that k is selected under policy A* and X; < X, that is,
itinerary i has a shorter excess time than itinerary k. Recall that
when k is selected, r, = 1. Assume by contradiction, that constraint
(11) is violated, implying that ey;) = 0 and f; = 0. This means that
for itinerary i, a vehicle was available, and a reservable parking
space was available at the renting time. According to Definition
1, such an itinerary cannot be denied under a parking reservation
policy. Finally, as it is shorter than itinerary k, it must have been
selected by the user, which is a contradiction. O

According to Proposition 1, the assignment of itineraries that
can result from any parking reservation policy under any de-
mand realization is a feasible solution of PRP-LP. Thus, the excess
time that can be achieved under any parking reservation policy is
bounded from below by the optimal solution of the model.

3. Parking reservation policies

The lower bounds developed in the previous section may be
used to evaluate the effectiveness of any regulation or parking
reservation policy. In this section, we introduce several parking
reservation policies. The performance of a VSS under these policies
or under any other regulation can be evaluated only with respect
to user responses to rules prescribed under a regulation. We base
our analysis, with respect to users’ response, on an axiomatic ap-
proach and model the users as rational independent agents who
strive to minimize their own excess time. However, achieving this
goal may be too difficult for many users to accomplish due to the

stochastic nature of the VSS. Therefore, we postulate a user behav-
ior model that heuristically approximates this minimization prob-
lem and that in fact, provides an optimal solution in most cases.

In Section 3.1, we present this user behavior model. The model
describes the decisions taken by the users at different decision
points. These decisions are affected by the state of the system and
the settings of the regulation. In Section 3.2, we present three par-
tial reservation policies, discuss the motivations for using them
and explain how they are reflected in the user behavior model.
In Section 3.3, we present a utopian parking overbooking policy
that is used to gauge the potential benefits of parking overbooking
policies.

3.1. User behavior model

The movement of users within the system depends both on its
regulation and on the state of the system (the availability of ve-
hicles and parking spaces). A user who enters the system acts as
follows. If there are no available vehicles at her origin station, she
may either decide to go to a nearby station via an alternative mode
of transportation in search for an available vehicle, or she may de-
cide to abandon the system. An abandoning user is assumed to
travel to her destination using an alternative mode of transporta-
tion. Note that in a modern VSS, the user can make this decision
based on real time information on the availability of vehicles in the
stations of the system. Once a user finds an available vehicle, there
are two options: (1) A parking reservation is not required or (2) a
parking reservation is required. Under option (1), the user rents a
vehicle and travels to her destination. When the user reaches her
destination (with a vehicle), if she finds an available parking space,
she returns the vehicle and exits the system. If there are no avail-
able parking space at the destination station, the user may decide
to wait at the station until a parking space becomes available (i.e.,
she enters a waiting queue). Alternatively, the user may decide to
roam to a nearby station in search of an available parking space.
Again, this decision is based on real time information on the avail-
ability of parking spaces in the stations. Under option (2), the user
attempts to make a parking reservation at her destination station.
If the reservation is approved, the user makes a rent-and-reserve
transaction and travels to her destination station. If the parking
reservation is guaranteed, the user can immediately exit the sys-
tem upon reaching her destination. If the reservation is not guar-
anteed, the user travels to the returning station and proceeds as in
option (1). If the parking reservation is not approved, the user can
either attempt to make a reservation at another station close to
her destination, or she may decide to abandon the system. Finally,
if for one of the above reasons the vehicle is returned to a different
station than the user’s destination station, the user uses an alter-
native mode of transportation to reach her destination station and
then exits the system.

This behavior model is described in Fig. 3. At decision points,
we assume that users have full knowledge of the system'’s state,
including inventory levels at each station and renter arrival rates
to each station (for example, the operator, or a third party, can
provide this information via a smartphone application). Users are
assumed to be strategic so that at decision points, they select the
alternative that minimizes their expected remaining traveling time.
An alternative user behavior model can be based on the maxi-
mum utility theory, thus introducing randomness to itinerary se-
lection decisions while reflecting factors that are not included in
the current model. However, we use a deterministic itinerary se-
lection model that is based solely on excess time, as it is based on
data that are readily available to operators. We believe that such a
model is sufficiently accurate in providing insight into the effects
of various parking reservation polices.
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Fig. 3. User behavior model.
We further elaborate on the user decision processes denoted in II. A renter who arrives with a shared vehicle at a station with
Fig. 3 by I, Il and III: no available parking spaces would consider a nearby station

such that the total time spent traveling with the shared vehi-
cle to that station and using an alternative mode of transporta-
tion from there to the destination is the shortest among all sta-
tions with available parking spaces. The user would choose to
wait in the station until a parking space becomes available if
the expected time for this to occur is shorter than the above
alternative.

I. A renter who arrives at a station with no available vehicles
would consider a nearby station such that the total time spent
using an alternative mode of transportation to reach that sta-
tion and the traveling time from that station to the destina-
tion, is the shortest among all stations with available vehicles.
The user would choose an alternative mode of transportation
for the entire journey if it is faster than the above alternative.
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IIl. A renter who cannot make a parking reservation at the desti-
nation station would consider making a reservation at a nearby
station such that the total time spent traveling in the shared
vehicle to the chosen returning station and using an alterna-
tive mode of transportation from there to the destination is the
shortest among all stations for which it is possible to make a
parking reservation. The user would choose using an alterna-
tive mode of transportation for the entire journey if it is faster
than the above alternative.

In the user behavior model, three junctions represent the policy
settings:

o [s a parking reservation required?
o Has the reservation been approved?
e Is a vacant parking space guaranteed?

To highlight these junctions, we plot them in Fig. 3 as trape-
zoids. The NR and CPR policies are complete in the sense that un-
der each of these policies, the answer to each of the above three
questions is identical for all system users. For example, under the
CPR policy, all users are required to make a parking reservation, a
reservation is approved if a parking space is available at the return
station at the renting time and a vacant parking space is guaran-
teed to all users who can make a parking reservation.

3.2. Partial parking reservations policies

In this section, we present three types of partial parking reser-
vation policies. Each type is based on a simple, yet reasonable prin-
ciple. The common motivation for these policies is to enforce park-
ing reservations only when they are likely to have a positive effect
on the performance of the system. In the descriptions presented
below, a trip is defined as a direct ride between a pair of origin-
destination stations.

3.2.1. Trip based partial reservation policy

Under this policy, parking reservations are required only for
trips with expected traveling times shorter than a given threshold.
At the renting time, a user specifies her destination, and if the ex-
pected traveling time is shorter than the given threshold, she is re-
quired to reserve a parking space at her destination. As in the CPR
policy, if no vacant parking spaces are available at the destination
at the renting time, the transaction is denied, and the user may at-
tempt to make a reservation at a different station. A user with an
expected riding time that is longer than the threshold time is not
required to make a parking space reservation. If such a user finds
an available vehicle at her origin, she can rent it and travel to her
destination, as can be done under the NR policy. The rationale be-
hind this policy can be stated as follows: as a parking space is a
valuable resource in a VSS and a reservation practically blocks it
for the duration of the trip, the parking space should only be re-
served for short trips. Moreover, users with short travel times may
be more sensitive to excess time due to parking space shortages at
destinations.

Note that if the threshold time is set to zero, this policy coin-
cides with the NR policy. Conversely, if the threshold is set to a
large enough value, this policy coincides with the CPR policy. Dif-
ferent partial polices of this type can be obtained by setting the
value of the threshold parameter between these two extremes.

3.2.2. Station-based partial reservation policy

Under this policy, a parking reservation is required only if the
difference between the expected returning and renting rates at the
destination station over a certain time interval is higher than a
pre-specified value, referred to as the difference threshold. Other-
wise, no reservation is required. Expected renting and returning

rates can be estimated based on past transactions. The difference
is calculated for each station during predefined time intervals of
each day. If the calculated difference is lower than the difference
threshold, the user will behave as she does under the NR policy.

The rationale behind this policy can be stated as follows: the
probability of parking space shortages in a station grows as the
imbalance (difference) between demand rates for parking spaces
and vehicles grows. Such imbalances may be consistent, for ex-
ample, in bike sharing stations at relatively low altitude locations,
where bicycles are more likely to be returned than rented. Alter-
natively, the imbalance may change throughout the day (e.g., at
stations located in working areas where in the morning, return-
ing rates are much more prevalent than renting rates). When the
demand rate for parking spaces (returning) is higher than the de-
mand rate for vehicles (renting), users are more likely to find a
station full. By enforcing parking reservations at such stations, the
system can prevent users from traveling to stations with no avail-
able parking spaces by redirecting some users to less congested
nearby stations. Such a shift is likely to occur anyway, as users
who find a full station typically roam to a nearby station to return
their vehicles. When parking reservations are in effect, changes in
the returning stations are determined in advance, which is likely
to reduce user excess time. In contrast, it seems less effective to
enforce parking reservations in stations that are likely to be empty
regardless.

Note that the higher the difference threshold is, the fewer
the cases in which reservations are required. For extremely high
threshold values, the policy coincides with the NR policy, while for
extremely low (negative) values, it coincides with the CPR policy.

3.2.3. Time limited partial reservation policy

Under this policy, all users are required to make a parking
reservation as in the CPR policy, but reservations are only valid
for a limited time. After a reservation expires, the reserved parking
space becomes available to other users, and a vacant parking space
is no longer guaranteed to the user. If the reservation expires and
no parking space is available by the time the user arrives at the
destination station, she will have to either wait by the station or
roam to a nearby station (as in the NR policy).

The rationale behind this policy can be stated as follows: by
making a reservation, a user with a long traveling time who
reaches her destination only after her reservation expires still af-
fects the system because as long as her reservation is valid, she
may prevent other users from making a reservation. That is, her
reservation may divert subsequent demand, which may increase
the probability of the user to find a vacant parking space, even if
her reservation has expired.

Note that if the time limit is set to a large enough value, this
policy coincides with the CPR policy. However, if the time limit
is set to zero, the resulting policy still differs from the NR pol-
icy, as users are still required to make a reservation, and they can-
not begin traveling to a station that is full at the renting time. In
Section 4, we compare the performance of this specific set-
ting (in which the time limit is set to zero) to the per-
formance of the NR policy and discuss their differences and
implications.

3.3. Utopian parking space overbooking policy

In many service systems that require reservations, it is com-
mon practice to allow overbooking. That is, accepting reservations
for resources that may not be available at the required time. Over-
booking may serve as an effective policy in the presence of arrival
stochasticity or in services where customer no-shows are common.
In a VSS that practices parking reservations, no-shows are not an
issue, as reservations are made at the renting time, and the users
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must return the vehicle at the stated destinations. Nevertheless, in
some cases, it may be beneficial to allow users to travel to a station
even if it has no available parking spaces (i.e., to allow overbook-
ing), as a parking space may become available by the time the user
reaches her destination station. An effective overbooking policy is
based on reliable forecasting that is capable of predicting such oc-
currences.

In order to evaluate the potential benefits of overbooking poli-
cies, we envision a system that has full information regarding the
demand for vehicles at a station that allows overbooking. Over-
booking decisions are based on this information, and thus, this ap-
proach is referred to as a utopian overbooking policy. Note, how-
ever, that this policy optimizes the service provided to each indi-
vidual user individually rather than taking the system'’s perspective
as is shown in the lower bounds presented in Section 2.

Under this policy, upon renting, the user is required to declare
her destination, and then the system determines whether a reser-
vation can be made or not. The system’s decision is made based
on knowledge of the current state of the destination station, in-
cluding users who are traveling to that station in a vehicle, and
of all future renter arrivals to that station (including their exact
arrival times). We refer to the system decision process as a look-
ahead process, as the system’s decisions are made by anticipat-
ing whether a parking space will be available at the destination
station upon arrival. The look-ahead algorithm, which is executed
with each reservation attempt, is presented in Table 1. We use the
following notation to describe it:

E A list of future events at the returning station, including return
events of reservations that have already been approved, the
reservation being requested, and all future rent events.

x.time The time of event x

x.type The type of event x

rt Return time of the user who is attempting to make a
reservation

0] Occupancy at the return station (parked and waiting vehicles).

O is initialized as the actual occupancy at the time that the
reservation is attempted and is updated by the algorithm.
C Capacity of the return station

The algorithm processes the known future events in the sta-
tion and monitors anticipated future occupancy by updating the
variable O. The occupancy is incremented after each return event
and decremented after each rent event. If occupancy levels are ex-
pected to exceed the station’s capacity at the return time of the
currently requested reservation or at a later time, the reservation
is denied. Note that exceeding the capacity at a later return time
implies that accepting the current reservation will result in the
subsequent violation of a previously placed reservation. If no such
violations are expected, the current reservation is allowed.

Interestingly, in some rare cases, under this utopian overbook-
ing policy, users may arrive at their returning station and find no
vacant parking spaces to return the vehicle to. This can occur be-
cause in the look-ahead algorithm, it is assumed that all future
demand for outgoing journeys from the destination station will
reduce the occupancy of that station. However, some renters may
decide to abandon the system due to their inability to make a

Table 1
Look-ahead algorithm.

Input: (E, rt,0,C)

While E is not empty
Remove the earliest event in E and set x as this event
If x.type =" rent’ and 0 > 0, set 0 =0 — 1.
If x.type = return’, set 0 = 0+ 1.
If 0 > C and x.time > rt
Return “Reservation Denied.”
Return “Reservation Allowed.”

reservation at their destination and in turn, the occupancy of the
station may be higher than anticipated by the algorithm. In the
simulation, the system is not penalized for parking space short-
ages. Instead, the users are assumed to leave the system at their
destination as if they are allowed to park vehicles near the sta-
tion. In other words, we allow for temporary station capacity over-
flow in our simulated system until renters remove vehicles from
the station.

We note that in a real stochastic setting, overbooking is likely
to lead to more shortage events than in this utopian policy as de-
mand forecasts are less accurate. Moreover, in reality, when short-
age events occur, users are not allowed to leave their vehicles near
the stations. Instead, they must waste more time in search of a
vacant parking space or wait for a parking space to become avail-
able. Therefore, under an actual overbooking policy, the total ex-
cess time is likely to be higher than under our utopian overbook-
ing policy.

In Table 2, we summarize the answers to each of the three
questions that appear in the user behavior model, which character-
ize the settings of the parking reservation policies described above.

4. Numerical study

In this section, we evaluate the proposed partial reservation
policies with various threshold parameters and demand character-
istics via a discrete event simulation of VSSs. The simulation is
based on the user behavior model presented in Section 3.1. The
results are compared to the lower bounds devised in Section 2.
The numerical study is based on data from two real world bike
sharing systems, Capital Bikeshare and Tel-O-Fun. In Section 4.1,
we describe the two bike sharing systems and the trip data used
to generate the input for our models. In Section 4.2, we present
the results of the numerical experiments and discuss their impli-
cations.

4.1. Case studies

The Capital Bikeshare system was launched in September 2010.
The system operates in Washington D.C., in Arlington County and
Alexandria, Virginia, and in Montgomery County, Maryland. The
operating company, Alta Bicycle Share, provides full trip history
data that can be downloaded from the following link: http://
capitalbikeshare.com/trip-history-data. In this study, we use trip
data from the second quarter of 2013. In this period, the system
managed 232 operative stations with 3860 parking spaces and ap-
proximately 1750 bicycles. The average number of daily trips on
weekdays was approximately 7800.

In Fig. 4, we present a map with stations that were operative
during the study period. On the map, we mark three station clus-
ters: Arlington, Alexandria and Crystal City. As can be observed,
in these clusters, stations are densely distributed while remaining
relatively distant from other stations in the system. Indeed, most
of the trips that originated or ended in these clusters remained
within this cluster. In Alexandria, approximately 90% (resp., 88%)
of the journeys that originated (resp., ended) in the cluster ended
(resp., originated) in the cluster. In Crystal City, these figures are
77% and 74%, respectively, and in Arlington, these figures are 70%
and 76%, respectively. In the following section, we present results
for the entire system and for each of the three clusters separately.
While generating data for each cluster, we neglected trips from/to
other stations in the system. Although the resulting data do not
fully reflect occurrences in these stations, they allow us to analyze
small systems of varying sizes that are “close to real.”

The second system studied is the Tel-O-Fun bike sharing sys-
tem in Tel-Aviv. The system was launched in April 2011, and trip
data were collected over a period of two months at the start of
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Table 2
Settings of the various parking reservation policies.
Parking reservation Conditions needed to approve a
policy Parking reservation requirement parking reservation Vacant parking space guarantee
NR For none of the users - -
CPR For all users A vacant parking space at the Yes
destination at the renting time
Partial: trip-based For users with trip times shorter than A vacant parking space at the Yes
a given threshold destination at the renting time
Partial: station-based For users with a destination station A vacant parking space at the Yes
wherein the difference between the destination at the renting time
returning and renting rates is higher
than a given threshold
Partial: time-limited For all users A vacant parking space at the Only for users with trip times shorter
destination at the renting time than the time limit
Utopian overbooking For all users The system anticipates that there will Yes, in this hypothetical utopian setting,
be a vacant parking space at the the user is allowed to return a vehicle
destination at the returning time even when no parking space is available
Table 3
Results for the two real-world systems.
System Stations Initial inventory  Total excess time (hours/day) Total travel time (hours/day)
NR CPR Over-booking  PR-LB  Ideal
Capital Bikeshare 232 Actual day 3469 2824 2715 114.7 1347.0
Raviv & Kolka 183.9 1411 1321 58.3
Tel-O-Fun 130 Actual day 89.9 76.4 75.8 23.7 919.9
Raviv & Kolka 59.5 41.2 38.9 154
N e o . : API program. Station capacities were retrieved from the systems’
atts . . . . .
> .® O websites. The arrival rates of renters during 30 minutes periods
S o Bladenst throughout the day were estimated by aggregating weekday trips.
A A > = . " Mt Rainier Assuming Poisson demand processes, for each system we randomly
B .'.:-. B = e generated 50 daily demand realizations, including renters’ arrival
.o pedsi i = times to each station and their destinations. In order to reduce
. % :":.'.. variation, we used the same realizations for all of the examined
* P oy
oo S0g% . :. policies (Common random numbers). In addition, for each demand
ot ,xo o ¢.g. A °“' e - realization, we generated the input for the PR-LB and PRP-LB mod-
& °*® o 2% A A pe b els, namely the set of potential itineraries per realized journey.
~ BSNWJ‘.Q" .' fohe . Two approaches were.applied in settipg Fhe iniFial yehicle i.n—
‘ SaFor Myer R % wed AT 2 ventory levels at the stations: (1) actual initial station inventories
L Wadtington oy
o b ,,4,; o : T on a randomly chosen day after the operators executed reposition-
M o ing activities; (2) initial inventory levels prescribed based on the
L] . .
~ . % o, o2 s method proposed by Raviv and Kolka (2013). We used two differ-
% 'a ent initial inventory levels to determine the sensitivity of our re-
* o, . s sults and insights to these parameters. Clearly, we could have used
o* ] e other methods known in the literature to determine the initial in-
o ventory, as noted in the introduction.
4.2. Results
° Forest
o Heights . . . .
Sl The discrete event simulation, the user behavior model and
heiygiria Oxon Hill the preprocessing of the input for the mathematical models were
@ Alexandria [ Arlington @ Crystal City @ Others coded using MathWorks Matlab™. The PR-LB and PRP-LB models

Fig. 4. Map of Capital Bikeshare stations (2nd quarter of 2013).

2012. At that time, the system included 130 stations distributed
across an area of approximately 50 square kilometers, 2500 park-
ing spaces and approximately 900 bicycles. During this period, the
average number of daily trips (on weekdays) was approximately
4200.

Simulation inputs for both systems were generated as follows.
We assume that the alternative mode of transportation is walking,
which we believe is typically the case for bike sharing systems.
Riding and walking times were estimated using the Google Maps

were solved using IBM ILOG CPLEX Optimization Studio 12.5.1. The
codes and data are available from the authors upon request.

We begin by discussing the results of the lower bounds and
the utopian overbooking policy. The results and a discussion re-
garding the partial reservation policies are presented at the end of
this section. In Table 3, we present results for the Capital Bikeshare
and Tel-O-Fun systems. The first and second columns present the
names of each system and the number of stations in each system,
respectively. In the third column, we show how initial inventory
levels were set. In columns four to seven, we present the aver-
age total excess time, over 50 realizations, for the NR policy, the
CPR policy, the utopian overbooking policy and the PR-LB model.
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Table 4
Statistics on the real-world system instances.

981

Number of Average number of
System Stations users itineraries per user Initial inventory PR-LB
Solution Solution
Number of time LP time MILP
variables (sec) (sec)
Capital Bikeshare 232 7826.4 204.5 Actual day 4,993,194 2211.87 N/A
Raviv & Kolka 1605.15 N/A
Tel-O-Fun 130 4154.9 62.7 Actual day 765,050 49.20 232.97
Raviv & Kolka 54.37 237.28

Table 5
Results for the three Capital Bikeshare clusters.

System Stations  Initial inventory  Total excess time (hours/day) Total travel time (hours/day)
NR CPR Over-booking  PRP-LB  PR-LB  Ideal
Arlington 30 Actual day 2.907 2.262 2.257 1.548 1.256 28.908
Raviv & Kolka 1.600 1.129 1137 0.800 0.660
Crystal city 15 Actual day 1.314 1.120 1.117 0.902 0.738 10.689
Raviv & Kolka 0.656 0.564 0.562 0.431 0.375
Alexandria 8 Actual day 0.589 0.352 0.347 0.261 0.214 9.119
Raviv & Kolka 0.225 0.184 0.183 0.124 0.105

In the last column, we present the average total ideal times, over
50 realizations. Recall that the ideal time is the total traveling time
when all journeys can be ideally served using shared vehicles from
desired origins to desired destinations. Problem instances of the
PRP-LB model cannot be solved using the available computational
resources, and this lower bound is thus not presented here. We re-
visit this model when analyzing the smaller sub-systems below.

We observe from Table 3 that the lower bound on the total
excess time provided by the PR-LB model is significantly tighter
than the trivial lower bound obtained by assuming that all of the
journeys are materialized by their ideal itineraries, i.e., no excess
time, as in Kaspi et al. (2014). For example, in Capital Bikeshare,
approximately 40% of the gap between the CPR policy and the
trivial lower bound (zero excess time) is explained by the PR-LB
model. That is, at least 40% of the excess time under the CPR policy
cannot be reduced under any passive system regulation. Further-
more, recall that in the PR-LB model, we assume that all demands
for journeys are known in advance and that a central planner de-
termines the itinerary of each user. As this setting is unrealistic,
we can expect that the excess time under any real policy should
be much higher. In other words, a major part of the remaining
gap can be explained by these assumptions. Recall that each fig-
ure shown in Table 3 is an estimation of the excess time under a
certain reservation policy based on an average of 50 demand real-
izations. Differences between the values in each row of the table
were tested via a one-sided sign test and were found to be signif-
icant at p — value < 0.000012.

The results presented for the PR-LB model are based on the LP
relaxation of the model. In addition, we solved the original MILP
model for smaller instances that are based on the Tel-O-fun data.
In 97 of these 100 instances, the value of the LP relaxation solution
was found to be identical to that obtained using the MILP model,
where the latter were obtained at substantially longer processing
times. In the remaining three instances, the lower bound obtained
using the MILP model was slightly higher, although the difference
was negligible (less than 0.002%).

Using the initial inventories as prescribed by the method of
Raviv and Kolka (2013), the excess time was significantly reduced,
as can be observed in Table 3 for all policies. Indeed, proper plan-
ning of static repositioning results with a major improvement in
the service level. Nevertheless, the results for the CPR policy and
the PR-LB model suggest that an additional substantial reduction in

the total excess time can be achieved by integrating repositioning
activities with an efficient passive regulation.

As can be observed in Table 3, the utopian overbooking policy
produced only slightly better results relative to those of the CPR
policy. This is quite surprising given the assumptions that the
utopian overbooking policy is based on. That is, even with full
knowledge of the demand realizations and the use of overbooking,
a significant improvement cannot be obtained. This implies that
realistic overbooking policies are not likely to be significantly (or
at all) beneficial in terms of reducing the excess time in VSS. This
unexpected finding can be explained by the fact that in VSS, a
positive side effect of parking space reservations is the diversion
of the demand toward less congested stations. This in turn may
positively affect future system users who are less likely to face
vehicle and parking space shortages. Allowing overbooking reduces
this positive side effect. As effective overbooking policies are much
more difficult to implement than the CPR policy and as the former
also introduce additional uncertainty and thus reduce user trust in
the system, we believe that such policies should not be practiced
in VSSs.

In Table 4, we present statistics on PR-LB instances that we
solved and on solution times. We present the number of stations in
each system, the average number of users (over the 50 demand re-
alizations), the average number of itineraries per user, the number
of variables in the linear programming model and average solution
times for the LP relaxation and the MILP model, where itinerary
variables are defined as binary ones. Note that the MILP model can
be solved within a reasonable timeframe only for the smaller in-
stances of the Tel-O-Fun network. The solution time of the PR-LB
model is not of particular interest in this study, as such a model
is not supposed to be solved very often. We find solution times
to be reasonable for most of the strategic and operational scenar-
ios. That is, a similar formulation can be used for other purposes,
where time considerations are more important.

Solving the PRP-LB model presented in Section 2.3 is imprac-
tical for large real-world systems due to the large number of bi-
nary variables. To obtain insights from the PRP-LB model solution,
we generated three small systems based on three clusters of sta-
tions in the Capital Bikeshare system: Alexandria with 8 stations,
Crystal City with 15 stations and Arlington with 30 stations. In
Table 5, we present the results for these systems. The table is
supplemented with an additional column (the seventh) that
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Table 6
Statistics for the three Capital Bikeshare clusters.
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Number of Average number of
System Stations users itineraries per user Initial inventory ~ PR-LB PRP-LB
Number of Number of
continuous Solution auxiliary binary Solution
variables time (sec) variables time (sec)
Arlington 30 255.6 42.2 Actual day 36,223 0.66 23,501 877.29
Raviv & Kolka 0.72 374.55
Crystal city 15 128.5 17.0 Actual day 8052 0.11 5120 14.62
Raviv & Kolka 0.11 7.44
Alexandria 8 68.6 5.9 Actual day 1601 0.03 1003 0.40
Raviv & Kolka 0.03 0.36
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Fig. 5. Partial reservation policies - percentage of excess time under various settings.

presents the lower bound on the expected total excess time pro-
duced by the PRP-LB model. The table shows that for the three
small systems, the value obtained from the PR-LB model explains
approximately 56-66% of the gap from the trivial (zero) lower
bound. However, a larger portion of this gap (67-81%) was ex-
plained by the PRP-LB value. This result further supports our belief
that no other parking reservation policy is likely to result in sig-
nificant improvements relative to those of the CPR policy. We also
note that for these systems, the excess time for the utopian over-
booking policy is sometimes slightly higher than that of the CPR
policy. Recall that each of the figures in Table 5 is an estimation
of the excess time under a certain reservation policy based on an
average of 50 demand realizations. Differences between the values
in each table row were tested via a one-sided sign test and were
found to be significant at p — value < 10~7.

In Table 6, we present statistics on the instances for the three
Capital Bikeshare clusters and for the mathematical models used
to create the lower bounds. The table follows the same format as
that of Table 4. Interestingly, it is observed that the initial inven-
tory has a significant effect on the solution time of PRP-LB. The
optimized inventory levels obtained by the method of Raviv and
Kolka (2013) results with models that can be solved much more
quickly, although the dimensions of the mathematical models are
identical.

Next, we consider the partial reservation policies presented in
Section 3.2., and we examine whether they can improve the perfor-
mance obtained by the CPR policy. In Fig. 5, we present simulation
results for these policies. The figure includes six graphs, with one
designated to each combination of the two studied real-world sys-
tems and the three partial policies. In each graph, two curves are
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Fig. 7. Trip based reservation policy- percentage excess time under various trip durations with initial inventory obtained from an actual day.

displayed, representing the percentage of excess time obtained us-
ing the two methods for setting the initial inventories. Namely, an
actual day, displayed in black, and the method of Raviv and Kolka
(2013) shown in gray.

For each partial policy, we plot the percentage of excess time
(relative to the ideal time) under various settings. For the trip-
based partial policy, we tested 31 time thresholds in intervals of
three minutes. For the time-limited partial policy, we tested 31
time limits in intervals of three minutes. For the station-based par-
tial policy, we tested 11 difference thresholds of 0%, 10%,..., 100%;
the thresholds were calculated over one-hour time intervals dur-
ing the day. In order to use the same scale on the horizontal axis
for both systems, we present the percentage of stations in which
a parking space reservation is required rather than the difference
thresholds.

Recall that extreme settings of such partial policies result with
the complete policies (except for the lower extreme of the time-
limited partial policy). The figure shows that as the time threshold
increases, the same trend appears in all six graphs, i.e., when more

reservations are required, the excess time decreases. The best per-
formance is achieved when parking reservations are required from
all users, i.e., under the CPR policy.

These results show that using a simple rule to define partial
parking reservation policies is not likely to produce better results
than those achieved when employing the CPR policy. We also find
that the more users are required to reserve parking spaces, the bet-
ter the performance of the system. However, in cases where it is
possible to require reservations from only some users, it is bet-
ter to apply a partial reservation policy rather than to not require
reservations at all.

Recall that under the time-limited partial reservation policy
(Section 3.2.3), all users must make a reservation, but the reser-
vation expires after a given time period. When the time limit is
set to zero, users are only able to travel to stations that are not
full at the renting time, but a parking space cannot be guaranteed
at the destination in any case. In Fig. 5, the graphs of the time-
limited policy begin at lower points relative to those of the other
two partial policies. That is, compared to the NR policy, significant
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improvements can be obtained by simply redirecting users to re-
turning stations that are not full at the renting time. In fact, most
of the improvement accomplished under the CPR policy may be at-
tributed to the redirection of users to stations with vacant parking
spaces.

Next, we examine whether the above insights are relevant to
systems with other characteristics. In particular, we consider sys-
tems with the same geography and with similar demand patterns
but with different levels of congestion (i.e., offered load), with
different trip durations and with different station capacities. For
each of the systems (Tel-O-Fun and Capital Bikeshare), we gener-
ated new instances by multiplying the demand rates in all stations
by several factors, where 1 represents the original systems. Fifty
demand realizations were generated based on each of these load
multipliers.

In Fig. 6, we present the performance of the trip-based partial
reservation policy with various time thresholds and load multipli-
ers. It is observable that in both systems and under various con-

gestion levels, the excess time is reduced as more reservations are
required. This implies that the effect observed under the original
demand load is not qualitatively affected by the congestion level.
However, as congestion increases, benefits obtained from the reser-
vation increase as well. This can be attributed to the fact that in
more congested systems, shortage events are more likely to occur.
For the sake of brevity, we will now present only the results for the
trip-based partial reservation policy. Very similar trends were ob-
served under the station-based and the time-limited partial reser-
vation policies.

We conducted an additional analysis, in the same spirit, to
examine the effects of shortening or prolonging trip durations.
We used the same fifty demand realizations for each system and
changed all trip durations for both vehicles and alternative modes
of transport. Trip durations were multiplied by several factors,
where 1 represents the original systems. The results of this experi-
ment, for the trip based partial reservation policy are presented in
Fig. 7. Trends similar to those shown in Figs. 5 and 6 are exhibited,
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Fig. 10. Trip-based reservation policy - demand rates and percentage of excess time for three Capital Bikeshare stations.

i.e., the excess time decreases as more reservations are required.
In addition, the performance of each system is less sensitive to the
trip durations than to the demand rates. We note that in terms
of the offered load, changing the demand rate or the trip duration
by the same ratio is equivalent. In Kaspi et al. (2014), it is proved
that under homogeneous demand rates, the excess time is uniquely
determined by the offered load. Interestingly, this result does not
hold when considering time heterogeneous demand rates.
Furthermore, we examined the effect of the capacities of
the stations on the performance of the system under the same
50 demand realizations. To this end, we conducted the follow-
ing test: the capacities of all stations in the system were de-
creased/increased by 25% (and rounded to the closest integer). In
Fig. 8, we present the results for the trip based partial reserva-
tion policy. Similar to previous results, the excess time reduces as
the time threshold increases. That is, the same trends are observed
regardless of station capacity. For a given demand rate, as the ca-
pacities of the stations are increased, the number of parking space
shortages is reduced. It is evident that the excess time under the
NR policy, the various partial reservation policy settings and the

CPR nearly converge to the same value as the station capacities in-
crease. As may be expected, the benefit of implementing parking
reservations increases when the parking spaces are scarcer. Again,
similar trends are observed under the station-based and the time-
limited partial policies.

To gain a more comprehensive understanding of the strengths
and weaknesses of parking reservation policies, we examine per-
centages of unfulfilled rent, return and parking reservation re-
quests (separately). Note that in Kaspi et al. (2014), excess time is
found to be correlated with fulfillment ratios. In Fig. 9, we present
the percentage of unfulfilled requests in the two systems under the
trip-based partial reservation policy. We find, as expected, that as
the time threshold increases, i.e., as more reservations are required,
the ratio of unfulfilled reservations increases and the ratio of un-
fulfilled returns decreases. We note that the percentage of users
that do not receive ideal service at desired origins and destinations
declines due to parking reservations, but only slightly. However,
the improvement is more significant in terms of the excess time.
This implies that reservations reduce inconvenience to users as a
result of shortages.
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Finally, we examine the effect of parking reservations on sta-
tions or regions in a system that exhibit imbalanced demands for
vehicles and parking spaces. To this end, we examined three sta-
tions within the Capital Bikeshare system: (a) the station with the
maximal total absolute difference between renting and returning
rates. The total daily demand for vehicles and parking spaces were
similar, but with temporal demand imbalances in the morning and
evening peaks; (b) the station with the maximal total difference
between renting and returning rates. This station faces excessive
demands for vehicles during the morning peak; and (c) the station
with the maximal total difference between returning and renting
rates. This station faces excessive demand for parking spaces dur-
ing the morning peak. For each of these stations, we measured
the excess time of renters (resp., returners) for whom these sta-
tions are their true origins (resp., destinations). We note that this
perspective is somewhat limited, as interactions with surrounding
stations are not taken into account. However, the effects of these
interactions are reflected in the performance of the entire system.

In Fig. 10, we present two graphs for each of the three stations.
On the left side, we present the demand rates for vehicles (renters)
and parking spaces (returners) throughout the day. On the right
side, we present average excess time of renters and returners at
the station and the average value for the entire system. Overall, we
find that for all three cases, the same trend appears once again: as
more reservations are required, the excess time decreases.

In Fig. 10(b), the returners’ excess time curve is nearly flat, that
is, for these users, the effect of implementing parking reservations
is negligible. This may be explained by the fact that this station
rarely becomes full, i.e., these users seldom face parking space
shortages. As can be expected, in such cases, parking reservation
policies are less likely to be effective.

In Fig. 10(c), we observe that the renters experience more ex-
cess time than the returners. This is counterintuitive because in
this station, the demand for parking spaces is greater than the de-
mand for vehicles. This may be attributed to the fact that actual
demand that the station faces include additional users who roam
to this station from empty nearby stations, thus limiting chances
for the original users of this station to rent vehicles. Moreover,
the excess time of the renters is also affected by the availability
of parking spaces at their destinations. Indeed, due to complex in-
teractions between stations, it is difficult to draw firm conclusions
by focusing on a single station. Nevertheless, our main conclusions
on the positive effects of parking reservations are reconfirmed.

5. Concluding remarks

This study reinforces the effectiveness of parking reservations in
VSSs as a method to improve the service provided to its users. We
find that the simplest possible parking reservation policy (namely,
the CPR) appears to be the most effective in terms of reducing
the total excess time. This was determined through empirical tests
conducted under numerous settings that are based on the geogra-
phy and demand trends of two real-world systems, diverse offered
loads, station capacities and initial inventories. Our case studies,
presented in Section 4, are based on data retrieved from bike
sharing systems. However, we believe that parking space reserva-
tions and other passive regulations are even more relevant for car-
sharing systems where the costs of active regulation (i.e., vehicle
relocations) are prohibitive.

Using a lower bound calculated by the PR-LB model, we have
demonstrated that, in our case studies, a significant share of the
excess time that can be theoretically saved under any passive sys-
tem regulation, is already saved under the CPR policy. Our ex-
tended PRP-LB model shows that other parking reservation policies
are not likely to be able to save substantially (if at all) more excess
time.

We also studied several partial reservation policies and demon-
strated that while these policies are slightly inferior to the CPR,
they may also serve as good alternatives to the basic NR policy
in cases where the CPR cannot be implemented for some reason.
Finally, we precluded reservation policies that are based on over-
booking as a parking reservation approach that is likely to outper-
form the CPR policy. This was achieved by showing that even un-
der a utopian scenario in which a system looks ahead into future
demand, such policies cannot significantly reduce the excess time
obtained under the CPR.

The PR-LB based lower bound introduced in Section 2 can be
used to evaluate the effectiveness of various other VSS related poli-
cies. This model reflects the fact that each journey may be assigned
to one of several itineraries. This adds flexibility to VSSs and affects
their dynamics in a way that should not be ignored by a strategic
planner. Although we have focused on reducing the excess time
of users, our model can be extended to accommodate other user
objectives. That is, each potential itinerary can be assigned with a
measure that reflects a combination of several objectives. We also
suggest using our model in the future to incorporate considerations
of the operator. For example, if a car-sharing operator faces profit
losses due to possible user itinerary choices, these values can be
weighted and added to the excess time. It would also be interest-
ing to examine the effects of parking reservation policies on the
obtained profit under various pricing schemes.
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