
Theory and Methodology

Storage management of items in two levels of availability

Barouch Matzliach a, Michal Tzur b,*

a Shimoni 17, Ramat Aviv, Tel Aviv, Israel
b Department of Industrial Engineering, Tel Aviv University, Tel Aviv 69978, Israel

Received 1 January 1998; accepted 1 November 1998

Abstract

This paper is concerned with the problem of storage management of non-consumable items in two warehouses

having di�erent levels of availability. The items are used in a given process, which incurs a cost whenever the required

item is not immediately available.

We analyze the storage management problem in which items have non-equal size and prove that the problem is NP-

Complete. We present two heuristic algorithms which are inspired by two integer programming formulations. The two

heuristics are based on di�erent approaches and provide insight that enhances our understanding of the problem. Our

numerical study demonstrates that these heuristics perform very well, and therefore provide satisfactory solutions to the

problem. Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Flexible manufacturing systems; Production; Complexity; Heuristics

1. Introduction

This paper is concerned with a problem of
storage management of non-consumable items in
two warehouses having di�erent levels of avail-
ability. The non-consumable items are needed for
an operational process, and lack of their avail-
ability is associated with costs to the process. Such
items are used in manual production processes (for
example, auxiliary tools in assembly operations),

as well as in automated production processes (for
example, tools in a ¯exible NC machine). The
items may also represent data that is related to the
process and which is required in order to make
decisions during its execution.

The process uses a nearby ``warehouse'' for
storing the items, from which the items may be
brought to the process quickly, without inter-
rupting it. (``warehouse'' here is a generic term; in
practice it is a speci®c entity, depending on the
exact process concerned.) The problem arises when
not all items that are used in the process can be
stored in the nearby warehouse, as a result of its
capacity limitation. The rest of the items are stored
in a farther warehouse which has an unlimited

European Journal of Operational Research 121 (2000) 363±379
www.elsevier.com/locate/orms

* Corresponding author. Tel.: +972-3-640-8389; fax: +972-3-

640-7669.

E-mail address: tzur@eng.tau.ac.il (M. Tzur).

0377-2217/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 0 3 7 7 - 2 2 1 7 (9 9) 0 0 0 3 7 - 5

capacity, but from which they are not accessible to
the process. We refer to these warehouses as the
primary and secondary warehouses.

When an item which is in the secondary ware-
house is required to the process, it has to be
brought ®rst to the primary warehouse. This
transfer from the secondary to the primary ware-
house is associated with waiting time that is costly
to the process, and possibly also with routing
costs. Furthermore, if the primary warehouse is
full, one or more items that are stored there have
to be moved to the secondary warehouse and this
is again associated with the above costs.

This paper addresses the problem of which
items to store in the primary warehouse at every
stage of the process, where the process and the
sequence of items required for it are prede®ned,
and where the objective is to minimize the total
costs associated with transferring items between
the warehouses. Our main contribution is in
dealing with items that may be of di�erent sizes.
This case is mentioned in Stecke (1983), Shanker
and Tzen (1985) and Jain et al. (1996) but none of
them includes a comprehensive treatment of the
problem. We prove that the problem is NP-Com-
plete, thus resolving an open question raised by
Crama (1997) with respect to the complexity of
this problem. We then suggest two heuristic algo-
rithms to solve the problem, inspired somewhat by
two integer programming formulations to the
problem; each of these heuristics is based on a
di�erent approach and provides insight that en-
hances our understanding of the problem. Our
numerical study demonstrates that these heuristics
perform very well, and therefore provide satisfac-
tory solutions to the problem. In the rest of the
introduction we review related literature.

This problem is discussed in the literature as the
tool switching problem. There, tools are required
during the operation of a ¯exible Numerically
Controlled (NC) machine which has a tool maga-
zine, capable of holding a limited number of tools.
The production process is continuous as long as the
required tool is in the tool magazine: an automatic
arm is moving the required tool from the tool
magazine to the tool holder on the machine.

The capacity of the tool magazine is determined
by the number of slots it contains, and the

common assumption in the literature is that each
tool requires one slot. This paper treats the general
tool switching problem, in which tools may require
more than one slot. This is applicable in the case
where a big tool, although held in one slot, is
covering one or more of its neighbor slots, see
Fig. 1, inspired by Stecke (1983). In another case,
several tools may always be required together, and
are therefore kept as a kit, requiring at least as
many slots as the number of tools in the kit.

For example, in an application which we have
observed in the metal industry, making a screw
thread requires the use of a drill and three types of
screw taps. In another case, drilling a hole in a
certain size, where high precision is required, in-
volves the use of three types of drills, each is ®ner
than its predecessor, to achieve the highest preci-
sion required. In these cases, some or all of the
tools that are used for the tasks described, are al-
ways kept together as a kit. In the ®rst case, for
example, none of the screw taps is ever used in
isolation of the other two, and therefore none of
them is ever transferred by itself from the tool
magazine. The drill may be required for other
tasks, and therefore may or may not be part of this
kit; if it is, then a duplicate of it is required for
other tasks, and this is sometimes done in practice.
The result is a requirement for a ``tool'' whose size
is either 3 or 4.

Another application described recently in the
literature is that of Printed Circuit Board (PCB)

Fig. 1. Tool magazine.

364 B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379

assembly, see Jain et al. (1996). There, components
that needed to be placed on a board were fed into
the machine through a bank of feeder slots.
Components occupied one or two slots and the
bank of feeder slots had a limited capacity.

In the tool switching problem, jobs are pro-
cessed on the machine in a given sequence, and
each job may require several tools for its execu-
tion. For ease of exposition we assume ®rst that a
requirement is always for one tool/item only, and
in Section 6 discuss how our formulations, analy-
sis and heuristics are applicable for the more
general case, with minor modi®cations.

Tang and Denardo (1988a) proved that the tool
switching problem (with tools of equal size) can be
solved in time that is linear in the number of re-
quests and the total number of items by using the
Keep Tools Needed Soonest (KTNS) policy. Ac-
cording to this policy, a tool is removed from the
tool magazine only when it is full and another tool
(not in the tool magazine) is required. Further-
more, the tools that remain in the tool magazine,
are those for which the requirement is soonest.

Crama et al. (1994) presented an integer pro-
gramming formulation of the problem, in which
the constraint matrix is an interval matrix (a ma-
trix which contains only 0 and 1 elements, and
where the 1 elements on the columns are consec-
utive). An interval matrix is totally unimodular,
i.e., its linear programming relaxation provides an
integer solution, see for example, Nemhauser and
Wolsey (1988). Crama et al. (1994) also showed
that the integer programming problem can be
solved by a greedy algorithm (see Ho�man et al.,
1985) whose steps are identical to those performed
in KTNS, which is another proof to the optimality
of the latter. Privault and Finke (1995) reduce the
problem where each pair of tools has a di�erent
switching cost to the problem of ®nding a mini-
mum cost ¯ow of maximum value in an acyclic
network.

A related problem is that of sequencing the jobs
to be performed on the machine so as to minimize
the number of tool switches associated with the
sequence (see Hertz et al., 1998; Crama et al., 1994;
Tang and Denardo, 1988a; Bard, 1988). Another
related problem is the job grouping problem in
which all parts that need to be processed are divided

into groups such that within groups it is not re-
quired to switch tools (see Crama and Oerlemans,
1994; Tang and Denardo, 1988b). The objective is
to minimize the number of groups, since switching
and waiting occurs when changing tools from one
group to the next. This problem arises also in the
context of Printed Circuit Board (PCB) production,
but in the PCB problem, the switching costs (the
waiting times) are related to the number and iden-
tity of items in the group (see Maimon and Shtub,
1991; Shtub and Maimon, 1992).

In a di�erent context, the storage management
problem is known as the paging problem. When
managing the memory of a computer, data is or-
ganized in ®xed-sized blocks called pages. The
primary memory is limited to containing up to K
pages, while the rest of the data is in the secondary
memory. The objective is to minimize the number
of switches of pages back and forth between the
primary and secondary memory storage, subject to
the availability of speci®c pages whenever they are
needed for the running task. However, the paging
problem is an on-line problem, since requests for
speci®c pages are determined during the operation
of the system, and are not known in advance. This
calls for solutions of di�erent types, see for ex-
ample Deitel (1990) for algorithms suggested for
the paging problem. The on-line version of the tool
switching problem with non-uniform tools' sizes
was recently analyzed in Matzliach and Tzur
(1998).

2. Notation, formulation and complexity

In this section, we introduce the model termi-
nology and notation which is used throughout the
paper. We present a ®rst mathematical program-
ming formulation (in the next section we discuss
an alternative formulation) and prove that the
problem is NP-Complete.

We use the following notation:

T � the number of item requirements

during the process �t � 1; . . . ; T �:
Since the sequence of these item requirements is
predetermined, one can think of its index as an

B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379 365

index of time periods, where in each time period
there is a requirement for an item. (Some of these
requirements may be for the same item.)

N� the number of di�erent items involved in
the process �i � 1; . . . ;N�:
mi� the size of item i.
ci� the transfer cost of item i.
K � the capacity of the primary warehouse.
d(t)� the tth item required during the process;
alternatively, according to the convention of
using time periods, d(t) is interpreted as the
identity of the item which is required in time pe-
riod t.
An important special case of our problem is

when ci � mi, that is, when the cost of transferring
item i between the warehouses, in either direction,
is proportional to its size (and the factor of pro-
portionality may be assumed w.l.o.g. to be 1). We
refer to this special case as the proportional case.
For example, in the tool switching problem, there
are T jobs that have to be processed on the ma-
chine. The tool which is required for the process-
ing of job t is d(t). Tool i is of size mi, representing
the number of slots it requires on the machine, and
its transfer cost is ci. Transferring a tool kit in-
volves transferring each of the tools in the kit, and
each transfer is associated with approximately the
same time. When the transfer cost is proportional
to the transfer time in which the machine is idle,
this results in the proportional case. K is the ca-
pacity of the machine, representing the number of
slots available in the tool magazine.

Our model assumes that the sizes of items are
additive. That is, for a set of items, as long as the
sum of their sizes does not exceed K, the set is
feasible, regardless of the location of the items in
the warehouse and/or the identity of the items. In
the tool switching problem, this assumption is
valid for tool kits, where the size of a tool may in
fact equal the number of tools in the kit, and where
no adjacency of the slots that occupy the tools of
the kit is required. For big tools, adjacency of slots
is required, therefore a possible additional rear-
rangement of the tool magazine may be required.
This misrepresentation can be partially overcome
by assigning the big tools higher transfer costs,
resulting in an approximate transfer cost for those
tools.

We use the following auxiliary de®nition:
St� the set of items in the primary warehouse

at time t, after the switches that may have been
performed at time t, but before the switches that
may be performed at time t � 1. We refer to St

from now on as the state of the system.
With this de®nition, the problem may be stated

as determining the set St for every t � 1; . . . ; T ,
such that the capacity of the primary warehouse is
not exceeded. In every time period a possible ac-
tion is transferring an item between the two
warehouses, in either direction. Each transfer is
associated with a cost.

Now we are ready to present the ®rst mathe-
matical programming formulation.

For all t � 1; . . . ; T and all i � 1; . . . ;N , de®ne
the variable xi;t to be 1 if item i is in the primary
warehouse at time t, and 0 otherwise:

xi;t � 1 if i 2 St;
0 if i 62 St:

�
And the problem is

�P1� Min
XT

t�1

XN

i�1

ci � jxi;t ÿ xi;tÿ1j �1�

s:t:

xd�t�;t � 1; t � 1; . . . ; T ; �2�XN

i�1

mixi;t6K; t � 1; . . . ; T ; �3�

xi;0 � ei; i � 1; . . . ;N ; �4�
xi;t � 0; 1; i � 1; . . . ;N ;

t � 1; . . . ; T ; �5�
where ei � 0; 1 for all i � 1; . . . ;N denote the ini-
tial state of the system, i.e., the items that are
present at the primary warehouse at time 0.

De®ning yi;t � jxi;t ÿ xi;tÿ1j, replacing the absol-
ute value in the objective function by the y-vari-
ables and adding 2 constraints for every i and t,

yi;t P xi;t ÿ xi;tÿ1 and yi;t P ÿ �xi;t ÿ xi;tÿ1�; �6�
we get a 0±1 integer programming formulation.
This is an intuitive formulation, but which
contains O(NT) decision variables and O(NT)
constraints. Solving the problem with this formu-

366 B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379

lation is not e�cient for practical problems. In-
deed, the problem is hard, as the following theo-
rem proves.

Theorem 1. Our Storage Management Problem is
NP-Complete, even in the proportional case.

Proof. Our Storage Management Problem is
clearly in NP. We now show a reduction from
problem Partition, which is known to be NP-
Complete (see for example, Garey and Johnson,
1979).

Partition. Given numbers a1; a2; . . . an,Pn
i�1 ai � 2b, does there exist a subset I s.t.P
i2I ai � b?
Given any Partition instance, de®ne the fol-

lowing Proportional Storage Management (PSM)
instance:

T � n� 1;

N � n� 1;

ci � mi � ai for i � 1; . . . ; n;

cn�1 � mn�1 � b;

K � 2b;

d�i� � i for i � 1; . . . ; n;

d�n� 1� � n� 1:

Does there exist a feasible solution to the PSM
problem de®ned above with cost no more than 4b?

We will show that the answer to the Partition
problem is YES if and only if the answer to the
PSM problem is YES.

(a) Assume ®rst that in the Partition problem
there exists a subset I s.t.

P
i2I ai � b. Then con-

sider the following solution to PSM: in t � 1 we
insert to the primary warehouse items 1; . . . ; n; in
period n� 1 we transfer out from the primary
warehouse all items that are in I and insert item
n� 1. Clearly this solution is feasible and its cost is
2b� b� b � 4b. We conclude that the answer to
the PSM problem is also YES.

(b) Assume now that in the Partition problem
there does not exist a subset I s.t.

P
i2I ai � b. In

PSM we must insert during t6 n all items 1; . . . ; n
and by time t � n� 1 remove from the primary
warehouse a subset of items with total size of at
least b. Since we cannot ®nd a subset whose total
size is exactly b, we choose a subset J which sat-
is®es

P
i2J mi � a P b� 1. By time t � n� 1 we

also have to insert item n� 1. Therefore, the cost
of any feasible solution is at least 2b� a� b which
is at least 2b� b� 1� b � 4b� 1. We conclude
that in this case, the answer to PSM is also NO.

We note that the NP-completeness of the
problem stems from the fact that one cannot
necessarily provide the exact space for the new
item, as is the case with the Partition as well as the
Knapsack problems.

3. A heuristic and a related alternative formulation

In this section we present our ®rst heuristic,
which is based on a representation of the problem
in a matrix form. This representation also leads to
an alternative 0±1 integer programming formula-
tion, similar to the formulation presented by
Crama et al. (1994). It is less obvious but more
e�cient than the previous formulation (given in
Section 2) and is quite interesting.

3.1. The ®rst heuristic

In the matrix form representation of the prob-
lem, we denote the value of the xi;t variables of the
mathematical programming formulation (P1) in a
matrix that has a row i for each item and a column
t for each time period. To describe the heuristic,
we ®rst de®ne the feasible solution which serves as
the starting point of the heuristic.

The naive solution is a feasible solution which
assigns to the primary warehouse at time period t
only the item required at that time, that is, d(t).
According to this solution, at time t item d�t ÿ 1�
is transferred from the primary warehouse to the
secondary, and item d�t� is transferred in the op-
posite direction (unless d�t ÿ 1� � d�t� in which
case nothing has to be done).

For example, assume that N� 3, T� 10,
ei � 0 8i, and the required items for t � 1; . . . ; 10

B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379 367

are: 1; 2; 1; 3; 2; 1; 2; 1; 3; 2, respectively. Then the
naive solution in a matrix form is the following:

In this representation, every change from 0 to 1
or from 1 to 0 in row i of the matrix incurs a
transfer cost of ci; for a series of periods that
starts and ends with 1 and has 0s in between, the
cost is 2ci. This cost may be saved if in row i, the
block of consecutive 0s is replaced by a block of
consecutive 1s. A block of consecutive 1s means
that the item remains in the primary warehouse
in periods between two consecutive requirements
for it. Note that replacing only some of the 0s of
a given block into 1s, does not result in any
savings at all, since the cost of transferring the
item back and forth remains, as long as at least
one 0 remains. We de®ne an improvement as
converting a block of consecutive 0s into 1s,
which is associated with a saving of twice the
transfer cost of the associated item. An im-
provement is feasible only if the capacity con-
straint in each of the periods whose value was
replaced from 0 to 1, is not violated as a result of
this change.

Note that every time period t is associated with
one improvement, i.e., the block of 0s which follow
the 1 in period t for item d�t�. Making this im-
provement means keeping (in the primary ware-
house) item d�t� until the next time it is needed.
Therefore there are up to T possible improvements
(the exact number depends on initial conditions
and on whether there is a requirement for the same
item in consecutive periods). We have to consider
the feasible improvements and to choose among
them, noting that an improvement may be feasible
initially, but not after other improvements have
been added to the initial solution. To choose
among the possible improvements, we de®ne the
following parameter:

Let qt � the distance (number of time periods)
between period t and the next period with a re-
quirement for item d�t� (i.e., the number of con-
secutive 0s in row i � d�t�, starting at time t).

qt
8t 6�T
�

m if d�t � m� 1� � d�t� and

d�t � s� 6� d�t� 8s � 1; . . . ;m;

T ÿ t if d�t � s� 6� d�t�
8s � 1; . . . ; T ÿ t:

8>>>>><>>>>>:
�7�

The saving from inserting the improvement
associated with time t is 2cd�t�. On the other hand,
inserting a feasible improvement associated with
period t consumes md�t� units of the primary
warehouse's capacity in all those time periods
between the consecutive requirements; this con-
sumption may transform other possible im-
provements from feasible to infeasible. Therefore,
an optimal solution has to consider simulta-
neously the saving and the capacity consumption
of all feasible improvements, leading to the al-
ternative integer programming formulation, see
Section 3.2 below.

Here we choose to heuristically weight the two
factors (saving and consumption) for every feasi-
ble improvement, by de®ning the following im-
provement criterion:

improvement criterion

� cost saving

total capacity consumption

� 2cd�t�
qtmd�t�

�8�

and choosing the highest such value among all the
feasible improvements. In the proportional case,
the above improvement criterion chooses im-
provements in opposite relation to qt, the distance
between consecutive requirements. In the general
case, the opposite relation is also factored by the
cost/size ratio. In cases of ties, we choose arbi-
trarily.

To keep track of the available capacity in every
period we de®ne the following quantity:

B�t� � the consumption �of the primary

warehouseÕs capacity� at period t:

This quantity is being updated every time that an
improvement is inserted to the solution.

i t� 0 1 2 3 4 5 6 7 8 9 10

1 0 1 0 1 0 0 1 0 1 0 0

X� 2 0 0 1 0 0 1 0 1 0 0 1

3 0 0 0 0 1 0 0 0 0 1 0

368 B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379

The entire algorithm is described as follows:
Heuristic 1.

St :� fd�t�g; B�t� :� md�t�
for all t � 1; . . . ; T :

Put t � 1; . . . ; T in a list of nonincreasing
cd�t�=qimd�t� values, breaking ties arbitrarily.

Most of the work in this algorithm is in exe-
cuting the loop, in which for every t there may be
up to N operations, resulting in a complexity of
O(NT) for this part. In addition, sorting the
cd�t�=qtmd�t� values takes O�T log2 T � time. There-
fore the total complexity of this algorithm is
O�NT � T log2 T �, which is almost linear in NT.
We give an illustrative example of the heuristic:

Example 1. The parameters are: N� 3, T� 8,
K� 7, ei � 0 8i; the required items for t � 1; . . . ; 8
are: 1; 2; 3; 2; 1; 3; 2; 1;

m � c1 � 3; m2 � c2 � 2 m3 � c3 � 3:

Then the naive solution in a matrix form is the
following:

The initial consumption in each period is

B�1� � 3; B�2� � 2; B�3� � 3; B�4� � 2;

B�5� � 3;B�6� � 3; B�7� � 2; B�8� � 3:

Calculating the distances until the next require-
ment for each improvement t results in

q1 � 3; q2 � 1; q3 � 2; q4 � 2; q5 � 2;

q6 � 2; q7 � 1;

and these values are placed in a non-decreasing
list:

q2 � 1; q7 � 1; q3 � 2; q4 � 2; q5 � 2;

q6 � 2; q1 � 3:

We now consider these improvements according
their order in the list:

For q2 � 1: B�3� � md�2� � 3� 2 � 5 < K

) insert; B�3� � 5;

For q7 � 1: B�8� � md�7� � 3� 2 � 5 < K

) insert; B�8� � 5;

For q3 � 2: B�4� � md�3� � 2� 3 � 5

< K; B�5� � md�3� � 3� 3 � 5 < K

) insert; B�4� � 5; B�5� � 6;

For q4 � 2: B�5� � md�4� � 6� 2 � 8 > K

) cannot insert;

For q5 � 2: B�6� � md�5� � 3� 3 � 6 < K;

B�7� � md�5� � 2� 3 � 5 < K

) insert; B�6� � 6; B�7� � 5;

For q6 � 2: B�7� � md�6� � 5� 3 � 8 > K

) cannot insert;

For q1 � 3: B�2� � md�1� � 2� 3 � 5 < K;

B�3� � md�1� � 5� 3 � 8 > K

) cannot insert;

To conclude the algorithm, note that we have
inserted the improvements that are associated with
periods 2, 7, 3 and 5 with a total saving of
4� 2� 6� 6 � 18. The initial cost (of the naive
solution) was 3� 5� 5� 5� 5� 6� 5� 5 � 39,
thus the cost of the resulting solution is 21.

The matrix representing the resulting solution is
the following:

for t on top of the list:
if B�s� � md�t�6K 8 t � 16 s6 t � qt

then (improvement t is
chosen):

St :� St [d�t� 8 t � 16 s6 t � qt

B�s� :� B�s� � md�t� 8 t � 16 s6 t � qt

else remove t from the list
endfor
end

i t� 0 1 2 3 4 5 6 7 8

1 0 1 0 0 0 1 0 0 1

X� 2 0 0 1 0 1 0 0 1 0

3 0 0 0 1 0 0 1 0 0

i t� 0 1 2 3 4 5 6 7 8

1 0 1 0 0 0 1 1 1 1

X� 2 0 0 1 1 1 0 0 1 1

3 0 0 0 1 1 1 1 0 0

B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379 369

3.2. An alternative formulation

The matrix form representation of the naive
solution suggests that an optimal solution may be
achieved by optimally selecting a subset of all
blocks of 0s. While in Section 3.1 a subset of
blocks was heuristically chosen according to the
improvement criterion, the next integer program-
ming formulation selects an optimal set of im-
provements. In this formulation, each block of 0s
is associated with a binary variable whose value is
1 if the improvement associated with this block is
inserted to the solution, and 0 otherwise. There are
T ÿ 1 such variables, since every demand (except
the last one) is the beginning of a new block of 0s.
(A block of 0s may be empty if two consecutive
periods require the same item). The constraints
state that in every time period the total capacity
consumed by the subset of improvements does not
exceed the available capacity at that time period,
which is K minus the capacity of the required item;
the latter is automatically in the primary ware-
house, according to the de®nition of the naive
solution.

We now de®ne two more parameters that
are used in the formulation: First, mj;t describes
which time periods are contained in a given block
of 0s:

mj;t � 1 if period t is contained in block j;
0 otherwise:

�
Second, rj is a parameter describing the cost saving
resulting from inserting improvement block j into
the solution:

rj �

2cd�j� d�j� t� � d�j� for some t P 2

�there exists future demand

for item d�j��;
cd�j� d�j� t� 6� d�j� 8 t � 1; . . . ; T ÿ j

�there is no additional demand

for item d�j��;
0 d�j� 1� � d�j�

�the next requirement is

for item d�j� as well�:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
Finally, the decision variable in the new formula-
tion is de®ned as follows:

zj �
1 if improvement block j is inserted

to the solution;
0 otherwise:

8<:
The resulting Integer Programming Formulation is
given below:

�P2� Max
XTÿ1

j�1

rj � zj

s:t:XTÿ1

j�1

md�j� � mj;t � zj6K ÿ md�t�

8t � 1; . . . ; T ;

zj � 0; 1:

The new formulation has only O(T) variables and
constraints, as opposed to O(NT) in the previous
formulation, (P1). In a few examples for N� 25 and
T� 100 that we solved on a 486-66 MHZ personal
computer, the running time using this formulation
was about 2 hours, compared to about 24 hours
when using (P1). Crama et al. (1994) presented a
similar formulation for the tool switching problem
with tools of equal size. In their formulation the
constraint matrix includes only 0 and 1 elements,
and can be shown to be totally unimodular.

4. A second heuristic

In this section we present another heuristic al-
gorithm, which is based on a totally di�erent ap-
proach towards obtaining a solution to the
problem. We discuss the advantages of each ap-
proach in the next section, when we present our
numerical study.

The main di�erence between the two heuristics
is in the type of information that is used to make
decisions. While Heuristic 1 takes a global look at
the system, and chooses among all possible im-
provements, Heuristic 2 is an iterative procedure,
where every time period is an iteration. In every
period, decisions are made only with respect to
that period, and then the algorithm proceeds to the
next period. We emphasize that although the
procedure is iterative as described, it is still using
the fact that the model is static, and all demands

370 B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379

are known in advance. When decisions are made,
this information is used, as we show next.

One can prove that there exists an optimal so-
lution which does not change the state of the sys-
tem as long as the required item is in the primary
warehouse (postponing an action that contradicts
this property leads to an alternative optimal so-
lution). When the required item is not in the pri-
mary warehouse, the decision that needs to be
taken is which item/s to transfer, in order to make
enough room for the required item. In Heuristic 2,
this decision is based on a criterion that generalizes
the KTNS principle which removes the tool which
is required furthest in the future, as discussed in
Section 1. In our problem, we also have to con-
sider the transfer cost of an item. Moreover, we
have to consider the capacity that each item oc-
cupies, and we may remove a set of items. The idea
of Heuristic 2 is to calculate for every set of items
(that makes enough room for the required item) a
weighted distance until the next requirement, and
choose the largest.

We start by de®ning for every item
i 2 �Stÿ1 n d�t��, the following value: dist�i; t�� the
number of periods from time t until the next time
this item is required. If there is no additional re-
quirement for item i, this value is set equal to T .

The value of dist�i; t� is found according to the
following formula:

dist�i; t�
i2Stÿ1

i6�d�t�

�
m d�t � m� � i; d�t � s� 6� i

for s � 1; . . . ;mÿ 1;
T d�t � s� 6� i 8s � 1; . . . ; T ÿ t:

8<:
�9�

Note that here the block of 0s includes the 0 of
period t (since i 6� d�t�), so that this distance is
from a point of view of the end of period t ÿ 1.

Based on the distance for a single item, we
de®ne a weighted distance for a set of items
J � �Stÿ1 n d�t�� as follows:

w�J ; t�

� average distance �from time t� of items in the set J
sum of the transfer costs of all items in the set J

�
P

i2J dist�i; t� jJ j=P
i2J ci

: �10�

The reason that for distances we take an average
value while for costs we take a sum is that intu-
itively we would like to get for a set of items, value
with a similar meaning as for the single item: with
respect to the item: with respect to the item dis-
tance ± the average item distances indicate the at-
tractiveness of the set; with respect to the item
transfer cost ± we prefer to remove a set of items
with a smaller sum of transfer cost as long as it is
feasible.

We use again the quantity B�t� to denote the
consumption at period t, and check the feasibility
of every set of items J by checking if the following
condition is satis®ed:

B�t ÿ 1� � md�t� ÿ
X
i2J

mi6K: �11�

If a set J satis®es the capacity constraint, it is a
candidate to be transferred to the secondary
warehouse. Finally, to ensure that the heuristic's
complexity remains polynomial, we impose a limit,
L, on the number of items that can be transferred
simultaneously from the primary warehouse. We
denote by Y Stÿ1

L all sets of up to L items which are
subsets of Stÿ1. The choice of L is guided ®rst by
the computational complexity required to consider
all sets J in Y Stÿ1

L (see below), and by the expected
heuristic's performance as a function of L, see our
numerical example below. Another consideration
is feasibility, where we need to ensure that in all
cases we will be able to ®nd a set of up to L items
that free enough capacity. For example, a choice
of L � maxi�mi�=mini�mi� always satis®es the con-
straint.

Among all sets that belong to Y Stÿ1
L and which

satisfy the capacity constraint, we choose to
transfer from the primary warehouse the set with
the highest value of weighted distance, w�J ; t�. Note
that according to this criterion, when all sets have
equal transfer cost, we choose the set with the
largest average distance; in addition, if the items
are all of equal size, the set achieving the highest
w�J ; t� is a set of one item only, whose distance is
the largest, thus leading to the KTNS policy which
is known to be optimal in this case. When the
weighted distance is identical for all sets, we
choose the set with the smallest sum of transfer
costs. Therefore, the criterion provides the desired

B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379 371

measure in these special cases. The entire algo-
rithm is described as follows.

Heuristic 2.

S0 :� /;B�0� :� 0;
for t � 1; . . . ; T :

if d�t� 2 Stÿ1 then St :� Stÿ1, B�t� :� B�t ÿ 1�;
elseif B�t ÿ 1� � md�t�6K then St :� Stÿ1[
d�t�, B�t� :� B�t ÿ 1� � md�t�;
else compute J � 2 Y Stÿ1

L such that:
w�J �; t� � maxfw�J ; t�: J 2 Y Stÿ1

L and B�tÿ
1� � md�t� ÿ

P
i2J mi6Kg;

St :� Stÿ1 n J � [d�t�, B�t� :� B�t ÿ 1��
md�t� ÿ

P
i2J� mi;

endif
endfor

Most of the work in Heuristic 2 is associated
with computing J �. The dist�i; t� values are calcu-
lated in O�NT � time through a recursive procedure
(for every t, dist�i; t� is found by subtracting 1 from
dist�i; t ÿ 1�, except for the new item in the pri-
mary warehouse, d�t ÿ 1�, which has to be calcu-
lated directly from (9)). The number of sets in Y Stÿ1

L

that have to be considered is

jStÿ1j
1

� �
� jStÿ1j

2

� �
� � � � � jStÿ1j

L

� �
� O��minfN ;Kg�L�

(assuming K is an integer, possibly after appro-
priate scaling) which is polynomial in N , but ex-
ponential in L.

The performance of the heuristic as a function
of L is an important issue. As L increases we expect
the solution to improve since the algorithm may
choose a set to be transferred among larger num-
ber of di�erent sets. On the other hand, we expect
that for large values of L, the bene®t from in-
creasing L will be negligible. Table 1 demonstrates
the results of an empirical analysis that we per-
formed to verify this point. We ran the algorithm
for the proportional case with N � 25, T � 100,
K � 100 and where all items have equal proba-
bility to be required in every period. The items'
sizes were chosen randomly from a uniform dis-
tribution with varying intervals, as speci®ed in
Table 1.

We see from Table 1 that the performance of
the heuristic indeed improves as we increase L, and
for L � 4 most or all of the possible cost reduction
has been achieved. Moreover, increasing L has a
more signi®cant impact as the standard deviation
of the items' sizes and transfer costs becomes
larger (the range of the interval is larger). This is
explained by noting that with a large standard
deviation one item may be replaced by a set of
items with the appropriate sum of their sizes, that
have the largest weighted distance. As the standard
deviation increases, there are more such sets to
choose from. In the extreme case when the stan-
dard deviation is 0 (the interval (10,10)), L has no
impact on the performance of the heuristic, since
we get the case with equal items' sizes and costs,
for which transferring one item for each new item
that is required, is optimal. We give an illustrative
example of the heuristic.

Example 2. We consider the same data as in
Example 1 and set L � 2. S0 � 0, B�0� � 0.

t � 1: �d�1� � 1�) insert item 1; S1 � f1g;
B�1� � 3 �cost � 3�:

t � 2: �d�2� � 2�) insert item 2;

S2 � f1; 2g; B�2� � 5 �cost � 2�:

t � 3: �d�3� � 3�B�2� � md�3� > K;

) need to remove a set of one or two items;

dist�1; 3� � 2; dist�2; 3� � 1;

w�f1g; 3� � dist�1; 3�
m1

� 2

3
� 0:67;

Table 1

The impact of L on the heuristic's performance

L Interval

�10; 10� �7; 13� �5; 15� �1; 19�
1 562 604 691 831

2 562 581 602 658

3 562 580 594 606

4 562 580 592 601

372 B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379

w�f2g; 3� � dist�2; 3�
m2

� 1

2
� 0:5;

w�f1; 2g; 3� � �dist�1; 3� � dist�2; 3��=2

m1 � m2

� 3

10
� 0:3:

The largest weighted distance is obtained for
w�f1g; 3�, therefore: transfer item 1 out, transfer
item 3 in; S3 � f2; 3g, B�3� � 5 (cost� 6).

t � 4: �d�4� � 2� d�4� 2 S3) do nothing:

S4 � f2; 3g; B�4� � 5:

t � 5: �d�5� � 1� B�4� � md�5� > K;

dist�2; 5� � 2; dist�3; 5� � 1;

w�f2g; 5� � dist�2; 5�
m2

� 2

2
� 1;

w�f3g; 5� � dist�3; 5�
m3

� 1

3
� 0:33;

w�f2; 3g; 5� � �dist�2; 5� � dist�3; 5��=2

m2 � m3

� 3

10
� 0:3;

therefore: transfer item 2 out, transfer item 1 in;
S5 � f1; 3g, B�5� � 6 (cost� 5).

t � 6: �d�6� � 3� d�6� 2 S5) do nothing:

S6 � f1; 3g; B�6� � 6:

t � 7: �d�7� � 2� B�6� � md�7� > K;

dist�1; 7� � 1; dist�3; 7� � 8;

w�f1g; 7� � dist�1; 7�
m1

� 1

3
� 0:33;

w�f3g; 7� � dist�3; 7�
m3

� 8

3
� 2:67;

w�f2; 3g; 7� � �dist�1; 7� � dist�3; 7��=2

m1 � m3

� 9

12
� 0:75;

therefore: transfer item 3 out, transfer item 2 in;
S7 � f1; 2g, B�7� � 5 (cost� 5).

t � 8: �d�8� � 1� d�8� 2 S7) do nothing:

S8 � f1; 2g; B�8� � 5:

End of problem. Cost � 3� 2� 6� 5� 5 �
21:

The matrix representing the resulting solution is
the following:

For this example, both heuristics resulted in the
same solution, although it is apparent that the
sequence of decisions was di�erent.

5. Numerical study

In this section we evaluate the heuristic
methods presented in Sections 3 and 4 by com-
paring their solution values to the optimal solu-
tion value (obtained by solving the exact
formulation of the problem) for problems with
various characteristics.

In addition, we compare our results to two
other simple solutions: the naive solution (de®ned
in Section 3) and the random solution, de®ned as
follows: transferring is performed only when the
required item is not in the primary warehouse, and
not enough capacity is available for it. In that case,
one of the items in the primary warehouse is
chosen randomly (with an equal probability for
each item), and transferred out. If this does not
free enough capacity for the required item, another
item is transferred out in the same way, until the
required item can be brought to the primary
warehouse. The random solution is a reasonable
algorithm when no other alternatives are available;
we see below that when a larger capacity of the
primary warehouse is available, the random solu-
tion utilizes it.

On the other hand, the cost of the naive solu-
tion is independent of K by de®nition, since this
solution does not take advantage of the available
capacity, but rather transfers out every item after
its use. The naive solution is not intended as an
attractive or a reasonable policy, but rather as a
benchmark representing the worst possible case.

In all our test problems we used the propor-
tional case with N � 25, T � 100 and maxi�mi�6
K 6 250. In problem sets 1±3, the items' sizes (and

i t� 0 1 2 3 4 5 6 7 8

1 0 1 0 0 0 1 1 1 1

X� 2 0 0 1 1 1 0 0 1 1

3 0 0 0 1 1 1 1 0 0

B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379 373

costs) were chosen from a uniform distribution
with expected item size of 10 and varying standard
deviation; each item had an equal probability of
being required in each time period. In Heuristic 2
we used L � 3.

Table 2 presents the cost of the naive, random,
optimal, Heuristic 1 and Heuristic 2's solutions for
problem set 1 in which the standard deviation of
the items' sizes was low (uniform between 7 and
13). The table also summarizes the average and
maximum deviations of the random and heuristic
solutions from the optimal solution value, for
506K 6 200, where the maximum deviation is the
maximum of the averages computed for each value
of K. We note that for both heuristics as well as for
the random solution, the maximum deviation is
obtained for a larger value of K (K � 200); we
believe that the reason is that in this case, the total

cost is much lower, therefore, every deviation is
large in percentages. However, these are not the
most interesting or di�cult cases.

The cost of the naive, random, optimal and
heuristics' solutions are also presented in Fig. 2;
the optimal and the heuristics' solutions are on the
same line, since their di�erences are very minor
and indistinguishable. We can see from the ®gure
that the value of the random solution decreases
almost linearly with K where the heuristics and the
optimal solution's values are considerably below
that.

Tables 3 and 4 summarize the costs of all so-
lutions and the deviations of the random and
heuristic solutions for problem sets 2 and 3 in
which the standard deviation of the items' sizes is
medium (uniform between 5 and 15) and high
(uniform between 1 and 19), respectively.

Table 2

Problem set 1 ± low standard deviation

Cost K % deviation

20 50 100 150 200 Average deviation Maximum deviation

Naive solution CN 1890 1890 1890 1890 1890 Not relevant Not relevant

Random solution CR 1870 1610 1240 875 454 161% 312%

Optimal solution Copt 1719 1118 594 312 110 ± ±

Heuristic 1 CH1 1725 1123 612 320 116 2.8% 5.4%

Heuristic 2 CH2 1748 1121 601 317 112 1.2% 1.8%

Remark: For every K, average of 10 instances.

Fig. 2. Behavior of the cost as a function of K.

374 B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379

Tables 2±4 show that both heuristics perform
very well, with average deviations of no more
than 2.8%, and maximum deviation of no more
than 5.4% on an average, for large K. The ran-
dom solution does not perform well, with an
average deviation of about 150% above the opti-
mal solution.

When comparing Heuristics 1 and 2, Heuristic
2 has a slight advantage for problems with low
standard deviation of the items' size, as opposed to
problems with high standard deviation of items'
size for which Heuristic 1 has a slight advantage.
We believe that it is the di�erence in the basic
approach (the global look of Heuristic 1 as op-
posed to the iterative procedure of Heuristic 2)
which gives Heuristic 1 the advantage in problems
with high standard deviation of items' size.

In other problem sets that we have tested, the
item's probability to be required in a given period,
was positively (problem set 4) and negatively
(problem set 5) correlated with the item's size.
Again, both heuristics performed very will with an
average deviation of no more than 2% and maxi-
mum deviation of no more than 5% on an average;
here, Heuristic 2 was slightly better in both cases.
Finally, for items of equal size, the average and

maximum deviation of Heuristic 1 were 0.4% and
0.7%, respectively, where for Heuristic 2 we ob-
tained the optimal solution.

The running time of both heuristics is very fast
(less than 1 minute on a 486-66MHZ computer).
Heuristic 1 is a bit faster, since it is a one pass
method, while Heuristic 2 has to choose for every t
from as many sets as determined by the choice of L
and the size of Stÿ1.

6. Generalization of multi-item requests

In this section we demonstrate how our heu-
ristics can be generalized to the case where several
items are requested simultaneously, that is, in the
same time period. This case is of great relevance to
the tool switching problem, where a given opera-
tion may require more than one tool, and all the
required tools have to be on the tool magazine
when the operation is performed. In Section 6.1
we give a sketch of the required modi®cations, the
details are then relatively straightforward; in Sec-
tion 6.2 we present the results of a numerical
study, designed to evaluate the performance of the
modi®ed heuristics.

Table 3

Problem set 2 ± medium standard deviation

Cost K % deviation

20 50 100 150 200 Average deviation Maximum deviation

Naive solution CN 1900 1900 1900 1900 1900 Not relevant Not relevant

Random solution CR 1869 1669 1217 863 417 160.2% 308%

Optimal solution Copt 1750 1148 584 310 102 ± ±

Heuristic 1 CH1 1757 1156 590 315 106 1.8% 3.9%

Heuristic 2 CH2 1764 1158 587 320 102 1.2% 3.2%

Remark: For every K, average of 10 instances.

Table 4

Problem set 3 ± high standard deviation

Cost K % deviation

20 50 100 150 200 Average deviation Maximum deviation

Naive solution CN 1928 1928 1928 1928 1928 Not relevant Not relevant

Random solution CR 1790 1733 1312 753 506 136% 274%

Optimal solution Copt 1726 1225 658 325 135 ± ±

Heuristic 1 CH1 1732 1232 666 329 136 0.9% 1.2%

Heuristic 2 CH2 1747 1257 669 337 136 2.2% 2.6%

Remark: For every K, average of 10 instances.

B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379 375

6.1. Modi®cations of the heuristics

We modify our notation as follows:
T continues to represent the number of requests
and we continue to associate t � 1; . . . ; T with
time periods, but every request may consist
now of up to p items.
d�t� is now a set of items required at time t;
d�t� � fd1�t�; d2�t�; . . . ; dpt�t�g, where pt6 p is
the number of items required at time t.

Modifying Heuristic 1

In the matrix representation of the problem (see
Section 3.1), every column t may contain more
than one element which equals 1. This implies that
there may exist more than T possible improve-
ments (in fact, the number of improvements isPT

t�1 pt6 pT). While before, each time period was
associated with an improvement, now every pair of
t and di�t� 2 d�t� (a time period and an item which
is required in that time period), are associated with
an improvement.

For every period t, an analogous of Eq. (7) is
now de®ned for every di�t� 2 d�t�, and the result-
ing values are denoted as q1

t ; q
2
t ; . . . ; qpt

t , where qi
t is

the distance between period t and the next period
with a requirement for item di�t� 2 d�t�.

An analogy of Eq. (8) results in an improve-
ment criterion for every pair of time/item which
de®nes an improvement, i.e., for every t and every
di�t� 2 d�t�:
improvement criterion

� cost saving

total capacity consumption

� 2cdi�t�
qi

tmdi�t�
:

The heuristic again chooses the improvement
which is associated with the highest improvement
criterion, and therefore the exact algorithm is de-
scribed in a similar way.

Modifying Heuristic 2

The only modi®cations required here are the
following:
1. The set of items transferred out in period t is

chosen such that the resulting free capacity in

the primary warehouse can contain all items
that belong to d�t�.

2. The set of items transferred out in period t con-
tain items that are in the primary warehouse,
and which do not belong to d(t).

The rest of the heuristic is unchanged. With these
modi®cations, however, the parameter L would
typically be large than in the case where only one
item is required every period, therefore the actual
complexity would increase. We expect, however,
that in practical applications, the value of p (the
maximum number of items required every period),
would be reasonably small, since we do not expect
to replace in every period a large part of all items
in the primary warehouse. When p is small and
bounded, the complexity of the algorithm is still
bounded by a polynomial. To reduce the number
of sets that are candidates to be transferred out, L
may be chosen dynamically in each iteration, ac-
cording to the amount of space that needs to be
freed. For example, if at least bt, units have to be
transferred out of the primary warehouse in period
t, we may set in period t: Lt � dbt mini�mi�e= .

An alternative way of modifying Heuristic 2 is
by replacing each period t by pt periods, each of
which requires one item. Then, the only modi®-
cation required is that in none of the pt periods
would item di�t� 2 d�t� be transferred out of the
primary warehouse. This modi®cation does not
increase the algorithm's complexity, but has the
disadvantage of performing an iteration of period t
sequentially rather than simultaneously.

Note that the modi®cations for the heuristics
are necessary only when the items may be trans-
ferred from the primary warehouse in isolation
from each other; otherwise (when they always have
to be kept together), they may be treated as one
big item, as is the case with tool kits discussed in
the introduction.

6.2. Numerical study for the generalized case

We conducted an additional computational
study, designed to evaluate the performance of the
modi®ed heuristics for the general case. As in the
previous study, we compare the solutions obtained

376 B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379

by the heuristics to the value of the optimal solu-
tion, obtained by solving the exact formulation of
the problem. The latter is obtained by a straight-
forward generalization of problem (P2) in Sec-
tion 3; the generalized formulation contains a
larger number of decision variables, determined by
the total number of items requested. As a result,
the general problem is more di�cult to solve op-
timally, and in a few cases it look several days to
obtain the optimal solution.

In all our test problems we used the propor-
tional case with N � 100, T � 100 and K � 100 or

150. The value of p, the maximum number of items
requested simultaneously, was set to 6 (Table 5) or
10 (Tables 6 and 7), where the number of items
requested in every time t, pt, was uniformly dis-
tributed over the interval �1; p�; for every t, all
items had an equal probability of being requested.
Note that when a big tool represents several tools
that form a kit, pt is in fact associated with a larger
number of ``real'' tools.

We applied Heuristic 2 with 3 values of L, see
Tables 5±7; the numbers in the tables represent the
average and the maximum deviations from

Table 5

% deviation from the optimal solution for p� 6 (average, maximum)

Heuristic K

100 150

Heuristic 1 (0.9, 2.0) (0.7, 1.8)

Heuristic 2 L � 6 L � 8 L � 10 L � 6 L � 8 L � 10

�3:8; 7:0� a �3:6; 7:0� �3:6; 7:0� �2:5; 4:4� �2:5; 4:4� �2:5; 4:4�
Average CPU seconds 2 9 24 18 177 941

a In 10% of the problems the execution of the heuristic was not possible due to the restriction of the L value.

Table 6

% deviation from the optimal solution for p� 10 (average, maximum)

Heuristic K

100 150

Heuristic 1 (1.0, 1.8) (0.9, 1.8)

Heuristic 2 L � 6 L � 8 L � 10 L � 6 L � 8 L � 10
a �5:5; 8:2� b �5:4; 7:9� c �4:7; 6:7� �3:8; 5:0� �3:4; 4:9�

Average CPU seconds 1 18 64 27 353 2415

a In all 100% of the problems the execution of the heuristic was not possible due to the restriction of the L value.
b In 20% of the problems the execution of the heuristic was not possible due to the restriction of the L value.
c In 10% of the problems the execution of the heuristic was not possible due to the restriction of the L value.

Table 7

% deviation from the optimal solution for p� 10 (average, maximum) with low standard deviation of itemsÕ sizes

Heuristic K

100 150

Heuristic 1 �1:2; 2:0� �0:9; 1:9�
Heuristic 2 L � 6 L � 8 L � 10 L � 6 L � 8 L � 10

a �3:2; 4:6� b �3:3; 4:7� �2:9; 4:4� c �2:3; 3:4� �2:4; 3:7�
Average CPU seconds N/A 5 13 9 178 928

a In all 100% of the problems the execution of the heuristic was not possible due to the restriction of the L value.
b In 20% of the problems the execution of the heuristic was not possible due to the restriction of the L value.
c In 60% of the problems the execution of the heuristic was not possible due to the restriction of the L value.

B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379 377

optimality of 10 instances of the problem charac-
teristics speci®ed. In addition, we specify for
Heuristic 2 the average CPU time (in seconds) that
was required to execute the algorithm on a Silicon
Graphics ORIGIN200 workstation, 180 MHz; for
Heuristic 1 all algorithm runs took less than 1
second. In Tables 5 and 6 the items' sizes (and
costs) were chosen from a uniform distribution
over the interval �1; 10�, and in Table 7 from a
uniform distribution over the interval �4; 7�.

The results demonstrate that in all problem sets
examined, both heuristics performed very well,
with only a few percentage deviation from opti-
mality. Heuristic 1 performed better than Heuristic
2, with an average deviation of less than 1%, and
as mentioned in less than 1 second. The time to
execute Heuristic 2 depended both on the problem
parameters, and in particular on the value of L.

These results indicate that for the general case,
Heuristic 1 performs better than Heuristic 2.
However, as can be observed from Table 7, when
the standard deviation of the items' sizes decreases,
the gap between the two heuristics becomes smal-
ler, a trend which was also observed in the results
of the numerical study of the basic problem. Since
the problems solved here are relatively large, we
expect that Heuristic 2 would still take a reason-
able amount of time in most real applications, and
recommend to use both heuristics in order to
choose the better solution.

7. Summary

In this paper we provided for the ®rst time an
extensive analysis of the storage management
problem of items with unequal sizes, in two
warehouses with di�erent levels of availability.
This problem has been studied in the context of the
tool switching problem on a ¯exible NC-machine,
mostly for the uniform tool size case. The problem
arises similarly in other cases in which tools/items
are used in a production or a service operation and
where the immediate/primary storage area is not
capable of containing all tools/items that may be
required for the process.

We proved that the problem is NP-Complete,
thus resolving the open question with respect to its

complexity. We further developed two heuristic
procedures that were shown to perform well in a
numerical study. When only one item is required in
each request, no one heuristic performed better
than the other in all cases considered, and in fact,
one should consider using both procedures and
choosing the better solution (their running time
and coding complexity are very minor). In the
generalized case, when several items may be re-
quested simultaneously, one of the heuristics (de-
noted Heuristic 1 in our paper) performed better
than the other in terms of optimality gap as well as
running time, but the gaps between the two heu-
ristics are smaller for some problem characteristics.

An interesting problem for future research is
determining the sequence of tasks to be performed
in the process, if possible. The objective of such a
sequence is to minimize switching costs that will
follow once the process is executed.

References

Bard, J.F., 1988. A heuristic for minimizing the number of tool

switches on a ¯exible machine. IIE Transactions 20 (4), 382±

391.

Crama, Y., 1997. Combinatorial optimization models for

production scheduling in automated manufacturing sys-

tems. European Journal of Operational Research 99,

136±153.

Crama, Y., Oerlemans, A.G., 1994. A column generation

approach to job grouping for ¯exible manufacturing

systems. European Journal of Operational Research 78,

58±80.

Crama, Y., Kolen, A.W.J., Oerlemans, A.G., Spieksma,

F.C.R., 1994. Minimizing the number of tool switches on

a ¯exible machine. The International Journal of Flexible

Manufacturing Systems 6, 33±54.

Deitel, H.M., 1990. Operating Systems, 2nd ed. Addison-

Wesley, Reading, MA.

Garey, M.R., Johnson, D.S., 1979. Computers and Intracta-

bility. Freeman, New York.

Hertz, A., Laporte, G., Mittaz, M., Stecke, K.E., 1998.

Heuristics for minimizing tool switches when scheduling

part types on a ¯exible machine. IIE Transactions 30 (8),

689±694.

Ho�man, A.J., Kolen, A.W.J., Sakarovitch, M., 1985. Totally-

balanced and greedy matrices. SIAM Journal on Algebraic

and Discrete Methods 6 (4), 721±730.

Jain, S., Johnson, M.E., Safai, F., 1996. Implementing setup

optimization on the shop ¯oor. Operations Research 43 (6),

843±851.

378 B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379

Maimon, O., Shtub, A., 1991. Grouping methods for printed

circuit board assembly. International Journal of Production

Research 29 (7), 1379±1390.

Matzliach, B., Tzur, M., 1998. The online tool switching

problem with non-uniform tool size. International Journal

of Production Research 36 (12), 3407±3420.

Nemhauser, G.L., Wolsey, L.A., 1988. Integer and combina-

torial optimization. Wiley, New York.

Privault, C., Finke, G., 1995. Modeling a tool switching

problem on a single NC-machine. Journal of Intelligent

Manufacturing 6, 87±94.

Shanker, K., Tzen, Y.J., 1985. A loading and dispatching

problem in a random ¯exible manufacturing system. Inter-

national Journal of Production Research 23 (3), 579±595.

Shtub, A., Maimon, O., 1992. Role of similarity measures in

PCB grouping procedures. International Journal of Pro-

duction Research 30 (5), 973±983.

Stecke, K.E., 1983. Formulation and solution of nonlinear

integer production planning problems for ¯exible manufac-

turing systems. Management Science 29 (3), 273±288.

Tang, C.S., Denardo, E.V., 1988a. Models arising from a

¯exible manufacturing machine, part I: Minimization of the

number of tool switches. Operations Research 36 (5), 767±

777.

Tang, C.S., Denardo, E.V., 1988b. Models arising from a

¯exible manufacturing machine, part II: Minimization of

the number of switching instants. Operations Research 36

(5), 778±784.

B. Matzliach, M. Tzur / European Journal of Operational Research 121 (2000) 363±379 379

