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Abstract: This article deals with supply chain systems in which lateral transshipments are allowed. For a system with two
retailers facing stochastic demand, we relax the assumption of negligible fixed transshipment costs, thus, extending existing
results for the single-item case and introducing a new model with multiple items. The goal is to determine optimal transship-
ment and replenishment policies, such that the total centralized expected profit of both retailers is maximized. For the single-item
problem with fixed transshipment costs, we develop optimality conditions, analyze the expected profit function, and identify
the optimal solution. We extend our analysis to multiple items with joint fixed transshipment costs, a problem that has not
been investigated previously in the literature, and show how the optimality conditions may be extended for any number of
items. Due to the complexity involved in solving these conditions, we suggest a simple heuristic based on the single-item
results. Finally, we conduct a numerical study that provides managerial insights on the solutions obtained in various settings
and demonstrates that the suggested heuristic performs very well. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 637–664,
2014

Keywords: transshipments; supply chains; fixed costs; multiple items; risk-pooling

1. INTRODUCTION AND LITERATURE REVIEW

Over the past couple of decades, supply chain optimiza-
tion has become one of the most important topics that a firm
must deal with due to globalization, increasing market com-
petition, and accelerated technology development. The main
goals of the firm are to maximize profit and provide cus-
tomers with a high service level. Due to demand variability
and market uncertainty, achieving these goals requires flexi-
bility, short response time and development of new innovative
solutions along the supply chain.

Consider, for example, a chain of stores that sells various
small electrical appliances. On any particular day, customers
of a certain branch may request products that are out of stock,
but these products may be available in one of the other store’s
branches. To avoid lost sales, it may be possible to trans-
ship the requested units from the other store. But this entails
sending a vehicle from the distant branch, thus, incurring
costs such as gas expenses. Due to these costs, transship-
ping only one unit may not be profitable. However, for a
higher number of units that possibly includes different types
of items, the additional profit from meeting all customer
demands may cover the additional expenses and make the
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transshipment worthwhile. Similarly, transshipments of mul-
tiple items involving fixed transshipment costs may occur
when spare parts are transshipped between different repair
centers or when power tools and electric parts for automobiles
are transshipped between distributors, see Rudi et al. [18]. In
these examples, items in large volumes are involved. There-
fore, lateral stock transshipments may be an effective strat-
egy for achieving flexibility and improving the supply chain
performance, even in the presence of fixed transshipment
costs.

Transshipments allow facilities that are at the same echelon
in the supply chain to share inventory. This risk-pooling strat-
egy helps firms to reduce discrepancies between supply and
demand and to consequently avoid some shortage and sur-
plus costs and increase the service level. In addition, when
making replenishment decisions while taking into consider-
ation the possibility of performing transshipments at a later
stage, retailers may partially rely on the inventory of other
retailers. Consequently, the total safety stock in the system
may be reduced.

Over the past decades, a considerable amount of research
has focused on lateral transshipments. The most common
assumption appearing in the literature is that transshipment
costs are proportional to the number of units transshipped.
However, when different items are transshipped together, a
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joint fixed cost is likely to be incurred, in addition to (or
instead of) the variable transshipment cost. This cost may
represent the costs of sending a vehicle from one location to
another (as in the example above) or the payment to a deliv-
ery company that charges a fixed service cost, possibly in
addition to a surcharge that depends on the delivery size. In
the presence of fixed transshipment costs, transshipping units
from a retailer with a surplus to a retailer with a shortage is
not always profitable and depends on the surplus/shortage
levels.

The contribution of this article is in developing and ana-
lyzing single and multi-item transshipment models in which
fixed transshipment costs are considered in addition to the
commonly used variable transshipment costs. In consider-
ing these two types of costs, we extend the transshipment
cost structure discussed in the literature. In particular, the
contributions of this article are as follows: first, we provide
optimality conditions for both the single and multi-item trans-
shipment problems with fixed transshipment costs, in a cen-
tralized system with two retailers facing stochastic demand.
Second, for the single-item problem, we analyze the expected
profit function, characterize the area in which the function is
concave, and demonstrate that solving the optimality condi-
tions yields an optimal solution in most, if not all cases. For
the multi-item problem, we numerically show similar char-
acteristics. Third, for the multi-item problem, we develop a
heuristic, for cases that are computationally hard to solve
to optimality. We also develop upper bounds on the optimal
solution value. The heuristic is evaluated through a numerical
study that demonstrates its effectiveness. Finally, we provide
managerial insights into the solution’s characteristics in rela-
tion to various settings of the problem. In the rest of this
section, we review the transshipment literature that is related
to our work.

Krishnan and Rao [12] introduced the basic two-retailer
inventory problem with transshipments. They considered a
periodic review model with identical cost parameters for each
retailer and later extended it to a general number of retailers.
Tagaras [20] generalized the two-retailer model presented in
Krishnan and Rao by allowing different cost parameters for
the retailers. Robinson [16] extended the multiple retailer
transshipment model by considering multiple periods with
nonidentical cost parameters and developed a heuristic to
solve the problem. Herer et al. [10] investigated the same
multiretailer problem with an infinite horizon and provided
an algorithm, based on an infinitesimal perturbation analy-
sis method, that finds an optimal solution. Rudi et al. [18]
analyzed and derived optimality conditions for the same two-
retailer centralized system as in Tagaras [20], as a basis for
examining and analyzing a decentralized system. Shao et
al. [19] and Rong et al. [17] also considered transshipments
in a decentralized system. The former extended Rudi et al.
[18] by considering both the supplier and retailer’s decisions,

while the latter considered preventive transshipments (trans-
shipments that take place before the demand is realized) in
a system with two retailers and two demand subperiods.
Zhao and Atkins [25] considered two competing retailers
who cooperate to establish transshipment agreements. They
demonstrated that competition can reduce the effectiveness
of transshipments. Other examples of single-item transship-
ment models can be found in Dong and Rudi [4], Zhang [24],
Wee and Dada [21], Gong and Yücesan [6], and Özdemir
et al. [14].

In all of the above models, it was assumed that fixed costs
for inventory replenishment and transshipment are negligi-
ble. This was also mentioned as a common assumption in
the transshipment literature in a recent review by Paterson
et al. [15]. In the absence of fixed costs, decisions regard-
ing a specific unit in the system are made individually,
irrespective of other units. As a result, the transshipment
policy presented in Krishnan and Rao [12], later named
by Tagaras [20] as the complete pooling policy, is optimal
and a replenishment decision following a base stock pol-
icy is also optimal. Adding fixed costs to the above models
has a significant effect on the complexity and the structure
of the optimal solution, as is the case in inventory prob-
lems without transshipments. Herer and Rashit [8] consid-
ered non-negligible, fixed, and joint replenishment costs in
the two-location, single period problem with transshipments.
They showed that while the complete pooling transshipment
policy is still optimal, the base-stock policy is no longer
the optimal replenishment policy. Indeed, the replenishment
policy may have quite a complex structure. Another work
that considers fixed replenishment costs is that of Herer and
Tzur [9]. They, however, assume deterministic and dynamic
demand.

Some studies specifically consider fixed transshipment
costs, but not in a periodic review model with stochas-
tic demand. That of Herer and Tzur [9] mentioned above
dealt with a deterministic environment. Two other studies by
Axsäter [2] and Kukreja and Schmidt [13] deal with a sto-
chastic environment but with continuous review. In Axsäter’s
study, transshipment costs are represented by a general func-
tion that allows the consideration of fixed transshipment
costs; in Kukreja and Schmidt, transshipment costs are fixed,
regardless of the number of units transshipped.

A single-item periodic transshipment model with fixed
transshipment costs, a model that closely resembles ours,
was developed by Estrugo [5]. Estrugo showed that the com-
plete pooling policy is no longer optimal and described an
optimal transshipment policy. For the replenishment pol-
icy, a branch-and-bound algorithm provides heuristic replen-
ishment quantities. None of the existing literature pro-
vides an optimal replenishment policy to the single-item
periodic transshipment problem with fixed transshipment
costs.
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In multi-item systems, where items may share a mutual
capacitated resource or carry joint fixed costs, a significant
cost reduction can be achieved by considering the inven-
tory decisions regarding all items together. Very few papers
address the transshipment problem in a multi-item environ-
ment. Archibald et al. [1] studied the multi-item inventory
system with lateral transshipments in a periodic model with
two retailers and limited capacity. In their model, transship-
ments can occur at any time during the period and the total
demand in the period is unknown when the transshipment
occurs. Wong et al. [23] considered a two-location, multi-
item repairable spare parts inventory system in a continuous
review model. Wong et al. [22] subsequently extended this
model to include multiple locations. Their objective was to
minimize total costs subject to a joint set of service level
constraints. While Wong et al. [22] assume a complete pool-
ing transshipment policy, Kranenburg and Van Houtum [11]
apply a network structure that allows for partial pooling
in a multi-item, multilocation system. As evident from the
above review, none of the multi-item transshipment models
investigated in the literature considered non-negligible, fixed
transshipment costs, as we do in this article.

The rest of the article is organized as follows. In Section
2, we describe the problem’s formulation and notation and in
Section 3, we present the problem’s optimal transshipment
policy. In Section 4, we derive optimality conditions for the
replenishment policy in the single-item problem, discuss the
characteristics of the expected profit function (Section 4.1)
and perform a numerical analysis on the problem’s parame-
ters (Section 4.2). In Section 5, we extend the optimality
conditions to the multi-item problem, develop a heuristic
(Section 5.1) as well as upper bounds on the expected profit
(Section 5.2). In Section 6, we present a numerical study
that demonstrates the heuristic’s effectiveness and Section 7
contains our conclusions.

2. PROBLEM FORMULATION AND NOTATION

We consider a system consisting of two retailers facing
stochastic demand for n items. We analyze the single period
problem where the demand is independent among differ-
ent retailers and items. Extensions to multiple periods and
dependent demands are briefly discussed in the Conclusions
section. At the beginning of the period, each retailer places
an order to the supplier. The order is received and then the
demand at each retailer for each item is realized. Before
demand is satisfied, it is possible to transship units from
retailers with surplus units to retailers with a shortage. At the
end of the period, after demand has been fulfilled (directly or
through transshipments), revenues and costs are incurred and
the total profit in the system is calculated. There are revenues
obtained for each item sold and a salvage value for each item

left at the end of the period. The cost components include
purchase costs from the supplier and a penalty cost for each
unit of unmet demand. All parameters may be retailer and
item-dependent. The goal is to determine replenishment and
transshipment policies such that the total centralized expected
profit of both retailers is maximized. This model generalizes
the work of Tagaras [20] by relaxing the assumption of neg-
ligible fixed transshipment costs and by considering multiple
items.

Our notation is similar to that of Rudi et al. [18], general-
ized to the case with fixed transshipment costs and multiple
items, in a centralized system. We refer to the two retailers
as 1 and 2 or i and j, when discussed in general and use the
index k to denote the item type. In a system with n different
items, each retailer i(i = 1,2) is characterized by:

cik Replenishment cost per unit of item k purchased from
the supplier

rik Revenue per unit sold of item k
pik Penalty cost for every unit of unmet demand of item

k
sik Salvage value per unit of item k left at the end of the

period
Dik A random variable that represents the demand of item

k
dik Demand realization of item k

f ik(.) Demand density function of item k
Fik(.) Demand cumulative distribution function of item k

In addition, for i �= j, (j = 1,2), we define:

τijk Cost per unit of item k transshipped from retailer i to
retailer j

Aij Fixed cost for transshipping items from retailer i to
retailer j

For each retailer i, we also denote:
vik ≡ rik + pik as the marginal value of an additional sale

of item k.
To avoid trivialities, we assume (as in previous studies on

transshipments) the following relationships with respect to
the parameters of each retailer i and each item k:

rik > cik

pik ≥ 0

and the following inequalities for all i,j �= i and all k:

τijk ≥ 0
cik ≤ cjk + τjik

sjk ≤ sik + τijk

vjk ≤ vik + τijk
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The second inequality ensures that it is not profitable for
one retailer to purchase units through another retailer. The
third and fourth inequalities ensure that transshipment will
occur only when one retailer has surplus units and the other
is facing a shortage. We also assume that the fixed trans-
shipment costs are non-negative, that is, Aij ≥ 0 for all
i,j �= i.

The decision variables include the replenishment quan-

tities of retailer i for items 1,...,n, denoted by
→
Qi ≡

(Qi1, . . . , Qin)∀i and the quantities of items 1,...,n trans-

shipped from retailer i to retailer j, denoted by
→
T ij ≡

(Tij1, . . . , Tijn) ∀i, j �= i. Thus, Qik is the replenishment
quantity of retailer i for item k and T ijk is the quantity of
item k transshipped from retailer i to retailer j, (∀i, j �= i).
We also denote:

Qk ≡ (Q1k , Q2k) Replenishment quantities of item k at
the two retailers→

Q≡ (
→
Q1,

→
Q2) Replenishment quantities of all items

at the two retailers→
T≡ (

→
T 12,

→
T 21) Transshipment quantities of all items

in both directions

For each retailer i, we define the following auxiliary
random variables:

Rik = min(Dik , Qik + Tjik − Tijk) Number of units
sold of item k

Zik = (Dik − Qik − Tjik + Tijk)
+ Unmet demand of

item k
Uik = (Qik − Dik + Tjik − Tijk)

+ Surplus units of
item k

We also define for all i and j �= i, the binary variable:
Xij = { 1 if

∑n
k=1Tijk>0

0 otherwise
}, which indicates whether a transship-

ment is performed from retailer i to retailer j, regardless of
the items’ identity and quantity. Then, the expected system
profit is given by:

π(
→
Q,

→
T) =

n∑
k=1

2∑
i=1

[E(rikRik − pikZik + sikUik

−
2∑

j=1
j �=i

τijkTijk) − cikQik]

−
2∑

i=1

2∑
j=1
j �=i

E(AijXij ) (1)

and the objective is to maximize this profit, that is, max

π(
→
Q,

→
T).

An optimal solution of this problem consists of interre-
lated optimal transshipment and replenishment policies. We
present the former in Section 3 and the latter in Sections 4
and 5.

3. OPTIMAL TRANSSHIPMENT POLICIES

As mentioned in the previous section, transshipments
occur after orders have been placed and received and demand
realized. Thus, an optimal transshipment policy is a function
of the replenishment quantities for all items of retailers 1 and

2 (
→
Q1,

→
Q2) and the demand realization for all items of these

retailers (d1k , d2k , k = 1, . . . , n). Although the replenishment
and transshipment decisions are interrelated, the transship-
ment policy presented below is optimal for any given replen-
ishment quantities, thus, enabling a sequential analysis. As
stated in the previous section, the conditions assumed regard-
ing the problem’s parameters ensure that transshipments will
occur only when one retailer has surplus units while the other
is facing a shortage. Consequently, in the analysis below, we
only consider transshipments of this type.

We define aijk as the marginal profit per unit of item k
(k=1...n) transshipped from retailer i to retailer j given that
the unit transshipped is a surplus at retailer i and covers a
shortage at retailer j:

aijk ≡ rjk + pjk − sik − τijk = vjk − sik − τijk i �= j

Thus, the additional system profit from transshipping T ijk

units of item k from i to j is aijkT ijk . Summing this expres-
sion over all items and subtracting the fixed transshipment
cost (paid once for all items), the additional system profit is:∑n

k=1aijkTijk − Aij i �= j

Therefore, it is profitable to transship units from i to j only
when the above expression is non-negative, that is, when:∑n

k=1aijkTijk − Aij ≥ 0 i �= j (2)

For simplicity of analysis and w.l.o.g., we assume aijk >

0 ∀k, ∀i �= j . If aijk < 0 for some k and i �= j, it is clearly not
desirable to transship item k from i to j, and if aijk = 0, we
are indifferent as to whether the item should be transshipped
or not. The implications of these cases on the replenishment
policy can be handled with a few model adaptations, but they
complicate the analysis, and thus, w.l.o.g. are ignored.

We define for each item k:

qijk ≡ Aij

aijk

(3)

Note from Condition (2) that qijk represents the minimum
transshipment quantity of item k from i to j, if transshipped
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alone. Thus, this quantity also represents the minimum trans-
shipment quantity in the single-item case (when dropping the
index k). In the multi-item case considered here, due to pos-
sible transshipments of other items, a lower quantity of item
k may be transshipped from i to j.

There exists a connection between the optimal transship-
ment policy in our case and the policy when no fixed trans-
shipment costs exist (in which case the solution for each item
is obtained independently of the other items). In the absence
of fixed transshipment costs, the optimal transshipment pol-
icy was defined for the single-item case by Krishnan and
Rao [12] and named the complete pooling policy by Tagaras
[20]. Let T̂ij denote the transshipment quantity according to
the complete pooling policy in the single-item case. Then,
omitting the index k from Qik and dik ∀ i to represent the
order quantity and the demand in the single-item case, respec-
tively, the transshipment quantity is the minimum between
the surplus of one and the shortage of the other:

T̂ij ≡ min[(Qi − di)
+, (dj − Qj)

+] i �= j (4)

In the presence of fixed transshipment costs, it is not always
profitable to transship units of a certain item even if one
retailer has surplus units and the other is facing a shortage. As
a result, the complete pooling policy is no longer optimal even
in the single-item case. Nevertheless, the quantity defined by
the complete pooling policy plays an important role in the
definition of the optimal transshipment policy when fixed
transshipment costs are present. Specifically, for the multi-
item problem with fixed transshipment costs, we define the
multi-item constrained complete pooling policy, as an exten-
sion of the complete pooling policy incorporating both the
existence of multiple items and fixed transshipment costs. A
special case of this policy was introduced by Estrugo [5] for
the single-item problem with fixed transshipment costs. We
prove in Theorem 1 below that the multi-item constrained
complete pooling policy is optimal. The policy is defined as
follows:

Let T̂ijk denote the optimal transshipment quantity of item
k from i to j according to the complete pooling transshipment
policy:

T̂ijk ≡ min[(Qik − dik)
+, (djk − Qjk)

+] i �= j (5)

Then, the transshipment quantities according to the multi-
item constrained complete pooling policy are:

Tijk =
{
T̂ijk if

∑n
k=1aijk T̂ijk − Aij ≥ 0

0 otherwise

}
∀i, ∀j �= i, ∀k

(6)

That is, if Condition (2) with transshipment quantities T̂ijk (k
= 1,..., n) holds, then we transship all potential transshipment

quantities (of all items); otherwise, the transshipment is not
profitable and we do not transship any unit of any item.

THEOREM 1: Given any replenishment quantities
→
Q, the

multi-item constrained complete pooling policy defined by
(6) is an optimal transshipment policy.

PROOF: We have already claimed that it is profitable to
transship units from i to j if and only if Condition (2) holds. In
the first case of (6), the condition with transshipment quanti-
ties T̂ijk holds. Moreover, if we transship less than T̂ijk units of
item k, we lose a positive gain of aijk to the system profit. By
the assumptions on the parameters, every extra unit beyond
T̂ijk is also not profitable. In the second case of (6), Condi-
tion (2) with transshipment quantities T̂ijk does not hold and
increasing the transshipment quantities beyond this value will
decrease the system profit even further. �

Notice that when
∑n

k=1aijk T̂ijk − Aij = 0, we are indif-
ferent about whether to implement the transshipment or not.
Accordingly, the optimal transshipment policy, in general,
is not unique. Noting that under the optimal transshipment
policy, the transshipment quantity T ijk is a random vari-

able that depends on the replenishment quantities
→
Q, we can

denote

π(
→
Q,

→
T) ≡ π(

→
Q).

Finally note that when Aij = 0 (i.e., there is no fixed trans-
shipment cost), Condition (2) is always satisfied for every
T ijk ≥ 0, and therefore, the optimal policy according to (6) is
T ijk = T̂ijk for all k. Namely, the multi-item constrained com-
plete pooling policy reduces to the complete pooling policy
for each item.

Our next step is to determine the replenishment policies.
The replenishment policy in the multi-item problem relies
a great deal on that of the single-item problem, which by
itself has not been characterized previously in the literature.
Therefore, we start in Section 4 with a detailed analysis of
the replenishment policy in the single-item case and discuss
the multi-item case in Section 5.

4. THE REPLENISHMENT POLICY FOR THE
SINGLE-ITEM PROBLEM

In this section, we analyze the replenishment policy for the
single-item (i.e., when n = 1) problem with fixed transship-
ment costs. We use the notation presented in the previous
sections but omit the index k that represents item identity.
Note that Aij remains unchanged. Our approach is to repre-
sent the expected profit as a function of the replenishment
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Figure 1. Graphical illustration of events (single item). [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

quantities using optimal transshipment quantities. We then
derive an optimal replenishment policy based on first-order
conditions. In Section 4.1, we provide a detailed character-
istics and properties of the expected profit function and in
Section 4.2, we perform a sensitivity analysis of the obtained
solution.

Similarly to the definitions of aijk and qijk in the multi-
item case, we define for the single-item case: aij ≡ rj +
pj − si − τij = vj − si − τij and qij ≡ Aij/aij . The opti-
mal transshipment policy reduces in the single-item case to
the following: find the complete pooling quantity T̂ij accord-
ing to (4), then if T̂ij≥ qij set T ij = T̂ij , else T ij = 0, for
all i �= j.

Our next step is to determine the optimal replenishment
quantities. In determining the desired replenishment quanti-
ties, our analysis takes into consideration, the transshipments
that may be performed after demand realization, according
to the constrained complete pooling policy.

To specify the expected profit function for given Q1 and Q2,
we define all possible events, describing possible outcomes
of the demand relative to the replenishment quantity values.
Figure 1 graphically illustrates all possible events. It is based
on the illustrations presented in Tagaras [20] and in Rudi et
al. [18], but adapted to our model. In particular, the verti-
cal line drawn at level Q1 + q21 denotes the demand level at
Retailer 1 beyond which it may be worth transshipping units
from Retailer 2 to this retailer. In addition, it is required that
Retailer 2 should observe a demand of no more than Q2−
q21 (denoted by a horizontal line) to make this transshipment
profitable. Together these two conditions define events E3

1
and E4

1 . Similar events are defined by these conditions and
the other vertical and horizontal lines shown in the figure.
We use the following notation for the event numbers defined
below: Ee

i = event e at retailer i, e = 1,..., 6, and: Ee
B= event e

at Both retailers, e = 1,6.

For events E1
i , E3

i , and E4
i (i = 1,2), we introduce the nota-

tion for their respective probabilities, which in some cases
depend also on j �= i:

αi(Qi) ≡ Pr(Di ≤ Qi) = Pr(E1
i ), 1 − αi(Qi)

≡ Pr(Qi < Di) = 1 − Pr(E1
i )

βji(Qi , Qj) ≡ Pr(Qi + Qj − Di < Dj ≤ Qj − qji)

= Pr(E4
i ), j = 1, 2, j �= i

γji(Qi , Qj) ≡ Pr(Qi + qji < Di ≤ Qi + Qj − Dj)

= Pr(E3
i ), j = 1, 2, j �= i

Note that the rest of the events in the analysis below can be
represented by the above notation.

For each retailer i = 1,2 and j �= i, Table 1 summarizes all
possible events and specifies optimal transshipment quanti-
ties for each event. Notice that the events presented in Table 1
cover all of the sample space (the sum of the event probabil-
ities equals one) and that the probability of event E1

i , αi(Qi),
includes the symmetric events that refer to retailer j: E2

j , E3
j ,

E4
j , E5

j .
Through the event diagram and the associated optimal

transshipment policy, it is possible to characterize for each
event the marginal contribution to the profit function that
results from increasing slightly (e.g., by one unit) the replen-
ishment quantity at retailer i, Qi . The marginal profit con-
tribution for each possible event as a result of increasing Qi

(omitting the unit purchase cost ci , common to all events) is
described in Table 2.

By combining all possible events and their probabilities,
and collecting terms, we obtain the partial derivative of the
expected profit function with respect to Qi :

∂π(Qi , Qj)

∂Qi

= vi[Pr(E2
i ) + Pr(E4

i ) + Pr(E5
i ) + Pr(E6

B)]
+ (τji + sj )[Pr(E3

i )] + si[Pr(E1
B) + Pr(E2

j )

+ Pr(E3
j ) + Pr(E5

j )] + (−τij + vj )[Pr(E4
j )]

− ci i, j = 1, 2 i �= j (7)

Using the notation introduced in Table 1 and making the
derivative (7) equal to zero, we obtain:

∂π(Qi , Qj)

∂Qi

= vi[1 − αi(Qi) − γji(Qi , Qj)]
+ (τji + sj )γji(Qi , Qj)

+ si[αi(Qi) − βij (Qi , Qj)]
+ (−τij + vj )βij (Qi , Qj) − ci = 0

i, j = 1, 2 i �= j (8)
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Table 1. Events description and transshipment quantities.

Event Description Event probability Optimal transshipment quantities

E1
i Di ≤ Qi αi(Qi) Tji = 0

E2
i Qi < Di ≤ Qi + qji and Dj ≤ Qi + Qj − Di Tji = 0, Tij = 0

E3
i Qi + qji < Di ≤ Qi + Qj − Dj γji(Qi , Qj) Tji = Di– Qi , Tij = 0

E4
i Qi + Qj − Di < Dj ≤ Qj − qji βji(Qi , Qj) Tji = Qj – Dj , Tij = 0

E5
i Qi + Qj − Dj < Di and Qj − qji < Dj ≤ Qj Tji = 0, Tij = 0

E6
B Qi < Di and Qj < Dj Tji = 0, Tij = 0

Table 2. The marginal addition to the profit function at each event.

Events Use of an additional unit at retailer i Marginal addition

E2
i , E4

i , E5
i , E6

B The additional unit is sold at retailer i vi

E3
i The transshipment quantity from j to i is decreased by one, and an additional unit is salvaged at retailer j τji + sj

E1
B , E2

j , E3
j , E5

j The additional unit is salvaged at retailer i si

E4
j The additional unit is transshipped from i to j and sold at retailer j −τij + vj

Rearranging (8), the first order conditions are:

αi(Qi) − βij (Qi , Qj)
vj − si − τij

vi − si

+ γji(Qi , Qj)
vi − τji − sj

vi − si

= vi − ci

vi − si

i, j = 1, 2 i �= j

We note that the first-order conditions have the exact same
structure as in Rudi et al. [18] except that the probabili-
ties βij (Qi ,Qj ) and γji(Qi ,Qj ) (denoted by Rudi et al. as
βi(Qi ,Qj ) and γi(Qi ,Qj ), respectively) are affected in our
case by the minimal transshipment quantities qij and qji and
are, therefore, more general. Indeed, if we set the fixed trans-
shipment costs to zero, then qij and qji are also equal to
zero, and we obtain the exact same expressions and first-order
conditions.

We also notice that if the fixed transshipment costs are very
high (Aij ,Aji → ∞) then qij ,qji → ∞ and thus, βij (Qi ,Qj )
→ 0, γji(Qi ,Qj ) → 0 ∀ i,j �= i. In this case, the first-order con-
ditions reduce to: αi(Qi) = Pr(Di ≤ Qi) = vi−ci

vi−si
∀i which

is the solution for two independent newsvendor problems.

4.1. Characteristics and Properties of the Expected
Profit Function

After deriving the first-order conditions, we need to under-
stand whether the replenishment quantities which satisfy
them are optimal. Toward that, we investigate the characteris-
tics and properties of the expected profit function π (Qi ,Qj ).
Recall that for the problem without fixed transshipment costs,
Robinson [16] and Herer et al. [10] showed that the equivalent
expected cost function is convex, and therefore, the first-
order conditions are sufficient for optimality. However, when
non-negligible fixed transshipment costs exist, it is unknown
whether this property continues to hold.

In this section, we investigate the properties of the expected
profit function, and specifically provide sufficient conditions
for concavity. We show that the expected profit function is not
concave in general and characterize the range of replenish-
ment quantities in which the concavity conditions hold. Since
the optimal replenishment quantities are within the domain of
the demand distribution functions, we limit ourselves in this
article to the expected profit function within this domain only.
All proofs of the results stated here appear in Appendix A.

The first lemma we present provides sufficient conditions
for the concavity of the expected profit function over a limited
range of the (Qi ,Qj ) domain.

LEMMA 1: For Di with pdf fi(di) and Dj with pdf fj (dj ),
if fi(di) is concave within the range (ai ,bi), ai < bi and fj (dj )
is concave within the range (aj ,bj ), aj < bj , then the expected
profit function is jointly concave within the range: ai+qij ≤
Qi ≤ bi− qji and aj +qji ≤ Qj ≤ bj− qij .

Since it is well known that the normal density function
is concave within the range (μ− σ , μ + σ ), it is immedi-
ately apparent from Lemma 1 that when the demand follows
a normal distribution, the expected profit function is concave
within the range μi − σi + qij ≤ Qi ≤ μi + σi − qji and
μj −σj +qji ≤ Qj ≤ μj +σj −qij . Note that since these are
only sufficient conditions, it is likely that the concavity range
of the expected profit function is actually larger. Additional
sufficient conditions are presented later in this section.

LEMMA 2: For Di with pdf fi(di) and Dj with pdf fj (dj ),
if fi(di) and fj (dj ) are concave functions over their entire
domain, then the expected profit function is jointly concave
over its entire domain.
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Since the uniform density function is linear (hence con-
cave) over its entire domain, we have the following interesting
corollary:

COROLLARY 1: When Di and Dj are independent and
uniformly distributed, that is, fi(di) ∼ U [ai , bi], 0 ≤ ai < bi

and fj (dj ) ∼ U [aj , bj ], 0 ≤ aj < bj , the expected profit
function is jointly concave in (Qi ,Qj ) over the entire domain.

The next lemma presents our most general sufficient condi-
tion for concavity. It can be used to check whether joint con-
cavity is satisfied for certain (Qi ,Qj ) values, and in particular

for (Qi ,Qj ) values that satisfy the first-order conditions.
Moreover, it is the basis for the rest of our analysis concern-
ing more specific conditions. To simplify some expressions,
we use the following definitions:

θ−
ji ≡ Fj (Qj − qij ), θ+

ji ≡ Fj (Qj + qij ) ∀i, j �= i.

Note that 0 ≤ θ−
ji ≤ θ+

ji ≤ 1

LEMMA 3: For Di with pdf fi(di) and Dj with pdf fj (dj ),
the expected profit function is jointly concave over a range
of Qi ,Qj that satisfies:

aijfi(Qi − qij ) − (vi − si)fi(Qi)

aijfi(Qi − qij ) − ajifi(Qi + qji)
> θ−

ji if aijfi(Qi − qij ) − ajifi(Qi + qji) < 0 ∀i, j �= i

aij fi(Qi − qij ) − (vi − si)fi(Qi)

aijfi(Qi − qij ) − ajifi(Qi + qji)
≤ θ+

ji if aijfi(Qi − qij ) − ajifi(Qi + qji) > 0 ∀i, j �= i (9)

Note that (9) refers to both cases of the condition. In the
first case, the denominator of the left expression is negative;
in the second, it is positive.

To obtain an insight on the meaning of Condition (9)
and a clear characterization of the (Qi ,Qj ) values that sat-
isfy it, we consider in the rest of this section, the case
when demand at both retailers is normally distributed, that

is, fi(xi) = e−(xi−μi )
2/2σ2

i√
2πσi

, fj (xj ) = e
−(xj −μj )2/2σ2

j√
2πσj

. To sim-

plify the notation and analysis, we assume from this point
on that the cost parameters at both retailers are identical,
referred to as the symmetric case. Note that the distribution
parameters μi and σi are still retailer-dependent. A similar
analysis can be derived for the nonsymmetric case. However,
since the expressions obtained are more complex and addi-
tional cases need to be considered, they are not presented
here.

For the normal distribution: afi(Qi −q)−afi(Qi +q) < 0
when Qi < μi and afi(Qi − q) − afi(Qi + q) > 0 when Qi

> μi . Therefore, for the symmetric case, when the demand is
normally distributed, Condition (9) reduces to:

afi(Qi − q) − (a + τ)fi(Qi)

afi(Qi − q) − afi(Qi + q)
> θ−

ji if Qi < μi ∀i, j i �= j

afi(Qi − q) − (a + τ)fi(Qi)

afi(Qi − q) − afi(Qi + q)
≤ θ+

ji if Qi > μi ∀i, j i �= j

(10)

where we recall that aij was defined as the marginal profit
per unit transshipped from retailer i to retailer j, which in the
symmetric case is denoted by a and a + τ = v − s since a =
v − s −τ .

Lemma 4 presents equivalent conditions to those of (10),
using Z i and Zj , the standardized replenishment quantities
for retailers i and j, respectively (i.e., Zi = Qi−μi

σi
, Zj =

Qj −μj

σj
). These equivalent conditions present more directly

the relationship between the two standardized replenishment
quantities that satisfy Condition (10). Lemma 4 is based
on a detailed investigation of the left-hand side of (10),
a function which we denote as gi(Qi), that is, gi(Qi) ≡
afi (Qi−q)−(a+τ)fi (Qi)

afi (Qi−q)−afi (Qi+q)
. The detailed investigation of gi(Qi) is

provided in Appendix A.

LEMMA 4: When Di and Dj are independent and nor-
mally distributed, the cost parameters of both retailers are
symmetric, and Zi and Zj are the standardized replenishment
quantities, the expected profit function is jointly concave over
a range of Zi , Zj which satisfy:

−∞ ≤ Zj ≤ ∞ when − q

2σi

+ σi

q
· ln

(
a

a + τ

)
≤ Zi ≤ q

2σi

− σi

q
· ln

(
a

a + τ

)
∀i, j �= i (11)

Zj < 
−1(gi(μi + Ziσi)) + q

σj

when Zi < − q

2σi

+ σi

q
· ln

(
a

a + τ

)
∀i, j �= i (12)

Zj ≥ 
−1(gi(μi + Ziσi)) − q

σj

when Zi >
q

2σi

− σi

q
· ln

(
a

a + τ

)
∀i, j �= i (13)
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Figure 2. (a) Numerical example of the range where Condition (10) is satisfied, (b) Numerical example of the range where the expected
profit function is concave. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Consider (11)–(13) when applied, for example, to retailer i,
and note that these conditions cover all possible values of Z i .
We observe from (11) that for intermediate values of Z i , the
sufficient condition is satisfied for any Zj . Note that since this
condition needs to be satisfied for all i and j �= i, it is satisfied
for intermediate values of Z i and Zj . In each of the ranges
(12) and (13), gi(μi +Ziσi) and 
−1(gi(μi +Ziσi)) increase
in Z i . Therefore, when Z i in the range of (12) decreases, the
upper bound on Zj becomes tighter, so that the largest Zj

that satisfies the condition decreases. Similarly, when Z i in
the range of (13) increases, the lower bound on Zj becomes
tighter, so that the smallest Zj that satisfies the condition
increases. Considering these two conditions for all i and j
�= i, a similar behavior is obtained, although the combined
restrictions may be tighter. From these observations, we con-
clude that in order for the sufficient conditions to be satisfied,
Z i and Zj must increase or decrease simultaneously, so that
they cannot obtain extreme opposite values. Based on this
observation, we conjecture that in the symmetric case, since
Z i = Zj (as claimed more generally for the multi-item case
in Section 5), concavity is always satisfied. While we could
not prove this conjecture analytically, the numerical study
presented at the end of this section supports it.

The range in which the conditions of Lemma 4 [or alterna-
tively, Condition (10)] are satisfied, has the general structure
demonstrated in Fig. 2a, drawn for values (Z i , Zj ) within
the range −3 ≤ Z i ≤ 3 (the horizontal axis) and −3 ≤
Zj ≤ 3 (the vertical axis), which is the relevant solution
range. In this specific example: ci = 2, ri = 7, pi =
0, si = 0.8 ∀i; τij = 1, Aij = A = 200 ∀i, ∀j �= i;
Di ∼ N(150, 30), Dj ∼ N(200, 60). The dark area indi-
cates the range in which the above conditions are satisfied.
Note that this range refers to sufficient conditions only and the
range where the expected profit function is concave may be
larger, but appears to have a similar shape. The actual range
is numerically derived by examining the grid of (Zi , Zj ) with

high resolution, and testing for each combination whether the
Hessian matrix is negative definite. The results, for the same
example, are presented in Fig. 2b. A more detailed derivation
is depicted in Fig. A2 (in Appendix A).

We see both analytically and numerically two “problem-
atic” areas in which the expected profit function may not be
concave. These areas are in the left upper and right bottom
parts of the relevant solution range. This demonstrates our
observation that the expected profit function is concave as
long as Z i and Zj are not extreme opposite values. To illus-
trate the nonconcave areas of the expected profit function, we
present in Fig. 3a, a three-dimensional demonstration of the
expected profit function for the example described above.
The general view appears to agree with the findings stated
above. Since it is difficult to see in this figure the nonconcav-
ity areas (at some opposite values of Z i and Zj ), we present
in Fig. 3b, a cut along the (nonoptimal) value Zj = 2.5. The
nonconcavity area can be clearly observed for small values
of Z i , which correspond to the upper left white area in Fig. 2.

The sensitivity of the shape of the concavity area with
respect to the fixed transshipment cost is demonstrated in
Fig. 4 for the same example described above. In this figure,
the dark area indicates the concavity area for varying values
of the fixed transshipment cost, A. When A = 0 and when
A is very large, the expected profit function is concave over
the entire domain. This is as expected because in these cases
the expected profit function is known theoretically to be con-
cave for any demand distribution. We further observe that for
intermediate values of A, the nonconcave area is the largest
and gradually decreases with smaller or larger values of A.
The dark dot in these figures indicates the solution obtained
by solving the first-order conditions and is observed to be
included within the concavity range in all these cases.

To check whether the solution obtained by the first-order
conditions is within the concavity area for a wider range of
instances, we conducted an extensive numerical experiment.
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Figure 3. (a) A three dimensional demonstration of the expected profit function, (b) Demonstration of the expected profit function: cut along
Zj = 2.5. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Concavity area for varying values of the fixed transshipment cost A. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

For each instance in this experiment, we solved the first order
conditions and examined whether the solution obtained sat-
isfies the most general sufficient concavity conditions for
the nonsymmetric case, that is, Condition (9). In particular,
we generated 19,086 instances of the problem by consider-
ing all combinations of the following parameters (excluding
instances that do not satisfy the basic parameter assumptions,
specified in Section 2):

vi − ci

vi − si

= 0.5, 0.7, 0.9, 0.95, vi − si = 15, 25, 35,

aij = 5, 15, . . . vi − si , μi = 100, σi = 10, 20, 30,

qij = 5, 15, . . . q ≤ min(3σi , 3σj ) ∀i, j �= i

The above parameters are those that affect the first-order
conditions as well as the concavity conditions. Note that other
parameters that are not specified here are implied by the above
parameters, for example, Aij is implied by aij and qij . It can
be observed that the range of values chosen for these parame-
ters represent realistic settings. For example, note that (vi−
ci)/(vi− si) represent the critical ratio of retailer i and σi is
varied from a low value up to 30% of the expected demand
(to avoid negative demand values). For all 19,086 generated
instances, the solution that was obtained satisfied Condition
(9). Therefore, in all of the above examined instances, rep-
resenting a wide variety of parameters, the solution obtained
was within the concavity range.

We conclude that although the expected profit function
is not concave over its entire domain when normal distri-
bution functions are used, we expect the solution obtained
by the first-order condition to be optimal in most, if not
all cases. In case of other demand distributions, concav-
ity must be verified similarly using Condition (9), or by
checking whether the Hessian matrix is numerically negative
definite.

4.2. Sensitivity Analysis

To obtain insights on the solution’s behavior, we present
in this section, the results of additional experiments. Specifi-
cally, we examine the sensitivity of the solution’s characteris-
tics to changes in the fixed transshipment cost (the parameter
which is the focus of this article) as well as to changes in
the standard deviation (s.d.) of the demand. The demand at
each location is assumed to be independent and normally
distributed. For each experiment, we solved the first-order
conditions and checked whether the solution satisfied Condi-
tion (9). In all the experiments performed in this section, the
points obtained from solving the first-order conditions sat-
isfied Condition (9), that is, they were within the concavity
area. Thus, in all these experiments, we refer to the solu-
tion obtained from solving the first-order conditions as the
optimal solution.
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Table 3. Experiments 1–2 parameters.

D1 D2 c1 c2 r1 r2 p1 p2 s1 s2 τ12 τ21

∼ N(150, 30) ∼ N(200, 60) 2 2 7 7 0 0 0.8 1 1 1

Table 4. Experiment 1: nonidentical retailers, varying both fixed transshipment costs

Expected Expected Transshipment probability Total transshipment

A12 = A21 q12 q21 Q∗
1 Q∗

2 Q∗
1 + Q∗

2 profit cost From 1 to 2 (%) From 2 to 1 (%) probability (%)

0 0.0 0 165.00 (0.69) 250.86 (0.80) 415.86 1,639.10 110.90 14 25 38
40 7.7 8 172.46 (0.77) 249.05 (0.79) 421.51 1,627.00 123.00 12 12 24
80 15.4 16 174.97 (0.80) 251.20 (0.80) 426.17 1,619.40 130.60 8 6 15
120 23.1 24 175.94 (0.81) 253.50 (0.81) 429.44 1,615.10 134.90 5 3 9
160 30.8 32 176.26 (0.81) 255.26 (0.82) 431.53 1,611.60 138.40 3 2 5
200 38.5 40 176.30 (0.81) 256.45 (0.83) 432.74 1,611.30 138.70 2 1 3
240 46.2 48 176.22 (0.81) 257.18 (0.83) 433.40 1,608.60 141.40 1 0 1
280 53.8 56 176.18 (0.81) 257.42 (0.83) 433.60 1,609.20 140.80 1 0 1
A → ∞ ∞ 175.94 (0.81) 258.04 (0.83) 433.99 1,609.00 141.00 0 0 0

In Experiments 1 and 2, we vary the fixed transshipment
costs, where the rest of the parameters are specified in Table
3. Note that the parameters of both retailers differ only in
their demand distribution and salvage value. We first vary the
fixed transshipment costs simultaneously in both transship-
ment directions (Experiment 1) and then we vary this cost in
only one direction (from Retailer 1 to 2, Experiment 2). The
results are reported in Tables 4 and 5, respectively.

For each case, we calculate the optimal replenishment
quantities (Q∗

1, Q∗
2), and their associated expected profits and

costs. We include a comparison of the total expected costs,
since the expected profits may be largely affected by a fixed
term that equals the sum (over both retailers) of the marginal
profit per unit multiplied by the expected demand. Moreover,
as in the newsvendor problem, in this transshipment problem
too, maximizing the expected profit is equivalent to mini-
mizing the expected costs (see Bonshtain-Noham, [3]). As
for the (Q∗

1, Q∗
2) values, in addition to the absolute quanti-

ties, we indicate (in parenthesis) their cumulative probability
distribution Fi(Q∗

i ), for comparison purposes. Finally, in the
three right columns of each table, we present the transship-
ment probabilities in each direction separately as well as the
total probability (the latter may deviate slightly from the sum
of the separate probabilities, due to rounding).

As can be seen from Table 4, increasing the fixed trans-
shipment costs simultaneously in both directions decreases
(increases) the expected profit (cost) and increases the total
replenishment quantities, as expected. (Minor deviations may
be observed due to numerical errors.) The expected profit
(cost) decreases (increases) at a larger rate when the value
of A is small since this is where transshipments are used
and contribute most. The contribution of transshipments is
clearly related to the total transshipment probability in the
system, specified in the rightmost column of the table. As

expected, this probability decreases with the fixed transship-
ment costs. This risk pooling effect is also reflected in the
total units replenished Q∗

1 + Q∗
2, a quantity that increases as

the fixed transshipment cost increases and the total transship-
ment probability decreases. Retailer 2 holds relatively more
inventory than Retailer 1 (its F(Q∗

2)-value is larger) due to
a larger salvage value and a higher demand s.d. When no
fixed transshipment cost exists, the transshipment probabil-
ity from Retailer 2 to 1 is higher; otherwise the opposite trend
is observed, probably due to the lower q12 value (the threshold
value for transshipment which is also affected by the salvage
value), compared to q21.

Table 5 shows similar results, although increasing the
transshipment cost only from Retailer 1 to 2 makes it rel-
atively more desirable to keep units at Retailer 2, so that Q∗

2
increases as in the previous experiment, while Q∗

1 decreases.
This means that we rely less (more) on transshipments in the
direction that is more (less) costly, as can also be observed
from the transshipment probabilities. Moreover, the reduc-
tion in the total transshipment probability becomes moderate.
The overall number of units is still increasing and the other
effects are similar to those observed in Table 4. Figure 5a
presents the effect of the fixed transshipment cost on the total
transshipment probability for Experiments 1 and 2. As can
be seen, the transshipment probability decreases at a faster
rate when both fixed costs increase.

In Experiments 3 and 4, we examine the effect of demand
variability. We set the fixed transshipment cost equal to 40
in both directions and vary the demand’s s.d., first for both
retailers (Experiment 3) and then for Retailer 1 only (Exper-
iment 4). The rest of the parameters are the same as those of
Experiments 1 and 2 (presented in Table 3) and the results
are presented in Tables 6 and 7, respectively. As expected,
it can be seen in both tables that as the demand uncertainty
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Table 5. Experiment 2: nonidentical retailers, varying the fixed transshipment cost from 1 to 2

Expected Expected Transshipment probability Total transshipment

A12 A21 q12 q21 Q∗
1 Q∗

2 Q∗
1 + Q∗

2 profit cost From 1 to 2 (%) From 2 to 1 (%) probability (%)

0 40 0.0 8 179.90 (0.84) 237.47 (0.73) 417.37 1631.10 118.90 22 7 29
40 40 7.7 8 172.46 (0.77) 249.05 (0.79) 421.51 1626.70 123.30 12 12 24
80 40 15.4 8 168.23 (0.73) 255.36 (0.82) 423.59 1622.90 127.10 6 15 21
120 40 23.1 8 165.77 (0.70) 258.82 (0.84) 424.59 1621.30 128.70 3 17 21
160 40 30.8 8 164.32 (0.68) 260.73 (0.84) 425.05 1620.30 129.70 2 18 20
200 40 38.5 8 163.48 (0.67) 261.78 (0.85) 425.26 1620.00 130.00 1 19 20
240 40 53.8 8 162.77 (0.66) 262.61 (0.85) 425.37 1619.70 130.30 0 20 20
280 40 53.9 8 162.77 (0.66) 262.61 (0.85) 425.37 1619.40 130.60 0 20 20

Figure 5. (a) The effect of fixed transshipment cost on the
total transshipment probability, (b) the effect of s.d on the total
transshipment probability.

increases, the sum of the replenishment quantities increase,
the expected system profit (cost) decreases (increases), and
the total transshipment probability increases. When we keep
the s.d. of the demand at Retailer 2 constant and increase the
s.d. of the demand at Retailer 1 (Table 7), Retailer 1’s replen-
ishment quantity increases and that of Retailer 2 decreases
because the latter can now rely more on transshipments from
Retailer 1. However, note that the transshipment probabil-
ities increase in both directions, since in spite of the large

replenishment quantity, the increased variability at Retailer
1 may create a significant shortage for this retailer.

Figure 5b presents the total transshipment probability
when one or both s.d. values are varied (the varying val-
ues are presented on the x-axis). Generally, as expected, the
total transshipment probability increases as the s.d. increases
and the general shape of the increase appears (visually) to
be concave. In particular, the increase in the transshipment
probability appears to increase very slowly beyond a cer-
tain s.d. value, which is reasonable. This behavior is also
apparent when the s.d. of only one retailer increases; as
explained above, it increases the transshipment probability
in both directions. Finally, transshipments are more likely to
occur when both retailers have a medium level of variability
(e.g., 30 for both) than when one retailer has a high variability
and the second has a low variability (e.g., 60 and 10).

To conclude the numerical results of this section, several
interesting observations can be made. As in the case with
no fixed transshipment costs, the decision of each retailer
depends on the parameters of both retailers, but in our case,
the dependency on each direction’s fixed transshipment cost
is particularly strong. When the fixed transshipment costs are
relatively low, the replenishment decisions and the system
performance are more sensitive to changes in the parameters
because then transshipments are used more. When demand
variability increases, even for only one retailer, transship-
ments are used more in both directions. This mitigates on the
system’s increased costs, similar to what occurs in the case
of no fixed transshipment costs.

5. THE REPLENISHMENT POLICY IN THE
MULTI-ITEM PROBLEM

Now we seek to determine the first-order conditions for the
multi-item case. In particular, we consider an inventory sys-
tem that consists of two retailers facing a stochastic demand
for n items as described in Section 2. As in the single-item
case, we take into consideration the transshipments that may
be performed following demand realization, according to the
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Table 6. Experiment 3: normal distribution, nonidentical retailers, varying both SD

Expected Expected Transshipment probability Total transshipment

σ1 σ2 Q∗
1 Q∗

2 Q∗
1 + Q∗

2 profit cost From 1 to 2 (%) From 2 to 1 (%) probability (%)

10 10 158.25 (0.80) 209.38 (0.83) 367.63 1718.90 31.10 2 3 5
20 20 164.80 (0.77) 217.74 (0.81) 382.53 1691.50 58.50 6 9 15
30 30 167.30 (0.72) 219.35 (0.74) 386.65 1663.90 86.10 12 13 24
40 40 176.29 (0.74) 234.24 (0.80) 410.53 1639.90 110.10 10 14 25
50 50 181.74 (0.74) 242.66 (0.80) 424.40 1615.10 134.90 11 16 27

Table 7. Experiment 4: normal distribution, nonidentical retailers, varying the SD from 1 to 2

Expected Expected Transshipment probability Total transshipment

σ1 σ2 Q∗
1 Q∗

2 Q∗
1 + Q∗

2 profit cost From 1 to 2 (%) From 2 to 1 (%) probability (%)

10 60 160.15 (0.84) 254.47 (0.82) 414.62 1646.50 103.50 9 3 12
20 60 167.29 (0.81) 250.48 (0.80) 417.76 1637.20 112.80 11 8 19
30 60 172.46 (0.77) 249.05 (0.79) 421.51 1627.40 122.60 12 12 24
40 60 177.22 (0.75) 249.04 (0.79) 426.26 1615.90 134.10 12 14 26
50 60 182.03 (0.74) 249.88 (0.8) 431.91 1604.30 145.70 12 16 28

multi-item constrained complete pooling policy. With some
adaptations, we use a possible event diagram as defined in the
single-item case, for each item k separately. Figure 6 presents
the graphical illustration of events for any item k, where we
recall that qijk , defined in (3), represents the minimum trans-
shipment quantity of item k from i to j, if transshipped alone.
As can be seen, each item has 10 possible events. When we
look at the whole system, there are 10n possible events, rep-
resenting all combinations of possible events for each of the
items. Similar to the single-item case, we use the following
notation for the event numbers defined below: Ee

ik= event e
for item k at retailer i, e = 1,..., 6, and: Ee

Bk= event e for item
k at Both retailers, e = 1,6. Table 8 describes the events with
respect to a specific retailer (retailer i).

Due to the fact that in some of the events the decision of
whether to transship a certain item depends on the demand
realization of other items, these events are presented in the
figure as a union of events. The union includes one subevent
in which transshipment occurs and one in which it does not.
For example, in event E2

1k= E2a
1k ∪E2b

1k , the shortage at Retailer
1 from item k is by itself insufficient for transshipment to this
retailer. But, in subevent E2a

1k , the potential transshipment
quantities of other items from Retailer 2 to Retailer 1 do not
make the transshipment in this direction profitable while in
subevent E2b

1k , they do.
For events E1

ik , E2b
ik , E3

ik , E4
ik , and E5b

ik ∀ i = 1, 2, we
introduce notations for their respective probabilities that are
similar to those presented in the single-item model with the
necessary adaptations to the multi-item case:

αik(Qik) ≡ Pr(E1
ik), 1 − αik(Qik) ≡ 1 − Pr(E1

ik)

βjik(Qk) ≡ Pr(E4
ik)

Figure 6. Graphical illustration of events (multi-items). [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

γjik(Qk) ≡ Pr(E3
ik)

δjik(
→
Q) ≡ Pr(E2b

ik )

ϕjik(
→
Q) ≡ Pr(E5b

ik )

Table 8 summarizes all possible events for retailer i (i �=
j) and item k, and specifies optimal transshipment quanti-
ties for each event. Note that the probabilities of all events
described in Table 8 sum up to one. Note also that the
probability αik(Qik) is a function of the replenishment quan-
tity of item k at retailer i only (it includes the respective
events that refer to retailer j: E2a

jk , E2b
jk , E3

jk , E4
jk , E5a

jk , E5b
jk ).

The probabilities βjik(Qk) and γjik(Qk) are functions of the
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Table 8. Events description and transshipment quantities—multi-item model

Event Description Probability Transshipment

E1
ik Dik ≤ Qik αik(Qik) Tjik = 0

E2a
ik Qik < Dik ≤ Qik + qjik and Djk ≤ Qik + Qjk − Dik and

∑n
m=1 ajimT̂jim − Aji < 0 Tjik = 0, Tijk = 0

E2b
ik Qik < Dik ≤ Qik + qjik and Djk ≤ Qik + Qjk − Dik and

∑n
m=1 ajimT̂jim − Aji ≥ 0 δjik(

→
Q) Tjik = Dik − Qik , Tijk = 0

E3
ik Qik + qjik < Dik ≤ Qik + Qjk − Djk γjik(Qk) Tjik = Dik– Qik , Tijk = 0

E4
ik Qik + Qjk − Dik < Djk ≤ Qjk − qjik βjik(Qk) Tjik = Qjk– Djk , Tijk = 0

E5a
ik Qik + Qjk − Djk < Dik and Qjk − qjik < Djk ≤ Qjk and

∑n
m=1 ajimT̂jim − Aji < 0 Tjik = 0, Tijk = 0

E5b
ik Qik + Qjk − Djk < Dik and Qjk − qjik < Djk ≤ Qjk and

∑n
m=1 ajimT̂jim − Aji ≥ 0 ϕjik(

→
Q) Tjik = Qjk − Djk , Tijk = 0

E6
Bk Qik < Dik and Qjk < Djk Tijk = 0

replenishment quantities of item k at both retailers while

probabilities δjik(
→
Q) and ϕjik(

→
Q) are functions of all the

replenishment quantities from all items at both retailers.
Overall we have n diagrams, one for each item, similar to

the one presented in Fig. 6. Through the event diagrams and
the associated optimal transshipment policy, it is possible to
characterize the marginal contribution to the profit function
that results from slightly increasing (e.g., by one unit) the
replenishment quantity of item k at retailer i, Qik . Based on
the description of events in Table 8, the marginal profit con-
tribution for each possible event as a result of increasing Qik

(omitting the unit purchase cost ci , common to all events) is
described in Table 9.

By combining all possible events and their probabilities,
and collecting terms, we obtain the partial derivative of the
expected profit function with respect to Qik:

∂π(
→
Q)

∂Qik

= vik[Pr(E2a
ik ) + Pr(E4

ik) + Pr(E5a
ik ∪ E5b

ik )

+ Pr(E6
k )] + (τjik + sjk)[Pr(E2b

ik )] + Pr(E3
ik)]

+ sik[Pr(E1
Bk) + Pr(E2a

jk ∪ E2b
jk ) + Pr(E3

jk)

+ Pr(E5a
jk )] + (−τijk + vjk)[Pr(E4

jk)

+ Pr(E5b
jk )] − cik i, j = 1, 2 i �= j , k = 1..n

(14)

Using the notation introduced in Table 8 and making the
derivative (14) equal to zero, we obtain (using the identity:
E1

Bk = E1
ik − (E2a

jk ∪ E2b
jk ∪ E3

jk ∪ E4
jk ∪ E5a

jk ∪ E5b
jk )

∂π(
→
Q)

∂Qik

= vik[1 − αik(Qik) − δjik(
→
Q) − γjik(Qk)]

+ (τjik + sjk)[δjik(
→
Q) + γjik(Qk)]

+ sik[αik(Qik) − βijk(Qk) − ϕijk(
→
Q) + (−τijk + vjk)

× [βijk(Qk) + ϕijk(
→
Q)] − cik = 0

i, j = 1, 2 i �= j , k = 1..n (15)

Rearranging (15), the first-order conditions are:

αik(Qik) − [βijk(Qk) + ϕijk(
→
Q)]vjk − sik − τijk

vik − sik

+ [γjik(Qk) + δjik(
→
Q)]vik − τjik − sjk

vik − sik

= vik − cik

vik − sik

i, j = 1, 2 i �= j , k = 1..n (16)

We can see that the structure of the first-order conditions
for each item is very similar to that of the single item. The dif-

ference is in the additional probabilities δjik(
→
Q) and ϕjik(

→
Q),

that are associated with those cases in which the transship-
ment of an item occurs due to the transshipment of another
item (or items) in the same direction. Note also that the prob-

ability expressions ϕjik(
→
Q) and δjik(

→
Q) in (16) are defined

with respect to the demand realization of each of the n items
at each of the two retailers, and thus, are complicated expres-
sions to evaluate. This is addressed in the next section by
presenting a heuristic for obtaining replenishment quantities.

As in the single-item model, we notice that if the fixed
transshipment costs are very high (Aij → ∞ and Aji →
∞) then Condition (2) never holds and thus: βijk(Qk) →
0, γjik(Qk) → 0, δjik(

→
Q) → 0, ϕijk(

→
Q) → 0, ∀i, j �=

i, ∀k = 1 . . . n. In this case, the first-order conditions reduce
again to αik(Qik) = Pr(Dik ≤ Qik) = vik−cik

vik−sik
∀i, ∀k =

1 . . . n which is the solution for 2n independent newsvendor
problems.

Although we could not prove it analytically, we conjecture
that due to the similar structure of the first-order conditions,
the expected system profit function in the multi-item case has
characteristics that are similar to those found in the single-
item case. For two items with uniform demand distribution
functions, for which we could solve the first-order conditions
directly, we conducted an extensive search on the replen-
ishment quantities to verify that this solution achieved the
highest expected profit. The following parameters were used:
for item 1: Di1 ∼ U [0, 500], ci1 = 10, ri1 = 30, pi1 =
5, si1 = 4, ∀i, for item 2: Di2, ∼ U [0, 400], ci2 = 12, ri2 =
32, pi2 = 5, si2 = 4, ∀i and τijk = 1, ∀i, ∀j �= i, ∀k;
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Table 9. The marginal addition to the profit function at each event

Events Use of an additional unit of item k at retailer i Marginal addition

E2a
ik , E4

ik , E5a
ik , E5b

ik , E6
k An additional unit is sold at retailer i vik

E2b
ik , E3

ik The transshipment quantity from j to i is decreased by one, τjik + sjk

and an additional unit is salvaged at retailer j
E1

k , E2a
jk , E2b

jk , E3
jk , E5a

jk An additional unit is salvaged at retailer i sik

E4
jk , E5b

jk An additional unit is transshipped from i to j and sold at retailer j −τijk + vjk

the parameters Aij = Aji were varied between 1000, 1400,
1800,..., 3800. In all the cases examined, the replenishment
quantities obtained from solving the first-order conditions
achieved the highest expected profit and thus our conjecture
was confirmed.

Since extending our concavity conditions to the multi-
item problem was analytically intractable, we conclude this
section with a numerical insight for the multi-item, normal
distribution case, with identical cost parameters and demand
distribution for all items at both retailers. We note that in this
case, a solution with identical replenishment quantities, that
is, Qik = Q ∀ i, ∀ k, which satisfies one of the 2n first-order
optimality conditions, satisfies all other first-order optimal-
ity conditions, since the conditions are symmetric. Therefore,
we focus on identical replenishment quantities for all retail-
ers and items, obtaining a single-variable expected profit
function. In Fig. 7, the expected profit function is calcu-
lated through simulation for one example, for 2, 3, 4, and
10 items, for a replenishment quantity between the range of
the expected demand minus/plus three s.ds. In this example,
the cost parameters are those of item 1 in the above example,
where Aij = 1000 ∀ i, ∀ j �= i and Dik ∼ N(200,60) ∀ i, ∀
k. Although this does not qualify as a proof and the graph
refers to one example only, the functions appear (visually) to
be concave, with a relatively steep (flat) slope for replenish-
ment quantities that are smaller (larger) than the maximum
point. This leaves the door open for future research that may
attempt to find conditions for concavity in the multi-item
case and possibly demonstrate that they are satisfied for a
wide range of parameters.

5.1. Heuristic for Finding Replenishment Quantities in
the Multi-Item Problem

Solving the first-order conditions involves solving equa-
tions with multidimensional (2n) integrals. For systems with
normally distributed demands and two or more items, this is
computationally intractable, even when using state-of-the-art
mathematical software. Using such software, we were able
to solve only problems with two items and uniform demand
distributions. Therefore, we suggest a simple heuristic to
determine the replenishment quantities while still applying
the optimal transshipment policy. Since the suggested heuris-
tic relies on our ability to solve the single-item problem, it

Figure 7. The expected profit function, multiple items, and
identical retailers.

decomposes the multi-item problem into subproblems, one
for each item. To overcome the fact that in the single-item
problems the “cooperation” between the items is not consid-
ered, we use modified (lower) fixed transshipment costs in
each single-item problem, where this modified cost depends
on the number of items.

The heuristic is described as follows:

(i) Decompose the multi-item problem into n single-
item problems, one for each item.

(ii) Solve each single-item problem separately. For each
item k, use the modified fixed transshipment cost
Âijk , where:

Âijk = fijk · Aij

n
, ∀i, j �= i (17)

f ijk is a constant factor within the range: 1 ≤ f ijk ≤
n.

Note that according to (17), as the number of items
increases, the allocated fixed cost per item decreases. This is
because incurring the fixed transshipment cost may be ben-
eficial even when each separate item transships according to
only a smaller part of the original fixed transshipment cost.
Yet, since not all items may necessarily transship together, we
believe that the factor f ijk should be larger than one so that
even a subset of items can “cover” the fixed transshipment
costs.
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The impact of the factor f ijk , together with the overall eval-
uation of the heuristic’s performance, was examined through
a series of numerical experiments, described in Section 6.
Based on these experiments, and aspiring for simplicity, we
recommend on a single value of f for all instances. Our results
indicate that setting f = 1.5 provides the best overall results.
We note, however, that slightly higher values of f also provide
good results.

5.2. Upper Bounds on the Optimal System Profit

One way of evaluating our heuristic is to compare its
expected profit to an upper bound on the optimal expected
profit. We first show, in Lemma 5, that when using optimal
transshipment quantities, the expected system profit can be
expressed as the sum of three components. Those compo-
nents are: the expected profit when no transshipments are
performed (the newsvendor expected profit, denoted for item
k by E[P NV

k (Qk)]); the expected profit gained from trans-

shipments, denoted by E [PT R (
→
Q)]; and the expected fixed

transshipment cost (with a minus sign), denoted by E [FT R

(
→
Q)]. These terms satisfy the following identities:

E[P NV
k (Qk)] =

2∑
i=1

[E(rik min(Dik , Qik) − pik(Dik − Qik)
+

+ sik(Qik − Dik)
+) − cikQik] (18)

E[P TR(
→
Q)] = E

[ n∑
k=1

(ajikTjik + aijkTijk)

]
(19)

E[F TR(
→
Q)] = AjiE(Xji) + AijE(Xij ) (20)

And as stated above, we have the following result:

LEMMA 5: The expected system profit π (
→
Q) under the

optimal transshipment policy can be written as the following
sum:

π(
→
Q) =

n∑
k=1

E[P NV
k (Qk)] + E[P TR(

→
Q)] − E[F TR(

→
Q)]

(21)

The proofs of all claims and lemmas presented in this
section appear in Appendix B.

In addition, we use the following notation which is used in
the lemmas below:

• →
Q ∗(A=0) ≡ Optimal replenishment quantities when
Aij = Aji = 0

• →
Q ∗(A>0) ≡ Optimal replenishment quantities with
strictly positive fixed transshipment costs Aij and Aji

• π (
→
Q, A = 0) ≡ Expected system profit with replen-

ishment quantities
→
Q and fixed transshipment costs

equal to zero. In a similar way π (
→
Q, A > 0) denotes

the expected system profit with replenishment quan-

tities
→
Q and strictly positive fixed transshipment costs

Aij and Aji .

• E[PT R(
→
Q, A = 0)] ≡ Expected profit from trans-

shipments with replenishment quantities
→
Q and fixed

transshipment costs equal to zero (when following
the optimal transshipment policy). In a similar way

E[PT R(
→
Q, A > 0)] denotes the expected profit from

transshipments with replenishment quantities
→
Q and

strictly positive fixed transshipment costs Aij and Aji .

Claim 1 is used to prove Claim 2, which is used to prove
Lemma 6 below.

CLAIM1 1: Using the same replenishment quantities (
→
Q),

the expected profit from transshipments (weakly) decreases
in A and in particular:

E[P TR(
→
Q∗(A>0), A = 0)] ≥ E[P TR(

→
Q∗(A>0), A > 0)] (22)

CLAIM2 2: The expected system profit from using replen-

ishment quantities
→
Q∗(A>0) in a system with A = 0 is (weakly)

higher than the optimal expected profit of the same system
with Aij and Aji > 0, that is,

π(
→
Q∗(A>0), A = 0) ≥ π(

→
Q∗(A=0), A > 0) (23)

We are now ready to define and prove our first upper bound.

LEMMA 6: The system’s optimal expected profit with Aij

= Aji = 0 is an upper bound on the optimal expected profit of
the same system with Aij and Aji > 0. We denote it as UB1,
that is,

UB1 ≡ π(
→
Q∗(A=0), A = 0) ≥ π(

→
Q∗(A>0), A > 0)

UB1 is a trivial upper bound. In the following lemma, we
present a tighter upper bound, denoted as UB2.

LEMMA 7: Subtracting the optimal expected fixed trans-
shipment costs in a system with strictly positive fixed trans-

shipment costs Aij and Aji (denoted as E[FT R(
→
Q ∗(A>0), A

> 0)]) from UB1 is an upper bound on the optimal expected
profit. We denote it as UB2, that is,

UB2 ≡ UB1 − E[F TR(
→
Q∗(A>0), A > 0)]
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= π(
→
Q∗(A=0), A = 0) − E[F TR(

→
Q∗(A>0), A > 0)]

≥ π(
→
Q∗(A>0), A > 0) (24)

To use UB2, we need to calculate E[FT R(
→
Q ∗(A>0), A >

0)] and for this, we need to find the probabilities for execut-
ing transshipments in each direction. For two or more items,
it is difficult to compute these probabilities (except for two
items in the uniform case). Furthermore, they are based on
the optimal replenishment quantities, which are also hard to
compute (otherwise, we would not need an upper bound). To
overcome this problem, we suggest the following alternative
that leads to an additional bound: estimate the transshipment
probabilities by simulation, using the replenishment quan-
tities received from the heuristic solution. While using this
estimated value does not necessarily result in an upper bound,
we believe it would be close to UB2, and therefore, we refer
to it as an approximate upper bound, denoted as ŨB2. A
numerical study, in which ŨB2 is compared to the heuristic
solution when n ≥ 2, is presented in the next section.

We conclude this section with a theorem that demonstrates
the advantage of considering items together, while perform-
ing transshipments in a multi-item system with fixed trans-
shipment costs. For this purpose, we examine the average (per

item) expected profit (i.e., π (
→
Q)/n) in a system with identical

items and retailers. While it is obvious that adding an item to a
system increases the expected system profit, the effect on the
profit per item is not so obvious. This is because as the num-
ber of items increases, we transship more, which increases

the expected profit from transshipments (E[PT R(
→
Q)]), but

also increases the expected fixed cost paid for transshipments

(E[FT R(
→
Q)]). As we prove in the next theorem, the profit per

item is (weakly) increasing with the number of items.

THEOREM 2: The optimal average (per item) expected
profit in a multi-item system with identical items and retail-
ers is (weakly) increasing with the number of items, n. That
is, if the optimal expected profit with n items is denoted by
πn(Q∗

n), then:
πn+1(Q

∗
n+1)

n+1 ≥ πn(Q
∗
n)

n
where Q∗

n is the optimal
replenishment quantity for each item k and retailer i, in a
system with n identical items and two identical retailers.
(Q∗

ik = Q∗
n ∀i, ∀k).

6. THE HEURISTIC PERFORMANCE

In this section, we present numerical experiments related
to our suggested heuristic. These experiments had several
goals. First, we examined the sensitivity of the heuristic’s
performance to the choice of the f ijk parameter. Second,
the performance of the heuristic was evaluated, and finally,
we examined the sensitivity of the heuristic performance to

changes in the fixed transshipment costs and the number of
items.

The impact of the factor f ijk was examined through a series
of numerical experiments in which we fixed f ijk = f ∀ i, j �=
i, k, for simplicity. We then varied its value, calculated the
heuristic profit and compared it to the “best” profit found by
an extensive search of the replenishment values. In partic-
ular, we tested the values f = 1, 1.5, 2,...,n for n = 4, 6, 8,
and 10, for A = 1000, 2000, and 3000 for both symmetric and
nonsymmetric instances. The exact setting of this experiment
and the detailed results are presented in Appendix C.

Three important observations were obtained from the
results. (1) In the symmetric case, all values of f in the above
range provided profits that are extremely close to the best
profit, where the largest deviation was 0.15%. Thus, any f
within the above interval would provide close to optimal
results. (2) In the nonsymmetric case, while the deviations
of the expected profit of the heuristic solutions from those of
the best solutions are higher than in the symmetric case, they
are still relatively low, with an average deviation of 0.52%
and a maximal deviation of 2.55%. (3) In the nonsymmetric
case, setting f = 1.5 provided the overall best results, with a
deviation of only 0.28% on average. Based on these obser-
vations, we recommend for the sake of simplicity setting f =
1.5 in all cases, even though this value did not achieve the
best results in every instance. While it may be possible to
slightly improve the performance of the heuristic by setting
f values that depend on some of the problem’s parameters
(e.g., A and/or n), this requires a further extensive investi-
gation, which we believe cannot improve the performance
significantly. Finally, while recommending to set f = 1.5 in
all cases, we note that slightly higher values of f also provide
good results.

The above experiment also demonstrated that the heuristic
with f = 1.5 performs very well, with an average gap from
the best solution of 0.04% in the symmetric case and 0.28%
in the nonsymmetric case. We note that performing such an
extensive search is not practical; it is performed here only for
comparison purposes.

The next experiment provides more information about the
performance of the heuristic, as well as on the performance
of the upper bound. Table 10 presents a comparison between
the approximate upper bound ŨB2, the best expected profit
and the heuristic expected profit for systems with identical
items and retailers. The cost parameters are equal to those
of Experiment C1 in Appendix C. Â is the modified, fixed
transshipment cost used in the heuristic, computed accord-
ing to (17) with f = 1.5 and q̂ is the minimal transshipment
quantity for the single-item model when A = Â. Q(H) and
π (Q(H)) are the replenishment quantity and expected profit
obtained from the heuristic, respectively, and in the next
column, the one directional transshipment probability is pre-
sented. We examine systems with 2, 3, 4, and 10 items. The
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Table 10. Comparison between ŨB2, the best solution and the heuristic solution

Best solution Heuristic solution Heuristic Gap

One direction transshipment  from  from best
A Q∗ π(Q∗) Â Q(H) π(Q(H)) probability (%)* ŨB2 (%) solution (%)

n = 2

0 238 (0.74) 14534.0 0 237.1 (0.73) 14534.0 36 0.46 0.00
1000 247 (0.78) 14102.4 750 245.5 (0.78) 14101.8 11 2.40 0.00
2000 249 (0.79) 13985.8 1500 249.9 (0.80) 13984.7 3 3.55 0.01
3000 252 (0.81) 13962.9 2250 251.4 (0.81) 13963.1 1 3.97 0.00

A → ∞ 252 (0.81) 13957.5 Â → ∞ 251.9 (0.81) 13958.1 0 3.97 0.00

n = 3

0 237 (0.73) 21803.4 0 237.1 (0.73) 21804.3 48 0.00 0.00
1000 244 (0.77) 21183.5 500 243.1 (0.76) 21180.8 18 1.28 0.01
2000 250 (0.80) 20993.5 1000 247.4 (0.79) 20987.4 5 2.95 0.03
3000 250 (0.80) 20948.2 1500 249.9 (0.80) 20946.2 1 3.67 0.01

A → ∞ 252 (0.81) 20938.0 Â → ∞ 251.9 (0.81) 20937.1 0 3.97 0.00

n = 4

0 237 (0.73) 29070.3 0 237.1 (0.73) 29069.4 59 0.00 0.00
1000 243 (0.76) 28281.2 375 241.7 (0.76) 28275.6 25 1.06 0.02
2000 249 (0.79) 28010.7 750 245.5 (0.78) 28002.3 8 2.67 0.03
3000 249 (0.79) 27937.5 1125 248.2 (0.79) 27932.5 2 3.51 0.02

A → ∞ 252 (0.81) 27916.4 Â → ∞ 251.9 (0.81) 27916.1 0 3.97 0.00

n = 10

0 237 (0.73) 72677.5 0 237.1 (0.73) 72674.3 89 0.00 0.00
1000 240 (0.75) 71199.3 150 239.0 (0.74) 71195.5 59 0.43 0.01
2000 244 (0.77) 70360.4 300 240.8 (0.75) 70336.4 31 1.56 0.03
3000 249 (0.79) 69996.6 450 242.5 (0.76) 69938.4 14 2.68 0.08

A → ∞ 252 (0.81) 69790.9 Â → ∞ 251.9 (0.81) 69790.3 0 3.97 0.00

* In all cases, we evaluate the transshipment probabilities based on the heuristic replenishment quantities Q(H).

optimal replenishment quantities (Q∗) were found through
an extensive search on integer values between the expected
demand plus/minus three s.ds. For each value of Q in this
interval, we calculated the expected profit through simula-
tion and chose the best solution whose profit is π (Q∗). Using
symmetric parameters for each item and each retailer enabled
us to search for only one value of Q∗ instead of a series
of Q∗

ik
′s (because, as claimed in Section 5, the replenish-

ment quantities are equal for each item and each retailer).
Consequently, we were able to keep the search time at a
reasonable level. In general, searching for the best solution
requires large computational efforts, thus, using a simple
heuristic with a good performance is preferable. Using our
upper bound, we verify that a certain solution is not far from
optimality.

As can be seen from Table 10, the gap between the expected
profits of the heuristic solutions and the corresponding best
solutions do not exceed 0.08%, with an average gap of 0.01%.
These results are similar to those obtained in the experiment
presented in Appendix C. The replenishment quantities of
both solutions are also very close, where the largest dif-
ferences are obtained for intermediate values of the fixed
transshipment cost. For a given number of items, the gap
between the expected profit of the heuristic and ŨB2 is rel-
atively small for low values of A but increases in A up to a
maximum value of about 3.97% when A → ∞. Note that
for A → ∞, ŨB2 is equal to the optimal solution of the

problem with A = 0, since no transshipments occur, so that
no expected fixed transshipment cost is reduced from UB1.
Thus, this bound is weaker for large values of A. This observa-
tion is insensitive to the number of items. In other words, for a
given number of items, the deterioration in the quality of ŨB2
as A increases can be explained by the decrease in the actual
transshipments in the optimal solution (as can be observed
by the transshipment probability column), a decrease which
is not accounted for in the calculation of ŨB2.

The decrease in the transshipment probability and the
impact of the number of items on this probability are depicted
in Fig. 8a. As we would expect, the figure shows that for
every value of fixed transshipment costs, the transshipment
probability is higher as the number of items is larger. For rel-
atively small values of fixed transshipment costs and a large
number of items, transshipment will occur with a very high
probability, since “covering” the fixed transshipment cost can
be accomplished by many combinations of item identities
and quantities. In Fig. 8b, the transshipment probability is
depicted for an example with the same parameters except that
A = 1000 and the s.d. of the demand distribution functions
vary between 20 and 80. Again, the transshipment probabil-
ity increases with the number of items, as well as with the
s.d. value.

In the case of varying fixed transshipment costs, we calcu-
lated for each system the average (per item) expected profit

(i.e., π (
→
Q)/n). The numerical results, presented in Table 11,
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Figure 8. (a) The effect of fixed transshipment cost and number
of items on transshipment probability, (b) The effect of standard
deviation and number of items on transshipment probability (A =
1000).

Table 11. Profit per item

n A = 0 A = 1000 A = 2000 A = 3000 A → ∞
2 7267.5 7050.9 6992.3 6981.5 6979.0
3 7267.5 7060.3 6995.8 6982.1 6979.0
4 7267.5 7068.9 7000.6 6983.1 6979.0
10 7267.5 7119.5 7033.6 6993.8 6979.0

support the analytical result presented in Theorem 2 and it
can be seen (for the same fixed transshipment cost), that as the
number of items increases, the average (per item) expected
profit increases.

7. CONCLUSIONS

In this work, we studied single and multi-item trans-
shipment problems with fixed transshipment costs, which
extends the single-item transshipment problem with neg-
ligible fixed transshipment costs studied in the literature.
Our work enables transshipment strategy to be implemented
to more complex and realistic environments than current
methods are capable of coping with.

We proved that a policy referred to as the constrained com-
plete pooling policy is an optimal transshipment policy for
the multi-item problem (and for the single-item as a spe-
cial case). To determine the optimal replenishment policy,
we derived the first-order conditions for both the single and
multi-item problems. In the single-item case, these conditions
are accompanied by a thorough analysis of the characteris-
tics of the expected profit function. Our analysis indicates that
the solution obtained from solving the first-order conditions
yields an optimal solution in most, if not all cases. For the
multi-item case, the first-order conditions are computation-
ally difficult to solve. Consequently, we suggest a heuristic
based on the single-item solution. We also developed upper
bounds on the optimal solution value. An extensive numerical
study provided sensitivity analysis and managerial insights
for both the single and multi-item problems. The heuristic
performance was examined and shown to be very effective
for a wide range of parameters. Finally, we proved that for the
special case of identical items and retailers, the average (per
item) expected profit is (weakly) increasing in the number of
items. This demonstrates the advantage of considering items
together in multi-item systems.

Throughout the article, we assumed a single period and
independency between the demands. However, based on
arguments similar to those presented in Herer et al. [10], we
can show that the analysis and results continue to hold for
multiperiod settings. As for dependent demands, the opti-
mal transshipment policy and first-order conditions remain
unchanged, albeit joint density functions need to be used and
consequently computational difficulties may arise. Further-
more, investigation of the properties of the expected profit
function and an analysis of the performance of our suggested
heuristic in the case of dependent demands are interesting
directions for future research.

Another useful extension to the current models is to con-
sider multiple retailers, where, in addition to the decisions
regarding transshipment quantities, one has to determine the
origin and the destination of every unit transshipped. This
may be achieved using mixed integer linear programming
that may require substantial computational resources. More-
over, in such cases the optimal transshipment quantities may
not be easy to represent in a closed-form formula, and thus,
it may not be possible to express the expected profit function
as a function of the replenishment quantities only. Another
interesting direction is to consider the same problem in a
decentralized system. In this case, the effect of the fixed
transshipment cost on a desired coordination mechanism
and the resulting system profit is not clear. We know that
in the absence of fixed transshipment costs, this is already
a complex problem that requires a nontrivial coordinating
mechanism (Hanany et al., [7]). Accordingly, we believe that
fixed transshipment costs would complicate the problem even
more.
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APPENDIX A

In this appendix, we present the properties of the expected profit func-
tion and prove the lemmas and corollaries stated in Section 4.1. We start by

presenting the second-order partial derivatives, which are the basis for the
analysis. We use Leibniz’s rule, and obtain the following Hessian matrix of
the expected profit function:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂π(Qi , Qj )

∂2Qi

= (si − vi)fi (Qi) + (vj − τij − si )[−
∫ Qi−qij

0 fi(yi )fj (Qi+
Qj − yi)dyi + fi(Qi − qij )[1 − Fj (Qj + qij )]]+
(τji + sj − vi)[

∫ Qi+Qj

Qi+qji
fi (yi )fj (Qi + Qj − yi)dyi

−fi(Qi + qji )Fj (Qj − qji )]

∂π(Qi , Qj )

∂Qi∂Qj

=
(vj − τij − si )[

∫ Qi−qij

0 −fi(yi )fj (Qi + Qj − yi)dyi ]
+(τji + sj − vi)[

∫ Qi+Qj

Qi+qji
fi (yi )fj (Qi + Qj − yi)dyi ]

∂π(Qi , Qj )

∂Qj ∂Qi

=
(vi − τji − sj )[

∫ Qj −qji

0 −fj (yj )fi(Qj + Qi − yj )dyj ]
+(τij + si − vj )[

∫ Qj +Qi

Qj +qij
fj (yj )fi (Qj + Qi − yj )dyj ]

∂π(Qi , Qj )

∂2Qj

=
(sj − vj )fj (Qj )+
(vi − τji − sj )[−

∫ Qj −qji

0 fj (yj )fi(Qj + Qi − yj )dyj+
fj (Qj − qji )[1 − Fi(Qi + qji )]]+
(τij + si − vj )[

∫ Qj +Qi

Qj +qij
fj (yj )fi (Qj + Qi − yj )dyj

−fj (Qj + qij )Fi(Qi − qij )]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is well known that a function is concave iff the Hessian matrix is negative
definite over its entire domain. For the expected profit function, Conditions
(A1) and (A2) need to be satisfied.

|H1| = ∂π(Qi , Qj )

∂2Qi

< 0 ∀Qi (A1)

and:

|H2| =

∣∣∣∣∣∣∣∣
∂π(Qi , Qj )

∂2Qi

∂π(Qi , Qj )

∂Qi∂Qj

∂π(Qi , Qj )

∂Qj ∂Qi

∂π(Qi , Qj )

∂2Qj

∣∣∣∣∣∣∣∣

=
(

∂π(Qi , Qj )

∂2Qi

)(
∂π(Qi , Qj )

∂2Qj

)
−
(

∂π(Qi , Qj )

∂Qi∂Qj

)(
∂π(Qi , Qj )

∂Qj ∂Qi

)
> 0 ∀Qi , Qj (A2)

LEMMA A1: When Condition (A3) is satisfied then Conditions (A1) and
(A2) are satisfied.

(si − vi)fi (Qi) + (vj − τij − si )fi (Qi − qij )(1 − Fj (Qj + qij ))

+ (vi − τji − sj )fi (Qi + qji )Fj (Qj − qji ) < 0 ∀i, j �= i (A3)

PROOF: We first show that when (A3) is satisfied, then (A1) is satisfied.

∂π(Qi , Qj )

∂2Qi

= (si − vi)fi (Qi) + (vj − τij − si )
[

−
∫ Qi−qij

0
fi(yi )fj (Qi + Qj − yi)dyi + fi(Qi − qij )[1 − Fj (Qj + qij )]

]
+ (τji + sj − vi)

[ ∫ Qi+Qj

Qi+qji

fi (yi )fj (Qi + Qj − yi)dyi − fi(Qi + qji )Fj (Qj − qji )
]

< (si − vi)fi (Qi) + (vj − τij − si )fi (Qi − qij )(1 − Fj (Qj + qij )) + (vi − τji − sj )fi (Qi + qji )Fj (Qj − qji ) < 0 (A4)

The first inequality of (A4) holds because (vj −τij −si )[−
∫ Qi−qij

0 fi(yi )

fj (Qi +Qj −yi)dyi ] < 0 and (τji +sj −vi)[
∫ Qi+Qj

Qi+qji
fi (yi )fj (Qi +Qj −

yi)dyi ] < 0 due to the parameters assumptions. The second inequality of
(A4) holds due to (A3). Similar to (A4), we obtain:

∂π(Qi , Qj )

∂2Qj

< (sj − vj )fj (Qj ) + (vi − τji − sj )fj (Qj − qji )

× (1 − Fi(Qi + qji )) + (vj − τij − si )fj (Qj + qij )Fi(Qi − qij ) < 0
(A5)

so that Condition (A1) is satisfied. To show that Condition (A2) is satis-

fied, notice also that:
∂π(Qi ,Qj )

∂Qi∂Qj
= (vj − τij − si )[

∫ Qi−qij

0 −fi(yi )fj (Qi +
Qj − yi)dyi ] + (τji + sj − vi)[

∫ Qi+Qj

Qi+qji
fi (yi )fj (Qi + Qj − yi)dyi ] < 0,

since due to the parameters assumptions this expressions is the sum of two

negative expressions. Similarly,
∂π(Qi ,Qj )

∂Qj ∂Qi
< 0. In addition: (

∂π(Qi ,Qj )

∂2Qi
) −

(
∂π(Qi ,Qj )

∂Qi∂Qj
) = (si − vi)fi (Qi) + (vj − τij − si )fi (Qi − qij )(1 − Fj (Qj +

qij )) + (vi − τji − sj )fi (Qi + qji )Fj (Qj − qji ) < 0 ∀i, j �= i where

the inequality is due to (A3). Similarly, (
∂π(Qi ,Qj )

∂2Qj
) − (

∂π(Qi ,Qj )

∂Qj ∂Qi
) <

0, and therefore, when (A3) holds, |H2| = (
∂π(Qi ,Qj )

∂2Qi
)(

∂π(Qi ,Qj )

∂2Qj
) −

(
∂π(Qi ,Qj )

∂Qi∂Qj
)(

∂π(Qi ,Qj )

∂Qj ∂Qi
) > 0, establishing Condition (A2). �

Now we can prove the results stated in Section 4.1. To simplify some
notation, we use the following definition introduced in Section 4.1: θ−

ji ≡
Fj (Qj − qij ), θ+

ji ≡ Fj (Qj + qij ) ∀i, j �= i. Note that 0 ≤ θ−
ji ≤ θ+

ji ≤ 1.

PROOF OF LEMMA 1: Recall that Condition (A3) is sufficient for con-
cavity. Note that θ−

ji = Fj (Qj − qij ) ≤ Fj (Qj + qij ) = θ+
ji and consider

the left hand side of (A3):
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(si − vi)fi (Qi) + (vj − τij − si )fi (Qi − qij )(1 − θ+
ji ) + (vi − τji − sj )fi (Qi + qji )Q

−
ji

< −(vi − si )fi (Qi) + (vj − τij − si )fi (Qi − qij )(1 − θ+
ji ) + (vi − τji − sj )fi (Qi + qji )θ

+
ji

≤ −(vi − si )fi (Qi) + (vi − si )fi (Qi − qij )(1 − θ+
ji ) + (vi − si )fi (Qi + qji )θ

+
ji

= (vi − si )((1 − θ+
ji )fi (Qi − qij ) + θ+

jifi (Qi + qji ) − fi(Qi)) (A6)

The first inequality of (A6) holds because θ−
ji ≤ θ+

ji and the second
inequality of (A6) holds due to the assumptions about the parameters:
vi − si ≥ vj − τij − si ≥ 0 and vi − si ≥ vi − τji − sj ≥ 0.

Now note that if f i (di ) is concave within the range (ai ,bi ), ai < bi then
by definition of concavity and since 0 ≤ θ+

ji ≤ 1, (1 − θ+
ji )fi (Qi − qij ) +

θ+
jifi (Qi + qji ) − fi(Qi) ≤ 0, within the range ai + qij ≤ Qi ≤ bi − qji ,

this establishes the result that the expression in (A6) is nonpositive. A similar
argument holds for fj (dj ), θ+

ij and aj + qji ≤ Qj ≤ bj−qij , and thus, (A3)
is satisfied. �

PROOF OF LEMMA 2: Suppose that the domain of fi (di ) and fj (dj )
are (ai ,bi ), ai < bi and (aj ,bj ), aj < bj , respectively. (In the case ai = bi

and aj = bj , the function is trivially concave over its entire domain, which
consists of one point only.)

CASE A: ai + qij ≤ Qi ≤ bi − qji and aj + qji ≤ Qj ≤ bj − qij . In
this range, Condition (A3) is satisfied by Lemma 1.

CASE B: ai ≤ Qi ≤ ai + qij or aj ≤ Qj < aj + qji . Consider (A6),
which, by the proof of Lemma 1, when nonpositive, is sufficient for Condition
(A3) to hold:

(vi − si )((1 − θ+
ji )fi (Qi − qij ) + θ+

jifi (Qi + qji ) − fi(Qi))

< (vi − si )((1 − θ+
ji )fi (ai ) + θ+

jifi (Qi + qji ) − fi(Qi))

< 0 ∀i, j �= i (A7)

The first inequality of (A7) holds because in this case f i (Qi−qij ) = 0. The
second inequality of (A7) holds from the concavity of f i (di ). Thus, (A3)
holds.

CASE C: bi − qji < Qi ≤ bi or bj − qij < Qj ≤ bj . Similar to case B,
since in this case f i (Qi + qji ) = 0, we obtain ∀ i,j �= i:

(vi − si )((1 − θ+
ji )fi (Qi − qij ) + θ+

jifi (Qi + qji ) − fi(Qi))

< (vi − si )((1 − θ+
ji )fi (Qi − qij ) + θ+

jifi (bi ) − fi(Qi)) < 0 (A8)

Thus, (A3) holds. �

PROOF OF LEMMA 3: Similar to the proof of Lemma 1, recall that Con-
dition (A3) is sufficient for concavity, and consider the left hand side of
(A3):

(si − vi)fi (Qi) + (vj − τij − si )fi (Qi − qij )(1 − θ+
ji ) + (vi − τji − sj )fi (Qi + qji )θ

−
ji

< −(vi − si )fi (Qi) + (vj − τij − si )fi (Qi − qij )(1 − θ−
ji ) + (vi − τji − sj )fi (Qi + qji )θ

−
ji

= −(vi − si )fi (Qi) + aij fi (Qi − qij )(1 − θ−
ji ) + ajifi (Qi + qji )θ

−
ji (A9)

(A9) holds because θ−
ji ≤ θ+

ji and by the definition of aij ∀ i,j �= i.
Rearranging the first part of (9), the following inequality holds:

−(vi − si )fi (Qi) + aij fi (Qi − qij )(1 − θ−
ji ) + ajifi (Qi + qji )θ

−
ji < 0

(A10)

Note that the expression to the left of inequality (A10) is exactly the third
line in (A9). The left hand side of (A3) is smaller than the third line in (A9),
which is nonpositive by (A10). Consequently, when the first part of (9) is
satisfied, (A3) is satisfied. Similarly, rearranging the second part of (9), we
obtain that the following inequality holds:

−(vi − si )fi (Qi) + aij fi (Qi − qij )(1 − θ+
ji ) + ajifi (Qi + qji )θ

+
ji ≤ 0

(A11)

Note that the expression to the left of inequality (A11) is exactly the second
line in (A6). The left hand side of (A3) is smaller than the second line in
(A6), which is nonpositive by (A11). Consequently, when the second part
of (9) is satisfied, (A3) is satisfied. �

Recall that we define in Section 4.1: gi(Qi) ≡ afi (Qi−q)−(a+τ)fi (Qi )
afi (Qi−q)−afi (Qi+q)

.
We provide here a detailed investigation of gi (Qi ) and analyze for which

values of (Qi , Qj ) it satisfies (10). The results of this analysis are used at the
end of Section 4.1.

A Detailed Investigation of gi(Qi)

LEMMA A2: If the demand at both retailers is normally distributed, the
function gi (Qi ) has the following characteristics:

(a) The function has a vertical asymptote at Qi = μi

(b) The function is increasing in the range Qi < μi and in the range
Qi > μi

(c) gi (Qi ) = 1 when Qi = μi − q
2 + σ 2

i
q

· ln( a
v−s

) < μi

(d) gi (Qi ) = 0 when Qi = μi + q
2 − σ 2

i
q

· ln( a
v−s

) > μi

(e) When Qi < μi , gi(Qi) > 0

(f) When Qi > μi , gi(Qi) < 1

PROOF:

(a) Vertical asymptote: gi (Qi ) is not defined when afi(Qi − q) −
afi(Qi + q) = 0, that is, when fi(Qi + q) = fi(Qi − q), that is,
when Qi = μi .

(b) Taking the derivative of gi (Qi ) (both to the right and to the left
of the asymptote) and rearranging it, results in the following
expression:
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dgi (Qi)

dQi

=
q · e

2q2+(Qi−μi )
2

2σi
2

(
− (a + τ) · e

(q+Qi−μi )
2

2σi
2 − (a + τ) · e

(q−Qi+μi )
2

2σi
2 + 2a · e

(Qi−μi )
2

2σi
2

)

−aσi
2

(
e

(q+Qi−μi )
2

2σi
2 − e

(q−Qi+μi )
2

2σi
2

)2

It is easy to see that the denominator of the derivative is negative

because: a > 0, σ 2
i > 0, and

(
e

(q+Qi−μi )
2

2σi
2 − e

(q−Qi+μi )
2

2σi
2

)2

> 0

To see that the numerator of the derivative is also negative, we simplify

the notation by defining: ẽ ≡ e
1

2σi
2 and obtain that the numerator is equal

to:

q · ẽ2q2+(Qi−μi )
2
(
− (a + τ) · ẽ(q+Qi−μi )

2 − (a + τ) · ẽ(q−Qi+μi )
2 + 2a · ẽ(Qi−μi )

2
)

= q · ẽ2q2+(Qi−μi )
2 [− (a + τ) · ẽq2 · ẽ(Qi−μi )

2 · ẽ2q(Qi−μi ) − (a + τ) · ẽq2 · ẽ(Qi−μi )
2 · ẽ−2q(Qi−μi )

2 + 2a · ẽ(Qi−μi )
2 ]

= q · ẽ2q2+(Qi−μi )
2 [− (a + τ) ẽ(Qi−μi )

2
(

ẽq2
(

ẽ2q(Qi−μi ) + ẽ−2q(Qi−μi )
))

+ 2a · ẽ(Qi−μi )
2 ]

= q · ẽ2q2+(Qi−μi )
2 [− (a + τ) ẽ(Qi−μi )

2
(

ẽq2
(

ẽ2q(Qi−μi ) + ẽ−2q(Qi−μi )
)

− 2
)

− 2τ · ẽ(Qi−μi )
2 ]

Now observe, as explained below:

q · ẽ2q2+(Qi−μi )
2

> 0 (A12)

− (a + τ) ẽ(Qi−μi )
2

< 0 (A13)

ẽq2 ≥ 0 (A14)

ẽ2q(Qi−μi ) + ẽ−2q(Qi−μi ) ≥ 2 (A15)

−2τ ẽ(Qi−μi )
2

< 0 (A16)

Inequalities (A12) and (A14) clearly hold. Inequalities (A13) and (A16)
hold because a + τ > 0 and τ > 0, respectively. Inequality (A15) holds
because (ex + e−x ) is a convex function in x with a minimum at x = 0. In
this case, the function value equals 2. We conclude from (A12) to (A16) that
the numerator of the derivative is negative. Since both its numerator and the
denominator are negative, the derivative of gi (Qi ) is positive and gi (Qi ) is
increasing in Qi .

(c) gi (Qi) = afi (Qi−q)−(a+τ)fi (Qi )
afi (Qi−q)−afi (Qi+q)

= 1 when (a + τ) fi (Qi) =
afi (Qi + q), and therefore, when

fi (Qi + q)

fi (Qi)
= e

(Qi−μi )
2−(Qi−μi+q)2

2σ2
i = a

(a + τ)

This implies that 2(Qi−μi )q+q2

2σi
2 = ln

(
a

a+τ

)
and hence gi (Qi ) = 1

when Qi = μi − q
2 + σ 2

i
q

·ln
(

a
a+τ

)
. Since a

a+τ
< 1, ln

(
a

a+τ

)
< 0,

therefore, μi − q
2 + σ 2

i
q

· ln
(

a
a+τ

)
< μi .

(d) gi (Qi) = afi (Qi−q)−(a+τ)fi (Qi )
afi (Qi−q)−afi (Qi+q)

= 0 when afi (Qi − q) −
(a + τ) fi (Qi) = 0, and therefore, when fi (Qi )

fi (Qi−q)
=

e

(Qi−μi−q)2−(Qi−μi )
2

2σ2
i = a

(a+τ)
, implying that −2(Qi−μi )q+q2

2σ 2
i

=
ln
(

a
a+τ

)
and hence gi (Qi ) = 0 when Qi = μi + q

2 − σ 2
i
q

·ln
(

a
a+τ

)
.

Similarly to the argument in (c), we obtain here that μi + q
2 − σ 2

i
q

·
ln
(

a
a+τ

)
> μi

(e) Consider first the range in which Q ≤ μi − q
2 . In this range:

fi (Qi − q) < fi (Qi) < fi (Qi + q) due to the normal dis-
tribution shape. Thus: afi (Qi − q) − (a + τ) fi (Qi) < 0 and
afi (Qi − q) − afi (Qi + q) < 0, implying that: gi (Qi) =
afi (Qi−q)−(a+τ)fi (Qi )
afi (Qi−q)−afi (Qi+q)

> 0 Then, since gi (Qi ) increases in Qi for

Qi < μi , gi (Qi ) > 0 also when μi − q
2 < Qi < μi .

(f) Similarly to (e), consider the range μi + q
2 ≤ Qi . In this range:

fi (Qi + q) < fi (Qi) < fi (Qi − q) Thus, afi (Qi − q) >

afi (Qi + q) and afi (Qi + q) < (a + τ) fi (Qi), implying that
the denominator of gi (Qi ) is positive and its numerator is smaller
than it. Therefore, gi (Qi) = afi (Qi−q)−(a+τ)fi (Qi )

afi (Qi−q)−afi (Qi+q)
< 1. Then,

since gi (Qi ) increases in Qi for each μi < Qi , gi (Qi ) < 1 also when
μi < Qi < μi + q

2 . �

Figure A1 numerically demonstrates the structure of gi (Qi ) for different
values of q (or A). In these examples, μi = 150, σi = 30, v = 7, τ = 1, s =
0.8 ⇒ a = 5.2. One can see the vertical asymptote at Qi = μi =150 and
that the function increases for each Qi < μi and Qi > μi . In Figs. A1a and
A1b, the points where gi (Qi ) = 0 and gi (Qi ) = 1 are clearly marked with
large dots. In Fig. A1c, where q → 0, gi (Qi ) > 1 for all Qi > μi and gi (Qi )
< 0 for all Qi > μi . This case refers to the special case of negligible fixed
transshipment costs, in which the expected profit function is known to be
concave over the entire (Qi , Qj ) range. As we show next, the derivation here
provides another proof for that.

From Lemma 2, we obtain the following corollary, which is used in the
subsequent proof of Lemma 4 that characterizes the areas of concavity.

COROLLARY A1:

0 < gi (Qi) < 1 when Qi < μi − q

2
+ σ 2

i

q
· ln

(
a

a + τ

)
Or

when Qi > μi + q

2
− σ 2

i

q
· ln

(
a

a + τ

)
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gi (Qi) ≥ 1 when μi − q

2
+ σ 2

i

q
· ln

(
a

a + τ

)
≤ Qi < μi

gi (Qi) ≤ 0 when μi < Qi ≤ μi + q

2
− σ 2

i

q
· ln

(
a

a + τ

)

PROOF OF LEMMA 4: From corollary A1, when − q
2σi

+ σi
q

·
ln
(

a
a+τ

)
≤ Zi < 0, gi (μi + Ziσi) ≥ 1, and when 0 < Zi ≤ q

2σi
−

σi
q

· ln
(

a
a+τ

)
, gi (μi + Ziσi) ≤ 0. Since 0 ≤ θ−

ji , θ
+
ji ≤ 1 for any Zj ,

when (11) holds, Condition (10) (a sufficient condition for concavity) holds.
(Notice that when Z i = 0, Condition (10) holds trivially.) Rearranging the first
part of Condition (10) and using the standardized replenishment quantities,
we obtain:

gi (Qi) = gi (μi + Ziσi) > θ−
ji = Fj

(
Qj − q

) = 


(
Qj − q − μj

σj

)
= 


(
Zj − q

σj

)

⇒ 
−1 (gi (μi + Ziσi)) > Zj − q
σj

. Therefore, when (12) holds the

first part of Condition (10) holds. Similarly, rearranging the second part of
Condition (10), using the standardized replenishment quantities we obtain:

gi (Qi) = gi (μi + Ziσi) ≤ θ+
ji = Fj

(
Qj + q

) = 


(
Qj + q − μj

σj

)
= 


(
Zj + q

σj

)

⇒ 
−1 (gi (μi + Ziσi)) ≤ Zj + q
σj

. Therefore, when (13) holds, the sec-

ond part of Condition (10) holds. Together, these three conditions cover the
entire domain of Z i , Zj . �

The area in which Condition (10) is satisfied was determined numerically
by checking it for each value of (Z i ,Zj ) within the range −3 ≤ Z i ≤ 3
(the horizontal axis) and −3 ≤ Zj ≤ 3 (the vertical axis), which is the rel-
evant solution range. The results (the dark area) are demonstrated in Figs.
A2a–A2c.

In Fig. A2a, one can observe the ranges discussed above, that is, the range
of Zj obtained for any given Z i . Note that when i and j are reversed, addi-
tional conditions need to be satisfied for (10) to hold since it is defined ∀
i,j �=i. In Fig. A2b, we observe the range when i and j are reversed, that is,
the range of Z i obtained for any given Zj . Figure A2c presents the range in
which (10) is satisfied ∀ i,j �= i (the intersection of A2a and A2b), see fur-
ther details below. Finally, Fig. A2d presents the range in which the Hessian
matrix is numerically negative definite. This range is larger than the one in
A2c, because (10) is a sufficient but not a necessary condition. We conclude
that within the dark area of Fig. A2d, the expected profit function is concave
and we prove it analytically for a subset of it presented in Fig. A2c. Con-
versely, the function is not concave outside the dark area of Fig. A2d. The
parameters used in Fig. A2 are the same as in the example presented in Figs.
2 and A1, with μj = 200, σj = 60, and A = 200. Therefore, in this exam-

ple, q = 15.4, − q
2σi

+ σi
q

· ln
(

a
a+τ

)
= −0.6, q

2σi
− σi

q
· ln

(
a

a+τ

)
= 0.6,

− q
2σj

+ σj

q
· ln

(
a

a+τ

)
= −0.81 and q

2σj
− σj

q
· ln

(
a

a+τ

)
= 0.81.

The areas that are labeled A and B in Fig. A2a are those in which Z i <
−0.6. While for the values of Zj in the area labeled A, Condition (12) does
not hold; it does hold, however, for the values of Zj in the area labeled B.
Since the area labeled C satisfies −0.6 ≤ Z i ≤ 0.6 Condition (11) in this
area holds for every Zj . The areas which are labeled D and E are those in
which Z i > 0.6. While for the values of Zj in the area labeled D, Condition

Figure A1. Numerical demonstration of gi(Qi). [Color figure can
be viewed in the online issue, which is available at wileyonlineli-
brary.com.]

(13) holds, for the values of Zj in the area labeled E Condition (13) does not
hold. The same characterization can be done for Fig. A2b.

APPENDIX B

PROOF OF LEMMA 5: The expected system profit is given by:

π

(→
Q
)

=
n∑

k=1

2∑
i=1⎡⎢⎢⎣E

⎛⎜⎜⎝rikRik − pikZik + sikUik −
2∑

j=1
j �=i

τijkTijk

⎞⎟⎟⎠− cikQik

⎤⎥⎥⎦
−

2∑
i=1

2∑
j=1
j �=i

E
(
AijXij

)
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Figure A2. Demonstration of the concavity conditions. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Under the optimal transshipment policy presented in Section 3.2, the random
variables Rik , Z ik , and U ik can be written for all i and k as:

Rik = min
(
Dik , Qik + Tjik − Tijk

) = min (Dik , Qik) + Tjik i �= j

Zik = (
Dik − Qik − Tjik + Tijk

)+ = (Dik − Qik)
+ − Tjik i �= j

Uik = (
Qik − Dik − Tijk + Tjik

)+ = (Qik − Dik)
+ − Tijk i �= j

Placing the above expressions in the expected system profit and collecting
terms, we obtain:

π(
→
Q) =

n∑
k=1

2∑
i=1

2∑
j=1
j �=i

[E(rik
(
min (Dik , Qik) + Tjik

)
− pik

(
(Dik − Qik)

+ − Tjik

)+
sik
(
(Qik − Dik)

+ − Tijk

)− τijkTijk) − cikQik] −
2∑

i=1

2∑
j=1
j �=i

E
(
AijXij

)

=
n∑

k=1

2∑
i=1

2∑
j=1
j �=i

[E(rik min (Dik , Qik) − pik(Dik − Qik)
+ + sik(Qik − Dik)

+

+ rikTjik + pikTjik − sikTijk − τijkTijk) − cikQik] −
2∑

i=1

2∑
j=1
j �=i

E
(
AijXij

)

=
n∑

k=1

[E(rik min (Dik , Qik) − pik(Dik − Qik)
+ + sik(Qik − Dik)

+

+ rjk min
(
Djk , Qjk

)− pjk

(
Djk − Qjk

)+ + sjk

(
Qjk − Djk

)+
)

− cikQik − cjkQjk]+
n∑

k=1

E(rikTjik + pikTjik − sikTijk − τijkTijk + rjkTijk

+ pjkTijk − sjkTjik − τjikTjik) −
2∑

i=1

2∑
j=1
j �=i

E
(
AijXij

) =

2∑
i=1

n∑
k=1

[E(rik min (Dik , Qik) − pik(Dik − Qik)
+ + sik (Qik − Dik)

+)

− cikQik] +
n∑

k=1

[E(rik + pik − sjk − τjik)Tjik

+ (
rjk + pjk − sik − τijk

)
Tijk] − AjiE

(
Xji

)− AijE
(
Xij

)
We recall that:

1. E[P NV
k (Qk)] = ∑2

i=1[E(rik min(Dik , Qik) − pik(Dik − Qik)
+

+ sik(Qik − Dik)
+) − cikQik]

2. E[P TR(
→
Q)] = ∑n

k=1E[(rik + pik − sjk − τjik)Tjik + (rjk

+ pjk − sik − τijk)Tijk] = E[∑n
k=1(ajikTjik + aijkTijk)]

3. E[F TR(
→
Q)] = AjiE

(
Xji

)+ AijE
(
Xij

)
Therefore, the expected profit function (under the optimal transship-

ment policy) can be written as: π(
→
Q) =∑n

k=1E[P NV
k (Qk)] + E[P T R(

→
Q)]

− E(F TR(
→
Q)) �

PROOF OF CLAIM 1: From the condition for executing transshipments
(2), one can observe that for each demand realization, the optimal trans-
shipment quantities with Aij and Aji are bigger than or equal to the optimal
transshipment quantities with A′

ij > Aij and A′
ji > Aji . Since every unit trans-

shipped contributes a positive profit to the E[PT R(
→
Q)] term (by definition,

see (19)), decreasing both A parameters results in a higher expected profit
from transshipments. �

PROOF OF CLAIM 2: According to Lemma 5, we can express the

expected profit function as the following sum:π(
→
Q) = ∑n

k=1E[P NV
k (Qk)]+

E[P TR(
→
Q)] − E(F TR(

→
Q)). Both expressions in (23) have the same

replenishment quantities, and therefore, their expected newsvendor profit∑n
k=1E[P NV

k (
→
Q ∗(A>0))] is equal. From Claim 1, the expected transship-

ment profit E[PT R(
→
Q)] of the left hand side of (23) is (weakly) larger than

E[PT R(
→
Q)] of the right hand side. In addition, the fixed transshipment cost

of the right hand side, E[FT R(
→
Q)], is positive, whereas the same element in

the left hand side equals zero. �

PROOF OF LEMMA 6: Clearly deriving from the optimality of
→
Q∗(A=0)

π
( →

Q∗(A=0), A = 0
) ≥ π

( →
Q∗(A>0), A = 0

)
(B1)

From (23) and (B1), we obtain: π(
→
Q ∗(A=0), A = 0) ≥ π(

→
Q ∗(A>0), A >

0) �

PROOF OF LEMMA 7: From (B1),

π

(→
Q∗(A=0), A = 0

)
− E

[
F TR

(→
Q∗(A>0), A > 0

)]
≥ π

(→
Q∗(A>0), A = 0

)
− E

[
F TR

(→
Q∗(A>0), A > 0

)]
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Table 12. Parameters of Experiments C1–C3.

D1k = D2k c1k , c2k r1k , r2k p1k , p2k s1k , s2k τ12k , τ21k

Experiment C1 ∼ N(200, 60) 10,10 30,30 5,5 4,4 1,1
Experiment C2 ∼ N(200, 60) 10,12 30,31 5,4 4,5 1,2
Experiment C3 ∼ N(200, 60) 10,14 30,32 5,5 4,6 1,2

Table 13. Results of Experiment C1.

n = 4 n = 6 n = 8 n = 10

A 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 Average
f (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) gap (%)

1 0.06 0.06 0.08 0.03 0.12 0.13 0.04 0.08 0.15 0.02 0.05 0.14 0.08
1.5 0.02 0.03 0.02 0.01 0.05 0.06 0.01 0.03 0.08 0.01 0.03 0.08 0.04
2 0.00 0.01 0.06 0.02 0.05 0.02 0.01 0.03 0.05 0.03 0.02 0.05 0.03
2.5 0.03 0.03 0.03 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.03 0.04 0.02
3 0.02 0.03 0.00 0.01 0.01 0.00 0.02 0.02 0.02 0.02 0.02 0.01 0.02
3.5 0.04 0.02 0.03 0.04 0.00 0.03 0.02 0.00 0.00 0.01 0.01 0.02 0.02
4 0.04 0.00 0.04 0.02 0.01 0.04 0.01 0.00 0.00 0.01 0.02 0.00 0.02
4.5 0.05 0.04 0.02 0.01 0.02 0.01 0.03 0.02 0.01 0.02
5 0.05 0.01 0.02 0.01 0.02 0.01 0.03 0.03 0.03 0.02
5.5 0.09 0.03 0.01 0.02 0.02 0.04 0.04 0.01 0.01 0.03
6 0.08 0.03 0.01 0.05 0.05 0.01 0.03 0.03 0.00 0.03
6.5 0.04 0.06 0.03 0.07 0.06 0.03 0.05
7 0.07 0.05 0.03 0.06 0.06 0.01 0.05
7.5 0.09 0.05 0.04 0.09 0.07 0.04 0.06
8 0.09 0.05 0.05 0.09 0.07 0.05 0.07
8.5 0.09 0.08 0.03 0.07
9 0.10 0.08 0.02 0.07
9.5 0.13 0.09 0.02 0.08
10 0.13 0.08 0.04 0.08

Using Lemma 5, π(
→
Q∗(A>0), A = 0) − E[F TR(

→
Q∗(A>0), A > 0)] =∑n

k=1E[P NV
k (Q∗(A>0)

k )] + E[P TR(
→
Q∗(A>0), A = 0)] − E[F TR(

→
Q∗(A>0),

A > 0)] ≥ ∑n
k=1E[P NV

k (Q∗(A>0)
k )] + E[P TR(

→
Q∗(A>0), A > 0)] −

E[F TR(
→
Q∗(A>0), A > 0)] = π(

→
Q∗(A>0), A > 0) when the last inequality is

due to (22). �

PROOF OF THEOREM 2: In a system with n identical items and identi-
cal retailers, the optimal replenishment quantities will be identical as well,
that is, Q∗

ik
=Q∗

n ∀i,∀k . We denote: Aij = A ∀i, j �= i, aijk = ajik =
a ∀i, j �= i, ∀k,

P NV
k (Qk) = P NV(Qn), ∀k,

E[P TR(
→
Q)] = E[P TR(Qn)] and E[F TR(

→
Q)] = E[F TR(Qn)]

Thus,

πn(Qn) =
n∑

k=1

E[P NV (Qn)] + E[P TR (Qn)] − E[F TR (Qn)]

=
n∑

k=1

E[P NV (Q)] + E

[
n∑

k=1

(
ajikTjik + aijkTijk

)]
− AjiE

(
Xji

)− AijE
(
Xij

) = nE[P NV (Q)]

+ E

[
n∑

k=1

(
aTjik + aTijk

)]− AE
(
Xji

)− AE
(
Xij

)
= nE[P NV (Q)] + E

[
n∑

k=1

(aT̂jik) − A

]+

+ E

[
n∑

k=1

(aT̂ijk) − A

]+

For the case of identical items and retailers, we define the random vari-
able Sn to be the sum of the n random variables: aT̂ijk k = 1..n, that is,
Sn ≡ �n

k=1(aT̂ijk) with the pdf and CDF fsn (S) and Fsn (S), respectively.
Notice that due to the equal replenishment quantities and identical demand
distributions for all items, all random variables T̂ijk are i.i.d. Also notice
that T̂ijk depend on the replenishment quantities of item k only, since the
other item’s replenishment quantities affect the actual but not the potential
transshipment quantities.

Using the definition of Sn above: E[�n
k=1(aT̂jik) − A]++E[�n

k=1(aT̂ijk)

− A]+ = 2
∫∞
Sn=A

(s − A)fsn (s)ds.
Placing this expression in the expected profit function, we obtain: πn(Q) =

nE[P NV (Q)] + 2
∫∞
sn=A

(s − A) fsn(s) ds.
Using the above notation and definitions, we consider the following ratio:

the expected system profit in a system with n + 1 identical items, calculated
using the optimal replenishment quantities of the same system with n items,
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Table 14. Results of Experiment C2

n = 4 n = 6 n = 8 n = 10

A 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 Average
f (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) gap (%)

1 0.09 0.16 0.09 0.00 0.25 0.22 0.00 0.16 0.40 0.02 0.04 0.35 0.15
1.5 0.03 0.02 0.00 0.07 0.06 0.03 0.00 0.05 0.11 0.11 0.08 0.13 0.06
2 0.02 0.02 0.01 0.15 0.03 0.02 0.18 0.02 0.07 0.67 0.11 0.06 0.11
2.5 0.04 0.02 0.00 0.21 0.02 0.01 0.30 0.01 0.02 0.75 0.14 0.03 0.13
3 0.06 0.01 0.01 0.25 0.01 0.00 0.38 0.02 0.04 0.90 0.17 0.00 0.15
3.5 0.08 0.02 0.00 0.27 0.01 0.01 0.47 0.03 0.01 1.02 0.18 0.00 0.17
4 0.09 0.02 0.00 0.31 0.02 0.01 0.52 0.02 0.01 1.04 0.20 0.01 0.19
4.5 0.34 0.03 0.00 0.56 0.04 0.04 1.12 0.21 0.00 0.26
5 0.37 0.03 0.00 0.59 0.04 0.01 1.18 0.23 0.00 0.27
5.5 0.39 0.03 0.00 0.62 0.06 0.02 1.21 0.23 0.01 0.29
6 0.41 0.04 0.01 0.65 0.06 0.03 1.25 0.25 0.01 0.30
6.5 0.67 0.07 0.02 1.29 0.27 0.01 0.39
7 0.68 0.07 0.02 1.30 0.28 0.02 0.40
7.5 0.72 0.08 0.04 1.34 0.27 0.01 0.41
8 0.73 0.07 0.03 1.35 0.29 0.02 0.42
8.5 1.37 0.29 0.01 0.56
9 1.39 0.28 0.01 0.56
9.5 1.42 0.28 0.03 0.58
10 1.43 0.29 0.01 0.58

Table 15. Results of Experiment C3

n = 4 n = 6 n = 8 n = 10

A 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 Average
f (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) gap (%)

1 0.38 1.08 0.09 1.71 0.07 0.03 1.13 0.74 0.11 0.00 0.75 0.13 0.52
1.5 0.40 0.04 0.03 1.46 0.02 0.01 1.65 0.73 0.02 0.92 0.81 0.03 0.51
2 0.48 0.01 0.06 1.59 0.03 0.03 1.90 0.74 0.01 1.33 0.84 0.01 0.58
2.5 0.50 0.06 0.07 1.69 0.02 0.03 2.05 0.75 0.01 1.40 0.92 0.02 0.63
3 0.55 0.06 0.05 1.74 0.04 0.04 2.15 0.79 0.04 1.58 0.95 0.03 0.67
3.5 0.58 0.08 0.04 1.77 0.06 0.02 2.25 0.81 0.03 1.73 0.96 0.03 0.70
4 0.64 0.07 0.04 1.80 0.08 0.04 2.30 0.83 0.03 1.76 1.00 0.06 0.72
4.5 1.87 0.09 0.04 2.35 0.85 0.06 1.83 1.01 0.05 0.91
5 1.89 0.08 0.03 2.41 0.84 0.04 1.90 1.04 0.05 0.92
5.5 1.92 0.08 0.03 2.44 0.85 0.05 1.92 1.06 0.08 0.94
6 1.93 0.08 0.05 2.46 0.85 0.04 1.99 1.06 0.07 0.95
6.5 2.50 0.86 0.03 2.02 1.07 0.07 1.09
7 2.52 0.87 0.04 2.05 1.09 0.06 1.10
7.5 2.55 0.87 0.04 2.10 1.09 0.08 1.12
8 2.55 0.87 0.04 2.12 1.08 0.05 1.12
8.5 2.13 1.09 0.07 1.09
9 2.16 1.09 0.07 1.11
9.5 2.18 1.09 0.06 1.11
10 2.18 1.08 0.07 1.11

divided by the optimal expected system profit of the same system with n
items, that is,

πn+1
(
Q∗

n

)
πn

(
Q∗

n

) =
(n + 1) · E[P NV

(
Q∗

n

)] + 2
∫∞
Sn+1=A

(s − A) fsn+1 (s) ds

n · E[P NV
(
Q∗

n

)] + 2
∫∞
Sn=A

(s − A) fsn (s) ds

(B2)

For A = 0, the ratio (B2) reduces to:

πn+1
(
Q∗

n

)
πn

(
Q∗

n

) =
(n + 1) · E[P NV

(
Q∗

n

)] + 2
∫∞
sn+1=0 sfsn+1 (s) ds

n · E[P NV
(
Q∗

n

)] + 2
∫∞
sn=0

sfsn (s) ds

= (n + 1) · E[P NV
(
Q∗

n

)] + 2E (Sn+1)

n · E[P NV
(
Q∗

n

)] + 2E (Sn)
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= (n + 1) E[P NV
(
Q∗

n

)+ 2 (n + 1) E(aT̂ij )]
nE[P NV

(
Q∗

n

)] + 2nE(aT̂ij )

=
(n + 1) E[P NV

(
Q∗

n

)+ 2E
(
aT̂ij

)
]

n[E[P NV
(
Q∗

n

)] + 2E
(
aT̂ij

)
]

= n + 1

n

Differentiating πn(Q) with respect to A, we obtain:

dπn (Q)

dA
= d[n · E[P NV (Q)] + 2

∫∞
sn=A

(s − A) fsn (s) ds]
dA

= −2
∫ ∞

A

fsn (s) ds − (A − A) = −2F̄ sn (A)

Then, differentiating (B2) with respective to A, we obtain:

d

dA

(
πn+1

(
Q∗

n

)
πn

(
Q∗

n

) ) =
2F̄sn (A) [(n + 1) · E[P NV

(
Q∗

n

)] + 2
∫∞
sn+1=A

(s − A) fsn+1 (s) ds] − 2F̄ sn+1 (A) [n · E[P NV
(
Q∗

n

)] + 2
∫∞
sn=A

(s − A) fsn (s) ds](
n · E[P NV

(
Q∗

n

)] + 2
∫∞
sn=A

(s − A) fsn (s) ds
)2

(B3)

Since Sn is the sum of n non-negative random variables:

• F̄sn (A)≥F̄sn+1 (A) ∀A>0

• ∫∞
sn+1=A(s−A)fsn+1 (s)ds≥∫∞

sn=A(s−A)fsn (s)ds ∀A>0

Thus, the numerator of the ratio’s derivative (B3) is positive, that is, the

ratio (B2) is increasing in A. Since for A = 0, we obtain
πn+1(Q∗

n)
πn(Q∗

n)
= n+1

n
,

we conclude:
πn+1(Q∗

n)
πn(Q∗

n)
≥ n+1

n
∀A > 0

πn+1
(
Q∗

n

)
n + 1

≥ πn

(
Q∗

n

)
n

(B4)

From the optimality of the solution:

πn+1
(
Q∗

n+1

)
n + 1

≥ πn+1
(
Q∗

n

)
n + 1

(B5)

From (B4) and (B5):
πn+1

(
Q∗

n+1

)
n + 1

≥ πn

(
Q∗

n

)
n

�

APPENDIX C

In this appendix, we present the results of numerical experiments that we
conducted to examine the sensitivity of the heuristic’s performance to the
f ijk factor. The values of the f, A, and n parameters are specified in Section
5.1 and can also be observed in the headings of Tables 13–15. The tables con-
tain the results of three experiments, C1–C3, where the following parameters
(specified in Table 12) were used ∀ k.

The numbers within the tables refer to the gaps (in percentage) between
the expected profit of the best solution found by an extensive search and the
expected profit obtained by the heuristic solution. The rightmost column in
each table presents the average percentage for each f value. The performance
of f = 1.5, the recommended value, is denoted in bold.
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