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Imaging has always been the primary goal of inform&onal optics. The

whole history of optics Is a history of creating ad perfecting imaging

devices. The main characteristic feature of the last stage of the
evolution of informational optics is integrating of physical optics with

digital computers. With this, informational optics is reaching its
maturity. It Is becoming digital and Iimaging Is beoming

computational.



Image formation and processing
capabllity of optics

Image formation from light wave-front

Image geometrical transformations

Image integral transforms (Fourier & Fresnel,
correlation and convolution )

Image brightness point-wise manipulation (photographic
alchemy & electro-optics)




New qualities
brought in to Imaging systems by digital computers

Flexibility and adaptability: no hardware modifications are
necessary to reprogram digital computers to solving different
tasks.

Digital computers integrated into optical imaging systems
enable them to perform any operation needed

Acquiring and processing quantitative data contained in

optical signals and connecting optical systems with other
iInformational systems and networks is most natural when data
are handled in a digital form.

Low price: computers are much cheaper than optics




Digital vs analog imaging:
a tradeoff between good and bad features

The fundamental limitation of digital signal processing ig
the speed of computations. What optics does in parallel and
with the speed of light, computers perform as a sequencé
very simple logical operations with binary digits, which -|
fundamentally slower whatever the speed of thege
operations Is.

Optimal design of image systems requires appropriat
combination of analog and digital processing using advantages

and taking into consideration limitations of both




Marriage analog electro-optical anc
digital processing requires appropriate

linking analog and digital signals anc
transformations.




TO BE DISCUSSED:

Linking optical and digital image processing
- Principles of converting physical reality into digtal signals
Discrete representations of imaging transforms
Resolving power of discrete Fourier analysis
Aliasing artifacts in numerical reconstruction of holograms
Building continuous image models
Signal numerical differentiation and integration

Computational imaging in examples
- Stabilization and super-resolution in turbulent video

- Image recovery from sparse sampled data
- Imaging without optics: optics less smart sensors

Conclusion: computational imaging and evolution of
vision in nature




Advances in
Signal Transforms
Theory and Applications

DngtalSgnal Processmg m ExpermentalResearch

Introduction

e
Fast Transform Methods in
Digital Signal Processing
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Linking optical and digital
image processing




Linking optical and digital image processing:
The consistency and mutual correspondence principle
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Digital processors incorporated into optical information systems should be
regarded and treated together with signal discretiation and reconstruction devices
as integrated analog units and should be specifiexhd characterized in terms of
equivalent analog transformations.

Discrete transformation corresponds to its analog mtotype if both act to
transform identical input signals into identical ouput signals.

Discrete representation of signal transformationsisould parallel that of signals.




Signal digitization:
conversion of physical
reality into a digital signal



SIGNAL DIGITIZATION

S e Equivalency cell
Signal Y, \ 9 y
space: a
continuum —| ¥

*
[N ‘ “ 71‘3 -representative signals
i

General quantization:
Splitting signal space into “equivalence cells”
Indexing “equivalence cells” by natural numbers

Associating each index number with a “representative” signal
of the corresponding equivalence cell



An example of general digitization:
verbal description of the world

An estimation of the volume of
Image signal space:

>>925@L000.000



SOLUTION:
TWO STEPS SIGNAL DIGITIZATION

Two step digitization:

Signal discretization by means of expansion over
a set of basis functions

N-1

a(x)= ajj"(x) a = alx) " (x)

k=0
Signal Signal
reconstruction discretization
basis functions basis functions

Element-wise quantization of the representation
coefficients{a,} (general digitization in 1D sigl
space)




Signal discretization

Types of discretization basis functions:
-Shift (sampling) basis functions

I/ (- kool O(x- ki
-Scaled basis functions

ARG 3 RN

-Shift&Scale basis functions:
Wavelets



The sampling theorem

A “bandlimited” signal can be perfectly reconstructed from an infinite sequence of its samples if the interasnple
distance does not exceed 1/2B, where B is the highfssgjuency in the original signal.

The sampling theorem formulated in terms of the aagracy of reconstruction of continuou
signals from their samples:

The least square error approximation 5(X) of signal a(x) from its samplesﬁakﬂ taken

on a uniform sampling grid with sampling interval £X is
¥

a(x)= a, sind2p(x- kD()/D(],

k=¥

provided that signal samples{{akﬂ are obtained as:

a, = % ' a(x)sind2p(x- kx)/ Dx]dx

-¥
The approximation mean square error is minimal in tis case and is equal to:

¥ -1 ¥ ¥
a(x)- a(x)°dx=l|a(f)’df + |a(f)’df =2 |a(f) df
-¥ )3 )3
¥

()= alx)expli2pix)dx is signal Fourier spectrum,f is frequency, and
-¥

)=sin X/ X is “Sinc-function” , the point-spread function ofthe ideal low-pass filter

sind2ox/ Ix) = Ix wexp@ i 20 )df

-V




Discrete representation
of Imaging transforms



Discrete representation of the convolution integral

The convolution integral of a signal
a(x) with shift invariant kernel h(x):

Digital filter for samples {a} and
[b.} of input and output signals

hnak— n
n=0
N, is the number of non-zero samples ofi,

Discrete impulse responsdh, } of the
digital filter for input and output
signal sampling bases #{(x) and
jj 9(x) and sampling interval px

¥ ¥

h, = h[x— X~ an,]/' (r)(x)f(s)(x)dxdx’
¥

—¥-

Overall point spread function of an
analog filter equivalent to a given
digital filter

Ny IN

h ()= g O nDg) U (k- n)p]

k=0 m=0
N, is the number of samples of the filter output sigal [b,} involved in

reconstruction of analog output signalb(x), N, is the number of sample
of the digital filter PSF and Dx is the signal sampling interval

Overall frequency responseH eq(f,p)

_1hr sincdN; p(f /D - 1)]; A,

r=0

He ()= t heg (%, x)expli 20( fx- px)ldxax= SV(f , p) CFrR(p) F (r)(f )F (S)(p) :

-¥-¥

sv(f,p) N:exp{in(f— KD ()= 7 O(x)expli 20 Jx

-¥

k

FO(p)= 7 “(x)expli2apxlox

-¥

1"

_ 1  n-(N-1)2
—mn=ohnexp|2p r

N




Discrete representation of 1D Fourier integral trarsform

1-D direct and inverse integral Fourier Transformaf a signal a(x)

a(f ) = ' a(x)exp(i 2pfx)dx a(x) =:a(f )exp(— i2pfx)df

-¥

Direct and Inverse Canonical Discrete Fourier Trafgms (DFT)

N-1

o kr o kr
a =—— a.expi2p— a=—— a,exp-iZ2p—
VN =0 &P 129 N ) VN = i N

N-1

Direct and Inverse Shifted DFTs (SDFT(u,v)):

Sampling conditions
- Signal and signal sampling device coordinate systenas well as, correspondingly, those of signal spesn and of the
assumed signal spectrum discretization device, ashifted with respect to each other in such a way #t signal samplefa,}

and, correspondingly, samplefa,} of its Fourier spectrum are taken in signal and spctrum coordinates at pointsx =- u£x
and f =-vf .
Signal “cardinal” sampling: x=1/ND

1 N-1 . k 1 N-1 u,v : K
a™ =Wk=0ak exp |2p—( +ul2|(r +V) a, =Wk=0ar' exp - |2p—( +u2|(r +V)

Direct and Inverse Discrete Cosine Transform (DCT

Sampling conditions

- Special case of SDFT for sampling grid shift paranters: u=1/2v=0

Analog signal of final length is, before samplingartificially padded with its mirror copy to form a symmetrical sampled signal
of double length: fa, =a,, , . };

a =2 N_la cospk+]/2r a = = a +2N_1a cos kH/Zr
V2N ko ¢ N TN T A ERP

Direct and Inverse Scaled Shifted DFTs¢SDFT(u,v;s))

Sampling conditions
- Sampling rate iss times the cardinal rate: x =1/sND

- Sampling shift parameters: u,vt 0

N-1 ] k -1
a’ = e IZPW a = a’exp- im%
B r=0




Discrete representation of 2D Fourier integral trarsform

2-D direct and inverse integral Fourier Transformaf a signal a(x, y)
¥¥

a(f , p) = a(x, y)exp[in(fx + py)]dxdy a(x, y) = ’ ¥a(f , p)exp[— i2p(fx + py)]dfdp

- ¥-¥

2-D separable direct and inverse canonical DFTs:
Sampling conditions:
- Sampling in a rectangular sampling grid with cardinal sampling rates x=1/N, o, , Dy=1/N,D
- Zero sampling grid shift parameters

1 Np-INp-1 1 Ny-IN - 1

a .exp-izp ,:—r+|i

a, . exp - a =
VNN, k=0 i=0 . VNN, k=0 i=0 1 N,
Scaled Shifted DFTs

) =

Sampling conditions:
Sampling in a rectangular sampling grid. Sampling ates x =1/s N, 0¥, ; By =1/s ,N, D0
Non-zero sampling grid shift parameters(u,v) and (p.q)

5152 0Y/00 = Nl_lNTlakJ o 125 (k +u)(r +v) . (i +p)s+q)

k=0 1=0 1'V1 sZNZ

Rotated and Scaled DFTs
Sampling conditions:

v .
- Sampling in a rectangular sampling grin in a rotded coordinate system Xq = C;anq lnsqq ); with g as a rotation angle
y —

- Sampling rates Ix=1/sNO, ; B =1sND ; Non-zero sampling grid shift parameters(u,v) and (p,q)

s.qg o N , : k=k+u, r=r+y
ar,s“n ak,I exp |2p -
k=0 1=0 I

=l+pS=s+q




Point spread function of discrete Fourier analysis

¥

a(f)ho (f,r)df

% ) PSF of

Spectrum Signal

samples continuous discrete
computed spectrum spectral
using ScDFT _ W analysis -

h...(f,r)=Nsincd N; SL- FNDx F(f)

sinx N is the number of signal samples
N sin(x/N ) —sampling scale parameter
X —sampling interval

sincd(N; x) =




Point Spread Function and resolving power of
discrete Fourier analysis



Discrete representation of Fresnel integral transfom

Fresnel integral Transform
¥

a(x)

-¥
Scaled Shifted Discrete Fresnel Transform

Sampling conditions:
Cardinal sampling rate Dx =1/sNDf with scale S
Non-zero sampling grid shift parameters(u,v) L W=u/m vim

N-1 2
(mn) — : (k/m r//m-W)
a™"=— a.exp-I

Convolutional Discrete Fresnel Transform (ConvDFrT)
Sampling conditions: sampling rates:Dx = Df

2

N

1 N-1 N-1
a =—

. ks :
a, exp 'Z'OW exp-1p

. rs
r exp-12p— =
N s=0 k=0 N
N-1 N-1 k=1 s N-1 2 k-r
— a expi2zp——s exp-i exp - i exp i2p——s =
Ns:Ok:OkppN pPN _IOPN IOPN

= 1ak frincd (N VAE k)

k=0




Frincd-function: DFT of “chirp”-function

N-1 2
frincd (N;/ﬁr,k)z exp-ip N
s=0

exp i2pkﬁS



Zones of applicability of Fourier and convolutional algorithms
of reconstruction holograms recorded in near diffraction zone

o

Hologram
N samples;
Camera pitch

Object plane, |£<1

Convolution
algorithm,
reconstruction
without aliasing

{ Object plane, |£=1
Fourier and
Convolution
algorithms:

I
\
A}
N
~

Object plane, |£<1

Fourier algorithm,

reconstruction with
aliasing

RN
N

, reconstructions are 1

identical

Object plane, |£>1
Fourier algorithm,
reconstruction without
aliasing

Object plane, |2 >1
Convolution
algorithm,

reconstruction with

\ aliasing /




Hologram reconstruction: Fourier algorithm vs Convolution algorithm

Hologram courtesy
Dr. J. Campos, UAB,
Barcelona, Spain

mm

1 2

3

0 1
L b
v

Fourier
reconstruction
Image is
destroyed
due to
aliasing
—)

Aliasing =——
artifacts

N

All
restorations
are identical

Fourier
reconstruction of
the central part of

the hologram free of
aliasing

Convolution
reconstruction

Z=33m;
2=0.2439

Z=83mm;
2-0.6618

Z=136mm;
2:1



Discretization aliasing artifacts in reconstruction of a hologram on
different distances using Fourier reconstruction ajorithm (left), the
Fourier reconstruction algorithm with appropriate hologram
masking to avoid aliasing ( middle) and the Convolion
reconstruction algorithm

mm

0 1; 2 3
||||||||g|||||||

v Z




BUILDING CONTINUOUS
IMAGE MODELS



When working with sampled Iimages
computers, one frequently needs to return bac
to their continuous originals.

Typical applications that require restoration of
continuous image models are image geometric;

transformations, image reconstruction from
projections, multi-modality data fusion, target
location and tracking with sub-pixel accuracy,
Image restoration from sparse samples an

Image differentiation and integration, to name &
few.




Discrete sinc-interpolation:
a gold standard
for Image resampling



Image resampling assumes reconstruction of the canuous
approximation of the original non-sampled image bymeans of
interpolation of available image samples to obtainsamples In-
between the given ones.

In some applications, for instance, in computer gnahics and print
art, simple interpolation methods, such as nearesteighbor or linear
(bilinear) interpolations, can provide satisfactory results. However,
all these methods add interpolation error to reconsucted
continuous image models, thus introducing signal dtortions
additional to those caused by the primary image sapting.

A discrete signal interpolation method that is capable o
secure continuous image restoration without adding an)

additional interpolation errors is the discrete sinc
Interpolation




Discrete sinc-interpolation is a discrete analoj
of the continuous sinc-interpolation, whic
secures error free reconstruction of “band
limited” signals from their samples and leas
mean square error reconstruction of arbitrary
continuous signals, provided infinitely large
number of signal samples is available.

Discrete sinc-interpolation does the same f¢
discrete signals.




How can one design a perfect
resampling filter?

- For the purposes of the design of the prefect
resampling filter, one can regard signal co-ordinag
shift as a general resampling operation.

- Signal resampling is a linear signal transformatio. It
can be fully characterized by its point spread funton
(PSF) or, correspondingly, by its overall frequency
response.




The optimal shifting re-sampling filter Is the
filter that generates a shifted copy of the input
signal with preservation of the analog signal
spectrum In its base band defined by the signal
sampling rate and by the number of available
signal samples.

According to this definition, overall continuous
frequency responsey (m)(p)  of the optimadk -
shifting filter for the coordinate shift ax is, by
virtue of the Fourier transform shift theorem,

H ")(p) = exp( 2op k)




According to the discrete representation of thf

convolution Integral, @@discrete  frequenc
response coefficients §#)(ak )} (DFT of
discrete PSF) of the optimal a -shift re
sampling filter must be taken as samples, |
sampling points fr/NDx};r- 01,...,N- 1 of its

overall continuous  frequency response

H (")(p) = exp(i 2pp &)
which, for the Ideal signal sampling anc
reconstruction devices, coincides, within th

signal base band, with the filter overal

ItS

n

frequency responsel



Therefore for odd N

() () =L oxpiop K = }
h{"e) (&K ) mexp|2pND( , r=01...(N-1)/2
Aol (&) =pt™) (&)  r=(N+1)/2,..N-1

r,opt N-r,opt

and for evenN:

exp ini , r=01...N/2-1
A1) (&) = NLX

r,opt

Acosp% , r=N/2

h(intp)(&) — (hl(\:r—]trr),)opt(&'))* . r=N/2+1

r,opt

The following three options forA are:
Case 0:A=0,Case 1A=1. Case 2A=2,.




For odd N, point spread function of the optimal @& -resampling
(fractional shift) filter is

h{me)(gk) =sincd N, p[n- (N- 1)/2- &k/Dx}.

n

For evenN , Case 0 and Case_2, optimal resampling point s@ae functions
are

himo)(gk) = sincd N; N- 1;p[n- (N- 1)/2- &k/Dx}
and

hine2(gk) =sincd N; N +1; p[n- (N- 1)/2- &k/Dx}

n

correspondingly, where a modified sincd-functionSINCd is defined as

sin(Mx/N)

sincd(N; M x) = N sin(x/N)

Case_1 is just a combination of Case 0 and Case_2:

hr(]intp2)(&) _ [hr(]intpo) (&) + hr(]intp2)(&)]/2 =M(i 1:N: X) —
lsincd(N - 1, N; x) +sincd(N +1; N; x)]/2_




Discrete sinc-functions



Frequency response of the discrete sinc-interpolators



The above results can be formulated as a
theorem:

For analog signals defined by their N samplés,
discrete sinc-interpolation is the only discre
convolution based signal re-sampling meth
that, for odd N does not distort signal spectru
samples in its base band specmed by the s Inal
sampling rate; for -
Interpolation distorts only the highest N/2-
frequency spectral component.




Implementation issues:

The described®& -resampling filter that implements discrete
sinc-interpolation is designed in DFT domain. Therefore it can
be straightforwardly implemented using Fast Fourier
Transform with the computational complexity of O(Iog N)
operations per output signal sample, which makes it

competitive with other less accurate interpolation methods.

From the application point of view, the only drawback of such
an implementation is that it tends to produce signal oscillationg
due to the boundary effects caused by the circular periodicity
of convolution implemented in DFT domain. These oscillation
artifacts can be virtually completely eliminated, if discrete sinc-
Interpolation convolution is implemented in DCT domain




DFT-based vs DCT-based discrete sinc-interpolation

DFT-based discrete DCT-based discrete
sinc-interplation sinc-interplation



Interpolation accuracy comparison:
16X18) = Ima e rOtatlon (RotateComparis_demo

NearNeighb, T=7.27 Bilinear, T=11.1

Test image

Bicubic, T=17. 7 Discrete sinc, T=14.2



Discrete sinc-interpolation vs spline (Mems531) interpolation:
Image 1000x18rotation

Spline Mems531-interpolation Discrete sinc-interpolation

Test image

Test image low-pass filtered tp 0.4 of its bandwidth




Discrete sinc interpolation vs spline (Mems531) interpolation:
Rotation error DFT spectra comparison (image 10x36rotation)

Pseudo-random test image

A

Test imagg DFT spectrum

A

Bicubic int

erpolation Mems531 il

\terpolation

Discrete sinC interpolation

DFT spectra of rotated image error (dark- small erras; bright — large errors)




Case study: Image numerical
differentiation and integration

Signal numerical differentiation and integration are
operations that are defined for continuous signal;
and require measuring infinitesimal increments o
decrements of signals and their arguments.

Therefore, numerical computing signal derivatives
and integrals assumes one or another method

building continuous models of signals specified b
their samples through explicit or mplicit
Interpolation between available signal samples.




Conventional numerical differentiation and
Integration methods

In numerical mathematics, alternative methods of nmerical computing signa
derivatives and integrals are commonly used that & implemented througt
signal discrete convolution in the signal domain:
Np-1
ak = hr?iff ak—n ’ ak =
n=0 n=0

Commonly, the simplest differentiating kernels of two ad five samples ar

W=[o05 0 05: p2: h* @ =[-1/12 8/12,0- 8/12 1/17

Most known numerical integration methods are theNewtonCotes quadratur
rules. The three first rules are the trapezoidal, the $npson and the 3/8 Simpsc
ones defined, fork as a running sample index, as, respectively:

=(T 1) =), L
al") =0, ak”=ak‘.2+5(ak.1+ak);

(3/88) — 3/8S)

3 =0, 3

383 3
=3 ) + 8(ak.3+3ak.2+3ak.1+ak).



Synthesis of perfect differentiation and integration filters

Differentiation and integration are shift invariant linear operations. Hence methods |
computing signal derivatives and integrals from th& samples can be conveniently designe
implemented and compared in the Fourier transform a@main.

Signal differentiation and integration can be regarded as signal lear filtering with filter
frequency responses, correspondingly

Hdiff(f)z_izﬁ and Hint(f)zi/zpf

(diff )

(int)

Then coefficients Hhr,optﬂ and Hhr,optﬂ of disaete frequency responses of numeric
differentiation and integration digital filters defined as samples of correspondigp continuous

frequency responses are:
_ | 0 =0

—i2pr /N, r=0L..,N/2-1 iN / 2pr, r=1..N/2-1
plet) = _ pJ2, r=N/2 A= - pl2 r=N/2

r,opt
F=N/2+1. N-1 iN/2p(N-r), r=N/2+1..N-1

r=0L..(N- 1)/ 2- L) - IN/20, r=04..(N-1)/2-1
r=(N+1)/2...N-1"" iN/2p(N-T), r=(N+1)/2




Frequency
responses of
numerical
differentiation
methods

Frequency
responses of
numerical
Integration
methods






Resolving power of numerical integrators

Test signal “Ideal” integration

Trapezoidal integration Cubic spline integration DFT/DCT integration



DCT based versus conventional
differentiation-integration methods: signal restoration error

DCT-based differentiation and integration D2 differentiation & tratezoidal integration

C

Comparison of standard deviations signal restoration erromafter iterative successive 75 differentiations
and integrations applied to a test signal for DCT-based tierentiation and integration methods and for D2
differentiator and trapezoidal rule integrator, respectivdy: a), c) — initial (blue corves) and restored (red
dots) signals; b), d) — restoration error standard deviatiorvs the number of iterations



Accurate numerical differentiation and integration:
Implementation issues

One can show that numerical differentiation and inegration according above equations impl
the discrete sinc-interpolation of signals. Being ekigned in DFT domain, thedifferentiation
and integration filters can be efficiently implemened in DFT domain using Fast Fourie
Transforms with the computational complexity of the algorithms ofo(log N ) operations pel
signal sample.

Likewise all DFT based discrete sinc interpolatioralgorithms, DFT-based differentiation anc
integration algorithms, being the most accurate in term of representationf the corresponding
continuous filters within the signal base band, suffer from boundary effects. ObviouslyDFT
based differentiation is especially vulnerable inhis respect.

This drawback can be efficiently overcome by meanef even extension of signals to douk
length through mirror reflection at their boun daries before applying above described DF
based algorithms. For such extended signals, DFT bad differentiation and integration are
reduced to using fast DCT algorithm instead of FFT:

{al=- N\/m@ ) ( - r)al®Tcos p

k+1/2
r

(ocT)
“tay, k+1/2
fad= 2 s 2,

ith the same computational complexity of Olog N) operations per signal sample




COMPUTATIONAL
IMAGING IN EXAMPLES



Case study: Real time stabilization and
super-resolution of turbulent videos




The video stabilization algorithm

Input video sequence

" v
Stable scene estimatior Motion field estimation by
by means of temporal means of “elastic”

averaging of video registration of frames
frames J

Frame wise scene
segmentation to stable and
moving objects by means
analysis of the motion

field Output
v o video
Formation of stabilized video by point-wise meangSequence
of switching between input signal and stable scen
signal according to the segmentation segmentatign







The super-resolution algorithm

Input video sequence

v

v

Input frame sub- Reference frame
sampling formation

l

l

Segmented motion
field (frame-wise
displacement maps)

o

Segmented displacement map controlled replacing refence
frame samples of stable scene by samples of inpab(-

stabilized) frames from a selected time window, marg object
samples being taken from the sub-sampled input fraes

I

Image recovery from the map of sparse sample+

!

Output stabilized and resolution
enhanced video sequence




Super-resolution in turbulent videos

Random
sampling with
low pass filtering

D

Elastic
registration
and data
accumulation

Interpolation
of sparse data

Low resolution frames upper right); image fused by elastiamage registration from 50 frames (bottom
right); a result of iterative interpolation of the middl e image after 50 iterations (bottom left).



Turbulent video stabilization and super- resolution




Image recovery from sparse data
and
the discrete sampling theorem



Shannon-Kotelnikov’'s sampling theorem tells how to ptimally sample
continuous signals and reconstruct them from the mult of sampling with
minimal MSError. This optimal sampling assumes a uiform sampling grid.

In many applications sampled data are collected imn irregular fashion or
are partly lost or unavailable. In these cases itsi required to convert

irregularly sampled signals to regularly sampled oms, or to restore missing
data.




We address this problem In a framewor ;
of the discrete sampling theorem fo
“band-limited” discrete signals that have a

imited number of non-zero transform
coefficients In the domain of a certair
orthogonal transform.




Basic assumptions

«Continuous signals are represented in computers L
their samples.

Let the number of signal samples on a regular samplinj
grid that are believed to fully represent the original
continuous signal isN

sLet available be K<N samples of this signal, taken 3a
arbitrary positions of the signal regular sampling grid.

The goal of the processing is generating, out of thj
“incomplete” set of samples, the complete set &f signal
samples with the best possible accuracy.

*For definiteness, we will use restoration mean squal
error for evaluating signal approximation accuracy.




Discrete Sampling Theorem: preliminaries

N-1

Ay =F\& = gjr(k)

r=0 k=01,.N-1

Assume now that available are or&iﬁN samp lfsﬂakﬁm z , whereK

K-size non-empty subset of indic
samples define a system of equations:

These avallabIeK signal

N-1

a, = g/, (k)

r=0 ki K

for signal transform coefficients ngﬂ ofertain K indices r .




Select now a subset R #ftransform coefficients indices [{FTT ﬁﬂ and
define a “KofN"-band-limited approximation to the signal as the

AEL = &= g r(k)
i ﬁ N-1
Rewrite this equation in a more general form: A8t = 3 = gy (k)
ffo
and assume that all transform coefficients with inites i R are set to zero:
__ g,il R
g = v
0, 1l R
Then the vector ,&K of available signal sample{alzﬁf _can be expressed in
. . - I K
terms of the basis functions {;  (k} of traferm £ as:

Ak KON xG = & = g (k)
and the vector & =[g} of signal non-z&transform coefficients can be
found as ~ - 1~

G =[{@} =KofNzA
In L2 norm, by virtue of the Parceval’s theorem, tre band-limited signal AEIL
approximates the complete signal A, with ra@ squared error

R NN1 o )
MSE =|A- A= [a- 4= g

k=0 R




The Discrete Sampling Theorem

Statement 1For any discrete signal of N samples defined by KsN sparse
and not necessarily regularly arranged samples,bend-limited, in terms of
a certain transform  , approximation can be obtained with mean square
error

~ N-1 X
MSE =HAN— AN\z a-4a'= |g

k=0 i1 R

‘2

provided that positions of the samples secure thistence of the matriXofN 2
inverse to the sub-transform matrikofN, hatt corresponds to the band-
limitation. The approximation error can be minimizeby using a transform
with the best energy compaction property.

Statement 2Any signal of N samples that is known to have oilyN non-
zero transform coefficients for certain transform( | - “band-limited”
signal) can be fully recovered from exactly K of isamples provided the
positions of the sample secure the existence ofrtiagrix KofNz" inverse
to the transform sub-matrix KofN 2 thabrresponds to the band-
limitation.




Analysis of transforms: DFT

Low-pass DFT band- limited signals:
AT Re =f[01,... (K- 1)/2,N- (K- l)/2 N- 1}

KofNper DFT -trimmed matrix KofNge = exp |2,0

Vandermonde matrix, and, as such, it can be mverté

Theorem 1

Low-pass DFT band-limited signals of N samples wahly K nonzero low
frequency DFT coefficients can be precisely recoa@from exactly K of their
samples taken in arbitrary positions

High-pass DFT band-limited signals:
rdT Ry =f[(N- K+1)/2,(N- K +3)/2,..,(N + K- 1)/2}
K ofN EF;T DFT -high-pass trimmed matrix

o
KofNpi, = exp i2p I\FII
IS a Vendermonde matrix, and, as such, it can be ievted

Theorem 2

High-pass DFT band-limited signals of N samples witnly K nonzero high
frequency DFT coefficients can be precisely recoa@from exactly K of their
arbitrarily taken samples.




Analysis of transforms: DCT

DCT is an orthogonal transform with very good energ compaction
properties. It is well suited for compressed repremntation of many types of

signals

N-point Discrete Cosine Transform of a signal is equalent to 2N-point
Shifted Discrete Fourier Transform (SDFT) with shift parameters (1/2,0) of
the 2N- sample signal obtained from the initial one by itsnirror reflection

from its borders
KofN-trimmed matrix of SDFT(1/2,0)

~
~

= exp i2pi2<—|i| exp ipﬁ dk-r) =

(K +1/2)F
2N

KofNgper = €Xp i2p

~

:
=KofN ip— d(k-
OlNper €XP Ip2N (k=)

Therefore, for DCT theorems similar to those for DA hold




Analysis of transforms: Discrete Fresnel
transform

Canonical Discrete Fresnel TransfordHT) is defined as

1 N1 (ks v | myf
N

a, = a. exp- i
k \/Wrzor p p

where is a distance parameter.

DFrT can easily be expressed via DFT:
2

a—iN—laex i k* ex—i2ﬁ exp i '
rmkzokaN P ’DN IOP”;)N

In a matrix form, it can be represented as a matrix prodiict
of diagonal matrices and the matrix of Discrete Fourier
Transform. Therefore for Discrete Fresnel Transform
formulation of band-limitation and requirements to

positions of sparse samples are the similar to those for PDFT.




2-D transforms:

«Separable band-
limitation
sInseparable band-
limitation

Other
transforms:

\Walsh transform
eHaar transform
\Wavelet transforms

Real life image and its DCT spectrum



Algorithms:

1. Direct matrix inversion A= 3 = kot df (k)
I R

An open question: do fast algorithms for matrix
Inversion exist?

For DFT, DCT, Walsh, Haar and other transforms

that feature FFT-type algorithms, pruned fast
algorithms might be used.

2. Iterative Gershberg-Papoulis-type algorithm




Iterative Gershberg-Papoulis type signal
recovery algorithm

Initial guess: available signal samples on a densampling grid
defined by the accuracy of measuring sample coordates,
supplemented with a guess of the rest of the samp]dor which
zeros, signal mean value or random numbers can besed

Zeroing Generating

transform I iterated
R d coefficients nvefrse signal
Relelenn according to Lol estimate by

the band- restoring
limitation available

assumption signal
samples

Iteration loop

Output estimate after
a selected number of
iterations




Experiments with DFT

Restoration of a DFT low pass band-limited signal ¥ matrix inversion for the cases
of random (a), upper ) and compactly placed signadamples (a), bottom) and by the
iterative algorithm (b). Bottom right plot shows stindard deviation of signal

restoration error as a function of the number of ierations. The experiment was
conducted for a test signal length 64 samples; banadth 13 frequency samples (~1/5
of the signal base band)




Image recovery from sparse samples:
DCT with separable band limitation

Recovery of an image band limited in DCT domain bya square: a) — initial image with 3136 “randomly” place
samples (shown by white dots); b) — the shape of thmage spectrum in DCT domain; c) —image restoredbthe
iterative algorithm after 100000 iterations with restoration PSNR (peak signal-to-error standard devition) 4230;
d) image restored by B-spline interpolation with retoration PSNR 966; e) iterative algorithm restoraion error
(white — large errors; black — small errors); f) —regoration error standard deviation versus the number of

iterations for the iterative algorith and that for t he B-spline interpolation [OUTIMGt,t_r,StdErr,OUTIMG_spline, StdErr_spline,
msk]=map_reconstr_test_sinc_spline(64,0.05);



Image recovery from sparse samples:
DCT with non-separable band limitation

Recovery of an image band limited in DCT domain bya circle sector: a) — initial image with 3964 “randonly” place
samples (shown by white dots); b) — the shape of thmage spectrum in DCT domain; c) —image restoredbthe iterative
algorithm after 100000 iterations with restoration PSNR (peak signal-to-error standard deviation) 21.5d) image restored
by B-spline interpolation with restoration PSNR 7.2; e) iterative algorithm restoration error (white — large errors; black —
small errors); f) —the restoration error standard deviation versus the number of iterations of the itetive algorithm for the
iterative algorithm and that for the B-spline interpolation



Image recovery from level lines:
DCT with non-separable band limitation

Recovery of an image band limited in DCT domain by circle sector from its level lines: a) — initial mage with level lines
(shown by white dots); b) —image restored by theetative algorithm after 1000 iterations with restomtion PSNR 3.5x16 (note
that the restoration error is concentrated in a smd area of the image); c) image restored by B-splminterpolation with
restoration PSNR 29.4; d) iterative algorithm restoation error (white — large errors; black — small errors); e) —the restoration
error standard deviation versus the number of iterdions of the iterative algorithm for the iterative algorithm and that for the
B-spline interpolation



Signal recovery from sparse or non uniformly
sampled data as an approximation task

Signal recovery from sparse or non-uniformly sampld data can be
treated as as finding best signal band-limited apmximation. For this,
the above theory and algorithms can be applied aslfowing:

1. Given a certain number of available signal sampk, specify the sign
dense sampling grid and the required number of sanips to be
recovered.

2. Select a transform with presumably better energycompaction
capability for the signal at hand and specify theignal band limitation in
the domain of this transform.

3. Place available signal samples on the signal gensampling grid and
run the direct matrix inversion or the iterative reconstruction algorithm.




Energy compaction capability of transforms



Errors due to image band limitation




Applications examples:

-lmage super-resolution from
turbulent videos (shown above)

-lmage super-resolution In
computed tomography



Super-resolution in computed tomography



Image recovery from sparse samples:
the “Compressed sensing” approach



Described methods for image recovery from sparse samples py
means of their band-limited approximation in certain
transform domain require explicit formulation of the desired

band limitation in the selected transform domain.

This a priori knowledge that one has to invest is quite naral

to assume. If one selects a transform according to its energy
compaction capability, one may know how this capabilit “
works, i.e. what transform coefficients are expected to beem
Or non-zero.

If, however, this is not known or not certain a priori, image
recovery can be achieved using an approach, which obtain¢d

the name, in fact, quite confusing, “compressed sensing3dpoho,
D., “Compressed sensing’(2006), IEEE Trans. On Infianation Theory, v. 52(4), pp. 1289

1306).



Compressive Sensing Resources: http://dsp.rice.edu/cs

The dogma of signal processing maintains that a signal must
be sampled at a rate at least twice its highest frequencny
order to be represented without error. However, in practice
we often compress the data soon after sensing, trading off
signal representation complexity (bits) for some error
(consider JPEG image compression in digital cameras, for
example). Clearly, this is wasteful of valuable sensing
resources. Over the past few years, a new theory |of
"compressive sensing" has begun to emerge, in which the
signal is sampled (and simultaneously compressed) at| a
greatly reduced rate.

Compressive sensing iIs also referred to in the literaturéy
the terms: compressed sensing, compressive sampling, and
sketching/heavy-hitters.




Images sampling and redundancy

Fourier spectra of images are usually quite rapidly decaying wit
frequencyf . However high frequency spectral components carnhighly
Important information for image analysis, object degection and recognitio
that can’t be neglected m spite of the fact that their contribution to sigral

¥ ¥

a(x) dx=|a(f) dx
-¥ -¥
sampling interval £x must be taken sufficiently small in order to preseve

energy Is relatively small. For this reaso

Image essential high frequencies. Aa consequence, image representati
by samples is frequently very redundant because saes are highl
correlated.

This means, that, in principle, much less datavould be sufficient for imagge
reconstruction if the reconstruction is done in a rore sophigicated wa
than by means of conventional weighted summatiowf regularly placec
samples according to the sampling theorem




The compressive sensing approach to
signal reconstruction from sparse data

The “compressive sensing” approach also assumes olstimg band-limited,
In certain selected transform domain, approximationof images but does not
require explicit formulation of the band-limitation .

Accorﬂin to this approach, from availableM<N signal samplesﬁafﬁﬁ , a
signal ai of N samples is recovered that provides minimum to Lnorm

N-1
HaHLl = rzo\ar\ of signal transform coefficientsﬁarﬁ for theselected transform.

The basis of this approach is the observation, thahinimization of signal L1
norm “almoshalwaoys” In transform domain leads to mnimization of LO —
norm HaHLl = la,| ,thatis to the miniization of the number of non-zero
signal transforin coefficients

The price for the uncertainty regarding band limitation is that the number
of required signal samplesM must be in this case redundant with respect t¢
the given numberK non-zero spectral coefficientsM/K =O(logN)




Sinc-lets and other discrete signals
sharply limited both in signal and
DFT/DCT domains



The uncertainty principle:

Continuous signals cannot be both finite and sharply
band-limited:

X, Fg>1

whereX . is interval in signal domain that contaps - fracti

its entire energyF ;  Is interval in Fourier spectral domain th
contains@& - fraction of signal energy and bagb d@nd
are sufficiently small




How the uncertainty principle can be
translated to discrete signals?

sDiscrete signals that represent continuous signals throug
their samples are always finite as they contain a finite
number of samples.

*Discrete signals can be sharply “band-limited” in any
transform, including DFT and DCT.

*For some transforms, such as, for instance, Haar
transform and Radon Transform, discrete signals that are
sharply limited both in signal and transform domain
obviously exist

Do exist discrete signals that are sharply limited both in
signal and DFT or/and DCT, domains?




Space-limited&Band-limited discrete signals do exis
They are fixed points of the iterative algorithm:

‘ Inverse transform (DFT, DCT) Direct transform (DFT, DCT) ’
A% =kofN_SLTy [k ofN_BLIf (AR

Space limitation Spectrum band
operator limitation operator

Images

Image
DFT
spectra



The discrete uncertainty principle

The (continuous) uncertainty ’
principle Xé F@ -

‘ Signal sampling intervkﬂ @ ;Signal sampling interval ’
sign XN specter >1
‘ The number of signal \‘/The number of signal |
non-zero samples @ non-zero samples

1
spectr > w

N

Cardinal sampling relationship N sign

1
. |

The discrete uncertainty relationship
N >N

The number of signal N

sign
samples

spectr




Sinc-lets

sharply band limited basis functions with
sharply limited support

LBL _0 d(k— )

‘ Inverse transform(DFT\DCE %ﬂansmrm (DFT, DCT) ’
BL| —y SL BL BL
SL| =K *ofN_SL{T; |k *ofN_BL[T (st . })

Space limitation Spectrum band
operator limitation operator




Cross-correlations Cross-correlations
of shifted sinc-lets of shifted sinc-lets




2D Sinc-lets



Imaging without optics :
"Optics-Less Smart
Sensors”



Conventional optical imaging
systems use photo-sensitive plane
arrays of sub-sensors coupled
with focused optics that form a
map of the environment onto this
image plane. The optics carry out
all the information processing
needed to form this mapping in
parallel and at the speed of light,
but comes with some
disadvantages.

*Because of the law of diffraction,
accurate mapping requires large
lens sizes and complex optical
systems.

sLenses limit the field of view and
are only available within a limited
range of the electromagnetic
spectrum.



_________________________________________

Array of detectors

The ever-decreasing cost of computing makesi|i
possible to make imaging devices smaller a
less expensive by replacing optical a
mechanical components with computation.

Conventional optical imaging systems use photo-
sensitive planar arrays of detectors coupled with
focusing optics that form a map of the environment
on the image plane. The optics carry this out at
speed of light, but lenses come with some
disadvantages

<Accurate mapping requires large lens sizes and
complex optical systems.

e enses limit the field of view and

sLenses are only available within a limited range of
the electromagnetic spectrum.




space and intensities of sources of radiation a
show that imaging tasks can be performed by mea
of optics less imaging devices consisting of set
bare radiation detectors arranged on flat or curvec

surface and supplemented with signal processi
units that use detector outputs to compute optim
statistical estimations of sources’ Intensities an|
coordinates.

We call this class of sensors

“*Optics-Less Smart” (OLS) sensors



Optics-less radiation sensors:
arrays of radiation detectors with natural cosine-bw or alike angular sensitivity
arranged on flat or curved surfaces and supplementewith a signal processing unit

Examples of the physical design and models used in experiments



An outline of the basic idea:
Locating a single distant radiation source (planar model

i (A )
Direction to the %X’
distant light e
source )
First detector n ’
with a cosine- , , p
law angular /’ / ! Second detector
sensitivity ,/ L 7 with a cosine-
’ ' law angular
sensitivity

Maximum
Likelihood
estimates:

Ao \/sf + 5% +25,S, COSEj

Signal - 4 sin#)
processing unit tang = ﬁtaq’j
S+




Sensor’s operation principle

generating, using signals from all elemental deteats, optimal
statistical estimates of the radiation source intesity and coordinates
or directional angles

A Maximum Likelihood model
of sensing distant radiation
sources

Detector’s angular sensitivity pattern
' in polar coordinates

A
vy
AN

Vr~o
ST e AN-- - ___ v N
RN i

"

=~ 11k AngSend e[k + o) +vin

N 2

{i1k1. gunclk} = argmin

{11K1.gsrclk} n=1

{nl- I [K] AngSendgu.c[K] + GuenlN])




Performance evaluation: theoretical lower
bounds. Spherical sensor, single distant source

*OLS sensors are essentially nonlinear devices the&n't be described in terms of
point-spread functions. Their performance can be caracterized by the probability
distribution function of source parameter estimatian errors

«Statistical theory of parameter estimation shows tht, for parameter estimation
from data subjected to sufficiently small independet Gaussian additive noise,
estimation errors have a normal distribution with mean of zero and standard
deviation given by the Cramer-Rao lower bound (CRLB)

Assuming the simplest_.ambertian cosine law angular sensitivity functionof the
detectors cosZ, | <p/2
073 p/2

CRLBs are found, for a single source and for the sprical model, to be
A 2s .. 25
1/varH }}33 — «/varﬂlﬁi’3 ——
qSRC /N I /N

where is standard deviation of detector’s noiseN is the number of detectors] is
the source intensity

AngSendJ) =




Performance evaluation: theoretical lower
bounds. Spherical sensor, two and more sources:

For the case of two source$;RLBs are found to be

Jvargeckl =

2s .
| [k]\/mSRC/mSENS ’

where cgsiS the angular difference between sources and ¢y s /N IS the
angle between neighboring detectors.

given Dgspc > DGeeys; kK =1,2

Numerical results for cases with more than two souwes show that regardless
of the number of equally-spaced sources, the averagstimation error for all
the sources is equal to the error predicted for th&-source problem

Resolving power of the sensor:

If the angular separation between sources is smalflethan the angular
separation between neighboring detectors ( gy  sro, the estimator’s
performance rapidly worsens and becomes no betteih&n that of random
guessing.




Optics Less sensor basic operation modes

"General localization"” mode: localization and
Intensity estimation of a given number of radiation
sources.

“Constellation localization” mode: estimation of
Intensities and locations of “constellations” of radiation

sources, which consist of a known number of point
sources of known configuration and relative distribution
of intensities

"Imaging" mode: estimation of intensities of a given
number of radiation sources in the given locations, for
Instance, on a regular grid.




Computer model:

Spherical and planar models of optics less radiations sensd
were tested in the localization and imaging modes ]
numerical simulation using, for generating Maximum
Likelihood estimates of sources’ intensities and locations, ¢
multi-start global optimization method with pseudo-random
Initial guesses and Matlab’s quasi-Newton method fc

finding local optima.

In order to improve reliability of global maximum location
and accelerate the search, input data were subjected
decorrelation preprocessing by means of the “whitening]
algorithm that proved to be optimal preprocessing algorith
for point target location in clutter. It is interesting to note
that a similar data decorrelation is known in vision science &
“lateral inhibition ”




Experiment:
Spherical sensor in the imaging mode

Pattern of detectors’ Reconstruc_ted imagg :
Pattern of 19x16 sources outputs Standard deviation of estimatign
errors 0.064

(spherical array of 16x20 = 320 detectors;
detector’s noise
standard deviation 0.01




Planar sensor In the localization mode

Spread of “hits” (color dots) of estimation of a siigle radiation
source locations in different positions (marked bylue circles) with
respect to the sensors, consisting of 11 detectdyzllow boxes)



Planar sensor in the localization mode: estimation errors of
position and intensity of a single radiation source placed in
different positions in front of the sensor

a) b)

Maps of standard deviations of estimation errors of X-Y coadinates (a, b) and of intensity (c) of a radiation source
as a function of the source position with respect to theurface of the line array of 25 detectors with detector aise
StDev=0.01. Darker areas correspond to larger errors. Plot ghows standard deviations of X. Y and intensity
estimation errors as function of the distance from theensor along the sensor ‘optical axis” (central sections of

Figs. a)-c))




Planar sensor in the imaging mode

Distance Detector readings Estimated source intensdb
Z=1

Error standard deviation 5.6850e-04

Z=2

Error standard deviation 0.0105
Z=4

Error standard deviation 0.0590
Z=8

Error standard deviation 0.1197

Sensing of 8x16 radiation sources arranged on a plane in forof characters “SV” by a 3-D model of a flat
OLS sensor of 8x16 elementary detectors in the “imaging” nue for distances of sources from the sensdr1
to 8 (in units of inter-detector distance). SNR wasdpt constant at 100 by making the source amplitude
proportional to the distance between the source plarend sensor plane. Detector noise StDev=0.01.




Sensors on convex surfaces in the localization mode

Sensors on bent convex surfaces (1D model, 11 detectors,seostandard deviation 0.01): map of standard
deviations of estimation errors of source intensity (lefcolumn), that of source direction angle (central colum)
and that of the distance to the source (right columngas functions of the source position with respect tchée
sensor’s surface. Darker areas correspond to larger errors




Sensors on concave surfaces in the localization med

map_err_std_polar.m




Optics-less “smart” sensors: advantages and limitadins

Advantages

* No optics are needed, making this type
of sensor applicable to virtually any type of
radiation and to any wavelength

» The angle of view (of spherical sensors)
Is unlimited

» The resolving power is determined
ultimately by the sub-sensor size, and not
by diffraction-related limits

» Sensors without optics can be made
more compact and robust than traditional
optical sensors

Limitations:

High computational complexity, especially
when good imaging properties for multiple
sources are required.

However, the inexorable march of Moore’s law makesuch
problems more feasible each year. Furthermore, theomputations
lend themselves to high-concurrency computation, ghe
computational aspects are not expected to hinder age of OLS
sensors.



A little imagination: a flying sighted brain




COMPUTATIONAL
IMAGING AND
EVOLUTION OF
VISION IN THE

NATURE



Optics-less extra ocular cutaneous (skin) vision in Nature

The flat worm has "cup"

e_ye_spot_s thz_;lt can slightly p;; organs in python.

distinguish light Arrows pointing to the pit

direction. organs are red; a black
arrow points to the nostril

Electroreceptors and lateral line canals in sharksn some
types of fish.

- Heliotropism of some plants

- Eye spots (patches of photosensitive cells gin
the skin), cup eyes, and pit eyes

- Cutaneous photoreception in reptiles

- Infra-red radiation sensitive “pit organs” of
vipers

- The pressure sensitive “lateral line system’
of fish, which they use to localize  sources gf
vibration located within approximately one
body length

- Electric field sensitive receptors in sharks
and in some types of fish, which allow animal$
to sense electrical field variations in thei

surroundings within approximately one body

length

There are also a number of reports on the
phenomenon of primitive cutaneous vision |
humans



Presented simulation results

*Show that reasonably good directional vision without optics i
possible even using the simplest possible detectors whpse
angular sensitivity is defined only by the surface absorptivity.

*Are in a good correlation with published observations |
studies of cutaneous vision

*Allow suggesting that the operational principle and capabilitis
of OLS sensors can be used to model operational principlead
capabilities of cutaneous vision and its neural circuitry.

Motivate advancing a hypothesis that evolution of visio
started from formation, around primordial light sensitive cells,
of neural circuitry for implementing imaging algorithms similar
to those in our model of the flat OLS sensor, including, at aof
the first step, the lateral inhibition.




The reported OLS sensor modelg

|
naturally suggests also, that fI

primordial eyespots may have evolve

through bending of the sensor’s surfac
to convex or concave spherical forms, |||o
the compound facet eye or camera-like

vision, correspondingly




TWO BRANCHES OF EVOLUTION OF VISION

\ | Transparent
\\ protective medium
» with refracting
D &
N, I~ &
~Lr

bcutaneous neural ne

Cup eyes of mollusks

Compound ' Central nervous
apposition or system

superposition eyes of _
insects Camera like eye of

vertebrates




In both cases, the evolution of eye optics had to be parallel§
by the evolution of eye neural circuitry as an inseparable pa
of animal brains.

As it follows from the theory, detection and localization d
targets does not necessarily require formation of sharp imaggs
and can be carried out directly on not sharply focused imagep.
Image sharpness affects the reliability of detection an
becomes important only for low signal-to-noise ratio
detectors.

Therefore, gradual improvements of eye optics in course @f
evolution of eye optics may have translated into improvep
target detection reliability and allowed transferring, in course ‘
of evolution, the higher and higher fraction of eye neure
circuitry and brain resources from image formation to image

understanding. In a certain sense one can suggest that arals
brain is a result of evolution of vision.
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