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Imaging has always been the primary goal of informational optics. The 
whole history of optics is a history of creating and perfecting imaging 
devices. The main characteristic feature of the latest stage of the 
evolution of informational optics is integrating of physical optics with 
digital computers. With this, informational optics is reaching its 
maturity. It is becoming digital and imaging is becoming 
computational. 



Image formation and processing 
capability of optics

Image formation from light wave-front

Image geometrical transformations

Image integral transforms (Fourier & Fresnel, 
correlation and convolution )

Image brightness point-wise manipulation (photographic 
alchemy & electro-optics)



New qualities 
brought in to imaging systems by digital computers

Flexibility and adaptability: no hardware modifications are 
necessary to reprogram digital computers to solving different 
tasks.

Digital computers integrated into optical imaging systems 
enable them to perform any operation needed

Acquiring and processing quantitative data contained in 
optical signals and connecting optical systems with other 
informational systems and networks is most natural when data 
are handled in a digital form.

Low price: computers are much cheaper than optics



Digital vs analog imaging: 
a tradeoff between good and bad features.

The fundamental limitation of digital signal processing is 
the speed of computations. What optics does in parallel and 
with the speed of light, computers perform as a sequence of 
very simple logical operations with binary digits, which is 
fundamentally slower whatever the speed of these 
operations is.

Optimal design of image systems requires appropriate 
combination of analog and digital processing using advantages 
and taking into consideration limitations of both.



Marriage analog electro-optical and 
digital processing requires appropriate 
linking analog and digital signals and 
transformations.



TO BE DISCUSSED:

� Linking optical and digital image processing
- Principles of converting physical reality into digital signals
- Discrete representations of imaging transforms 
- Resolving power of discrete Fourier analysis
- Aliasing artifacts in numerical reconstruction of holograms
- Building continuous image models
- Signal numerical differentiation and integration

� Computational imaging in examples
- Stabilization and super-resolution in turbulent video
- Image recovery from sparse sampled data
- Imaging without optics: optics less smart sensors

� Conclusion: computational imaging and evolution of 
vision in nature
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Linking optical and digital 
image processing



Linking optical and digital image processing:
The consistency and mutual correspondence principle

� Digital processors incorporated into optical information systems should be 
regarded and treated together with signal discretization and reconstruction devices 
as integrated analog units and should be specified and characterized in terms of 
equivalent analog transformations.

Analog-to-
Digital 

conversion

Digital 
computer

Analog-to-
Digital 

conversion
Computational imaging system

� Discrete transformation corresponds to its analog prototype if both act to 
transform identical input signals into identical output signals.

� Discrete representation of signal transformations should parallel that of signals.



Signal digitization: 
conversion of physical 

reality into a digital signal



SIGNAL DIGITIZATION

Signal 
space: a 

continuum

Equivalency cell

-representative signals

General quantization: 

� Splitting signal space into “equivalence cells”

� Indexing “equivalence cells” by natural numbers

� Associating each index number with a “representative” signal 
of the corresponding equivalence cell



An example of general digitization: 
verbal description of the world

An estimation of the volume of 
image signal space:

>>2561.000.000



SOLUTION: 
TWO STEPS SIGNAL DIGITIZATION :

Two step digitization:

� Signal discretization by means of expansion over 
a set of basis functions

� Element-wise quantization of the representation 
coefficients        (general digitization in 1D signal 
space)
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Signal discretization

(((( ))))(((( )))){{{{ }}}} (((( ))))(((( )))){{{{ }}}}{{{{ }}}}kxkx rd jjj jjjj j ;

Types of discretization basis functions:

-Shift (sampling) basis functions 

-Scaled basis functions

-Shift&Scale basis functions: 
Wavelets
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The sampling theorem formulated in terms of the accuracy of reconstruction of continuous 
signals from their samples:  

·  The least square error approximation (((( ))))xa~  of signal (((( ))))xa  from its samples {{{{ }}}}ka  taken 
on a uniform sampling grid with sampling interval xDDDD  is  
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·  The approximation mean square error is minimal in this case and is equal to: 
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==== dxfxixaf ppppaaaa 2exp  is signal Fourier spectrum, f  is frequency, and 

(((( )))) xxx sinsinc ====  is “Sinc-function” , the point-spread function of the ideal low-pass filter 
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The sampling theorem
A “bandlimited” signal can be perfectly reconstructed from an infinite sequence of its samples if the inter-sample 
distance does not exceed 1/2B, where B is the highest frequency in the original signal. 



Discrete representation 
of imaging transforms



The convolution integral of a signal 
(((( ))))xa  with shift invariant kernel (((( ))))xh :  (((( )))) (((( )))) (((( ))))����
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hN  is the number of non-zero samples of nh  

Discrete impulse response {{{{ }}}}nh  of the 
digital filter for input and output 
signal sampling bases (((( )))) (((( ))))xs

0ffff  and 
(((( )))) (((( ))))xr
0jjj j  and sampling interval xDDDD  
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Overall point spread function of an 
analog filter equivalent to a given 
digital filter  
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bN  is the number of samples of the filter output signal {{{{ }}}}kb  involved in 

reconstruction of analog output signal (((( ))))xb , hN  is the number of samples 
of the digital filter PSF and xDDDD  is the signal sampling interval 
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Discrete representation of the convolution integral



1-D direct and inverse integral Fourier Transforms of a signal (((( ))))xa  
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Direct and Inverse Canonical Discrete Fourier Transforms (DFT) 
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Direct and Inverse  Shifted DFTs (SDFT(u,v)): 
Sampling conditions: 
- Signal and signal sampling device coordinate systems as well as, correspondingly, those of signal spectrum and of the 

assumed signal spectrum discretization device, are shifted with respect to each other in such a way that signal sample {{{{ }}}}0a  
and, correspondingly, sample {{{{ }}}}0aaaa  of its Fourier spectrum are taken in signal and spectrum coordinates at points xux DDDD----====  
and fvf DDDD----==== .  

Signal “cardinal” sampling: fNx DDDDDDDD 1====  
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Direct and Inverse Discrete Cosine Transform (DCT: 
Sampling conditions: 
- Special case of SDFT for sampling grid shift parameters:  0;2/1 ======== vu  
Analog signal of final length is, before sampling, artificially padded with its mirror copy to form a symmetrical sampled signal 

of double length: {{{{ }}}}kNk aa --------==== 12 ; 
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Direct and Inverse Scaled Shifted DFTs ( (((( ))))ssssv;u,ScSDFT ) 
Sampling conditions: 
- Sampling rate is ssss  times the cardinal rate: fNx DDDDssssDDDD 1====  
- Sampling shift parameters:  0¹¹¹¹vu,  
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Discrete representation of 1D Fourier integral transform



 
2-D direct and inverse integral Fourier Transforms of a signal (((( ))))yxa ,  
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2-D separable direct and inverse canonical DFTs: 

Sampling conditions: 
- Sampling in a rectangular sampling grid with cardinal sampling rates xfNx DDDDDDDD 11==== , yfNy DDDDDDDD 21====  
- Zero sampling grid shift parameters 
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Scaled Shifted DFTs 
Sampling conditions: 
Sampling in a rectangular sampling grid. Sampling rates xfNx DDDDssssDDDD 111==== ; yfNy DDDDssssDDDD 221====  
Non-zero sampling grid shift parameters (((( ))))vu,  and (((( ))))qp,  
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Rotated and Scaled DFTs 

Sampling conditions: 

- Sampling in a rectangular sampling grin in a rotated coordinate system ����
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- Sampling rates xfNx DDDDssssDDDD 1==== ; yfNy DDDDssssDDDD 1==== ; Non-zero sampling grid shift parameters (((( ))))vu,  and (((( ))))qp,  
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Discrete representation of 2D Fourier integral transform



Point spread function of discrete Fourier analysis
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Spectrum 
samples 

computed 
using ScDFT

Signal 
continuous 
spectrum

PSF of 
discrete 
spectral 
analysis
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� –sampling scale parameter
� x – sampling interval



Point Spread Function and resolving power of 
discrete Fourier analysis



Fresnel integral Transform 
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Scaled Shifted Discrete Fresnel Transform 
Sampling conditions: 
Cardinal sampling rate fNx DDDD====DDDD ssss1  with scale ssss  
Non-zero sampling grid shift parameters (((( ))))vu,  : mmmmmmmm vuw ----====  
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Convolutional Discrete Fresnel Transform (ConvDFrT) 
Sampling conditions: sampling rates: fx DDDD====DDDD  
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Discrete representation of Fresnel integral transform
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Frincd-function: DFT of “chirp”-function



Hologram
N samples; 

Camera pitch 
� f

Object plane, µ2 >1
Fourier algorithm, 

reconstruction without 
aliasing

Object plane, µ2 >1
Convolution 
algorithm, 

reconstruction with 
aliasing

Object plane, µ2<1
Convolution 
algorithm, 

reconstruction 
without aliasing

Object plane, µ2 =1
Fourier and 
Convolution 
algorithms: 

reconstructions are 
identical

Object plane, µ2<1
Fourier algorithm, 
reconstruction with 

aliasing

N N N

2
2

fN
Z
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Zones of applicability of Fourier and convolutional algorithms 
of reconstruction holograms recorded in near diffraction zone

Z



0 1 2 3

z

mm

Fourier 
reconstruction

Fourier 
reconstruction of 
the central part of 

the hologram free of 
aliasing

Convolution 
reconstruction

Hologram reconstruction: Fourier algorithm vs Convolution algorithm

Z=33m; 

� 2=0.2439

Z=83mm; 

� 2 =0.6618 

Z=136mm; 

� 2 =1 

Hologram courtesy 
Dr. J. Campos, UAB,
Barcelona, Spain

Aliasing 
artifacts 

All 
restorations 
are identical

Image is 
destroyed 
due to 
aliasing



Discretization aliasing artifacts in reconstruction of a hologram on 
different distances using Fourier reconstruction algorithm (left), the 
Fourier reconstruction algorithm with appropriate h ologram 
masking to avoid aliasing ( middle) and the Convolution 
reconstruction algorithm

Hologram courtesy Dr. J. Campos, 
UAB, Barcelona, Spain
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BUILDING CONTINUOUS 
IMAGE MODELS



When working with sampled images in 
computers, one frequently needs to return back 
to their continuous originals. 

Typical applications that require restoration of 
continuous image models are image geometrical 
transformations, image reconstruction from 
projections, multi-modality data fusion, target 
location and tracking with sub-pixel accuracy, 
image restoration from sparse samples and 
image differentiation and integration, to name a 
few. 



Discrete sinc-interpolation: 
a gold standard 

for image resampling



Image resampling assumes reconstruction of the continuous 
approximation of the original non-sampled image by means of 
interpolation of available image samples to obtain samples in-
between the given ones. 

In some applications, for instance, in computer graphics and print 
art, simple interpolation methods, such as nearest neighbor or linear 
(bilinear) interpolations, can provide satisfactory results. However, 
all these methods add interpolation error to reconstructed 
continuous image models, thus introducing signal distortions 
additional to those caused by the primary image sampling.

A discrete signal interpolation method that is capable of 
secure continuous image restoration without adding any 
additional interpolation errors is  the discrete sinc-
interpolation 



Discrete sinc-interpolation is a discrete analog 
of the continuous sinc-interpolation, which 
secures error free reconstruction of “band-
limited” signals from their samples and least 
mean square error reconstruction of arbitrary 
continuous signals, provided infinitely large 
number of signal samples is available. 

Discrete sinc-interpolation does the same for 
discrete signals. 



- For the purposes of the design of the prefect 
resampling filter, one can regard signal co-ordinate 
shift as a general resampling operation. 

- Signal resampling is a linear signal transformation. It 
can be fully characterized by its point spread function 
(PSF) or, correspondingly, by its overall frequency 
response.  

How can one design a perfect 
resampling filter?



The optimal shifting re-sampling filter is the 
filter that generates a shifted copy of the input 
signal with preservation of the analog signal 
spectrum in its base band defined by the signal 
sampling rate and by the number of available 
signal samples.

According to this definition, overall continuous 
frequency response                of the optimal       -
shifting filter for the coordinate shift          is, by 
virtue of the Fourier transform shift theorem,
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According to the discrete representation of the 
convolution integral, discrete frequency 
response coefficients                   (DFT of its 
discrete PSF) of the optimal     -shift re-
sampling filter must be taken as samples, in 
sampling points                                  , of its
overall continuous frequency response

which, for the  ideal signal sampling and 
reconstruction devices, coincides, within the 
signal base band, with the filter overall 
frequency response              
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Therefore for odd N

and for even N:
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The following three options for A are: 
Case_0:A=0, Case_1: A=1:  Case_2: A=2, . 



For odd N, point spread function of the optimal x~dddd -resampling 
(fractional shift) filter is 

(((( ))))(((( )))) (((( ))))[[[[ ]]]]{{{{ }}}}xxNnNxh intp
n DDDD------------==== ~21,sincd~ ddddppppdddd .    

For even N , Case_0 and Case_2, optimal resampling point spread functions 
are 
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correspondingly, where a modified sincd-function sincd is defined as 
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Discrete sinc-functions



Frequency response of the discrete sinc-interpolators



The above results can be formulated as a 
theorem:

For analog signals defined by their N samples, 
discrete sinc-interpolation is the only discrete 
convolution based signal re-sampling method 
that, for odd N, does not distort signal spectrum 
samples in its base band specified by the signal 
sampling rate; for even N, discrete sinc-
interpolation distorts only the highest N/2-th 
frequency spectral component.



Implementation issues:

The described      -resampling filter that implements discrete 
sinc-interpolation is designed in DFT domain. Therefore it can 
be straightforwardly implemented using Fast Fourier 
Transform with the computational complexity of        
operations per output signal sample, which makes it 
competitive with other less accurate interpolation methods.

From the application point of view, the only drawback of such 
an implementation is  that it tends to produce signal oscillations 
due to the boundary effects caused by the circular periodicity 
of convolution implemented in DFT domain.  These oscillation 
artifacts can be virtually completely eliminated, if discrete sinc-
interpolation convolution is implemented in DCT domain

x~dddd

(((( ))))NO log



DFT-based vs DCT-based discrete sinc-interpolation

DFT-based discrete 
sinc-interplation

DCT-based discrete 
sinc-interplation



NearNeighb, T=7.27

Interpolation accuracy comparison: 
16x18o - image rotation (RotateComparis_demo)

Bilinear, T=11.1 

Bicubic, T=17. 7 Discrete sinc, T=14.2 

Test image



Discrete sinc-interpolation vs spline (Mems531) interpolation:
Image 1000x18o rotation

Test image

Spline Mems531-interpolation Discrete sinc-interpolation

Test image low-pass filtered tp 0.4 of its bandwidth



Discrete sinc interpolation vs spline (Mems531) interpolation:
Rotation error DFT spectra comparison (image 10x36o rotation)

Pseudo-random test image Test image DFT spectrum

DFT spectra of rotated image error (dark- small errors; bright – large errors)
Bicubic interpolation Mems531 interpolation Discrete sinc interpolation



Case study:  Image numerical 
differentiation and integration 

Signal numerical differentiation and integration are 
operations that are defined for continuous signals 
and require measuring infinitesimal increments or 
decrements of signals and their arguments. 
Therefore, numerical computing signal derivatives 
and integrals assumes one or another method of 
building continuous models of signals specified by 
their samples through explicit or implicit 
interpolation between available signal samples.



In numerical mathematics, alternative methods of numerical computing signal 
derivatives and integrals are commonly used that are implemented through 
signal discrete convolution in the signal domain: 
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Commonly, the simplest differentiating kernels of two and five samples are 
recommended  

D1: 
(((( )))) ]5.0,0,5.0[1 ----====diff

nh ;  D2: 
(((( )))) ]12/1,12/8,0,12/8,12/1[2 --------====diff

nh . 
 
Most known numerical integration methods are the Newton-Cotes quadrature 
rules. The three first rules are the trapezoidal, the Simpson and the 3/8 Simpson 
ones defined, for k as a running sample index, as, respectively: 
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Conventional numerical differentiation and 
integration methods



Differentiation and integration are shift invariant  linear operations. Hence methods of 
computing signal derivatives and integrals from their samples can be conveniently designed, 
implemented and compared in the Fourier transform domain. 
 
Signal differentiation and integration can be regarded as signal linear filtering with filter 
frequency responses, correspondingly 

      (((( )))) fifH diff pppp2----====     and     (((( )))) fifH int pppp2====  

Then coefficients 
(((( )))){{{{ }}}}diff

optr ,hhhh  and 
(((( )))){{{{ }}}}int

optr ,hhhh  of discrete frequency responses of numerical 
differentiation and integration digital filters defined as samples of corresponding continuous 
frequency responses are: 
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for even N and  
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for odd N .   

Synthesis of perfect differentiation and integration filters



Frequency 
responses of 
numerical 
differentiation 
methods

Frequency 
responses of 
numerical 
integration 
methods



Differentiation error comparison



Resolving power of numerical integrators

Test signal “Ideal” integration

DFT/DCT  integrationCubic spline integrationTrapezoidal  integration



DCT based versus conventional 
differentiation-integration methods: signal restoration error

Comparison of standard deviations signal restoration error after iterative successive 75 differentiations 
and integrations applied to a test signal for DCT-based differentiation and integration methods and for D2 
differentiator and trapezoidal rule integrator, respectively: a), c) – initial (blue corves) and restored (red 
dots) signals; b), d) – restoration error standard deviation vs the number of iterations 

DCT-based differentiation and integration D2 differentiation & tratezoidal integration

a

b

c

d



One can show that numerical differentiation and integration according above equations imply 
the discrete sinc-interpolation of signals. Being designed in DFT domain, the differentiation 
and integration filters can be efficiently implemented in DFT domain using Fast Fourier 
Transforms with  the computational complexity of the algorithms of (((( ))))NO log  operations per 
signal sample. 
 
Likewise all DFT based discrete sinc interpolation algorithms, DFT-based differentiation and 
integration algorithms, being the most accurate in term of representation of the corresponding 
continuous filters within the signal base band, suffer from boundary effects. Obviously, DFT 
based differentiation is especially vulnerable in this respect. 
 
This drawback can be efficiently overcome by means of even extension of signals to double 
length through mirror reflection at their boun daries before applying above described DFT 
based algorithms. For such extended signals, DFT based differentiation and integration are 
reduced to using fast DCT algorithm instead of FFT: 
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with the same computational complexity of  (((( ))))NO log  operations per signal sample 

Accurate numerical differentiation and integration: 
implementation issues



COMPUTATIONAL 
IMAGING IN EXAMPLES



Case study: Real time stabilization and 
super-resolution of turbulent videos



Stable scene estimation 
by means of temporal 

averaging of video 
frames

Motion field estimation by 
means of “elastic”

registration of frames

Frame wise scene 
segmentation to stable and 
moving objects by means 

analysis of the motion 
field

Formation of stabilized video by point-wise means 
of switching between input signal and stable scene 
signal according to the segmentation segmentation

Input video sequence

Output 
video 

sequence

The video stabilization algorithm





Input frame sub-
sampling

Segmented motion 
field (frame-wise 

displacement maps)

Segmented displacement map controlled replacing reference 
frame samples of stable scene by samples of input (non-

stabilized) frames from a selected time window, moving object 
samples being taken from the sub-sampled input frames 

Image recovery from the map of sparse samples

Reference frame 
formation

Output stabilized and resolution 
enhanced video sequence

The super-resolution algorithm
Input video sequence



Super-resolution in turbulent videos

Random 
sampling with 

low pass filtering

Elastic 
registration 

and data 
accumulation

Interpolation 
of sparse data

Low resolution frames upper right); image fused by elastic image registration from 50 frames (bottom 
right); a result of iterative interpolation of the middl e image after 50 iterations (bottom left).



Interpolated Image

Super-resolved Image

Turbulent video stabilization and super- resolution



Image recovery from sparse data 
and  

the discrete sampling theorem



Shannon-Kotelnikov’s sampling theorem tells how to optimally sample 
continuous signals and reconstruct them from the result of sampling with 
minimal MSError. This optimal sampling assumes a uniform sampling grid. 

In many applications sampled data are collected in an irregular fashion or 
are partly lost or unavailable. In these cases it is required to convert 
irregularly sampled signals to regularly sampled ones, or to restore missing 
data.



We address this problem in a framework 
of the discrete sampling theorem for 
“band-limited” discrete signals that have a 
limited number of non-zero transform 
coefficients in the domain of a certain 
orthogonal transform.



Basic assumptions:

•Continuous signals are represented in computers by 
their samples.

•Let the number of  signal samples on a regular sampling 
grid that are believed to fully represent the original 
continuous signal is N

•Let available be K<N samples of this signal, taken at 
arbitrary positions of the signal regular sampling grid. 

•The goal of the processing is generating, out of this 
“incomplete” set of  samples, the complete set of N signal 
samples with the best possible accuracy.  

•For definiteness, we will use  restoration mean square 
error for evaluating signal approximation accuracy. 



Let        be a vector of N samples                     , which completely define a 

discrete signal,            be an  NxN orthogonal transform matrix                                    

and            be a vector of signal transform coefficients

such that

Assume now that available are only K<N samples                 , where         is a  
K-size non-empty subset of indices                    . These available K signal 
samples define a system of  equations:

for  signal transform coefficients             of certain K indices r .
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Discrete Sampling Theorem: preliminaries 



Select now a subset         of K transform coefficients indices                and 
define a “KofN”-band-limited approximation to the signal  as the 

Rewrite this equation in a more general form:

and assume that all transform coefficients with indices         are set to zero:

Then the vector        of available signal samples           can be expressed in 
terms of the basis functions               of transform         as:

and the vector                    of signal non-zero transform coefficients can be 
found as

In L2 norm, by virtue of the Parceval’s theorem, the band-limited signal           
approximates the complete signal            with mean squared error
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Statement 1.For any discrete signal of N samples defined by its  K� N sparse 
and not necessarily regularly arranged samples, its band-limited, in terms of 
a certain transform � N , approximation can be obtained with mean square 
error

provided that positions of the samples secure the existence of the matrix  
inverse to the sub-transform matrix               that corresponds to the band-
limitation. The approximation error can be minimized by using a transform 
with the best energy compaction property.

Statement 2.Any signal of N samples that is known to have only K� N non-
zero transform coefficients for certain transform � N(� N - “band-limited”
signal) can be fully recovered from exactly K of its samples provided the 
positions of the sample secure the existence of the matrix      inverse 
to the transform sub-matrix                   that corresponds to the band-
limitation.
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The  Discrete Sampling Theorem
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Analysis of transforms: DFT
Low-pass DFT band- limited signals: 

DFT -trimmed  matrix                                                 is a 

Vandermonde matrix, and, as such, it can be inverted

Theorem 1.

Low-pass DFT band-limited signals of N samples with only K nonzero low 
frequency DFT coefficients can be precisely recovered from exactly K of their 
samples taken in arbitrary positions

High-pass DFT band-limited signals:

DFT -high-pass trimmed matrix 

is a Vendermonde matrix, and, as such, it can be inverted

Theorem 2.

High-pass DFT band-limited signals of N samples with only K nonzero high 
frequency DFT coefficients can be precisely recovered from exactly K of their 
arbitrarily taken samples.
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Analysis of transforms: DCT                    

DCT is an orthogonal transform with very good energy compaction 
properties. It is well suited for compressed representation of many types of 
signals

N-point Discrete Cosine Transform of a signal is equivalent to 2N-point 
Shifted Discrete Fourier Transform (SDFT) with shift parameters (1/2,0) of 
the 2N- sample signal obtained from the initial one by its mirror reflection 
from its borders 

KofN-trimmed matrix of SDFT(1/2,0)

Therefore, for DCT theorems similar to those for DFT hold 
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Analysis of transforms: Discrete Fresnel 
transform
Canonical Discrete Fresnel Transform (DFrT) is defined as 

where � is a distance parameter.

DFrT can easily be expressed via DFT:

In a matrix form, it can be represented as a matrix product 
of diagonal matrices and the matrix of Discrete Fourier 
Transform. Therefore for Discrete Fresnel Transform 
formulation of band-limitation and requirements to 
positions of sparse samples are the similar to those for DFT. 
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2-D transforms: 
•Separable band-
limitation
•Inseparable band-
limitation

Other 
transforms: 

•Walsh transform
•Haar transform
•Wavelet transforms Real life image and its DCT spectrum



1. Direct matrix inversion

Algorithms:
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An open question: do fast algorithms for matrix 
inversion exist? 

For DFT, DCT, Walsh, Haar and other transforms 
that feature FFT-type algorithms, pruned fast 
algorithms might be used.

2. Iterative Gershberg-Papoulis-type algorithm



Initial guess: available signal samples on a dense sampling grid
defined by the accuracy of measuring sample coordinates, 
supplemented with a guess of the rest of the samples, for which 
zeros, signal mean value or random numbers can be used

Signal 
transform

Zeroing 
transform 
coefficients 
according to 

the band-
limitation 

assumption

Inverse 
transform

Generating 
iterated 
signal 

estimate by 
restoring 
available 

signal 
samples

Iteration loop

Output estimate after 
a selected number of 

iterations

Iterative Gershberg-Papoulis type signal  
recovery algorithm



Restoration of a DFT low pass band-limited signal by matrix inversion for the cases 
of random (a), upper ) and compactly placed signal samples (a), bottom) and by the 
iterative algorithm (b). Bottom right plot shows standard deviation of  signal 
restoration error as a function of the number of iterations. The experiment was 
conducted for a test signal length 64 samples; bandwidth 13 frequency samples (~1/5 
of the signal base band)

Experiments with DFT



Recovery of an image band limited in DCT domain by a square: a) – initial image with 3136 “randomly” place 
samples (shown by white dots); b) – the shape of the image spectrum in DCT domain; c) –image restored by the 
iterative algorithm after 100000 iterations with restoration PSNR (peak signal-to-error standard deviation) 4230; 
d) image restored by B-spline interpolation with restoration PSNR 966; e) iterative algorithm restoration error 
(white – large errors; black – small errors); f) –restoration error standard deviation versus the number of 
iterations for the iterative algorith and that for t he B-spline interpolation 

Image recovery from sparse samples: 
DCT with separable band limitation

[OUTIMG,t,t_r,StdErr,OUTIMG_spline, StdErr_spline, 
msk]=map_reconstr_test_sinc_spline(64,0.05);



Image recovery from sparse samples: 
DCT with non-separable band limitation

Recovery of an image band limited in DCT domain by a circle sector: a) – initial image with 3964 “randomly” place 
samples (shown by white dots); b) – the shape of the image spectrum in DCT domain; c) –image restored by the iterative 
algorithm after 100000 iterations with restoration PSNR (peak signal-to-error standard deviation) 21.5; d) image restored 
by B-spline interpolation with restoration PSNR 7.42; e) iterative algorithm restoration error (white – large errors; black –
small errors); f) –the restoration error standard deviation versus the number of iterations of the iterative algorithm for the 
iterative algorithm and that for the B-spline interpolation

[OUTIMG,t,t_r,StdErr,OUTIMG_spline, StdErr_spline, msk]=map_reconstr_test_sinc_spline(64,0.05);



Image recovery from level lines: 
DCT with non-separable band limitation

Recovery of an image band limited in DCT domain by a circle sector from its level lines: a) – initial image with level lines 
(shown by white dots); b) –image restored by the iterative algorithm after 1000 iterations with restoration PSNR 3.5x104 (note 
that the restoration error is concentrated in a small area of the image); c) image restored by B-spline interpolation with 
restoration PSNR 29.4; d) iterative algorithm restoration error (white – large errors; black – small errors); e) –the restoration 
error standard deviation versus the number of iterations of the iterative algorithm for the iterative algorithm and that for the
B-spline interpolation



Signal recovery from sparse or non uniformly 
sampled data as an approximation task

Signal recovery from sparse or non-uniformly sampled data can be 
treated as as finding best signal band-limited approximation. For this, 
the above theory and algorithms can be applied as following: 

1. Given a certain number of available signal samples, specify the signal 
dense sampling grid and the required number of samples to be 
recovered. 

2. Select a transform with presumably better energy compaction 
capability for the signal at hand and specify the signal band limitation in 
the domain of this transform.

3. Place available signal samples on the signal dense sampling grid and 
run the direct matrix inversion or the iterative reconstruction algorithm. 



Energy compaction capability of transforms



Errors due to image band limitation



Applications examples:

-Image super-resolution from 
turbulent videos (shown above)

-Image super-resolution in 
computed tomography



Super-resolution in computed tomography



Image recovery from sparse samples: 
the “Compressed sensing” approach



Described methods for image recovery from sparse samples by 
means of their band-limited approximation in certain 
transform domain require explicit formulation of the desired 
band limitation in the selected transform domain. 

This a priori knowledge that one has to invest is quite natural 
to assume. If one selects a transform according to its energy 
compaction capability, one may know how this capability 
works, i.e. what transform coefficients are expected to be zero 
or non-zero. 

If, however, this is not known or not certain a priori, image 
recovery can be achieved using an approach, which obtained 
the name, in fact, quite confusing, “compressed sensing” (Donoho, 
D., “Compressed sensing”(2006), IEEE Trans. On Information Theory, v. 52(4), pp. 1289-

1306).



The dogma of signal processing maintains that a signal must 
be sampled at a rate at least twice its highest frequency in 
order to be represented without error. However, in practice, 
we often compress the data soon after sensing, trading off 
signal representation complexity (bits) for some error 
(consider JPEG image compression in digital cameras, for 
example). Clearly, this is wasteful of valuable sensing 
resources. Over the past few years, a new theory of 
"compressive sensing" has begun to emerge, in which the 
signal is sampled (and simultaneously compressed) at a 
greatly reduced rate.
Compressive sensing is also referred to in the literature by 
the terms: compressed sensing, compressive sampling, and 
sketching/heavy-hitters.

Compressive Sensing Resources: http://dsp.rice.edu/cs



Fourier spectra of images are usually quite rapidly decaying with 
frequency f . However high frequency spectral components carry highly 
important information for image analysis, object detection and recognition 
that can’t be neglected in spite of the fact that their contribution to signal 
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aaaa  is relatively small. For this reason, 

sampling interval xDDDD  must be taken sufficiently small in order to preserve 
image essential high frequencies. As a consequence, image representation 
by samples is frequently very redundant because samples are highly 
correlated.  
 
This means, that, in principle, much less data would be sufficient for image 
reconstruction if the reconstruction is done in a more sophisticated way 
than by means of conventional weighted summation of regularly placed 
samples according to the sampling theorem 

Images sampling and redundancy



The “compressive sensing” approach also assumes obtaining band-limited, 
in certain selected transform domain, approximation of images but does not 
require explicit formulation of the band-limitation .

According to this approach,  from available M<N signal samples          , a 
signal           of  N samples is recovered that provides minimum to L1 norm                                                           

of signal transform coefficients           for the selected transform. 

The basis of this approach is the observation, that minimization of signal L1 
norm “almost always” in transform domain leads to minimization of L0 –
norm                          , that is to the minimization of the number of non-zero 
signal transform coefficients

The price for the uncertainty regarding band limitation is that the number 
of required signal samples  M must be in this case redundant with respect to 
the given number K non-zero spectral coefficients:
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The compressive sensing approach to 
signal reconstruction from sparse data
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Sinc-lets and other discrete signals 
sharply limited both in signal and 

DFT/DCT domains



The uncertainty principle:

SXeeee Seeee
BFeeee

Continuous signals cannot be both finite and sharply 
band-limited: 

1>>>>´́́́ BS FX eeeeeeee

where        is interval in signal domain that contains      - fraction of 
its entire energy,         is interval in Fourier spectral domain that 
contains        - fraction of signal energy and both          and           
are sufficiently small. 
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•Discrete signals that represent continuous signals through 
their samples are always finite as they contain a finite 
number of samples. 

•Discrete signals can be sharply “band-limited” in any 
transform, including DFT and DCT.

•For some transforms, such as, for instance, Haar 
transform and Radon Transform, discrete signals that are 
sharply limited both in signal and transform domain 
obviously exist 

Do exist discrete signals that are sharply limited both in 
signal and DFT or/and DCT, domains?

How the uncertainty principle can be 
translated to discrete signals? 



Space-limited&Band-limited discrete signals do exist
They are fixed points of the iterative algorithm:

(((( ))))[[[[ ]]]]{{{{ }}}}(((( ))))
1
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The discrete uncertainty principle
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principle
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The discrete uncertainty relationship

The number of signal 
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Sinc-lets: 

sharply band limited basis functions with 
sharply limited support
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Cross-correlations
of shifted sinc-lets

Cross-correlations
of shifted sinc-lets



2D Sinc-lets



Imaging without optics : 
“Optics-Less Smart 

Sensors”



Conventional optical imaging 
systems use photo-sensitive plane 
arrays of sub-sensors coupled 
with focused optics that form a 
map of the environment onto this 
image plane. The optics carry out 
all the information processing 
needed to form this mapping in 
parallel and at the speed of light, 
but comes with some 
disadvantages. 

•Because of the law of diffraction, 
accurate mapping requires large 
lens sizes and complex optical 
systems. 

•Lenses limit the field of view and 
are only available within a limited 
range of the electromagnetic 
spectrum. 

telescope 9 m 
mirror



Conventional optical imaging systems use photo-
sensitive planar arrays of detectors coupled with 
focusing optics that form a map of the environment 
on the image plane. The optics carry this out at the 
speed of light, but lenses come with some 
disadvantages

•Accurate mapping requires large lens sizes and 
complex optical systems.

•Lenses limit the field of view and 

•Lenses are only available within a limited range of 
the electromagnetic spectrum. 

The ever-decreasing cost of computing makes it 
possible to make imaging devices smaller and 
less expensive by replacing optical and 
mechanical components with computation. 

Array of detectors



We treat images as data that indicate locations in 
space and intensities of sources of radiation and 
show that imaging tasks can be performed by means 
of optics less imaging devices consisting of set of 
bare radiation detectors arranged on flat or curved 
surface and supplemented with signal processing 
units that use detector outputs to compute optimal 
statistical estimations of sources’ intensities and 
coordinates. 

We call this class of sensors

“Optics-Less Smart” (OLS) sensors



Optics-less radiation sensors:
arrays of radiation detectors with natural cosine-low or alike angular sensitivity 

arranged on flat or curved surfaces and supplemented with a signal processing unit 

Radiation detector 
with a cosine-low angular sensitivity 

Examples of the physical design and models used in experiments

Spherical 
model

Planar 
model
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An outline of the basic idea: 
Locating a single distant radiation source (planar model)
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Sensor’s surface

n-th detector

Ray from k-th source

Detector’s angular sensitivity pattern 
in polar coordinates 
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Sensor’s “optical” axis 

Sensor’s operation principle:

generating, using signals from all elemental detectors, optimal 
statistical estimates of the radiation source intensity and coordinates 
or directional angles

A Maximum Likelihood model 
of sensing distant radiation 
sources



Performance evaluation: theoretical lower 
bounds. Spherical sensor, single distant source
•OLS sensors are essentially nonlinear devices that can't be described in terms of 
point-spread functions. Their performance can be characterized by the probability 
distribution function of source parameter estimation errors

•Statistical theory of parameter estimation shows that, for parameter estimation 
from data subjected to sufficiently small independent Gaussian additive noise, 
estimation errors have a normal distribution with mean of zero and standard 
deviation given by the Cramer-Rao lower bound (CRLB)

Assuming the simplest Lambertian cosine law angular sensitivity functionof the 
detectors

CRLBs are found, for a single source and for the spherical model, to be

where � is standard deviation of detector’s noise; N is the number of detectors, I is 
the source intensity
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For the case of two sources, CRLBs are found to be

where �� SRS is the angular difference between sources and �� SENS=� /N is the 
angle between neighboring detectors.

Numerical results for cases with more than two sources show that regardless 
of the number of equally-spaced sources, the average estimation error for all 
the sources is equal to the error predicted for the 2-source problem 

Resolving power of the sensor:
If the angular separation between sources is smaller than the angular 
separation between neighboring detectors (�� SENS> �� SRS), the estimator’s 
performance rapidly worsens and becomes no better than that of random 
guessing.

Performance evaluation: theoretical lower 
bounds. Spherical sensor, two and more sources:
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� "General localization" mode: localization and 
intensity estimation of a given number of radiation 
sources.

� “Constellation localization” mode: estimation of 
intensities and locations of “constellations” of radiation 
sources, which consist of a known number of point 
sources of known configuration and relative distribution 
of intensities

� "Imaging" mode: estimation of intensities of a given 
number of radiation sources in the given locations, for 
instance, on a regular grid.

Optics Less sensor basic operation modes 



Computer model:
Spherical and planar models of optics less radiations sensors 
were tested in the localization and imaging modes by 
numerical simulation using, for generating Maximum 
Likelihood estimates of sources’ intensities and locations, the 
multi-start global optimization method with pseudo-random 
initial guesses and Matlab’s quasi-Newton method for 
finding local optima. 

In order to improve reliability of global maximum location 
and accelerate the search, input data were subjected to 
decorrelation preprocessing by means of the “whitening”
algorithm that proved to be optimal preprocessing algorithm 
for point target location in clutter. It is interesting to note 
that a similar data decorrelation is known in vision science as 
“ lateral inhibition ”



Experiment:
Spherical sensor in the imaging mode

Pattern of 19x16 sources
Pattern of detectors’

outputs
(spherical array of 16x20 = 320 detectors; 

detector’s noise 
standard deviation 0.01

Reconstructed image
Standard deviation of estimation 

errors 0.064



Planar sensor in the localization mode

Spread of “hits” (color dots) of estimation of a single radiation 
source locations in different  positions (marked by blue circles) with 
respect to the sensors, consisting of 11 detectors (yellow boxes) 



Maps of standard deviations of estimation errors of X-Y coordinates (a, b) and of intensity (c) of a radiation source 
as a function of the source position with respect to the surface of the line array of 25 detectors with detector noise 
StDev=0.01. Darker areas correspond to larger errors. Plot d) shows standard deviations of X. Y and intensity 
estimation errors as function of the distance from the sensor along the sensor ‘optical axis” (central sections of 
Figs. a)-c))

Planar sensor in the localization mode: estimation errors of 
position and intensity of a single radiation source placed in 
different positions in front of the sensor

a) b)

c)
d)



Planar sensor in the imaging mode

Distance Detector readings Estimated source intensities
Z=1

Error standard deviation 5.6850e-04
Z=2

Error standard deviation 0.0105
Z=4

Error standard deviation 0.0590
Z=8

Error standard deviation 0.1197

Sensing of 8x16 radiation sources arranged on a plane in form of characters “SV” by a 3-D model of a flat 
OLS sensor of 8x16 elementary detectors in the “imaging” mode for distances of sources from the sensor Z=1 
to 8 (in units of inter-detector distance). SNR was kept constant at 100 by making the source amplitude 
proportional to the distance between the source plane and sensor plane. Detector noise StDev=0.01.



Sensors on convex surfaces in the localization mode

Sensors on bent convex surfaces (1D model, 11 detectors, noise standard deviation 0.01): map of standard 
deviations of estimation errors of source intensity (left column), that of  source direction angle (central column) 
and that of the distance to the source (right column) as functions of the source position with respect to the 
sensor’s surface. Darker areas correspond to larger errors.



Sensors on concave surfaces in the localization mode
map_err_std_polar.m



Advantages 
• No optics are needed, making this type 
of sensor applicable to virtually any type of 
radiation and to  any wavelength
• The angle of view (of spherical sensors) 
is unlimited
• The resolving power is determined 
ultimately by the sub-sensor size, and not 
by diffraction-related limits
• Sensors without optics can be made 
more compact and robust than traditional 
optical sensors

Optics-less “smart” sensors: advantages and limitations

Limitations:
High computational complexity, especially 
when good imaging properties for multiple 
sources are required. 

However, the inexorable march of Moore’s law makes such 
problems more feasible each year. Furthermore, the computations 
lend themselves to high-concurrency computation, so the 
computational aspects are not expected to hinder usage of OLS 
sensors.



A little imagination:  a flying sighted brain



COMPUTATIONAL 
IMAGING AND 

EVOLUTION OF 
VISION IN THE 

NATURE



- Heliotropism of some plants 

- Eye spots (patches of photosensitive cells on 
the skin), cup eyes, and pit eyes  

- Cutaneous photoreception in reptiles

- Infra-red radiation sensitive “pit organs” of 
vipers

- The pressure sensitive “lateral line system”
of fish, which they use to localize    sources of 
vibration located within approximately one 
body length

- Electric field sensitive receptors in sharks 
and in some types of fish, which allow animals 
to sense electrical field variations in their 
surroundings within approximately one body 
length

There are also a number of reports on the 
phenomenon of primitive cutaneous vision in 
humans

Mosquito eye

Optics-less extra ocular cutaneous (skin) vision in Nature

Electroreceptors and lateral line canals in sharks in some 
types of fish. 

The flat worm has "cup" 
eyespots that can slightly 
distinguish light 
direction. 

Pit organs in python. 
Arrows pointing to the pit 
organs are red; a black 
arrow points to the nostril 



Presented simulation results

•Show that reasonably good directional vision without optics is 
possible even using the simplest possible detectors whose 
angular sensitivity is defined only by the surface absorptivity.

•Are in a good correlation with published observations in 
studies of cutaneous vision

•Allow suggesting that the operational principle and capabilities
of OLS sensors can be used to model operational principles and 
capabilities of cutaneous vision and its neural circuitry.   

•Motivate advancing a hypothesis that evolution of vision 
started from formation, around primordial light sensitive cells,
of neural circuitry for implementing imaging algorithms simil ar 
to those in our model of the flat OLS sensor, including, at one of 
the first step, the lateral inhibition.  



The reported OLS sensor models 
naturally suggests also, that flat 
primordial eyespots may have evolved, 
through bending of the sensor’s surface 
to convex or concave spherical forms, to 
the compound facet eye or camera-like 
vision, correspondingly



TWO BRANCHES OF EVOLUTION OF VISION

Subcutaneous neural net

Subcutaneous neural net
Central nervous 

system

Transparent 
protective medium 

with refracting 
index >1

Subcutaneous neural net

Central nervous 
system

BRAIN

Camera like eye of 
vertebrates

Cup eyes of mollusks

Compound 
apposition or 

superposition eyes of 
insects



In both cases, the evolution of eye optics had to be paralleled 
by the evolution of eye neural circuitry as an inseparable part 
of animal brains. 

As it follows from the theory, detection and localization of 
targets does not necessarily require formation of sharp images 
and can be carried out directly on not sharply focused images. 
Image sharpness affects the reliability of detection and 
becomes important only for low signal-to-noise ratio at 
detectors. 

Therefore, gradual improvements of eye optics in course of 
evolution of eye optics may have translated into improved 
target detection reliability and allowed transferring, in course
of evolution, the higher and higher fraction of eye neural 
circuitry and brain resources from image formation to image 
understanding. In a certain sense one can suggest that animals’
brain is a result of evolution of vision.
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