
One-Time Signatures Revisited: Practical Fast
Signatures Using Fractal Merkle Tree Traversal

Dalit Naor∗ Amir Shenhav† Avishai Wool‡

Abstract— One-time signatures have been known for
more than two decades, and have been studied mainly
due to their theoretical value. Recent works motivated
us to examine the practical use of one-time signatures
in high-performance applications. In this paper we de-
scribe FMTseq — a signature scheme that merges recent
improvements in hash tree traversal into Merkle’s one-
time signature scheme. Implementation results show that
the scheme provides a signature speed of up to 35 times
faster than a 2048-bit RSA signature scheme, for about
one million signatures, and a signature size of only a few
kilobytes. We provide an analysis of practical parameter
selection for the scheme, and improvements that can be
applied in more specific scenarios.

I. INTRODUCTION

A. Motivation

Commonly used digital signature algorithms, like
RSA, are not sufficiently fast for many applications.
As an example application, consider a financial news
service that wishes to sign all its messages: such a
service requires both low latency and high bandwidth.
An efficient alternative to a digital signature is a Message
Authentication Code (MAC). However, a MAC does
not provide the asymmetry between the signer and the
verifier which digital signatures provide — anyone who
can verify the signature can also sign.

One-time signatures [Mer89], on the other hand, are
digital signatures that are based on one-way functions
without a trapdoor, thus they are much faster. One-time
signatures have been known for more than two decades,
but are usually considered to be impractical. This is due
to their complex key management problems, and the fact
that their signature length is significantly larger.

Over the last few years, there has been some increased
interest in one-time signatures, mainly due to the multi-
cast authentication problem (see [Per01]). New signature

∗IBM Haifa Research labs, Tel Aviv, Israel. dalit@il.ibm.com.
†School of Electrical Engineering, Tel Aviv University, Ramat Aviv

69978, Israel. amir.shenhav@gmail.com.
‡School of Electrical Engineering, Tel Aviv University, Ramat Aviv

69978, Israel. Supported in part by an IBM faculty award. yash@
acm.org.

schemes have been presented, with key management so-
lutions for some limited scenarios. These techniques and
other efficient algorithms that improved key management
aspects led us to re-examine whether one-time signatures
can be made practical for high-performance tasks.

B. Related Work

One-time signatures have been known for a rela-
tively long time. They were first presented by Lamport
[Lam79] and Rabin [Rab78], but are mostly known in
the form presented by Merkle and Winternitz [Mer89].
These signatures are based on one-way functions, as
opposed to trapdoor functions that are used in public
key signatures like RSA and ElGamal.

Although one-way functions are simpler to implement
and are typically more computationally efficient than
trapdoor functions, one-time signatures have been con-
sidered to be impractical for two main reasons: First,
their “one-timed-ness”, i.e., key generation is required
for each usage, thus implying a complicated key man-
agement scheme; Second, the signature size is relatively
long in comparison with common public-key signatures
and MACs.

Recently, this area was revisited due to the need for
fast, low computation, authentication solutions for IP-
multicast and sensor networks. Perrig [Per01] presents a
new one-time signature scheme that aims for very fast
verification at the cost of signature time and key size.
Reyzin and Reyzin [RR02] introduce a different scheme
that has faster signature and verification times (for a
single signature). This scheme is further improved by
Pieprzyk et al. [PWX03]. These new schemes suggest the
reuse of the same keys more than once. These “several
times signatures” have a known compromise probability
after a given number of reuses. Nevertheless, even if
these schemes can sign several messages with the same
keys, with reasonable security, the number of repeated
uses is still small for all practical scenarios. Therefore,
efficient key generation and management for a large
sequence of one-time signatures still remains on open
problem.

1-4244-0230-1/06/$20.00 ©2006 IEEE

2006 IEEE 24th Convention of Electrical and Electronics Engineers in Israel

255

Merkle [Mer89] addressed the problem of key man-
agement, introducing the method of tree authentication.
In [Mer89], originally published in 1979, the concept of
a hash tree is presented, which provides efficient key
management for a large number of one-time signatures.
The recent works of [JLMS03], [Szy04a], [BKN04]
improve Merkle’s hash-tree method [Mer89] and give the
ability to handle large hash trees more efficiently. The
focus of [JLMS03] was to obtain space-time trade off,
the focus of [Szy04a] was very low space solution, and
[BKN04] combined the two. As an example, Jakobsson
et al.’s suggested to use their algorithm for one-time
signature. A proof of concept code for their idea was
implemented in [Col03] with some basic performance
results.

Recently, a work of Seys and Preneel [SP05] provided
a power consumption estimation of one-time signatures
schemes, for low power mobile platforms. Their work
estimates the overall power consumption of the signa-
ture schemes of Winternitz and Reyzin, with the key
management techniques of Jakobsson et al. [JLMS03]
and Perrig [Per01].

The work closest to ours was recently suggested
independently by Coronado [Cor05]. The work used a
different traversal technique by [Szy04a] and focused on
forward security of the scheme rather than on achieving
fast signatures; therefore, we cannot directly compare
Coronado’s results with ours.

C. Contributions

Our first contribution is a design of a signature scheme
we call FMTseq - Fractal Merkle Tree sequential signa-
tures. FMTseq combines Merkle’s one-time signatures
with Jakobsson et al.’s algorithm for hash tree traversal.
We refine [JLMS03] construction and complete the de-
tails for a practical scheme to provide many one-time
signatures with the same hash tree. In contrast with
[JLMS03] our work follows Merkle’s original suggestion
for hash tree construction which is more efficient and
conceptually natural.

Next, we provide an efficient implementation of a
scheme that significantly improves the preliminary im-
plementation [Col03] (see also [Szy04b]). Our experi-
mental results show that FMTseq is one- or two-orders
of magnitude faster than RSA, with low signature sizes
and signer storage requirements.

We consider applications that wish to obtain fast
signature rates while keeping the run-time space and

Exist 0

Exist L-1

Desired 0

H

h
=
H
/L

Exist 1 Desired 1

Fig. 1. Fractal merkle tree notations

signature size reasonable. We show that when selecting
the parameter values for the scheme, rather than using
the low space solution of [JLMS03], we can trade a few
additional kilobytes of signer run-time storage to obtain
faster signature rates.

Full details can be found in [NSW05].

II. FRACTAL MERKLE TREE SEQUENTIAL ONE-TIME

SIGNATURES

In this section we describe our scheme for sequential
one-time signatures using fractal Merkle tree algorithm
[JLMS03]. The fractal Merkle tree algorithm is a scheme
for sequential traversal of a Merkle hash tree, i.e.,
providing the authentication path for each leaf when the
leaves are used one after the other. The scheme requires
a computational effort of 2 log N/ log log N and a run-
time space of 1.5 log2 N/ log log N nodes.

Notation: A hash tree T of height H is divided into
L levels, each of height h. The leaves of the hash tree
are indexed {0, 1, ..., 2H − 1} from left to right. The
altitude of a node n is defined as the height of the
maximal subtree for which it is the root and ranges from
0 (for the leaves), to H (for the root). An h-subtree is
“at level i” when the altitude of its root is ih for some
i ∈ {1, 2, ..., L}. For each i there are 2H−ih such h-
subtrees at level i. A series of h-subtrees {Treei}L

i=1 is
a stacked series if for all i < L the root of Treei is a
leaf of Treei+1. The notations are illustrated in Figure
1.

In our scheme, the secrets of each one-time signatures
are generated by a pseudo-random number generator.
The value of each leaf of the fractal Merkle tree is a hash
over all the commitments of a single one-time signature.
Therefore, each leaf serves as a public commitment

256

to a one-time signature1. For each one-time signature,
the signer regenerates the next unused leaf, reveals the
required secrets, and outputs the commitments of the
unrevealed secrets and the authentication path. We call
this scheme FMTseq: Fractal Merkle Tree Sequential
One-Time Signature.

The FMTseq scheme consists of three algorithms:
key generation, signing and verification. The scheme is
described in Figure 2.

The performance in FMTseq is dominated by the leaf
calculation time, which is defined as the time to generate
all the secrets, commit each one of them with a one-way
hash function, and hash all these commitments to one
value. Therefore, to minimize the leaf calculation time,
we chose the basic Merkle’s one-time signature scheme
[Mer89].

III. EXPERIMENTAL RESULTS

A. Implementation

We implemented the FMTseq scheme in C and tested
its performance on a Pentium IV, 1.7GHz, running Mi-
crosoft Windows XP. The implementation of RC4, MD5,
SHA-1 and SHA-256 was based on code from [Dev05].
The MD5 code was slightly optimized to achieve a more
efficient hash for the committing function2. The RC4
stream cipher was used as a pseudo-random number
generator. The program ran with real-time priority, mea-
suring time using operating system time functions.

We chose to compare with the popular RSA signature
using the Crypto++ code library [Dai04]. Comparing
with a wider variety of algorithms is left for a future
work, however Crypto++ provides benchmarks [Dai04]
that can be used as a reference for a relative compare.

B. Selecting Hash Functions for FMTseq

The hash functions that are used in our scheme deter-
mine its performance (both speed and signature size) as
well as security. We selected the hash functions so that
they provide a level of security that is comparable with
RSA signatures. According to [Len01], 2048-bit RSA is
approximately equivalent to a 128-bit key of a symmetric
cipher, and 1024-bit RSA is approximately equivalent to
a 75-bit symmetric key.

1In contrast to the suggestion of Jakobsson et al. [JLMS03] that each
leaf serves as a commitment to a single secret, i.e., to a single bit.

2Since we hash short bit strings we could remove some code that
supports arbitrarily long strings.

0

5000

10000

15000

20000

25000

30000

35000

2 3 4 5 6 7 8 9 10

L

S
ig

n
at

u
re

 T
im

e
[u

S
ec

]

RSA-2048

RSA-1024

FMTseq with SHA-256

FMTseq with SHA-1

Fig. 3. Average signature time as a function of the number of levels L
in the FMTseq tree for L = 1 to 10, in comparison with RSA signature
times. Each point is an average of 128 runs, each consisting of 128
sequentially generated signatures over randomly chosen messages.

TABLE I

AVERAGE VERIFICATION TIME FOR H ≤ 20

Signature Scheme Average Verification Time
FMTseq with SHA-1 76 uSec

FMTseq with SHA-256 114 uSec
RSA-1024 240 uSec
RSA-2048 600 uSec

For the FMTseq message digest hash function, g(),
collision resistance is required. Thus, a fair comparison
should match SHA-1 to the 1024-bit RSA, and SHA-256
to the 2048-bit RSA. The number of secrets for each one-
time signature will be 168 or 264 respectively. For the
one-way hash function, h(), we select 128-bit MD5 to
provide the required security level. For more details the
reader may refer to [NSW05].

C. Signature Time

Figure 3 shows the average signature time of FMTseq
versus RSA signatures. The figure shows that even for
the worst choice of the number of levels, L (L = 10),
FMTseq-SHA-1 is roughly 4 times faster than 1024-
bit RSA, and FMTseq-SHA-256 is more than 14 times
faster than 2048-bit RSA. Moreover, other choices of L
provide even better performance, e.g., for L = 4 we get
a 10 times speedup over 1024-bit RSA and more than
35 times speedup over 2048-bit RSA.

Table I shows the average signature verification time
for FMTseq and RSA. The FMTseq verification time
comprises of a one-time signature and authentication
path verification. We found that the verification time is
practically invariant to the tree parameters. Therefore,
we provided only the average of all the results.

For a practical number of one million signatures
(using L = 4), comparing FMTseq with 2048-bit RSA

257

Key generation and initialization

Definitions:
1. SK - a k-bit secret key.
2. ski

j - the secrets of each one-time signature
where i is the signature number, and j is the index
of the secret, j = 1, . . . , t.

3. ski
j = R(SK, i, j)

R is a pseudo-random number generator (PRNG).
4. pki

j = h(ski
j) - the commitments for each ski

j .
5. Public leaf commitment - plci = h(pki

1| . . . |pki
t),

the hash of all the commitments of a single
one-time signature.

Computation:
1. Input: a secret, k-bit key, SK.
2. Initialize a Fractal Merkle hash tree of height H ,

with the plci values as its leaves (i = 1, . . . , 2H).
3. Publish the tree root

(or provide it to the verifiers securely).
4. Set Signature number i = 0.

plc
i

Public

Root

sk
i

1 sk
i

2 sk
i

t

pk
i

1 pk
i

2 pk
i

t

...

PRNGSK

i

FMTseq key generation phase.

Signing a message Verifying a message

Input: a message M .

1. Increment i.
2. Calculate a message digest md = g(M)

and C=number of ′0′-bits in md.
3. Sign m with Merkle’s one-time signature scheme:

- Let m = md‖C,
- Let J = {j|mj = 1} and J̄ = {j|mj = 0}
- Generate {ski

j}t
j=1 using the PRNG R.

- Output S =
{

ski
j ∀j ∈ J , pki

j ∀j ∈ J̄
}

.

4. Output {api}, the authentication path of leaf i,
using fractal Merkle tree algorithm [JLMS03].

5. Perform the update operations of [JLMS03].

Input: a message M and a signature S, {api}.

1. Calculate a message digest md = g(M).
and C=number of ′0′-bits in md.

2. Verify the Merkle one-time signature:
- Let m′ = md‖C.

- Let J =
{

j|m′
j = 1

}
.

- Set S′ = S, and denote the members of S′

by S′ = {s′
j}t

j=1.
- Calculate and update s′

j ← h(s′
j), ∀j ∈ J .

- Calculate plc′ = h(s′
1| . . . |s′

t)
3. Iteratively hash the result, plc′

with the authentication path.
4. Compare the result to the public root of the tree.

Fig. 2. The FMTseq scheme algorithms and data structure.

(using SHA-256 as a message digest) shows that the
verification time is about 5 times faster, and signing time
is approximately 35 times faster. Compared with 1024-
bit RSA (using SHA-1 as a message digest), FMTseq
verification is 3 times faster, and signing is about 10
times faster.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 12 14 16 18 20

H

S
ig

n
at

u
re

 S
iz

e
[B

yt
es

]

RSA-2048

RSA-1024

FMTseq with SHA-256

FMTseq with SHA-1

Fig. 4. Signature size as a function of the tree height H in comparison
with RSA signatures.

D. Signature Size

The signature size depends on the one-time signature
parameters and on the length of the authentication path.
The latter only slightly affects the overall size in practical
constructions since it is logarithmic with the number of
leaves. The one-time signature size is defined by the hash
output length as shown in Figure 4.

For about one million signatures (H=20), we com-
pared the signature size of FMTseq to that of RSA.
Using SHA-256 as a message digest, the signature size is
approximately 18 times larger than 2048-bit RSA, but is
still reasonable for many applications: about 4.5 KBytes.

E. A Memory versus Signature Time Trade-off

In [JLMS03] a low-space solution is presented to
reduce the memory requirements for running the fractal
Merkle tree algorithm. The authors show that minimal
space is achieved with subtree height of hopt ≈ ln H .

258

0

200

400

600

800

1000

1200

1400

1600

10 11 12 13 14 15 16 17 18 19 20

H

S
ig

n
at

u
re

 T
im

e
[u

S
ec

]

hopt

1.5*hopt

2*hopt

Fig. 5. The improvement in performance that can be achieved, by
allowing up to twice the optimal run-time space that was suggested by
[JLMS03].

However, h and L must be integers, and we argue that
signature time is more important than run-time space in
many applications.

Figure 5 demonstrates the improvements in total sig-
nature time when allowing a larger space allocation
relative to the space that is required when h = hopt.
For example, when H = 20, hopt = 2, (since 3 does
not divide 20). If we allow up to twice the run-time
space compared with hopt (about 4.6 KBytes instead of
3KBytes), the signature time becomes more than twice
as fast. The “dip” at H = 15 is due to the fact that
hopt ≈ 2, but for H = 15, we must use h = 3, since
h must divide H . For all other choices of H we have
hopt = 2.

IV. CONCLUSIONS

In this work we defined FMTseq - a one-time signa-
ture scheme that combines Merkle’s one-time signatures
with the efficient hash tree traversal of [JLMS03] to
a complete detailed signature scheme. Benchmarking
FMTseq against RSA signatures, shows that a speedup
of up to 35 times can be achieved if signature size
of a few kilobytes is acceptable. The FMTseq scheme
differs from the [JLMS03] suggestion for a signature
scheme, in the method by which the leaves of the hash
tree represent the one-time signatures. FMTseq followed
Merkle’s suggestion [Mer89] for using the hash tree,
which is more efficient and conceptually natural.

We demonstrated that when speed is the bottleneck
factor, a different selection of the fractal traversal param-
eters leads to a significant improvement in performance
at the cost of a small increase in memory consumption.

We believe that when fast signatures are required, our
results makes a strong case for practical feasibility of

using one-time signatures as an alternative to the public-
key signatures like RSA.

REFERENCES

[BKN04] Piotr Berman, Marek Karpinski, and Yakov Nekrich. Op-
timal trade-off for Merkle tree traversal. Electronic Collo-
quium on Computational Complexity (ECCC), (049), 2004.

[Col03] Dominic F. Coluccio. C++ implementation of a hash-based
digital signature scheme using fractal Merkle tree rep-
resentation. http://cs1.cs.nyu.edu/˜dfc218/
hashsig.html, 2003.

[Cor05] Carlos Coronado. On the security and the efficiency of
the merkle signature scheme. Cryptology ePrint Archive,
Report 2005/192, 2005. http://eprint.iacr.org/.

[Dai04] Wei Dai. Crypto++ library 5.2.1. http://www.
eskimo.com/˜weidai/cryptlib.html, 2004.

[Dev05] Christophe Devine. Crypto source code, GNU public
license. http://www.cr0.net:8040, 2001-2005.

[JLMS03] Markus Jakobsson, Frank Thomson Leighton, Silvio Mi-
cali, and Michael Szydlo. Fractal Merkle tree representa-
tion and traversal. In Topics in Cryptology - CT-RSA 2003,
The Cryptographers’ Track at the RSA Conference 2003,
pages 314–326. Springer, 2003.

[Lam79] Leslie Lamport. Constructing digital signatures from a
one-way function. Technical Report SRI-CSL-98, SRI
International Computer Science Laboratory, October 1979.

[Len01] Arjen K. Lenstra. Unbelievable security. Matching AES
security using public key systems. In Colin Boyd, editor,
Advances in Cryptology - ASIACRYPT 2001, pages 67–86.
Springer, 2001.

[Mer89] Ralph C. Merkle. A certified digital signature. In Gilles
Brassard, editor, Advances in Cryptology - CRYPTO ’89,
pages 218–238. Springer, 1989.

[NSW05] Dalit Naor, Amir Shenhav, and Avishai Wool. One-time
signatures revisited: Have they become practical? Cryp-
tology ePrint Archive, Report 2005/442, 2005. http:
//eprint.iacr.org/.

[Per01] Adrian Perrig. The BiBa one-time signature and broadcast
authentication protocol. In ACM Conference on Computer
and Communications Security, pages 28–37, 2001.

[PWX03] Josef Pieprzyk, Huaxiong Wang, and Chaoping Xing.
Multiple-time signature schemes against adaptive chosen
message attacks. In Selected Areas in Cryptography, SAC
2003, pages 88–100. Springer, 2003.

[Rab78] M. O. Rabin. Digitalized signatures. In Richard A.
DeMillo, David P. Dobkin, Anita K. Jones, and Richard J.
Lipton, editors, Foundations of Secure Computation, pages
155–168. Academic Press, 1978.

[RR02] Leonid Reyzin and Natan Reyzin. Better than BiBa: Short
one-time signatures with fast signing and verifying. In In-
formation Security and Privacy, 7th Australian Conference,
ACISP 2002, pages 144–153. Springer, 2002.

[SP05] Stefaan Seys and Bart Preneel. Power consumption evalu-
ation of efficient digital signature schemes for low power
devices. In Proceedings of the 2005 IEEE International
Conference on Wireless and Mobile Computing, Network-
ing and Communications (IEEE WiMob 2005), pages 79–
86. IEEE, 2005.

[Szy04a] Michael Szydlo. Merkle tree traversal in log space and
time. In Advances in Cryptology - EUROCRYPT 2004,
pages 541–554. Springer, 2004.

[Szy04b] Michael Szydlo. Recent improvements in the efficient use
of Merkle trees: Additional options for the long term. RSA
Laboratories: Technical Notes and Reports, 2004.

259

