1. **Programming** Generate your own 31- or 32-bit RSA public and private keys:

 - Pick 2 secret primes p, q, in the range $[10000-65535]$: Try a few numbers at random and test for primality. You will find a prime very quickly. You can test a number x for primality by checking whether all the odd numbers $y < \sqrt{x}$ do not divide x.

 - Compute your **public modulus** $n_z = pq$.

 - Compute the secret $\phi_z = (p - 1)(q - 1)$.

 - Pick a value for your **public exponent** e_z such that $gcd(\phi_z, e_z) = 1$. Any value that works is OK.

 - Compute the secret exponent $d_z = (e_z)^{-1} \pmod {\phi_z}$ using the extended Euclid algorithm.

 - Tip: Test your key pair (n_z, e_z): compute $t = 2^{e_z} \pmod {n_z}$ and check whether $t^{d_z} \pmod {n_z} = 2$.

 - Tip: Use unsigned 64-bit variables in your program to avoid integer overflows in intermediate values.

 - Tip: Make sure to pick p and q so n is larger than your TZ number

Once you have a working RSA system (n_z, e_z, d_z), **sign** your Teudat Zehut number (seen as a 9-digit integer): that is, compute

$$SIG = (TZ)^{d_z} \pmod {n_z}.$$

Send the results by email according to the instructions below.

2. Consider an RSA system with a public key (n, e), with $n = pq$.

 (a) Show an algorithm to find the factors of n if the secret $\phi(n)$ is leaked. Hint: write and solve a quadratic equation. Justify why your solution works on integers.

 (b) What is the time complexity of your algorithm (order of magnitude as a function of n)? Take into account the complexity of computing integer square roots.

3. (a) What is the probability that a randomly chosen number a would not be relatively prime to a given RSA modulus n?

 (b) Estimate this probability in terms of n for $p \approx q$ and for $p \approx q^3$.

 (c) What threat would such a number a pose?

4. In a given RSA system with public (n, e), prove that there exist more than one possible secret exponent d that works. In other words, show that there exists $d' < \phi(n)$, $d' \neq e^{-1} \pmod {\phi(n)}$, which correctly decrypts every message $C = m^e \pmod n$.
Submission Instructions

1. Hand in questions 2-4 on paper.

2. Send question 1 via email to

 crypto-netsec@eng.tau.ac.il

3. The subject should be: ex5. Do NOT put a dash ("-"") between the "x" and the "5" as it confuses the mailer.

4. The body of the email should contain 4 lines, including the leading keywords and the "::=" symbols:

 TZ := your "Teudat Zehut" number (9 digits)
 NZ := the public modulus \(n_z \) from q.1
 EZ := the public exponent \(e_z \) from q.1
 SIG := the signature from q.2, \((TZ)^{d_z} \mod n_z\) from q.1.

 Note that these are all PUBLIC values. Do NOT send your secret keys!

5. Send plain ASCII email.