Maximum Likelihood Decoding of the Leech Lattice

Alexander Vardy and Yair Be'ery

Abstract—A new algorithm for maximum likelihood decoding of the Leech lattice is presented. The algorithm involves projecting the points of the Leech lattice directly onto the codewords of the (6,3,4) quaternary code—the hexacode. Projection on the hexacode induces a partition of the Leech lattice into four cosets of a certain sublattice C_{24}. Such a partition into cosets enables maximum likelihood decoding of the Leech lattice with 3595 real operations in the worst case and only 2955 operations on the average. This is about half the worst case and the average complexity of the best previously known algorithm [3]. Moreover, the proposed decoder is far simpler, both conceptually and structurally, than the state of the art decoder of [3].

Index Terms—Leech lattice, maximum likelihood decoding, Leech quarter-lattice, hexacode, binary Golay code, lattice codes.

I. INTRODUCTION

Recently maximum likelihood decoding of lattices has gained a renewed interest [1]–[5], [9], [13], [14], [16], [18], [20], partly due to the fundamental work of Forney [13], [14] which showed that the vast majority of known good coded–modulation schemes may be regarded as coset codes based on lattice partitions. The Leech lattice \Lambda_{24}, which was first introduced in [19], is one of the most interesting and well studied lattices [10]. It is the unique laminated lattice in 24 dimensions. It is also an extremal (Type II [10, p. 194]) self-dual even unimodular lattice. Partitioning the space into the Voronoi regions of \Lambda_{24} produces the best known 24-dimensional quantizer, assuming high resolution source distribution. Taking the points of \Lambda_{24} to be the origins of equal nonoverlapping spheres yields a sphere packing of density 0.00193, which is conjectured [10] to be the densest possible packing in 24 dimensions. When used as a code for a band-limited AWGN channel, the Leech lattice offers a nominal coding gain of 6.02 dB, while the effective coding gain is about 4 dB.

The problem of maximum likelihood decoding of the Leech lattice was intensively investigated in the last few years. New algorithms were introduced, more efficient than those previously known [8], [16]. In fact, to quote Forney [15], “the Leech lattice has become a kind of benchmark for decoding algorithms.” Thus Conway and Sloane [9] devised a decoder that requires approximately 56,000 operations. Forney [4] used a 256-state trellis diagram to decode the Leech lattice with 15167 operations. In [18], Lang and Longstaff presented an algorithm that requires less than 10,000 operations. Yet the “current record” in the decoding of the Leech lattice belongs to Be’ery, Shalhar, and Stryders [3] and it stands at 7929 operations using the algorithm described in [3], or 6129 operations using a more advanced algorithm. In the sequel we claim a more efficient decoder that requires only 3595 operations in the worst case and 2955 operations on the average.

To be precise, we note that in compliance with the convention established in [3], [9], [14], [18] the complexity of decoding is measured herein in terms of the total number of real arithmetic operations such as addition, subtraction, or comparison of two real values. Following [3], [9], [14], [18] such operations as memory addressing, negation, and taking the absolute value are neglected, though none of these is allowed to be excessive. As in [3], [14] we also assume that those values that can be computed directly from the geometry of the signal constellation are available. A special effort has been made to evaluate all the algorithms in a uniform manner. The complexity figures cited above follow those given in [3]. The study of [2] strongly supports the notion that these figures give approximate prediction of the relative VLSI complexity.

The close interrelationship between the Leech lattice and the (24,12,8) binary Golay code \Gamma_{24} is well known. Be’ery et al. [3] used the ideas developed in [24] for the soft decision decoding of \Gamma_{24} to design an efficient Leech lattice decoder. There also exists a close relationship between the binary Golay code and the (6,3,4) code over GF(4)—the hexacode. The hexacode \Theta_6 was first studied by Assmus and Mattson [27] and Shaagheysy [28]. It was later employed by Conway [6], as a successor to the Miracle Octad Generator of Curtis [11], for the purpose of identifying the octads of the Steiner system S(5,8,24). Subsequently, Conway [10, ch. 11] and Pless [21] have shown how the hexacode may be used for the hard decision decoding of \Gamma_{24}. In [26] we have employed the hexacode for the soft decision decoding of the binary Golay code, by means of projecting the 4096 codewords of \Gamma_{24} onto the 64 codewords of \Theta_6. In the next section, we shall bridge the gap between the approaches of [3] and [26] and define the Leech lattice directly in terms of the hexacode. This will enable us to develop in Section III a Leech lattice decoder, which is not only computationally more efficient but also structurally simpler than the decoder of [3]. Finally, in Section IV we present a block diagram of the proposed decoder.

II. THE LEECH LATTICE, THE BINARY GOLAY CODE AND THE HEXACODE

We shall generally use the notation of [3] and [26]. To enable the reader to follow, we now briefly restate some of this notation.

The hexacode \Theta_6 is the unique (6, 3, 4) linear code over GF(4), or equivalently (Z_2)^3. Following [21] we take

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & \omega & \omega \\
0 & 1 & 0 & 1 & \omega & \omega \\
0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}
\]

(1)

as a generator matrix of \Theta_6, where 0, 1, \omega, \overline{\omega} (hereafter called characters) are the elements of GF(4). The binary Golay code \Gamma_{24} is the unique (24, 12, 8) code generated by (cf. [14]):

\[
\begin{bmatrix}
11111111 & 00000000 & 00000000 \\
00000000 & 11111111 & 00000000 \\
00000000 & 00000000 & 11111111 \\
11110000 & 11110000 & 00000000 \\
00000000 & 11110000 & 11110000 \\
11001100 & 11001100 & 00000000 \\
10101010 & 10101010 & 00000000 \\
00000000 & 11001100 & 11001100 \\
00000000 & 10101010 & 10101010 \\
10111100 & 10111100 & 10111100 \\
11111110 & 11111110 & 01010101 \\
01111000 & 01111000 & 01111000
\end{bmatrix}
\]

(2)

We shall represent binary vectors of length 24 by 4 x 6 arrays with...
Fig. 1. The 16-point configuration.

even representations

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>((A_111, A_{112})^t (A_{110}, A_{011})^t (A_{110}, A_{100})^t (A_{110}, A_{010})^t (A_{011}, A_{010})^t (A_{010}, A_{100})^t (A_{010}, A_{101})^t (A_{100}, A_{101})^t)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>((A_{110}, A_{112})^t (A_{111}, A_{000})^t (A_{111}, A_{001})^t (A_{110}, A_{000})^t (A_{110}, A_{100})^t (A_{011}, A_{001})^t (A_{010}, A_{100})^t (A_{010}, A_{101})^t)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>((A_{011}, A_{000})^t (A_{000}, A_{001})^t (A_{011}, A_{100})^t (A_{101}, A_{100})^t (A_{011}, A_{011})^t (A_{011}, A_{010})^t (A_{010}, A_{111})^t (A_{100}, A_{111})^t)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(\overline{0})</td>
</tr>
<tr>
<td>((A_{000}, A_{000})^t (A_{001}, A_{001})^t (A_{010}, A_{101})^t (A_{110}, A_{101})^t (A_{110}, A_{110})^t (A_{110}, A_{111})^t (A_{111}, A_{111})^t (A_{111}, A_{011})^t)</td>
<td></td>
</tr>
</tbody>
</table>

odd representations

<table>
<thead>
<tr>
<th>(h)-parity</th>
<th>(k)-parity</th>
<th>0</th>
<th>1</th>
<th>(\omega)</th>
<th>(\overline{\omega})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>(0)</td>
<td>((A_{110}, A_{112})^t (A_{111}, A_{112})^t (A_{110}, A_{100})^t (A_{110}, A_{010})^t (A_{011}, A_{010})^t (A_{010}, A_{100})^t (A_{010}, A_{101})^t (A_{100}, A_{101})^t)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0)</td>
<td>(1)</td>
<td>((A_{111}, A_{112})^t (A_{112}, A_{112})^t (A_{111}, A_{100})^t (A_{110}, A_{010})^t (A_{011}, A_{010})^t (A_{010}, A_{100})^t (A_{010}, A_{101})^t (A_{101}, A_{101})^t)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(0)</td>
<td>((A_{010}, A_{000})^t (A_{011}, A_{000})^t (A_{011}, A_{001})^t (A_{010}, A_{100})^t (A_{111}, A_{100})^t (A_{110}, A_{010})^t (A_{110}, A_{101})^t (A_{111}, A_{111})^t)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(1)</td>
<td>((A_{011}, A_{000})^t (A_{010}, A_{000})^t (A_{012}, A_{000})^t (A_{010}, A_{100})^t (A_{111}, A_{100})^t (A_{110}, A_{010})^t (A_{110}, A_{101})^t (A_{111}, A_{111})^t)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. The 64-type-A representations of the characters 0, 1, \(\omega\), \(\overline{\omega}\).

Entries from GF(2). A row or a column of such an array is said to be of odd or even parity according as it contains an odd or even number of nonzeros. Any binary column 4-tuple \(\vec{a} = (a_1, a_2, a_3, a_4)^t\) satisfying \((0, 1, \omega, \overline{\omega}) \cdot \vec{a} = x\), where \(\cdot\) stands for the scalar product over GF(4) and \(x \in GF(4)\), is said to be an interpretation of the character \(x\). Conversely, \(x\) is said to be the projection of \(\vec{a}\). A vector \(\vec{a} \in GF(4)\) is said to be the projection of \(y \in GF(2)^4\) if the characters of \(\vec{a}\) are the projections of the 6 columns in the array corresponding to \(y\). The binary Galay code may then be defined as the set of all \(y \in GF(2)^4\), such that in the corresponding 4 \(\times\) 6 array the parity of all the columns is equal to the parity of the top row, and the projection of the array is in \(B_6\). For a more detailed treatment see [10], [21].

Let \(D_2\) be the two-dimensional checkerboard lattice consisting of all the points with integer coordinates, such that the sum of their coordinates is even. Partition \(D_2\) into 16 subsets in a manner analogous to the Ungerboeck method [25], and arrange the labels of the 16 subsets in a configuration depicted in Fig. 1. Tilting the entire space with nonoverlapping copies of scaled and rotated version of this 16-point configuration establishes a correspondence between the labels of the 16 subsets and the points of \(D_2\). For more details on this see [3].

Hereafter, we shall represent the points of \(A_{24}\) by 2 \(\times\) 6 arrays whose entries are the points of \(D_2\). The array will be called type-A, respectively type-B, if it contains only \(A_{11k}\) points, respectively \(B_{1k}\) points. The overall \(k\)-parity of the array is a modulo-2 sum of the \(k\) subscripts of the points that constitute the array. In the following, we shall consider only the arrays of type A. The discussion may be extended in an obvious way to include the type-B arrays as well. Let \((A_{i_1j_1k_1}, A_{i_2j_2k_2})\) be a 2-point sequence, where \(i_1, i_2, j_1, j_2, k_1, k_2 \in GF(2)\) and \(A_{i_1j_1k_1}, A_{i_2j_2k_2}\) are the labels corresponding to points of \(D_2\). Thus \((A_{i_1j_1k_1}, A_{i_2j_2k_2})^t\), where superscript \(^t\) denotes transposition, constitutes a column of a type-A array. This column is said to be odd or even according as the binary 4-tuple \((i_1, j_1, i_2, j_2)\) contains an odd or even number of nonzeros. The binary index \(i_1\) is called the \(h\)-parity of the column. The \(k\)-parity of the column is defined as \(k_1 \oplus k_2\), where \(\oplus\) stands for the modulo-2 summation. Hence, the overall \(k\)-parity of the 2 \(\times\) 6 array is the modulo-2 sum of the individual \(k\)-parities of the columns that constitute the array. Similarly, the overall \(h\)-parity of the array is defined as the modulo-2 sum of the individual \(h\)-parities of the six columns. Now if the 4-tuple \((i_1, j_1, i_2, j_2)\) is a binary interpretation of a character \(x \in GF(4)\), then the column \((A_{i_1j_1k_1}, A_{i_2j_2k_2})^t\) is said to be a representation of the character \(x\). Conversely, \(x\) is said to be the projection of \((A_{i_1j_1k_1}, A_{i_2j_2k_2})^t\).

In a binary Galay code \(\vec{x} \in GF(2)^4\), there is at most one \(A_{11k}\) or \(B_{1k}\) point. Any character \(x \in GF(4)\) has exactly 16 different representations of type A (8 odd and 8 even). The 64 possible type-A representations of the four characters are listed in Fig. 2. The quaternary vector of length 6 that consists of the six projections of the columns that constitute the 2 \(\times\) 6 array is called projection of the array. Given this notation the Leech lattice may be defined as follows.

Definition: The Leech lattice \(A_{24}\) consists of all the 2 \(\times\) 6 arrays whose entries are points of \(D_2\), such that each array satisfies the following conditions.

a) It is either type-A or type-B.

b) It consists either of only even columns or of only odd columns.

c) The overall \(k\)-parity of the array has to be even if the array is type-A; otherwise the overall \(k\)-parity is odd.

d) The overall \(h\)-parity of the array has to be even if the array consists of only even columns; otherwise the overall \(h\)-parity is odd.

e) The projection of the array is a codeword of \(H_6\).

For example, the arrays at the bottom of the next page are points of \(A_{24}\). The equivalence of the foregoing definition to the formal definitions of \(A_{24}\) given in [10] readily follows by combining the discussions of [3] and [26].
It is noteworthy that taking only the type-A points in the foregoing definition produces the well-known Leech half-lattice H_{24}. The code formula (cf. [10, 13]) for H_{24} is

$$ H_{24} = 4Z_{24}^{24} + 2(24, 23, 2) + C_{24} = 2D_{24} + C_{24}, $$

where D_{24} is the 24-dimensional checkerboard lattice. Taking only the type-B points produces the coset of D_{24}. Furthermore, by restricting the Leech lattice points to be type-A and to consist of only even columns we obtain a sublattice of H_{24}. We shall refer to this sublattice as the Leech quarter-lattice and denote it by Q_{24}. The code formula for Q_{24} is

$$ Q_{24} = 4Z_{24}^{24} + 2(24, 23, 2) + C_{24}' = 2D_{24} + C_{24}' $$

where C_{24}' is the subcode of C_{24} generated by the first 11 rows of (2). It may be also readily shown that Q_{24} is the intersection of Λ_{24} with $(2D_8)^2$, where $(2D_8)^2 = 4Z_{24}^{24} + 2(4, 3, 2)^2$, and $(4, 3, 2)^2$ is the six-fold Cartesian product of the single-parity-check code of length 4.

The foregoing definitions of C_{24} and Λ_{24} may be stated more concisely in the notation of coset codes and multilevel constructions of Forney [13, 14]. The following construction of Λ_{24} also provides more insight onto the Leech quarter-lattice Q_{24}, and shows that Q_{24} is indeed a sublattice of $(2D_8)^2$. The multilevel constructions of C_{24} and Λ_{24} are illustrated in Fig. 3. The binary Golay code is constructed using the partition chain of binary codes of length four $(4, 4)/(4, 3)/(4, 1)/(4, 0)$ where the corresponding Hamming distances are $1/2/4/\infty$. This implies representation of C_{24} as the union of two cosets of the $(24, 11, 8)$ code C_{24}' obtained from a two-level Construction B of [10]. The resulting trellis diagram is the 64-state Cartesian product of a two-state trellis of the repetition code, a two-state single-parity-check code trellis, and a 16-state three-section trellis for H_8. Similarly, the Leech lattice may be constructed using the four-dimensional lattice partition chain $RD_4/2RD_4/2RD_4/4RD_4$ with Euclidean distances $4/8/16/32$. This implies representation of Λ_{24} as the union of four cosets of the lattice Q_{24} that results from a two-level generalized Construction B. The corresponding trellis diagram for the Leech lattice is the 256-state Cartesian product of a four-state trellis for the repetition code over $(Z_2)^2$, a four-state single-parity-check code trellis over $(Z_2)^2$, and a 16-state three-section trellis for the hexacode.

Such representation of C_{24} and Λ_{24} provides insight for the development of an efficient decoding algorithm. In particular, the algorithm of [26] employs the Wagner decoding rule [22] for the single-

\[
\begin{bmatrix}
A_{000} & A_{111} & A_{111} & A_{000} & A_{011} & A_{100} \\
A_{100} & A_{000} & A_{111} & A_{110} & A_{010} & A_{101}
\end{bmatrix}
\begin{bmatrix}
B_{100} & B_{011} & B_{011} & B_{100} & B_{101} & B_{101} \\
B_{100} & B_{101} & B_{010} & B_{011} & B_{100} & B_{011}
\end{bmatrix}
\]

\[
\begin{bmatrix}
A_{111} & A_{011} & A_{001} & A_{111} & A_{000} & A_{111} \\
A_{110} & A_{000} & A_{100} & A_{110} & A_{011} & A_{100}
\end{bmatrix}
\begin{bmatrix}
B_{111} & B_{001} & B_{010} & B_{101} & B_{010} & B_{100} \\
B_{100} & B_{101} & B_{110} & B_{000} & B_{110} & B_{001}
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & \omega & \omega & \omega & \omega
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & \omega & \omega & \omega & \omega
\end{bmatrix}
\]
parity-check code over \mathbb{F}_2. Thus, it is evident from the foregoing construction that finding an efficient algorithm for the decoding of Λ_{24} is mainly a matter of finding an efficient generalization of Wagner decoding for the single-parity-check code over $(\mathbb{F}_2)^2$ rather than \mathbb{F}_2.

III. THE DECODING ALGORITHM

According to the construction of the Leech lattice outlined in the previous section, a Leech lattice decoder may be regarded to consist of four decoders for Q_{24} and its cosets. By comparing the outputs of the four Q_{24} decoders and choosing the most likely one, the final decision is reached. In the sequel only a decoder for Q_{24} is described. We assume that the channel output consists of a sequence of 12 two-dimensional symbols $\{r(n)\}_{n=1}^{12}$, where $r(n) \in \mathbb{R}^2$ for $n = 1, 2, \ldots, 12$. Given and individual received symbol $r(n)$, the decoder finds in each Λ_{12} a subset $\Lambda_{12}(n)$ which is closest to $r(n)$. The squared Euclidean distance (SED) between $\Lambda_{12}(n)$ and the received symbol $r(n)$ is denoted by $d_{ij}(n)$. The definitions of $\Lambda_{12}(n)$ and $d_{ij}(n)$ are illustrated in Fig. 4 for the case of 64-point square QAM constellation. Note that if the channel noise is not Gaussian we can substitute a different metric in place of the squared Euclidean distance in the definition of $d_{ij}(n)$, provided that this metric has the additive property.

Denote as in [3]

$$d_{ij}(n) = \min \{d_{ij}(n), d_{jk}(n)\}, \quad \text{for} \ n = 1, 2, \ldots, 12. \quad (3)$$

$$d_{ij}(n) = d_{ij}(n) - d_{ij}(n), \quad \text{for} \ n = 1, 2, \ldots, 12. \quad (4)$$

Computing both $d_{ij}(n)$ and $d_{ij}(n)$ requires a single comparison operation. Hence, the determination of the sequences $\{d_{ij}(n)\}_{n=1}^{12}$ and $\{d_{ij}(n)\}_{n=1}^{12}$ requires $4 \cdot 12 = 48$ comparisons for H_{24} and altogether 96 comparisons for H_{24}. However, all these values may be computed directly from the geometry of the constellation of symbols used for the transmission. Therefore, in order to be able to collate our algorithm with those of [3], [14], [18] we shall as in [3], [14], [18] exclude these 96 comparisons from the total complexity of our algorithm. The 96 real values $\{\delta_{ij}(n)\}_{n=1}^{12}$ and $\{\delta_{ij}(n)\}_{n=1}^{12}$ are the input to our decoder. The decoding algorithm will be described in five steps.

1) Computing the Confidence Values, the Preferable Representations and the Penalties: At this step we essentially compute for each $(r(2l - 1), r(2l))$, $l = 1, 2, \ldots, 6$, the metrics of the 16 coset representatives for the 16 cosets of $4D_4$ in $2D_4$, and then categorize these metrics as the preferred metric and the three penalties for each of the four possible characters (the four cosets of $4D_4$ in $2D_4$). We shall, however, introduce a notation which will be essential later in the algorithm. For each character $x \in \mathbb{GF}(4)$ and for each of the six coordinates of H_8 we define the confidence value in even interpretation $\mu^e_i(x)$ and the confidence value in odd interpretation $\mu^o_i(x)$ as follows:

$$\mu^e_i(0) = \min \{d_{00}(2l - 1) + d_{00}(2l), d_{11}(2l - 1) + d_{11}(2l)\}$$

$$\mu^e_i(1) = \min \{d_{00}(2l - 1) + d_{11}(2l), d_{11}(2l - 1) + d_{11}(2l)\}$$

$$\mu^o_i(\omega) = \min \{d_{01}(2l - 1) + d_{01}(2l), d_{01}(2l - 1) + d_{01}(2l)\}$$

$$\mu^o_i(\overline{\omega}) = \min \{d_{00}(2l - 1) + d_{10}(2l), d_{10}(2l - 1) + d_{10}(2l)\}$$

$$\mu^o_i(0) = \min \{d_{10}(2l - 1) + d_{00}(2l), d_{01}(2l - 1) + d_{01}(2l)\}$$

$$\mu^o_i(1) = \min \{d_{01}(2l - 1) + d_{00}(2l), d_{01}(2l - 1) + d_{01}(2l)\}$$

$$\mu^o_i(\omega) = \min \{d_{00}(2l - 1) + d_{10}(2l), d_{10}(2l - 1) + d_{10}(2l)\}.$$

Obviously the Q_{24} decoder will compute only the even interpretation confidence values $\mu^e_i(0), \mu^e_i(1), \mu^o_i(\omega), \mu^o_i(\overline{\omega})$, while a decoder for the cost of Q_{24} (namely the second coset of Q_{24} in H_{24}) will compute the odd interpretation confidence values $\mu^o_i(0), \mu^o_i(1), \mu^o_i(\omega), \mu^o_i(\overline{\omega})$. We now establish which of the eight even representations of the character $x \in \mathbb{GF}(4)$ corresponds to its confidence value $\mu^e_i(x)$. Let (i_1, j_1, i_2, j_2) be an even interpretation of x, and let

$$\min \{d_{i_1j_1}(2l - 1) + d_{i_2j_2}(2l), d_{i_1j_1}(2l - 1) + d_{i_2j_2}(2l)\}$$

$$= d_{i_1j_2}(2l - 1) + d_{i_2j_1}(2l),$$

where \overline{x} denotes the binary complement of x. Define $k_1 = \text{sign}(\delta_{i_1j_1}(2l - 1))$ and $k_2 = \text{sign}(\delta_{i_2j_2}(2l))$, where the sign function is 1 whenever its argument is negative, and 0 otherwise. Then the total SED between $(\Lambda_{12}, k_1k_2(2l - 1), \Lambda_{12}, k_2k_1(2l))$ and the pair of received symbols $(r(2l - 1), r(2l))$ is minimum among the eight even type-A representations of x. Therefore, $(\Lambda_{12}, k_1k_2(2l - 1), \Lambda_{12}, k_2k_1(2l))$ is called the preferable (even type-A) representation, and the confidence value $\mu^e_i(x)$ is just the total SED between the preferable representation of x and $(r(2l - 1), r(2l))$. The h-parity and the k-parity of the preferable representation are given by, respectively, $u = i_1$ and $v = k_1 \oplus k_2$. For the sake of brevity we shall refer to the ordered duo (u, v) as the (h, k)-parity of the representation. Now if a Q_{24} decoder is to use in the hth coordinate a representation of x whose (h, k)-parity is (u, v), it will obviously choose the preferable representation. However, if the decoder is constrained to use a representation whose (h, k)-parity is either (u, v), (v, u), or (u, v), it will not be able to employ the preferable representation. Using a representation whose (h, k)-parity differs from the (h, k)-parity of the preferable representation necessitates a penalty in the total SED (confidence value) with respect to the preferable representation. The penalties $\Delta_X^e(x), \Delta_X^o(x)$, and $\Delta_X^{\overline{X}}(x)$ may be computed as follows:

$$\Delta_X^e(x) = \min \{\delta_{i_1j_1}(2l - 1), \delta_{i_2j_2}(2l)\}.$$

(6)

If $\delta_{i_1j_1}(2l - 1) \neq \delta_{i_1j_1}(2l)$, then

$$\Delta_X^e(x) = \delta_{i_1j_1}(2l - 1) + \delta_{i_2j_2}(2l),$$

(7a)

$$\Delta_X^o(x) = \Delta_X^e(x) + \min \{\delta_{i_1j_1}(2l - 1), \delta_{i_2j_2}(2l)\},$$

(8a)

otherwise,

$$\Delta_X^{\overline{X}}(x) = \Delta_X^e(x) + \min \{\delta_{i_1j_1}(2l - 1), \delta_{i_2j_2}(2l)\}. \quad \text{on} \quad 0 \neq \delta_{i_1j_1}(2l), \delta_{i_2j_2}(2l) \neq 0.$$

(7b)

$$\Delta_X^{\overline{X}}(x) = \Delta_X^e(x) + \min \{\delta_{i_1j_1}(2l - 1), \delta_{i_2j_2}(2l)\}.$$
Complexity: We compute 96 real values \(\mu_i(x) \), \(\Delta_i^T(x) \), \(\Delta_i^U(x) \), and \(\Delta_i^V(x) \) for all \(i = 1, 2, \ldots, 6 \) and \(x \in \{0, 1, \omega, \omega^2\} \). Computing \(\mu_i(x) \) as defined in (5) requires two additions and one comparison. Note that this comparison is equivalent to the subtraction in (7). Hence both \(\mu_i(x) \) and either \(\Delta_i^T(x) \) or \(\Delta_i^V(x) \) are computed by means of three real operations. The computation of \(\Delta_i^U(x) \) as defined in (6) requires one comparison. Finally, in order to compute the remaining penalty (either \(\Delta_i^T(x) \) or \(\Delta_i^V(x) \)) as defined in (8) we need one comparison and one addition. Thus, the computation of the four values \(\mu_i(x) \), \(\Delta_i^T(x) \), \(\Delta_i^U(x) \), and \(\Delta_i^V(x) \) requires six real operations per character per coordinate, and altogether \(6 \cdot 4 \cdot 6 = 144 \) real operations.

The next step in conjunction with the fourth step of the algorithm essentially constitute a generalization of the Wagner decoding rule [22] for the (6,5,2) single-parity-check code over \((Z_2)^3 \).

2) Sorting the Penalties: At this step of the algorithm we sort all the 24 penalties that have the same \((h, k) \)-parity relative to the preferable representation. That is we arrange the elements of the following three sets

\[
\{ \Delta_i^U(0), \Delta_i^U(1), \Delta_i^U(\omega), \Delta_i^U(\omega^2) \},
\{ \Delta_i^T(0), \Delta_i^T(1), \Delta_i^T(\omega), \Delta_i^T(\omega^2) \},
\{ \Delta_i^V(0), \Delta_i^V(1), \Delta_i^V(\omega), \Delta_i^V(\omega^2) \}.
\]

in a nondecreasing order.

Complexity: Let \(F(N) \) be the number of comparisons required to sort \(N \) real values. Then (cf.[17]):

\[
\log N! \leq F(N) \leq \sum_{i=1}^{N} \log \left[\frac{3}{4} \right].
\]

Substituting \(N = 24 \) in (9) yields \(80 \leq F(24) \leq 81 \). Thus the complexity of the second step is upper bounded by \(3 \cdot 81 = 243 \) real operations.

3) Computing the Confidence Values of the Blocks: If \(\bar{z} = (x_1, x_2, x_3, x_4, x_5, x_6) \) is a vector in \(GF(4)^6 \) the sets \(\{x_1, x_2\}, \{x_3, x_4\}, \{x_5, x_6\} \) are said to be the blocks of \(\bar{z} \). For each of the 4096 vectors of \(GF(4)^6 \) and for each of the three blocks we determine the confidence value of the block in even interpretation \(S_i^j(x_1, x_2) \) and in odd interpretation \(S_i^j(x_1, x_2) \), where \(j = 1, 2, 3 \). For the first block these confidence values are defined by

\[
S_i^j(x_1, x_2) = \mu_i^j(x_1) + \mu_i^j(x_2),
\]

whereas for the other two blocks the corresponding confidence values are defined similarly. Evidently, the \(Q_{24} \) decoder will compute only \(S_i^j(x_1, x_2) \), while a decoder for the cost of \(Q_{24} \) will compute only \(S_i^j(x_1, x_2) \).

Complexity: Computing each of the confidence values defined in (10) requires 16 operations according to the 16 possibilities of choosing \(\{x_1, x_2\} \). Thus for a \(Q_{24} \) decoder the complexity of the third step is 16 operations per block and altogether \(3 \cdot 16 = 48 \) real operations.

4) Finding the Images of the Hexacodewords: Once the representatives \(A_{ijh}(n) \) and \(B_{ijh}(n) \) of the 16 basic subsets in the two-dimensional constellations have been chosen, each hexacodeword \(\bar{z} \in H_6 \) may be regarded as the projection of exactly \(2^{18} \) Leech lattice points, exactly \(2^{16} \) of these being also points of \(Q_{24} \). The task of the \(Q_{24} \) decoder is to determine for each \(\bar{z} \in H_6 \) which of these \(2^{18} \) points is closest to the received signal \(\{r(n)\}_{n=0}^{12} \). The remaining \(3 \cdot 2^{16} \) Leech lattice points that project on \(\bar{z} \) are accounted for in one of the three decoders for the cosets of \(Q_{24} \). The required procedure is best explained by an example. Consider for instance the following hexacodeword \((0101\omega\omega) \) and distinguish between three different cases.

Case 1: Assume that the preferable even type-A representations of the characters of \((0101\omega\omega) \) are given by (11) at the bottom of the page. The overall \((h, k)\)-parity of the array in (11) is \((0, 0)\). Hence the array corresponds to a point of \(Q_{24} \) that projects on \((0101\omega\omega) \). This point is obviously closer to the received signal than any other \(Q_{24} \) point that projects on \((0101\omega\omega) \).

Case 2: Assume that the preferable even type-A representations of the characters of \((0101\omega\omega) \) are given by (12) at the bottom of the page. The overall \((h, k)\)-parity of the array in (12) is \((1, 1) \neq (0, 0)\)
and therefore it does not correspond to a point of \(Q_{24} \) (or to any Leech lattice point). In order to obtain a point of \(Q_{24} \), the decoder must employ columns whose \((h, k)\)-parity differs from the \((h, k)\)-parity of the preferable representations. This necessitates a penalty in the total squared Euclidean distance. Let the alternative representations together with the corresponding penalties be given by the following:

\[
\begin{align*}
\Delta_{1}^{\text{III}}(0) & = 0.54 \quad \Delta_{2}^{\text{III}}(1) = 0.99 \quad \Delta_{3}^{\text{III}}(0) = 1.21 \\
\Delta_{1}^{\text{III}}(7) & \quad \Delta_{2}^{\text{III}}(9) \quad \Delta_{3}^{\text{III}}(11) \quad \Delta_{4}^{\text{III}}(1) = 0.25 \\
\Delta_{1}^{\text{III}}(1) & \quad \Delta_{2}^{\text{III}}(\omega) = 1.02 \quad \Delta_{3}^{\text{III}}(\overline{\omega}) = 0.05 \\
\Delta_{1}^{\text{III}}(1) & \quad \Delta_{2}^{\text{III}}(1) = 0.27 \quad \Delta_{3}^{\text{III}}(1) = 0.18 \\
\Delta_{1}^{\text{III}}(7) & \quad \Delta_{2}^{\text{III}}(9) \quad \Delta_{3}^{\text{III}}(11) \quad \Delta_{4}^{\text{III}}(1) = 0.32 \\
\Delta_{1}^{\text{III}}(1) & \quad \Delta_{2}^{\text{III}}(\omega) = 0.45 \quad \Delta_{3}^{\text{III}}(\overline{\omega}) = 1.28 \\
\Delta_{1}^{\text{III}}(1) & \quad \Delta_{2}^{\text{III}}(1) = 0.42 \quad \Delta_{3}^{\text{III}}(1) = 0.95 \\
\Delta_{1}^{\text{III}}(7) & \quad \Delta_{2}^{\text{III}}(9) \quad \Delta_{3}^{\text{III}}(11) \quad \Delta_{4}^{\text{III}}(1) = 0.50 \\
\Delta_{1}^{\text{III}}(1) & \quad \Delta_{2}^{\text{III}}(\omega) = 0.35 \quad \Delta_{3}^{\text{III}}(\overline{\omega}) = 0.78 \\
\end{align*}
\]

Evidently to attain a point that is closest to the received signal the minimum penalty possibility has to be selected. Recall that all the 24 penalties that share the same \((h, k)\)-parity relative to the preferable representations have been presented at step 2. Thus at step 4 the decoder has a priori information that,

\[
\begin{align*}
\Delta_{1}^{\text{III}}(\omega) & \leq \Delta_{1}^{\text{III}}(1) \leq \Delta_{1}^{\text{III}}(0) \leq \Delta_{1}^{\text{III}}(1) \\
& \leq \Delta_{1}^{\text{III}}(\omega) \leq \Delta_{1}^{\text{III}}(0). \\
\Delta_{2}^{\text{III}}(0) & \leq \Delta_{2}^{\text{III}}(1) \leq \Delta_{2}^{\text{III}}(\omega) \leq \Delta_{2}^{\text{III}}(\overline{\omega}). \\
\Delta_{3}^{\text{III}}(\overline{\omega}) & \leq \Delta_{3}^{\text{III}}(1) \leq \Delta_{3}^{\text{III}}(0) \leq \Delta_{3}^{\text{III}}(\omega). \\
\Delta_{4}^{\text{III}}(1) & \leq \Delta_{4}^{\text{III}}(0) \leq \Delta_{4}^{\text{III}}(1) \leq \Delta_{4}^{\text{III}}(\omega) \leq \Delta_{4}^{\text{III}}(\overline{\omega}). \\
\end{align*}
\]

The decoder may therefore conclude that the minimum penalty required to change the overall \((h, k)\)-parity of the array in (12) from (1, 1) to (0, 0) is either \(\Delta_{1}^{\text{III}}(\omega) = 0.35\) or \(\Delta_{2}^{\text{III}}(\omega) + \Delta_{4}^{\text{III}}(1) = 0.23\). By comparing between the two possibilities and choosing the one with the lower penalty a decision is reached.

Case 3: Assume that the preferable even type-A representations of the characters of \((0101100)\) are given by (13) at the bottom of the page and the alternative representations along with the corresponding penalties are

\[
\begin{align*}
\Delta_{1}^{\text{III}}(0) & = 0.25 \quad \Delta_{2}^{\text{III}}(1) = 0.39 \quad \Delta_{3}^{\text{III}}(0) = 0.55 \\
\Delta_{1}^{\text{III}}(7) & \quad \Delta_{2}^{\text{III}}(9) \quad \Delta_{3}^{\text{III}}(11) \quad \Delta_{4}^{\text{III}}(1) = 0.58 \\
\Delta_{1}^{\text{III}}(1) & \quad \Delta_{2}^{\text{III}}(\omega) = 0.11 \quad \Delta_{3}^{\text{III}}(\overline{\omega}) = 0.76 \\
\Delta_{1}^{\text{III}}(0) & = 1.10 \quad \Delta_{2}^{\text{III}}(1) = 0.98 \quad \Delta_{3}^{\text{III}}(0) = 0.52 \\
\Delta_{1}^{\text{III}}(7) & \quad \Delta_{2}^{\text{III}}(9) \quad \Delta_{3}^{\text{III}}(11) \quad \Delta_{4}^{\text{III}}(1) = 0.37 \\
\Delta_{1}^{\text{III}}(1) & \quad \Delta_{2}^{\text{III}}(\omega) = 0.28 \quad \Delta_{3}^{\text{III}}(\overline{\omega}) = 0.76 \\
\Delta_{1}^{\text{III}}(0) & = 1.27 \quad \Delta_{2}^{\text{III}}(1) = 0.59 \quad \Delta_{3}^{\text{III}}(0) = 0.92 \\
\Delta_{1}^{\text{III}}(7) & \quad \Delta_{2}^{\text{III}}(9) \quad \Delta_{3}^{\text{III}}(11) \quad \Delta_{4}^{\text{III}}(1) = 0.85 \\
\Delta_{1}^{\text{III}}(1) & \quad \Delta_{2}^{\text{III}}(\omega) = 1.28 \quad \Delta_{3}^{\text{III}}(\overline{\omega}) = 0.51 \\
\end{align*}
\]

From step 2, we have

\[
\begin{align*}
\Delta_{1}^{\text{III}}(\omega) \leq \Delta_{2}^{\text{III}}(0) \leq \Delta_{3}^{\text{III}}(1) \leq \Delta_{4}^{\text{III}}(0) \\
& \leq \Delta_{5}^{\text{III}}(\overline{\omega}) \leq \Delta_{6}^{\text{III}}(1), \\
\Delta_{7}^{\text{III}}(\omega) \leq \Delta_{2}^{\text{III}}(1) \leq \Delta_{3}^{\text{III}}(0) \leq \Delta_{4}^{\text{III}}(\overline{\omega}) \\
& \leq \Delta_{5}^{\text{III}}(1) \leq \Delta_{6}^{\text{III}}(0), \\
\Delta_{7}^{\text{III}}(\omega) \leq \Delta_{2}^{\text{III}}(1) \leq \Delta_{3}^{\text{III}}(1) \leq \Delta_{4}^{\text{III}}(0) \\
& \leq \Delta_{5}^{\text{III}}(0) \leq \Delta_{6}^{\text{III}}(\overline{\omega}).
\end{align*}
\]

As in the previous case there are basically two possibilities to change the overall \((h, k)\)-parity of the array in (13) from (1, 1) to (0, 0). One of these is to employ a single alternative representation whose \((h, k)\)-parity is \((\bar{u}, \bar{v})\). The minimum penalty associated with this possibility is obviously \(\Delta_{7}^{\text{III}}(\omega) = 0.51\). The other possibility is to use two alternative representations whose \((h, k)\)-parities are \((u, \bar{v})\) and \((\bar{u}, v)\). However, the decoder cannot use the minimum penalty.
(u, v)-parity representation and the minimum penalty (u, v)-parity representation as they both fall in the same coordinate. Hence, the latter possibility involves comparing between the minimum (u, v)-penalty plus the next to minimum (u, v)-penalty and the minimum (u, v)-penalty plus the next to minimum (u, v)-penalty, namely between $\Delta^u_u(\omega) + \Delta^u_v(1) = 0.48$ and $\Delta^u_u(\omega) + \Delta^u_v(0) = 0.53$. The decision is reached by choosing the minimum among \{ $\Delta^u_u(\omega)$, $\Delta^u_v(\omega) + \Delta^u_v(1)$, $\Delta^u_u(\omega) + \Delta^u_v(0)$ \}.

Complexity: In the first case, no operations on real values are required, the second case involves one addition and one comparison, while the third case requires two additions and two comparisons. These computations are performed for each of the 64 codewords of H_B. Thus the fourth step of our algorithm requires $64 \cdot 4 = 256$ real operations in the worst case and no operations at all in the most favorable case.

5) **Computing the Metrics of the Hexacodewords and Final Minimization:** This step of the algorithm is similar to the corresponding step in [26] and amounts to trellis decoding of a 16-state, three-section (three-block) trellis for the hexacode. For each $\tilde{g} = (x_1, x_2, x_3, x_4, x_5, x_6) \in B_6$ we calculate the even type-A metric of \tilde{g}, which is given by

$$M^e(\tilde{g}) = S_1(x_1, x_2) + S_3(x_3, x_4) + S_5(x_5, x_6),$$

provided that the overall (h, k)-parity of the preferable representations of the characters of \tilde{g} is (0, 0). If the overall (h, k)-parity of the array composed of the even type-A preferable representations differs from (0, 0), then one or two alternative representations must be used for the characters of \tilde{g} and the corresponding penalty must be added to (14). Now let \tilde{g} be the codeword of H_B that has the minimum (even type-A) metric among the 64 hexacodewords, and let $M^e(\tilde{g})$ be the squared Euclidean distance between the received signal and the point of Q_{24} that projects on \tilde{g}, and is the closest to the received signal (the image of \tilde{g}). This point of Q_{24} along with $M^e(\tilde{g})$ constitute the output of our decoder. Note that the image of \tilde{g} may be reconstructed from \tilde{g} by using the preferable (even type-A) representations for all but possibly one or two of the characters of \tilde{g}.

Complexity: As in [26] we partition B_6 into 16 disjoint sets of four codewords each, so that all the codewords in the same set share a common block. Finding the codeword with the minimum metric in each of the 16 sets requires at most 12 real operations (i.e., four additions to compute the four partial sums of two blocks, then at most four additions to account for the penalties if any, then three comparisons to find the minimum among the four sums obtained, and finally one more addition to add the confidence value of the shared block). Hence, the complexity of the fifth step is at most $16 \cdot 12 + 18 = 207$ real operations (at least 143 operations).

The total number of real addition-equivalent operations required by the Q24 decoder is $144 + 243 + 48 + 256 + 207 = 808$ in the worst case, and $144 + 243 + 48 + 143 = 578$ in the most favorable case. Since the decoder for the coset of Q_{24} is essentially identical to the Q24 decoder, it requires exactly the same number of operations. Thus, maximum likelihood decoding of the Leech lattice is accomplished by at most $4 \cdot 808 + 3 \cdot 3505$ real addition-equivalent operations, as compared to 55 968 operations in [9], 15 167 operations in [14], 10 000 operations in [18], and 6129 operations in [3].

We now estimate the average complexity of our algorithm. Bévéry et al. [3] use the following estimate of the average decoding complexity:

$$\text{average complexity} = \frac{\text{worst case complexity} + \text{most favorable case complexity}}{2}.$$

We shall employ a slightly more elaborate estimate that reflects the probabilities of the various cases. Define the event \mathcal{U} as follows:

- Event \mathcal{U}: the overall (h, k)-parity of the array composed of the preferable even type-A representations of the characters of a given hexacodeword is (0, 0).

Assuming uniform distribution of the (h, k)-parities of the preferable even type-A representations, we have $P(\mathcal{U}) = 0.25$ and $P(\overline{\mathcal{U}}) = 0.75$, where $\overline{\mathcal{U}}$ is the complement of \mathcal{U}. Clearly event \mathcal{U} corresponds to the first case of step 4 of our algorithm. Now assume that \mathcal{U} occurs and let the overall (h, k)-parity of the array composed of the preferable even type-A representations be $(a, b) \neq (0, 0)$. The events $\overline{\mathcal{U}}$ and $\overline{\mathcal{B}}$ that correspond, respectively, to the second and the third cases of step 4 may be defined by

- Event $\overline{\mathcal{B}}$: $(a, b) = (1, 1)$ and the minimum (u, v) and (u, v) penalties fall in the same coordinate; or
- Event $\overline{\mathcal{B}}$: $(a, b) = (1, 0)$ and the minimum (u, v) and (u, v) penalties fall in the same coordinate; or
- Event $\overline{\mathcal{B}}$: $(a, b) = (0, 1)$ and the minimum (u, v) and (u, v) penalties fall in the same coordinate.

Again assuming a completely random channel we have $P(\overline{\mathcal{B}}) = 1/6$ and $P(\overline{\mathcal{B}}) = 5/6$. In terms of the probabilities of the events \mathcal{U}, $\overline{\mathcal{U}}$, $\overline{\mathcal{B}}$, and $\overline{\mathcal{B}}$, the average complexity of the algorithm may be expressed as follows:

$$144 + 243 + 48 + P(\overline{\mathcal{U}}) \cdot [P(\overline{\mathcal{B}}) \cdot 256 + P(\overline{\mathcal{B}}) \cdot 128]$$

$$+ P(\mathcal{U}) \cdot 143 + P(\overline{\mathcal{U}}) \cdot 207 = 738.$$

Hence, maximum likelihood decoding of the Leech lattice is accomplished with only $4 \cdot 738 + 3 \cdot 2955$ operations on the average. Note that on a high SNR channel the probability of \mathcal{U} would be greater than 0.25 and consequently the average complexity of the algorithm would be less than 2955 operations.

IV. CONCLUSION AND IMPLEMENTATION CONSIDERATIONS

A new algorithm for decoding Λ_{24} with about 3000 operations on the average has been presented. It is noteworthy that the proposed decoder is not only computationally more efficient but also simpler, both conceptually and structurally, than the decoder of [3]. In fact the technique proposed herein for decoding of Λ_{24} is in a sense merely repetitive soft-decision decoding of the hexacode. This approach enables us to avoid the extensive use of elaborate tables such as Tables I, II, and III of [3]. Moreover, since we decode H_B four times (once for each (h, k)-parity) our decoder consists of four independent computation paths operating concurrently. This structure of the proposed decoder is illustrated in Fig. 5. Each of the four computation paths consists of the five decoding steps that constitute a single Q24 decoder. Note that every individual step is independent of its successors. This property of the decoder makes it amenable to pipelined implementation. A block diagram of the Q24 decoder is presented in Fig. 6.

The algorithm described herein shows how to find the point in the Leech lattice that is closest to an arbitrary point of \mathbb{R}^{24}. In practice, a communication system with a finite peak power constraint may utilize only a finite subset of lattice points. Such a subset is called a Leech-lattice code. In case of the conventional quadrature amplitude modulation (QAM) signaling scheme this subset is usually defined in terms of a finite two-dimensional constellation. In this case, the proposed algorithm obviously becomes a maximum.
likelihood decoding algorithm for the Leech-lattice code as well. Since the precomputation stage is performed in two dimensions, it would suffice to note that the point \(\hat{A}_{ijk}(n) \) should be chosen from the finite set of all possible \(\hat{A}_{ijk}(n) \) points defined by the two-dimensional constellation (cf. Fig. 4). Owing to the fact that \(Q_{24} \) is a sublattice of \((2D_4)^9 \) the proposed algorithm can be made to handle any Leech-lattice code that is defined in terms of four-dimensional constellations as well. This may be readily accomplished by performing the precomputation in four dimensions and including the first step of the algorithm in the precomputation stage. However, if the Leech-lattice code cannot be derived using six independent four-dimensional constellations, there is no way to ensure that the algorithm in choosing the closest Leech lattice point will also choose a point that belongs to the Leech-lattice code. In particular, the spherical codes of Adoul and Barth [1] and the codes contained in a thick shell, as discussed by de Buda [12], cannot be described in terms of independent four-dimensional constellations. Adapting the algorithm presented herein for decoding these Leech-lattice codes remains an open problem.

Finally, we should mention that while our algorithm achieves maximum likelihood decoding of the Leech lattice, there exist slightly suboptimal but more efficient decoding algorithms [15]. Thus using the algorithm of Forney [15] in conjunction with the algorithm of [26], bounded-distance decoding of the Leech lattice can be
performed with 150 operations, while the SWR penalty is only about 0.1 dB. Furthermore, the construction of the Leech lattice, given in Section II provides the ground for the development of even more efficient bounded-distance decoding algorithms along the lines of constructions of Ash and Cus (which are illustrated in Fig. 5) and for

ACKNOWLEDGMENT

Fig. 6. Block diagram of the Cus decoder.
many valuable comments. A. Vardy wishes to thank Dr. S. Rubinstein, Dr. H. Rinsky, and H. Itzkowitz.

REFERENCES

A Coding Scheme for Single Peak-Shift Correction in (d, k)-Constrained Channels

A. V. Kuznetsov and A. J. Han Vinck

Abstract—A two step coding scheme for peak-shift correction in (d, k)-constrained sequences is described. The first step is based on q-ary $(q = d + d + 1)$ is a prime block codes that allow correction of specific types of double errors caused by single peak-shifts. The second step is a simple conversion of q-ary symbols to binary strings of the type 00...01. The concatenation of these strings satisfies the (d, k)-constraint within the codeword and in concatenation with neighboring words. The length of the codewords is controlled and, if necessary, can be fixed. The rate R_q of the overall encoding approaches $(2\log(k+d+1))/((k+d+2)$ for large codeword lengths. Codes for correction of peak-shift, deletions, and insertions of zeros are presented as well. Encoding and decoding are done by simple algorithms without using look-up tables, enumeration or decoding procedures and, therefore, the codewlength may be large.

Index Terms—Recording, peak-shift correction, (d, k)-constraint.

I. INTRODUCTION

In digital magnetic and optical storage, binary sequences are used as modulation codes, and for the standard modulation scheme known as NRZI the '1's' of the recorded codeword determine the positions on the track of storage media where the magnetization is changed from one state to another one. When data bits are directly used as modulation codes, the number of bits per unit of track length (linear density) is equal to $n = 1/\delta$, where δ is the minimum acceptable distance between two consecutive transitions on the track. It was noted already in the sixties that the same minimum gap δ between transitions can be obtained with modulation codes that have $(d+1)$ times more bits per unit of track length but that satisfy the condition that the number of zeros between any two consecutive ones is not less than d. Since the number of such sequences equals 2^n, $N \approx (d+1)C(d)$, where $C(d)$ is the Shannon capacity of the channel with d-constrained input, then the ratio $\gamma = N/n$ is equal to $(d+1)C(d)$ and grows with d [1]. It characterizes an improvement in the linear data density we gain by coding, and for this reason may be called the coding gain. For clock recovery the number of zeros between any two consecutive ones of the modulation code is upper bounded by another integer parameter k $(d+1)$. For small values of $d = 1$, 2 many good recording codes have been constructed in

Manuscript received April 22, 1991; revised December 7, 1992. A. V. Kuznetsov was supported by Eindhoven University and Essen University. This work was presented at the IEEE International Symposium on Information Theory, San Antonio, TX, January 17–22, 1993. This work was done while A. V. Kuznetsov was with Eindhoven University in 1990 and with Essen University in 1991 on leave from the Institute for Problems of Information Transmission (IPPI) of the Academy of Sciences of Russia. A. V. Kuznetsov is with the Institute for Problems of Information Transmission, Academy of Sciences of Russia, Ermolovoy str. 19, Moscow 101447, Russia. A. J. Han Vinck is with the University of Essen, Institute for Experimental Mathematics, Ellerstr. 25, 4500 Essen, Germany.

IEEE Log Number 9209661.0018-9448/93$03.00$ 1993 IEEE