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Abstract: Design is conceptualized as an ill-structured process that requires diverse
knowledge that is hard to acquire. Systematic analysis of design and the knowledge
requirementsishasin general and in the context of bridge design shows that the knowledge
needed can be semi-automatically acquired by using machinelearning techniques. Although
there are limitations to the approach, preliminary results in the bridge design domain are
promising and can potentially transfer to other design domains.

1 INTRODUCTION

The process of knowledge acquisition for any type of expert system is time-consuming and tedious.
This effort increases when dealing with design domains that are ill-structured by their nature. One
approach that promisesto alleviate the difficulty of the knowledge acquisition processistheintroduction
of learning into system development and maintenance stages (Reich and Fenves, 1989b; Shalin et al.,
1988; Witten and MacDonald, 1988). For tasks that are relatively well understood and specified, the
above promise can be realized by using asinglelearning method. For example, one can usethe learning
program ID3 (Quinlan, 1986) to create decision trees for classifying symptoms into malady classes.
Single learning techniques have also been used for very restricted aspects of design (e.g., knowledge
refinement (Mitchell et al., 1985) or the acquisition of simple design rules (Arciszewski et al., 1987));
however, no overall approach for the acquisition of design knowledge has been proposed. The goal of
this research isto develop aframework for assisting in identifying learning methods that can automate
or assist in design knowledge acquisition.

Understanding the issues involved in design knowledge acquisition requires a systematic analysis
of the task, deriving the knowledge it uses, the knowledge dynamics and application (Gaines, 1987).
The requirements formulated by this analysis are then mapped into specific knowledge acquisition
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methods which either exist or should be developed. These methods can be viewed as generic tasks
(Chandrasekaran, 1986) for solving learning problems (Reich and Fenves, 1989a). An abstract account
of asimilar methodology based on system engineering is described by Rook and Croghan, 1988.

Two observations from the analysis described later are important to note.

1. The nature of design process. Design is conceptualized as an iterative process composed of five
sub-tasks executed in sequence: problem analysis, synthesis, analysis, redesign, and evaluation.
A framework for design knowledge acquisition should address each of these tasks. Clearly, this
view isa simplification of real design; nevertheless, it still constitutes an important hard problem.

2. The need to integrate diverse knowledge acquisition techniques. The distinct nature of the five
design sub-tasks entails the use of different techniques suitable for each. We identify machine
learning techniques that can support the acquisition of knowledge for these tasks, and illustrate
their integration. The three types of expertise transfer discussed by Gaines, 1987 are used in
our approach:; synthesis, redesign, and potentially analysis knowledge are acquired by example;
redesign and potentially eval uation knowledgeare acquired by eval uation; and redesign knowledge
isalso acquired as an apprentice.

The paper is organized as follows. The next section analyzes the design process to derive its
knowledge requirements. Section 3 identifies general learning approaches that can acquire design
knowledge based on the above requirements and an analysisof the application domain. Theidentification
of specific learning programs is entirely directed by the analysis of the application domain. Section 4
demonstrates the approach in the domain of bridge design by describing a system under development
called Bridger. We concentrate on capturing synthesis and redesign knowledge and briefly illustrate the
optional capabilities of acquiring analysis and evaluation knowledge. The problem analysis is the least
understood task. We do not deal with the acquisition of knowledge for thistask in this paper. Section 5
concludes with a summary and future work.

2 THE DESIGN TASK

In this study, design is conceptualized as a five-task process. Figure 1 illustrates these tasks with the
knowledge each task requires and the corresponding name in Al terminology. We first describe these
tasks and then presents design as amore complex process composed of several phases. We then limit the
scope of the approach and provide an analysis of our target domain: the design of cable-stayed bridges.

2.1 Design tasks

Problem analysis. A design startswith agiven problem statement contai ning some abstract requirements
to be achieved. The first design task is a problem analysis of this statement, trying to understand its
nature and to define it more precisely. This task involves the use of common-sense as well as domain

shalin et al., 1988 have provided a formal analysis of several tasks and their relevance to existing machine learning
techniques. Their analysis of design isvery simple, it does not allow atrue appreciation of the task complexity and it prevents
adetailed analysis of the prospects of using machine learning for knowledge acquisition. Consequently, they were not able to
map any learning program onto design knowledge acquisition.
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specific knowledge. Problem analysis might require an initial study and possible negotiation with the
client who provided the problem to better understand his intentions. Ultimately, this “understanding”
resultsin adetailed set of specifications and a definition of a design search space. This spaceisalso an
intentional description of all the possible designs.

Synthesis. The second design task isthe synthesis of candidate designsthat satisfy the specifications.
Synthesis uses search techniques for exploring the design space. Control knowledge from diverse
sources is used to guide this exploration. Synthesis can be viewed as a transformation from intentional
to extensional description of designs, expressed by the pair (specifications, design-description).

Knowledge used Design tasks Traditional Al tasks
problem statement
common sense I’Obl em .
domain knowledge § gn alysis modeling
intentional

description

Jesign space & Of designs

control knowledgeg synthesi$
(specifications,

" design-description)
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redesign diagnosis
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feasible solutions
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Figure 1. The structure of design

generative process

causal model
heuristic knowled

subjective knowledge
heuristic knowledge

Analysis and redesign. Since not all the problem constraints are explicitly stated in the problem
statement or detected by the problem analysis, and since the design space might be incomplete or
contradictory, many candidate designs might be inadequate. Designs might violate hard constraints or
be inefficient in using material, space, etc. Candidate designs are analyzed in the third design task —
the analysis. Analyses vary in the way they model the artifact. Approximate techniques use coarse
models but can till rely on theory (e.g., beam vs. finite-element analysis of a bridge deck). The
analysis or performance measures calculated are augmented to each design description — creating the
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tuple (specifications, design-description, performance).

Next, redesign resolves any inadequacies in the artifact. Redesign may use heuristic knowledge as
well as causal models of the domain. Both suggest modifications and supply preferences for the best
possible design modifications. Analysis and redesign may iterate until the design complies with all the
requirements and satisfies all the constraints, henceforth called a feasible design.

Evaluation. Feasible designs are evaluated in the fifth design task — the evaluation. In real world
problems there will be many feasible solutions that need to be ranked. Ranking designs can be done
in several ways. One way of reducing the set of feasible designs is to only keep designs that are
Pareto-optimal with respect to some criteria, for example, designs that have the least weight and are
inexpensive to manufacture. Most evaluations, however, rely on heuristics or subjective criteria such as
esthetics or simplicity. The highest ranked designs are the product of the overall design process.

Bridger, the system described later, only addresses the acquisition of knowledge that appears in
italicized font in Figure 1.

2.2 Design phases

Most artifacts may be represented at several levels of detail, e.g., main components, sub-components,
and individual parts. Such artifacts cannot be designed in one phase. Rather, the design process follows
the different levels of abstraction of the artifact, leading to a top-down approach composed of several
phases. the conceptual, the preliminary, and the detailed design phases. The five design sub-tasks
re-occur in each of the phases, but with a different nature. Problem analysis becomes shorter and
produces better defined specifications. Synthesis shifts from the overall configuration of components to
the generation of parts within these components. Analysis changes from approximate and shallow into
exact and detailed. Redesign and evaluation focus on the concrete partsthat were recently generated and
evaluated. Due to the hierarchical nature of this approach, overall backtracking is amost eliminated.
The structure of the three phasesis similar to one another, therefore we assume the existence of asingle
phase in the remaining of this paper.

2.3 Scope of design

Our view of design is similar to that of General Design Theory (Yoshikawa, 1981). In this approach,
specifications and artifact descriptions are represented as setsin topol ogical spaces. Designisamapping
from the specification topology to the artifact topology. The mapping can be based on heuristic
associations or derived in stages by knowledge of the domain. The missing aspect in General Design
Theory isthat it does not show how such mapping can be acquired (Reich, 1990b).

Heuristic mapping is amenable to preliminary or conceptual design, where major design decisions
are made without good guantitative measure of their tradeoffs. In these phases, there isno clear way of
structuring the domain to allow for a direct mapping between the goals of the design to the functionality
of available components; rather, many artifact properties contribute to achieve the design objectives.
In particular, this view is appropriate to our target domain which is cable-stayed bridge design (Reich,
1990b; Reich and Fenves, 1992).

This approach differs with common approaches to VLS| design where top-down refinement is used
to recursively decompose goals into subgoals and assign components that match the subgoals with their
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functionality (Steinberg, 1987).
In our design problem we make an assumption that artifacts are represented by lists of property-value
pairs. This restricts the scope of design to domains where the topology of artifacts is pre-determined?.

2.4 Cable-stayed bridgesdomain

The nature of the domain specific knowledge that needs to be acquired substantially influences the
choice of learning methods. Figure 2b shows the types of knowledge used in the five tasks of cable-
stayed bridge design. There is no theory of synthesis in our domain. Moreover, synthesis knowledge
is virtually non existent for modern bridge design. Books on the subject (Podolny and Scalzi, 1986;
Troitsky, 1988) provide a base-line for describing designs, and analyzing them — essentially the product
of asimplified problem analysistask. Practically, catalogues of existing designs are the only source of
synthesisknowledge. Thisentailsthe construction of knowledge from scratch, leaving machinelearning
technigues as the primary means for knowledge acquisition beside the tedious process of knowledge
engineering with an expert designer.

Analysis of bridges is awell defined procedure in the form of a finite-element analysis. It can be
easily coded completely. Approximate analyses techniques are also available for manual calculations.
Redesign knowledge partially exists as aweak causal model that given some constraint violations, can
point to possible design modifications for correcting the problems. In addition, design case studies have
been compiled in the past into an unstructured collection of preferences that can be used to resolve
conflictsin the causal model. The causal model and the heuristics provide enough substance to build a
relatively competent redesign module.

A general statement about design aswell as other domainsisthat knowledgeisacquired incrementally
by experts. In redlity, experts need to continuously accommodate new experiences and technologies
in their design domain. Similarly, learning techniques for design knowledge acquisition should be
incremental.

3 MAPPING LEARNING ONTO DESIGN

The five design tasks are very different by their nature, utilizing knowledge of different forms that is
used by different procedures. This observationisimportant for identifying the waysinwhich knowledge
for these tasks can be acquired for a specific domain. First, the tasks are mapped into generic artificial
intelligence tasks. This can further assist in identifying appropriate machine learning techniques for
supporting knowledge acquisition. Next, a specific learning program is assigned to each task based on
the characteristics of the application domain. Figure 2c summarizes the mapping between design tasks
onto machine learning tasks for the domain of cable-stayed bridge design.

3.1 Problem analysis

Problem analysisis a process of modeling using diverse and unformalized knowledge. Such a process
in genera is not captured by any existing artificial intelligence paradigm. We assume that this process
is performed manually by a knowledge engineer or a domain expert. This process not only provides a

2This restriction can be relaxed based on a recent research (Thompson and Langley, 1989).
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Figure 2: Mapping design tasks onto thedomain of cable-stayed bridge design and onto machinelearning
tasks

language for describing artifacts and processes in a particular domain, but more importantly, it governs
the specific machine learning tools chosen for each learning task identified.

3.2 Synthesisand concept for mation

Since bridge synthesistheory does not exist, similarity-based learning (SBL) is a candidate methodol ogy
for the learning task®. Furthermore, statistical learning techniques can be used since many examples
of bridges exist (approximately 100) or can be generated and analyzed. Within these limits, the best
method for learning knowledge for a generative process is concept formation. The need for concept
formation, rather than concept learning is argued next®.

3In contrast, in VLSI, using decomposition and mapping primitive functions into components (Steinberg, 1987) is a
powerful mechanism that with the addition of simulations forms a strong domain theory. This theory allows conceptualizing
synthesis knowledge acquisition as knowledge refinement and permits the use of explanation-based learning (EBL) techniques
(Mitchell et al., 1985).

4An elaborate discussion on thisissue appearsin (Reich and Fenves, 1991).
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Suppose there was only one specification governing the design of an imaginary artifact and suppose
that there were many possible designs for each specification. The problem of acquiring knowledge for
this domain can be transformed into a concept learning task where the possible classes are the possible
values of the specification and the examples of a certain class are the candidate designs satisfying
the corresponding specification value. One could generate training examples by constructing arbitrary
designs and evaluating them to identify which specification they satisfy. This process is illustrated
in Figure 3a. In a design scenario, a new specification would be classified into one of the classes
and candidates would be generated from the concept description of that class (see Figure 3b). The
above simplification—designing for a single specification— is never appropriate for real artifacts that are
specified by many specifications which are sometimes redundant or conflicting. Therefore thislearning
method is inadequate.

designs generalized concept —  candidate designs
evaluation of synthesis
designs from
classification
classification classification new specification
of specifications 8 0 )
a. Generation of concepts by b. Synthesis

concept learning

Figure 3: Concept learning and synthesis

An aternative method is the use of each property of the design as a separate independent design
decision that can be carried out by observing the specifications. Oneway toimplement it isto construct a
decisiontreefor each such property (denoted by d;) where decision nodes represent different specification
properties. A design scenario in this approach consists of using each tree to select a single design
description property based on the specifications. This approach is illustrated in Figure 4. The main
problem of this approach isthat information implicit in design examples by virtue of describing asingle
artifact is lost when each artifact descriptor is selected independently. In many cases this indispensable
information represents the product of a complex constraint satisfaction process.

The reason underlying the inadequacy of concept learning techniques is the nature of synthesis.
Synthesis is a many-to-many mapping (e.g., specifications to design description properties). This
mapping cannot be divided into several many-to-one mappings to be handled by concept |earning since
design description properties are not mutually independent. Furthermore, synthesis cannot be modeled
by a mapping from specifications to classes of designs since such classes are not known apriori, except
for some types of routine design.

A method that can capture amany-to-many mapping is concept formation. The approach to synthesis
knowledge acquisition by hierarchical, possibly overlapping, concept formation is described in Figure
5. Themainideaisthat specification and solutions are correlated together and forming classeswith their
intentional description allows for an appropriate generation of solutions given similar specifications.
Idedlly, one would form concepts from the final acceptable designs, reducing the need to perform
evaluation and redesign in the future. Since the concept formation process is performing an inductive

Knowledge Acquisition, 1991, 3(3):237-254 7



Reich (1991)

dl:dv13 dI:dV14 dl:dV15 dl =dv.

14

Figure 4: Synthesiswith multiple decision trees

leap (overgeneralization) over the data and cannot guarantee the generation of perfect designs for new
specifications, evaluation and redesign tasks cannot be eliminated.
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Figure 5: Concept formation and synthesis

Thereisanother dimensionto synthesisthat constrainsthe sel ection of the concept formation method.
Namely, the output of synthesisis rarely one alternative; usually, several candidates are produced. The
concept formation method used should use knowledge representation that supports such generation.

3.3 Analysisand concept learning

A singleanalysisis aprocess of observing an artifact and stating whether it conforms to some criterion.
A complete analysis consists of many such checks and consequently can be conceptualized as a set of
classification processes®. Exact analysis is relatively easy to capture by direct coding. The ability to
perform heuristic analysis can be acquired by generalizing over exact, tedious analyses. Each analysis
can serve as atraining example where the concept classis the analysisresult. Given enough experience,
anew artifact can be heuristically classified.

Heuristic analysis never replaces exact analysis; nevertheless, it is useful in many of the iterations
of the design process when coarse measures are sufficient to make decisions. In thelast iterations, exact
analysisisused to verify the final design. Figure 6 summarizes analysis knowledge acquisition.

SAnalysis is also a many-to-many function (e.g., design description to performance properties); but it can be modeled by
several many-to-one functions.
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Figure 6: Concept learning for analysis, redesign, and evaluation

3.4 Redesign and concept learning

Redesign is a process of identifying the causes (e.g., design decisions or artifact descriptors) for a
specific behavior of the design and determining the changes that these causes should undergo to correct
the behavior. This is a diagnosis task augmented by the ability to alter the causes for correcting the
inappropriate behavior.

Heuristic knowledge for diagnosis can be captured by a concept learning process (see Figure 6). For
satisfying our purpose, examples should consist of alist of violated constraints and the concept classes
should be the possible modifications. In some domains (e.g., our target domain), causal models can be
acquired as well. This can be done by performing a sensitivity analysis. In general, this process will
be costly and should be avoided. It is hoped that coding heuristic causal models with the help of an
appropriate knowledge dlicitation tool is still a reasonable task compared to the acquisition of general
heuristic knowledge from an expert.

Note that acquiring diagnosis knowledge by concept learning assumes that there are only small
interactions between candidate modifications; otherwise, concept formationismoresuitablefor gradually
assimilating the interactions as it does in capturing synthesis knowledge.

3.5 Evaluation and concept learning

Evaluation is a heuristic and subjective classification of an artifact. Acquiring such knowledge can be
done in an apprentice mode or by extracting implicit judgment from existing designs. In our approach,
part of the eval uation knowledgeis captured as synthesisknowledge. Wedo not make any further attempt
to acquire subjective evaluation, although such acquisition can be performed by a concept learning task
in asimilar way to the acquisition of heuristic analysis knowledge (see Figure 6).

4 BRIDGER ASA MODEL OF LEARNING FOR DESIGN

Bridger is alearning system for knowledge acquisition and performance improvement that is currently
under development. Initsintended domain—the design of cable-stayed bridges—it isexpected to perform
adetailed preliminary design given a set of specifications. The problem analysistask is compiled into a
language for describing specifications, constraints, design examples, and analysis methods. Bridger is
not fully integrated: the synthesis and eval uation modules are implemented and tested and the redesign
module is in its initial stage of implementation. In the next section the name Bridger refers to the
synthesis module only.

Knowledge Acquisition, 1991, 3(3):237-254 9
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4.1 Supporting synthesis by concept formation

Bridger is built on the foundations of the learning program COBWEB (Fisher, 1987). The decision to
choose a COBWEB-like mechanism as the underlying concept formation process for learning synthesis
knowledgeisthe product of the problem analysistask. Thistask determined that for the design of bridges,
specifications, artifact descriptions, and even evaluations can be represented by alist of property-value
pairs.

Bridger extends COBWEB along several dimensions. It can handle entities described by a combi-
nation of nominal and continuous property types, it has a correcting-hierarchy module; it has aricher set
of learning operators; it can forget undesired knowledge; it can perform directed experimentation that
increases the utility of its knowledge; and it can also perform a simple form of constructive induction.
Such extensions can improve the ability to master design rather than simple diagnostic domains®.

Thelear ningappr oach. Bridger usesanincremental learning schemefor the creation of hierarchical
classification trees. Bridger accepts a stream of designs described by alist of property-value pairs and
builds a classification hierarchy in the following way. When a new design is introduced, Bridger tries
to accommodate it into the existing hierarchy starting from its root. Bridger can perform one of several
operators to accommodate the new design into the hierarchy and/or modify the hierarchy. If the design
has been accommodated into an existing sub-class (i.e., using one of the learning operators), the process
recurses with this class asthe root of anew sub-tree. Bridger uses a category utility function (Gluck and
Corter, 1985) to select between its available operators. The best operator isthe one that resultsin a new
classification that maximizes the category utility function.

Synthesis scenario. Bridger synthesizes using a mechanism similar to learning. Bridger sorts
the new specification through the tree to find the best host node for the new specification. Synthesis
progresses by assigning the new artifact characteristic property-value pairs describing the nodestraversed
(see example in the next section). Characteristics of a node are represented by property values that
describe most of the designs in the node and almost none in the other nodes. This strategy, which
is different than the original method employed by COBWEB, can be viewed as a least-commitment,
top-down refinement strategy (Reich, 1990b).

We now illustrate how Bridger uses a hierarchy of bridges to synthesize a new bridge in the domain
of Pittsburgh bridges’. In this domain, a bridge is described with 12 properties of which seven are
specification properties (three continuous and four nominal): the river and location of the bridge, the
period it was constructed, the purpose of the bridge, the number of lanes and length of the bridge, and
whether avertical clearance requirement was enforced in the design. Five design description properties
are provided for each design: the material used, the span of the bridge, thetype of the bridge, the location
of the road with respect to the bridge, and the relative size of the span to the channel width. Figure 7
illustrates some of these properties.

Figure 8 shows the hierarchy generated by Bridger from 60 examples. The nodes at the hierarchy
are described using their characteristics only. The reference symbol and the number of examples below
each node (in parentheses) are also provided. Bridger is required to synthesize a highway bridge on one
of the rivers where vertical clearance governs. Bridger starts designing by classifying the design with

5For additional detailson Bri dger, including statistical performancetests on other domains, see (Reich, 1989; Reich, 1990b;
Reich, 1990a).
"This domain is different that our target domain, but is similar in nature.
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Figure 7: A partial description of abridge

the hierarchy. The current state of Bridger’s knowledge is knowing how to design through bridges. This
property-value is assigned to the new design. Since vertical clearance governs the design, the bridge
description should be refined using class G130. The new design will be of a simple-truss configuration
made of steel. Since G130 consists mainly of bridges with 2 lanes, this specification property refinesthe
bridge specification of the new design. Class G138 is chosen next since it represents highway bridges.
The overall length of the bridge (1088 ft) also refines the bridge specifications. At this stage the design
terminates since all the specifications have been met. The resulting bridge is partially specified since
the main span and the relative length of the bridge are not determined. This is expected since the
specifications are abstract.

Bridger can maintain the abstract design as the sol ution or use other refinement strategiesto complete
the synthesis (Reich, 1990b). The latter is necessary for the execution of the exact analysis described in
the next section. Furthermore, Bridger can generate a ranked set of alternatives from the subtree whose
root is G138 — a necessary requirement of synthesis.

4.2 Supporting analysis by direct coding and concept lear ning

Analysis of bridges is performed by a finite-element procedure. This analysis can be viewed as a
perfect domain theory for this task. The results of the analysis are compared with design codes, that
are compiled, mandatory limits on behaviora functions, for identifying the critical parts of the design.
A part of analysis which identifies the critical loads on a bridge (i.e., calculates influence lines) is seen
in Figure 9. We do not make any attempt to compile analysis results into heuristic analysis because
we expect that the synthesis module will absorb some of these heuristics when successful, acceptable
designs are learned by Bridger.

Although we do not intend to use heuristic analysis knowledge, we performed an experiment to
check the potential of this approach. Five hundred designs of cable-stayed bridges were randomly
generated and analyzed by thefinite-element procedure. Examples were generated by concatenating the
design description with the analysis results of each design. In the experiment, examples were gradually
used to generate a classification hierarchy with the same technique that learns synthesis knowledge.
The hierarchy was used to heuristically analyze the remaining examples based only on their design
description part. Each heuristic analysis was checked against the actual finite-element results for the
particular bridge. The following average results were obtained. The heuristic results continuously
improve when additional examples are learned. Improvements range from a match of 1000% after
learning 100 examplesto a match of 30% after learning 400 examples. Four out of twelve of the results
of the heuristic analysis converge to within 8% from the exact values after learning 400 examples. One
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Figure 8: Design concepts hierarchy after learning 60 examples

result remains far from the exact analysis (200% mean relative error), but thisis caused by only a small
number of major errors. We view this experiment as supporting the claim that heuristic analysis can be
learned as well.

Bridger’s ability to augment synthesis with analysis knowledge is aso the reason for not trying to
learn evaluation knowledge separately from synthesis. Evaluation is used as a means to obtain the user
feedback on the designs produced by the system. The feedback is then used to enhance synthesis. An
example of an aesthetic evaluation that can be augmented to synthesisis. avoid generating bridges that
have two pylons or more, with pylon height more than one-forth of the main span.

4.3 Supporting redesign by concept learning

A simple causal model containing redesign knowledge in the form of qualitative relations is shown
in Figure 10. A plus sign on an arrow denotes a positive influence of the tail on the head whereas
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Figure 9: Theory-driven evaluation

a negative sign denotes the opposite. Such a graph can be generated systematically for our domain,
although it might be incomplete. Note that the graph has two problems: (1) conflicting paths between
cable-spacing and bridge-stiffness and (2) conflicting paths between pylon-height and bridge-stiffness.
Such conflicts can be resolved by performing a sensitivity analysis for the modification in question or
by using experience (e.g., increasing pylon-height leads to an increase of bridge-stiffness). Sensitivity
analysisis an expensive procedure compared to the use of experience. Consequently, we try to acquire
and organize experience for the redesign task of Bridger.

main deck support \

+ H .
cableindination ——— -, Midspan deflection

number of cables +

cable spacing

tower height

AT,

tower stiffness

Description properties Mediating properties Performance property
Figure 10: A partia causal model

Two of the main tasks of learning are: (1) the acquisition of heuristicsthat support the identification
of the best modification which is usually indeterminate from the causal model, and (2) the refinement
of the causal model. At first, such heuristics can be found in technical references. Learning can be
used to structure them and resolve conflicts that exists between heuristics from different references. A
case-based reasoning scheme suitable for this task has been proposed by Clark, 1988.

Some of the assumptions made by Clark are not appropriate for our domain, particularly the as-
sumption that conflicts that are once resolved in a certain way, will be similarly resolved in the future.
In our domain, heuristics abstract many detailsto become only approximations; thus, resolving conflicts
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depends on the context of the specific bridge design scenario. Consequently, learning must be used
continuously to further refine the heuristics.

Another system that does not make the above assumption but has asimilar case-based representation
and reasoning is the Protos system (Bareiss, 1989; Porter et a., 1990). Protos is a system for the
acquisition of concepts and their use in future classifications. Protos makes use of an exemplar-based
representation of categories. In classification, the features of a new case remind Protos, in a process of
heuristic matching, of the most similar exemplar in the category structure. The category of the new case
isthe category of this similar exemplar.

In the cable-stayed bridge domain, categories are possible design modifications, for example, modify
the pylon height. Essentially, each design descriptor is a category name since its modification can
influence the performance. Other categories can be generated for modifications of design description
properties that are tightly coupled. For example, the category increase the number of cables while
reducing their spacing is a specialization (i.e., conjunction) of the categories increase number of cables
and reduce cable spacing. Exemplarsin the category structure are abstract bridge descriptions with their
performance. Figure 11 depicts an abstract partial category structure consisting of three categories and
two exemplars.

category
increase(bridge-rigidity)
is-a-specialization-of is-a-specialization-of
category category
reduce(main-span) increase(tower-height)

mutually-exclusive-with
exemplar

y exemplar
bridge 1 bridge 2
‘ / \
above-limit(mid-span-deflection) governs(horizontal -clearance)

Figure 11: An abstract category structure

In redesign, the performance properties of a candidate design (especially those that violate con-
straints) serve as features for accessing an existing exemplar in the category structure. The category
of the chosen exemplar is the best redesign modification. For example, bridge 1 in Figure 11 will be
most likely chosen as amatch for a new case whose middle span deflection exceeds the allowable limit,
unless the horizontal clearance requirement does not alow it.

Bridger analysis module can provide immediate feedback on the redesign performance. If all the
violated constraints of the design have been eliminated, the redesign was successful. Otherwise, a
relative measure of the improvement can be calculated and stored in exemplars to improve future
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indexing. This might entail a modification to the hypothesis formation of Protos in that remindings to
exemplars will be scaled by the utility stored in them.

The use of Protosis based on the hypothesis that a reasonable causal model without many conflicts
can be constructed. Existing conflicting paths, such as those described before, can be resolved by
exploration and refinement. This hypothesis remains to be confirmed by testing the complete Bridger
system. If it is refuted then the redesign can be augmented by a concept formation system similar to
the one used for learning synthesis knowledge (or the one experimented with learning heuristic analysis
knowledge). In redesign, the concept formation system will be consulted first to retrieve the best fix of
the design. This suggestion can then be confirmed by the Protos system. The concept formation system
will gradually absorb the knowledge implicit in the apprentice system and in redesign experiences. We
do not start with using concept formation since it requires many examples and do not currently use the
available redesign knowledge.

5 CONCLUSIONSAND FUTURE WORK

Design isacomplex activity. Structuring it and understanding the knowledge it requires for performing
a particular task (section 2 of this paper), allows to define specifications of |earning techniques that can
acquirethe domain knowledge needed (section 3 of thispaper). Taking account of the specific knowledge
sourcesavailablein the application domain allows to select specific machine learning programsto match
the above specifications (section 4 of this paper). A partial implementation, called Bridger, exemplifies
this methodology in the domain of bridge design. A summary of the processis shows on Figure 12.

Design

task analysis

Task Structure +

K nowledge Requirements Application Domain

- generd
specifications characteristics

/

Machine Learning
Tasks

specific
characteristics

specifications J,

Machine Learning
Programs

Figure 12: A summary of overall methodol ogy

Since Bridger’'s modules integrate performance with continuous learning, machine learning tech-
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niques are used for all knowledge acquisition aspects possible (Shalin et al., 1988): initial system
construction, refining of the existing knowledge base, and adaptation of the knowledge baseto a specific
style.

The methodology presented is suitable for other design domains. When following the stepsin Figure
12 for different domains, different machine learning methods may emerge depending on the particular
characteristics of these domains.

Future work includes completing the implementation and fully integrating the design modules. As
we do not anticipate the full automation of design, we intend to provide a full interactive capability
between the designer and Bridger. The designer will be ableto direct learning and the use of knowledge
in the synthesis module (e.g., select the learning operators manually). The designer will be able to
monitor the redesign process and modify and refine the redesign knowledge. Finally, the designer will
evaluate feasible designs and submit the best as training examples to Bridger.

Another work involves the extension of the description language to more complex artifact descrip-
tions, especially descriptions with varying topologies. Thiswill allow using the approach in additional
types of domains such as mechanical and layout design.

The life cycle of artifacts continues long after the design is completed. Conceivably, the five-task
model of design can be extended beyond the eval uation task to include the manufacturing task and the
performance of the artifact itself. Consequently, feedback on actual performance of the artifact can be
used to acquire evaluation, redesign, and synthesisknowledge. Thisallowsviewingdesign as supporting
the complete life-cycle of artifacts.

Finally, it is useful if Bridger will learn while not used by a designer. Currently, Bridger can
heuristically select problems that are expected to enhance its synthesis knowledge. Completing the
cycleto analysis, redesign, and heuristic (although not subjective) evaluation, will allow for continuous
improvement of knowledge.
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