Reich et al. (1993)

New Roles for Machine Learning in Design

Yoram Reich
Engineering Design Research Center
Suresh L. Konda
Software Engineering Institute
Sean N. Levy
Engineering Design Research Center
Ira A. Monarch
Center for Design of Educational Computing
Eswaran Subrahmanian
Engineering Design Research Center
Carnegie Mellon University, 5000 Forbes Ave.
Pittsburgh, PA 15213, USA
Tel +1 412 268 5221, Fax +1 412 268 5229

email: yoram@cmu.edu, slk@cmu.edu, snl@cmu.edu, iam@cmu.edu, sub@cmu.edu

In Artificial Intelligence in Engineering

Special issue on Machine Learning in Design 8(3):165-181, 1993

Keywords: Machine learning, design, computational models, design practice, flexible mod-
eling, shared memory, natural language processing, multistrategy learning.

Running head: New roles for machine learning in design

Abstract: Research on machine learning in design has concentrated on the use and
development of techniques that can solve simple well-defined problems. Invariably,
this effort, while important at the early stages of the development of the field, cannot
scale up to address real design problems since all existing techniques are based on
simplifying assumptions that do not hold for real design. In particular they do not
address the dependence on context and multiple, often conflicting, interests that are
constitutive of design. This paper analyzes the present situation and criticizes a
number of prevailing views. Subsequently, the paper offers an alternative approach
whose goal is to advance the use of machine learning in design practice. The approach
is partially integrated into a modeling system called n-dim. The use of machine
learning in n-dim is presented and open research issues are outlined.

Al in Engineering, 1993, 8(3):165-181 1

Reich et al. (1993)

1 Introduction

In order to situate our argument, we begin with a declaration of our perspective and orientation:
we care about design first and only about computational models or tools in so far as they support
design. In contrast, the prevalent approach displayed by most of those interested in machine
learning (ML) in design is to care first about the creation of learning programs and only second,
typically with scant attention, to their utility and usability in real design tasks.

Whether this downplaying of practice is intended or not, it most often results from one
crucial overriding assumption: computational tools can be built that exhibit intelligent behavior,
especially insofar as they can learn. This overriding assumption unfortunately blinds researchers
into neglecting the pragmatics of research (1).

Recently, however, some early optimistic proponents of developing intelligent learning pro-
grams have become skeptical. For example, Wilkes (2) has recently commented upon forty years
of work in Al programming stimulated by Turing’s famous paper “Calculating Machinery and
Intelligence.” Initially, Wilkes” enthusiasm led him to explore various simple learning programs,
and then to work on generalized learning programs. His initial hopes were fulfilled neither by
his own work nor by that of his colleagues. Wilkes summarized his reflections by suggesting
that “we take as a working hypothesis that intelligent behavior in Turing’s sense is outside the
range of digital computer” (p. 20). The aim of computational research with respect to learning
should not be to produce learning algorithms that mimic human learning behavior, but rather
should be to produce computational environments that fit and enhance human practice.

Fruitful design practice is collaborative involving different perspectives and knowledge from
diverse disciplines requiring the creation of shared meanings of the designed artifact (3; 4;
5). Designs are produced, used, and evaluated in rich and varied environments. Processes
are needed to capture the rich contextual information for application to future designs. The
essence of design is the reconciliation of multiple disciplines, perspectives, knowledge sources,
and modes of legitimacy. Moreover, the traditional approach of assessing user needs through
non-participative approaches such as surveys, marketing research, and indirect feed-back from
the marketplace via product failure, are insufficient (6).

An example might crystallize these points. Consider the design of the Golden Gate Bridge
(7). In addition to the usual need for physiographical, geological, functional, and technical
consideration, political, demographic, social, and environmental consideration are needed as
well. These intervened at various stages of the project requiring, for example, the creation of
an administrative unit, the Golden Gate Bridge and Highway District, to manage the bridge. It
also led to two long litigations about the power of the district to tax, and even to the issuing of
a permit from the Department of War (resolved through political supporters). It took almost
16 years from the first proposal (of a rather ugly bridge), to the completion of the construction.
This included several failures, one of which was the construction of the fender ring requiring
four revisions to the design. To condense an important design story, the Golden Gate required
significant negotiations between different, incommensurate, and often conflicting interests in
order to result in the design of a bridge which today symbolizes a major metropolis.

To ignore the problem of multiplicity of interests and concomitant is to miss the point
of all engineering design practice: that the improvement of design is a pragmatic activity that
includes time-to-market, usability, quality, producability, disposability, and other considerations.

Al in Engineering, 1993, 8(3):165-181 2

Reich et al. (1993)

In short, to improve design, design must essentially be approached as multi-dimensional and
heterogeneous.

Consequently, learning in a design context cannot be reduced to a consideration of generating
abstract data structures over sets of representations as is done in inductive machine learning,
or of compiling operators as in explanation-based learning. If such computational tools are
expected to play a role in design (though precisely what role is still an open question), their
utility, inevitably limited and supportive in nature, has to be established by their applicability in
real heterogeneous design tasks. One should keep in mind that such learning techniques are only
a small part of the design process and only create a niche insofar as designers find the techniques
to be usable and useful. Designing requires the resolution of terminology, misunderstandings,
and correlations of factors spanning multiple perspectives, all of which are pervasive in design.
Learning in design must anticipate, allow for, or incorporate, this multiplicity. An approach
that isolates learning into a fixed set of enumerable techniques begs the question of relevance.

What must be studied is how meaning is shared among multiple disciplines, groups, and
group members. Shared meaning, and its persistent form as shared memory (3), always requires
careful mutual translation or linking of terms and concepts across groups because members
of design groups working on the same artifact do not share the same experiences, concepts,
perspectives, exemplars, methods, or techniques. This problem is readily demonstrated in several
case studies (8; 4; 5). Shared memory not only concerns sharing among variegated professions
but also among members of the same profession. The need for sharing within a profession
arises from the differences in functioning context (as, for example, among electrical engineers
in academe, in manufacturing plants, in design shops, in systems integrators, aerospace, etc.).
In short, design is not only inescapably concurrent, but also, to use other currently fashionable
terms, collaborative or participatory.

Design is an evolving process in which all the participants continually learn about the problem
from the perspective of their discipline as they interact with other team members from different
disciplines. When a design is repeatedly revised, what is learned also needs to be re-negotiated.
Moreover, rapid changes in technology often results in patterns becoming obsolete, hence further
complicating the learning and negotiation processes.

In what follows, we provide a brief tour of the ML landscape, situate learning in the design
context, draw out the potential role of ML in such a context, and offer a few notes indicating
what an approach that advances learning in design might look like.

2 An overview of current approaches to machine learning in
design

Most developers of machine learning (ML) techniques operate within certain rigid assumptions
about the nature of the input to ML programs, especially as to the ease with which viable,
unambiguous representations can be created and statically maintained throughout the learning
process. Experience, however, shows that these assumptions are rarely if ever valid in the context
of the design situation which is inherently multi-perspective and heterogeneous. Each of these
multiple interactive perspectives could potentially have its own representation. The multiplicity
of design cannot typically be reduced to the perspective of a single participant, since any one

Al in Engineering, 1993, 8(3):165-181 3

Reich et al. (1993)

participant does not fully understand the problem, nor can any single participant complete the
design alone. Hence, one cannot take a technique effective for a single designer and conflate it
for the multi-perspective design problem.

Our position is that what is central to both the development of computational design tools
and their subsequent uses in real design situations is their capacity to support multiple design
participants (9; 10; 11; 6). This view should not come as a surprise; we take the position that
development of ML tools for design is as multi-perspective as is design itself.

2.1 Using ML programs

In what follows, we describe six steps in the development and use of ML programs based on the
tacit assumption in prevailing research practice, each of which is followed by our comments and
criticism.

(1) Formulation of the learning problem in a particular design context.

AssuMPTIONS: The design problem and what needs to be learned are already
understood. The formulation of design and learning problems is not difficult and
once a formulation is specified, it tends not to change.

CoMMENTs /CRITICISM: Given such assumptions, a learning tool would not be
viable when the user has only a partial or evolving understanding of the design
situation — something that is quite common, especially in the early phases of
design. The formulation of the design problem and what needs to be learned in a
given design context has to be supported iteratively and continually.

(2) Preparing input for ML programs.

ASSUMPTIONS: The integration of multiple sources of information and the
processes for integrating them, e.g., selecting the sources, reconciling their termi-
nology, and selecting the information that can best aid learning, insofar as they
are considered, are either ignored or assumed to require minimal effort.

CoMMENTs /CRITICISM: Interesting and useful design data are not easily iden-
tified, gathered, and integrated into a form that is amenable to being translated
into computer programs (see also step 3). For one thing because design cases
are the products of multiple perspectives, this multiplicity and its reconciliation
must be captured in their description. Such a descriptive task is difficult in it-
self and becomes even more difficult when technology advances and a particular
reconciliation becomes obsolete.

Moreover, in order for designers to turn past cases into useful sources of infor-
mation, (12; 13; 14) these cases have to be described meaningfully relative to
the present state of design knowledge. Even when this is done, descriptions are
always from the point of view of those recording them and tend to incorporate
only a partial understanding of the overall design problem. Assumptions can be
easily hidden in design cases. For example, bridges constructed in the U.S. as
compared to those constructed in Britain for similar sites may be different simply
because their respective design standards give rise to the tendency to select differ-
ent structural elements for similar functions (15). Such factors may be implicit in

Al in Engineering, 1993, 8(3):165-181 4

Reich et al. (1993)

the minds of those describing these cases and therefore not be expressed in their
descriptions, let alone be made available for learning programs.

(3) Devising a description schema for representing information to be used as input to
the learning program.

ASSUMPTIONS: Once cases are collected from various sources, a schema for
representing them must be devised. A list of property-value pairs is the traditional
representation for most learning programs. It is supposed to capture the properties
used to describe cases, their values, and their relative importance.

CoMMENTs /CrITicIsM: While fixed formalisms have their value in organizing
information, they do not solve (with step 2) the problem of encoding the knowl-
edge in the schema. In real world design situations, this can require a knowledge
representation of a breadth and depth that cannot be satisfied by the techniques
and methods used on toy or demonstration design problems. Moreover, it is the
interaction between the schema and the information content that creates the prob-
lem of learning bias which is only partially understood even for trivial artificial
cases (16; 17).

Moreover, the above assumption presupposes that representational forms are suf-
ficient to encompass the needs of the design problem. Instead of looking for repre-
sentations that are appropriate for design (18; 19), ML in design has shoe-horned
design problems to fit, a priori, representational forms.

(4) Selecting the learning program.

AssuMPTIONS: In principle, the selection of the learning program is based on the
properties of the learning problem created after simplifying the design problem.
It is unnecessary to assess the relevance of this selection by testing the learning
program in the context of the original design problem.

CoMMENTs /CRITICISM: In most cases, programs are selected because they are
readily available and not because they are actually the best for the task (20). In
many cases, the representation “supposedly natural” to the domain, is selected to
fit the learning program available. Even if programs are selected based on steps
1 to 3, it is rare that the reasons underlying the selection are well articulated or
that their validity is reviewed based on a test of the learning system in real design
situations.

(5) Selecting operational parameters for the learning program, and testing them.

AssuMPTIONS: The selection of operational parameters is trivial. Furthermore,
parameters are often built into learning programs in an ad hoc manner to improve
performance on particular simplified learning tasks. It is assumed that these
parameters can then generalize to new learning contexts.

CoMMENTs /CRITICISM: It is common practice among researchers to use opera-
tional parameters to tune the performance of their learning programs to obtain the
best possible results through extensive experimentation on demonstration prob-
lems. These selections, however, do not easily generalize to new contexts. The
reason is that different parameters control different aspects of the program behav-
ior (e.g., the complexity of the schema, noisy data, or the amount of searching
allowed) and it is not clear which ones contribute to good or bad performance.

Al in Engineering, 1993, 8(3):165-181

Reich et al. (1993)

In consequence, the selection of parameters that result in good performance in
a particular learning context remains non-trivial and not clearly understood.! It
is only recently, and then only in simple cases, that comparative studies on the
selection of operational parameters were performed (21; 22).

(6) Analyzing the results.

ASSUMPTIONS: Analysis of learning is often one-dimensional. A common
dimension for evaluation of the quality of learning is the reduction of errors in
arriving at correct solutions. As a direct consequence of this assumption, it is
implicitly assumed that such analysis is sufficient to deal with evaluation from the
multiple dimensions that characterize design problems.

CoMMENTs /CRITICISM: Analysis of knowledge, whether created by ML or not,
is inherently multi-dimensional. Content and functional properties of the learned
knowledge must be assessed to provide a more comprehensive view of its quality
(23). The selection of particular evaluation metrics and their interpretations is
relative to the multiplicity of dimensions and perspectives that are embodied in a
design.

The multi-perspective nature of evaluation must be addressed by testing the rele-
vance of learned knowledge in design practice. It is only through user participation
in the development, use, and evaluation that the multiplicity of perspectives are
permitted to arise in its fullest form to evaluate the relevance of what has been

learned. This observation applies with even greater force in the context of ML (9;
10; 6).

In the accepted, and optimistic, view of ML in design, activities 1-3 are perceived as prepara-
tory and minor and the remaining activities as relatively simple. Namely, (1) the creation of a
description schema is straightforward — that is, the consequences of choosing a learning bias are
unimportant; (2) the meaning of terminology is clear and is easily discerned; and (3) learning
can be carried out with little regard to the need for knowledge and purpose but purely as a
manifestation of the algorithmic nature of almost all learning programs (24). Therefore, the
difficulties of preparing design input information are ignored or thought to be under control. On
the basis of this assumption, it is expected that ML techniques will learn all the rest of domain
knowledge autonomously and even learn how to perform new tasks as well.

This is a misguided view: learning bias has major importance and impact on learning (25),
terminology is critical and non-trivial (26), and knowledge about what is to be learned is crucial.
Without addressing these factors, the use of ML is reduced to performing pragmatically irrelevant
algorithmic tasks.

In the next section, we briefly discuss two types of learning using only selected techniques that
generate new knowledge structures (e.g., inductive learning techniques), rather than techniques
that improve the efficiency of problem solving (e.g., explanation-based learning techniques). We
have chosen to illustrate the deficiencies of inductive learning methods as an example of how
these methods fail to address the criticisms of learning systems described above. Explanation
based learning techniques are really directed at automated techniques themselves rather than
design procedures.

!The selection of parameters, is therefore, itself, a full-fledged learning problem.

Al in Engineering, 1993, 8(3):165-181 6

Reich et al. (1993)

2.2 Inductive learning

Inductive learning techniques consist of: supervised and unsupervised concept learning. These do
not differentiate between techniques that are implemented differently (e.g., symbolic vs. neural
learning), an issue orthogonal to the functionality of learning viewed at the knowledge level (27).
A brief summary is provided of each.

Supervised concept learning can only support the task of classifying new objects into a set
of pre-defined classes. For most learning programs, design examples are represented by a list of
specific property-value pairs and are classified into a set of classes that can represent a single
design descriptor. The task is to predict this design descriptor based on these specific properties.
To illustrate, Arciszewski, Mustafa, and Ziarko (28) used a supervised concept learning technique
(a descendant of a program previously developed by the third author) to differentiate between
feasible and infeasible designs. They simplified the description of artifacts to several properties
and restricted the task to classifying artifacts into two classes, feasible and infeasible, essentially
extracting evaluation, rather than synthesis knowledge.

Unsupervised concept learning provides a better basis for acquiring synthesis knowledge than
supervised concept learning (29). The principal idea is that design specifications and solutions
(i.e., design descriptions) are correlated; certain combinations of the chosen properties give
rise to corresponding combinations of design descriptions that satisfy design specifications. A
clustering based on this correspondence allows the retrieval of appropriate designs given a new
specification similar to an existing one. To illustrate, Lu & Chen (30) described an approach
for treating multiple properties in the design specification. The representation of artifacts they
used was again restricted to a short list of property-value pairs. The ML techniques they used
were CLUSTER and AQ15. In their approach, the design specifications are clustered into a finite
set of classes using unsupervised learning.

The classification generated by an unsupervised learning program can then be used by a
supervised concept learning program to generate evaluation rules as before. The results of
supervised learning are rules that assign the description of a design to the right class, i.e.,
approximately identify the design specification satisfied by the design solution. Thus used in
conjunction with each other, these two types of learning programs allow for the generation of
synthesis and evaluation knowledge.

In spite of the seeming power of these programs to learn design knowledge, the simplifications
that underlie both of them (and their examples) are subject to the same criticisms enumerated
earlier of learning programs. Such simplifications occur in many ML projects in design (including
one by a co-author of this paper (31; 32)). Note that our criticism about the simplifications
made by these projects is not meant to dismiss their contribution. In fact, they constitute the
foundation that enabled further understanding of the issues involved in the use of ML in design.
Our criticism is directed against those perceiving that the situation today corresponds to that
of 10 years ago, or those persisting in believe that working on simplified problems will lead to
significant progress in addressing the critical problems of learning in design.

Al in Engineering, 1993, 8(3):165-181 7

Reich et al. (1993)

2.3 Multistrategy learning

To overcome the limitations of existing learning techniques, machine learning researchers pos-
tulated that the solution to diversity in learning situations requires the use of multiple ML
techniques. This would enable a variety of information available for learning to be taken into
account. The use of a multiplicity of techniques was called multistrategy learning (33).

The idea of multistrategy learning in not new. Several proposals incorporating knowledge
or heuristics in selecting machine learning techniques have been presented in the past. Salzberg
(34) described heuristics to be used in inductive learning such as usualness, conservatism, am-
bivalence, and proximity. While these heuristics may improve the use of ML techniques, they
do not resolve the issue of how to choose among the infinite ways in which these heuristics can
be used. More recently, similar ideas have been discussed by Stepp, Whitehall, and Holder (35).
Their view is that intelligent ML techniques can be improved by embedding fixed interpretations
of levels into an algorithm.

In general, two levels can be identified within the multistrategy approach to learning (36):
the macro and the micro. The macro level deals with the use of a collection of learning programs
each addressing a separate learning problem even though they interact. However, it is the non-
trivial task of the user to assemble these techniques and resolve their interactions. As was
pointed out earlier, ML should be seen as integrated with a suite of computational tools that
support design participants in various tasks including those which may assist them in using ML
tools.

The micro level deals with the development of learning programs that employ a variety of
fine-grained learning strategies for solving a specific learning task. In this case, the learning
program is expected to automatically select its own strategies without user intervention; an
expectation that is questionable in light of criticism already made.

BRIDGER, an experimental system developed to explore the extent to which learning can
aid in the creation of design support systems, illustrates the use of these levels in building a
learning system. At the macro level, BRIDGER’s learning task was manually decomposed into
two subtasks, learning synthesis knowledge and learning redesign knowledge, with pre-defined
interaction scheme. Each of these tasks was assigned to a different learning program (37). At
the micro level, each of these systems uses several learning operators to accomplish its subtask.
The control over these operators was fixed as well. The designs of the macro and micro levels
were independent of each other.

In the multistrategy approach, once a system is constructed by integrating the macro and
micro levels, it is expected to operate completely within the scope originally defined by the user.
Thus, such a system does not deal with perspectives different from those initially embedded in
it, oversimplifying the design task.

In conclusion, our criticisms of ML research may seem to indicate that we are against the
development of techniques such as those briefly reviewed. On the contrary, our task here is to
situate these techniques in the context of the practice of design. This means that we do not
set our goals for ML research to be that of “creating systems that pass the Turing test” but
to explore the critical role they can play in design insofar as it is evolutionary, negotiated, and
multi-perspective.

Al in Engineering, 1993, 8(3):165-181 8

Reich et al. (1993)

3 ML for design practice: research areas and issues

There is significant potential for ML in design. This potential can be realized if the criticisms
in Section 2 are addressed. We posit that this can be done by revising the role of ML from an
automaltic process to one that is part of a design support system aiding humans in performing
the tasks required in designing.

In what follows we briefly describe learning activities that occur in design and discuss how
these can guide the design of better ML programs for design practice.

3.1 What is learned in Design?

In order to explore the role of ML in design, we need to discuss the kinds of things that are
learned in the design process. Learning activities can take several forms and assume several
roles.

First, designers learn technical (in most cases analytical) knowledge; in fact, over the years,
it became the primary, if not the sole, function of the professional education system (38; 39; 40).
For example, designers learn how to use finite-element programs for calculating the strength of
structures; these programs calculate the strength of models of the actual structures, while leaving
the responsibility of creating the models and interpreting the analysis results to designers. Such
models creation and interpretation are the points where multiple perspectives must be negotiated
and reconciled. If they are not, the analysis may be incorrect and subsequent failures of designs
may occur (41).

Second, in a study of learning and design, Cross and Nathenson state: “in the course of
designing, designers learn about the problem, its solution, and their relationship” (42). Such
learning has been observed in empirical studies of human designers (43). While Cross and Na-
thenson concerned themselves with the single designer, the context of actual design generally
has multiple design participants learning about their part in the problem and their peers’ per-
spectives; additionally, since all participants modify their understanding, the target knowledge
about the problem is never static.

Third, designers assimilate experiences for use in future design problems. These experiences
are what differentiate expert and novice designers (44). Designers must always be aware that
new design situations prevent the “as-is” application of previous experiences. Designers need to
learn the similarities as well as the differences between current and previous problems and adapt
old solutions to new situations. There are currently no algorithmic solutions to this problem.
What is needed is research that records and evaluates how current automated techniques can
support such learning.

Fourth, from user feedback or from the failures of artifacts, designers learn about the viability
of certain design beliefs, judgments, decisions, or practices in certain situations (45; 12; 14).
Feedback from users (customers) about design arrives after a product is released to the market.
When a product fails, designers attempt to analyze the reasons underlying the failure, sometimes,
for example, to find them rooted in simple inattention to customers’ concerns (46).

One of the central roles of ML techniques should be to amplify the ability of designers to
perform these four learning activities (47). Further, the third and fourth points above, about

Al in Engineering, 1993, 8(3):165-181 9

Reich et al. (1993)

the role of learning in design, suggest the need for developing data or text bases of design cases
and information management tools for maintaining, searching, and learning from, these.

3.2 How can we design better ML programs?

The design of “good” ML programs suited even for simplified design tasks is complex. For
example, the design of decision trees that are optimal in the number of tests is NP-complete
(48); furthermore, the wealth of information in numerous reviews on the design of decision trees
suggests that many different approaches are being and need to be tried. We, as designers of ML
programs, cannot know in advance how to build ML programs because we are still learning about
what the problem is. While we collect information about relevant disciplines, we have not even
started to accumulate experiences from past uses, nor have we accumulated meaningful users’
feedback. The wealth of information about ML programs, their testing, and experiences using
them, must be documented and managed effectively. Therefore, our approach to the design of
ML tools relies on the following premises:

(1) The study of design must accompany the development of ML tools for design; they
need to be interlinked.

(2) ML tools must be developed in a context in which information about the success
and failure of previous design practices is accessible from multiple points of view.
Keeping the history of tools development in an accessible form, for example, can be
as beneficial as keeping design rationales. The more organized such repositories are
the better. Such an organization requires a framework similar to the one we outline
in Section 4.

(3) ML tools must be tested in actual design settings.

We next describe a particular approach that facilitates addressing the issues raised in this
section. We defer the argument that this approach can address the criticism raised in Section 2
to Section 4.3.2.

Note that although we will detail a specific implemented system, it is not the particular
implementation that is the focus; rather, the critical characteristic is the approach that admits,
facilitates, and records arbitrary and evolutionary modifications in response to actual practice.

4 n-dim: Information modeling and creation of shared memory

The motivation for developing n-dim (n-dimensional information modeling) emerges from the
need to address issues observed in actual design practice. As learning is integral to design,
n-dim must provide facilities for learning. In addition, since our approach involves the design of
ML programs, n-dim becomes a candidate for aiding in this activity.

4.1 An overview of n-dim

The space of objects in n-dim is conceptually flat; that is, objects do not contain other objects,
per se. Instead, multiple structures can be imposed on this flat space by means of models, which

Al in Engineering, 1993, 8(3):165-181 10

Reich et al. (1993)

are comprised of links, or relationships between objects (models themselves being objects). In
this way, the same object may participate in many models.

n-dim is implemented in a prototype-based object system called BOS, the Basic Object
System (49). Since it is prototype-based, there are no classes, per se; rather, any object is a
potential prototype for another object. For more information on prototype-based object systems,

see (50).

There is a basic cleavage in the space of n-dim objects between atomic and structured objects.
As the name indicates, atomic objects cannot be broken down any further, e.g. an integer, a
link, a piece of text, an image, an audio bitstream, etc. One could think of atomic objects as
things that have values of some sort.?

The primary form of structured object is the model. A model is a set of links, which are,
themselves, atomic objects. The value of a link object is a 3-tuple, jsource, target, type; where
type is merely a label for the link; link types are given their meaning(s) by the modeling lan-
guage(s) in which they occur.> All objects, whether structured or not, are constructed using
another model acting as their modeling language. Typically, modeling languages specify what
objects can be in a model and what relations they can have to one another. Such specifications
can be thought of as grammars.

Three main features of n-dim form a sort of critical mass, in which the whole is greater than
the sum of the parts.

(1) Flat Space captures the fact that an individual object can be situated in multiple
contexts. There is a special link called a part link, which is canonically represented
as a box inside of a box; i.e., objects “inside” models. All other links are shown as
directed and labeled lines. It must be stressed that due to the flat space of n-dim, a
model does not (in any physical sense) contain objects that appear inside it. Also,
things can be found in the context(s)in which they are used (referred to, referenced
by, placed in relationship to other things, etc.). Hence, rich contexts can be created
with virtually zero overhead. Also, things can be found in the context(s) in which
they are used (referred to, referenced by, placed in relationship to other things, etc.).

(2) Generalized Modeling allows people to operate on things and kinds of things in-
terchangeably, and move freely from one level of abstraction to the other. Every
unpublished (see item 3) model is mutable, and can have operations and attributes
defined on it as an individual without affecting any other model. This means that
models (information structures) can serve as prototypes: potential ancestors of other
models.* Any model can serve as the starting point for another model, in the sense
that it can be copied and the copy modified in ways independent of the original (not
as with class/instance relationship). Models can also serve as modeling languages:
schemas for structuring information. If, for instance, one were to ask n-dim to use an

2The creation of new atomic object types generally requires some programming, since new types of values
often indicate new types of fundamental operations.

It is quite possible to have the same link type mean totally different things in different contexts; we view the
meaning of links as something to be negotiated by users of the system over time. Operationalizing the semantics
of particular interpretations of links is considered an open-ended process; n-dim provides mechanisms for doing
so, but does not require it to be done in order to use a link type.

*We will use the terms “instance” and “prototype” somewhat interchangeably in what follows, since, in a
prototype-based system, the two concepts coincide; the different connotations are useful in distinguishing various
uses of a model, however.

Al in Engineering, 1993, 8(3):165-181 11

Reich et al. (1993)

Integer object® with the value 1 as a modeling language, one would get an object in
the language 1, which could only have as its value the number 1. This grammar has
only one legal sentence. Modeling languages are represented as models themselves
(i.e., as things to be designed, negotiated, etc.). In this sense, models can act as types
for the creation of other models. In a fundamental way, the notion of prototypes is
more basic than of modeling language, in that one modeling language can serve as a
prototype for another modeling language.

(3) Publishing is a mechanism for making models formally exchangeable and persistent
following the library as a metaphor. Hence, traces of the evolution of information and
its structure over time can be found in the growing repository of published objects.

One can map a structure of an n-dim model onto multiple projections, which discriminate
between possible views of that structure. Any projection can be mapped onto multiple displays,
which fix the characteristics of a projection vis a vis its rendering.® Projections are models, as
are renderings. The system merely interprets these models appropriately when needed.

Modeling languages can also specify semantic, as well as syntactic, information about models.
One way this can be done is to include rules in modeling languages. There are two broad classes
of rules: rules on structure and rules on content. If a rule’s predicate takes as arguments only
objects that appear in the model itself, and are not the contents of parts of the model, then it
is a rule on structure, e.g., it operates only on the visible structure of the model. For example,
a rule that limited how many of a certain kind of object could appear in a model would be a
rule on structure. If a rule’s predicate takes any arguments that are contents of the parts of
the model, then the rule is a rule on content. If one were creating a model to be used as a
task-assignment modeling language, one might want a rule which restricted the total number
of hours of work assigned to an individual to be less than 40. Such a rule would not operate
on tasks assigned to individuals but on the hours of work contained as part of the model for
individuals.

To illustrate the above concepts, consider the model called Building Part Hierarchy in
Figure 1. The model’s display is used to illustrate several of n-dim’s facilities. Three menus and
one overlay are displayed in addition to the model (the latter in reversed video). The left menu
appears when clicking on the word n-dim in the left hand side of the top banner; it can be used
to obtain help about n-dim, publish objects, as well as to copy and save objects. The middle
overlay provides information about the model and appears when clicking on the model’s name in
the middle-top banner. The data displayed include the unique model identifier, title, language
used to create the model, the creator and the time the model was created. The left menus
include the facilities for creating the model in addition to searching for objects; they appear
when clicking on the modeling language name in the right-top banner. When the Create... is
clicked, the most right menu appears, allowing to create new objects that are permitted by the
Part modeling language. The model itself contains five part objects linked with either sub-part
or alt(ernative) links in addition to a text object containing notes about this model.

We now discuss how n-dim supports the four learning activities introduced in Section 3.1.

“Note that Integer objects are atomic.
5A rendering of a model can be something like a window presented to the user for interaction, a printed file,
etc.

Al in Engineering, 1993, 8(3):165-181 12

Reich et al. (1993)

— Building_Part_Hierarchy - |]

n-dim Building_Part_Hierarchy Forget It Part
About n-dim Object: GdjugjrinJifTo Search... DocumentmML

Help Title: Building_Part_Hierarchy Include Selection LLTextML

Toggle Menu Help Language: ParttL Drop Selection PartML

Set Documentation Owmer: yoram Create... UniversalML
Screen Dump =» Time Stamp: Wed Feb 310:05:35 1993 Link...

Toggle Selected Hotes Building

Devolve... -
Publish sub=pdrt su‘b'\part

Publish Recursively
Destroy

Copy Nrd v :.\1 £

Copy Recursively

Save Layout M w
Save

Close

Figure 1: A simple n-dim model

4.2 Coding design knowledge

This section addresses the first learning activity in section 3.1. Design knowledge includes formal
and informal components.” Figure 2 consisting of four separate models shows how n-dim facil-
itates the coding of knowledge of both types.® The top-left model, written in the Expression
modeling language, shows the relationship between the stiffness matrix of a structure, its dis-
placements, and the external forces acting on the structure. This model can be used to calculate
the displacements given the external forces or the external forces given displacements. The
small overlay window, displays the model Stiffness as a frame with slots describing: its value,
procedure of calculation, as well as the assumptions underlying the modeling of the structural el-
ements as finite elements. The assumptions provide the context for assessing the viability of the
modeling. Note that the Stiffness object is written in the Operand modeling language, which
was prototyped using the Frame modeling language; it requires that the three slots displayed
will be provided for each operand in the Expression modeling language.

The top-right model, called Building Part Hierarchy2 written in the Part modeling lan-
guage, shows an elaborated version of the the part/sub-part hierarchy that appeared in Figure
1. The lower-left model, called Denver Building Issues and written in the rIBIS modeling
language (i.e., a recursive variant of issue-based language (53)), describes issues related to the
design of a building in Denver. Some of the objects are primitive issues while the others are
rIBIS models themselves, demonstrating how models can be embedded in other models. Finally,

"Elsewhere we have demonstrated that even the most “formal” component involves, and is based on, informal
components (51).

8The examples below contain brief data from analysis of protocol interviews of engineers and architects collected
in a knowledge acquisition study of tall building design conducted by Steven Meyer and Steven Fenves (52). We
thank them for allowing us access to these protocols.

Al in Engineering, 1993, 8(3):165-181 13

Reich et al. (1993)

Force_Displacements - Building_Part_Hierarchy2 PR

n-dim Force_Displacements Expression Building_Part_Hierarchy2

Building
¥

zub-rart S:buoar't
e ™~

Stiffness —0 e Mat_Mult —°—p= Displecements

Forces
Floor Structural_System

}/L/ v a?t ‘\cd{\

Tube Shearwall Frame

R

Stiffness
n-dim Stiffness Operand
value: K_Structurel?
procedure: GAjuBjrOnKFOK1C
Assumptions: GdjugjronKFOg1FP
Opening Stiffness (Gdjudjrin

- Denver_Building_lssues PR - Building_Cases PR

n-dim Denver_Building_Issues n-dim Building_Cases

1 RAmRELE Morthwest_Bank_Building
Steel_Framed_Tube Composite_Framed_Tube

”ic‘ Hancock_Building ~ Empire_State_Building
Construction_Cost Construction_Time

Subcontracti
ubcony ng Georgia_Pacific_Building

P;D relate%—issue

= Denver_Buildin

_ L

Experience 1_3Shell_Building
v

-+ I - -

Project_Management

Figure 2: Knowledge of structural design

the lower-right model, called Building Cases and written in the Case language, depicts several
cases of building designs, including the Denver Building which includes the aforementioned
issues.

One may ask what is the significance of this knowledge coding for ML? The answer comes
from the bi-directional relationship between contextual information and learning. First, infor-
mation situated in a rich context can focus learning on missing information that is needed in
that design context and might be learned. Second, information always is created, modified, and
evolves by learning, for instance, the Building Part _Hierarchy2 represents part of the product
of learning from interview data of designers.

4.3 Learning with a toolbox of ML programs

This section addresses the second and third learning activities in section 3.1. Learning design
knowledge has to be responsive to the multiplicity of perspectives and the volume of information.
As discussed in Section 2.1, the prevalent way of handling these difficulties, one we disagree
with, reduces the multiplicity and the volume at the source. All information and perspectives,
are analyzed, organized, and represented before starting to develop a design; no new perspectives
are permitted once the initial representation is determined, and therefore, no conflicts can arise.

In contrast, our approach supports compressing the volume of information in context and

Al in Engineering, 1993, 8(3):165-181 14

Reich et al. (1993)

according lo one or another perspective. We will use ML and natural language processing tech-
niques in order to facilitate the compression of information into a usable form only in context
and according to a selected perspective.

The type of data in engineering databases and the diversity of potential designers’ back-
ground knowledge and preferences, require adopting an interactive approach to learning (26;
10). Designers and computers will be inextricably involved in the learning process. Our ap-
proach aims to provide designers with facilities to model the learning problem and its solution
in an incremental manner; it differs from the development of learning toolboxes. The latter are
limited to providing a framework for interacting and managing a collection of learning tools by
providing formalisms that facilitate transfer of results from one system to another (54). Being
fixed a priori, such formalisms restrict the techniques available to the designer. In contrast, our
approach does not restrict the kind of techniques used or the way they are used.

We view learning as any activity of “information growth.” For example, asking a question
and receiving an answer is learning. In this sense, we consider even communication and search
facilities learning tools. In fact, n-dim provides both facilities. Nevertheless, we now focus on
the use of ML techniques to support the second and third learning activities discussed in Section
3.1. In this focus, we mainly describe one particular learning mechanism that provides natural
language processing for n-dim. It will be used to demonstrate the kind of flexible integration of
ML programs in n-dim and the functionality expected from such integration.

4.3.1 Natural language processing

One of the learning capabilities being integrated into n-dim is natural language processing (NLP).
NLP enables the discovery of terminological patterns implicit in large text corpora. The discov-
ered patterns can act as a basis for building multiple conceptual networks in various sub-domains.
The example that follows is taken from the domain of architectural and engineering design of
tall buildings.

The information structuring techniques described will allow different participants on the
same design team to: (1) retrieve efficiently information relevant to their current tasks and
decisions, (2) support fast introduction of new team members to on-going projects, and (3)
support the construction of shared meaning via links among conceptual networks as specified
and negotiated by the participants (3).

To illustrate this capability, consider the model NLP Run created in the Execution modeling
language and displayed in Figure 3. It is an example of how n-dim can facilitate the use of
NLP and how NLP can help establish shared vocabulary and meaning for various activities.
Applicability to activities such as indexing and building multi-perspective representations of
artifacts is shown. Applicability to other activities such as query formation and knowledge
acquisition, also facilitated by use of NLP, is discussed in (55).

The model shown in Figure 3 contains a sequence of steps, not all automated, that lead from
text to various kinds of NLP assisted analysis and information structuring. Everything that is
shown is either implemented or in various stages of implementation in n-dim.

The process shown starts with marking up a file containing text (Building Protocols) that
is then tagged, parsed, analyzed, and structured by NLP tools (Syntactic_Tagger, NL_Parser,

Al in Engineering, 1993, 8(3):165-181 15

Reich et al. (1993)

- HLP_Run |
n-dim HLP_Run Execution
Building_Protocols Building_Terminology Synonyms_Discussion

input Uk
annotption

Text_Marker Term_Clusterer -4—— 2215 Synonyms

output putput Formatted_Protocols
Formatted_Frotocols Terminological Clusters n-dim Formatted_Protocols HMLPDoc
input input pred'Fdes Fy
Syntactic_Tagger Concept_Modeler Interview1_Part134 |

outlut authut prechdes
Bundlng Protocols

Tagged _Protocols Concept_Hetwork Interwew1 _Part135

”ﬁy - pr'ec'=-des
HL_Parser Intewlewz _Partl
gnu-emacs: emacs @ MONCH.EDRC.CMU.EDU FWE": des
Each case is unique . let me give you a couple of |“tBW|9‘-'-I"2 _Part2
generalities that go to the heart of the matter . prec des
Fir‘stl, most of tl.he time tall buildings are designed by IntEWIEWZ Part3

experienced architects who have done may of them . e, g,, ... L
have routinely done high-rise buildings , ‘

Prior to our irwolvement , the owner haz discussed hiz Openlng Interview?_Partl {GdjuGjronJpECh)...
requirements with the architect . who haz already done zome
preliminary sketches for the developer ., The shape & volume aré
pretty well demded before the engineer has any input .
Filli-—- 1.

Cpening Formatted_Protocols (GdjudjrondpBiu)..

Figure 3: Integrating NLP in n-dim

Term Clusterer, and Concept_Modeler). These contribute to the building of an n-dim model.
The Formatted Protocols model contains transcriptions of interviews that are marked for later
indexing via operations available in the Text Marker. A small section of one of the transcrip-
tions, Interview2 Partl, appears at the lower part of the figure. The Building Terminology
model contains syntactic well-formed phrases that represent meaningful chunks of informa-
tion in the building domain. These chunks have indices into the original document accord-
ing to the previous text mark-up operations. Information from Building Terminology and
an object containing synonym information are used by the Term Clusterer to produce an-
other n-dim object called Terminological Clusters. The Synonyms object is annotated by
an rIBIS model (Synonyms Discussion) representing why terms were considered synonymous.
The Terminological _Clusters are further structured via the use of concept modeling tools
(Concept_Modeler) to produce a concept network which still maintains indexing links back to
the original document. Concepts can therefore be viewed in the context in which they occur.

Figure 4 displays a very small portion of the Terminological Clusters object in a particular
rendering. The position from left-to-right indicates the relative importance of the terms as they
appear in the protocols analyzed. The figure shows terms from the largest clusters and indicates
some relationships among them. These relationships need to be evaluated, refined, and labeled
through negotiation by design participants. The term building has several sub-terms. These

Al in Engineering, 1993, 8(3):165-181 16

Reich et al. (1993)

The figure appears at the end of the paper (page 27)

Figure 4: Terms discovered by NLP

can be organized according to categories decided on by the design participants. For example, the
building sub-terms can be organized along the following lines: particular building (e.g., hancock
and empire state), properties of building (e.g., form and width)?, and types of buildings (e.g.,
office and apartment).

The Concept_Modeler provides tools for manipulating the Terminological Clusters, in-
cluding their presentation according to various perspectives and for using the indexing links to
access contexts in the original document. Besides viewing terms in context, the indexing links
provide the basis for iterative processing of documents, such as resolving the referents of vague
words like ‘thing’, dividing the document into smaller or larger chunks, mapping synonymous
words into an agreed upon single term, and correcting errors.

Terms created by the NLP analysis can serve as labels for other n-dim models. They can
also be used in creating various structured representations of domain concepts from a single
discipline or different disciplines. These representations can be used as a baseline for negotiating
shared meaning and thereby facilitate communication and interdisciplinary learning. The models
described and their associated facilities are embedded in modeling languages such as Execution.
These languages provide for interactive learning in a rich context.

While NLP tools provide facilities for capturing textual context, n-dim’s modeling facilities
also allow for capturing other forms of context such as drawings, photographs, audio, and video.
Future advances in various fields may allow the extraction of information from these forms as
well.

In addition, the NLP techniques described above are not the only kind of techniques that
can facilitate the establishment of consensus over terms. Other tools, such as KSS0 (56), that
are developed to be used in multi-expert elicitation process, can be used as well. In fact, such
tools can be integrated into n-dim.

4.3.2 Contextualized use of ML

ML techniques can also be integrated into n-dim in a manner similar to the NLP programs,
via the Execution modeling language. Figure 5 shows the model ML _Run which enable users
to manage the use of different ML programs. We will use this model to illustrate how n-dim
improves on present use of ML techniques by addressing the issues raised in Section 2.1.

We address the first three issues raised in Section 2.1 together:

(1) formulation of the learning problem in particular design contexts;

°The notation “:” stands for a preposition.

Al in Engineering, 1993, 8(3):165-181 17

Reich et al. (1993)

| ML_Run A

n-dim Execution

Design_Context - Schema_Preparation
—.

E‘F',-QL_I._E\‘ ‘EuTut

Input_Freparation in Description_Schema

Duﬂgut iﬂiut

Input » ML _Selection

! | mm\b
Results_Analysis 44— 021if— Results ——uifueit, ML_Program

v
z

>

Figure 5: Integration of a ML program

(2) preparing input for ML programs; and

(3) devising a description schema for representing information to be used as input to the
learning program.
In response to these issues, we have provided, in the previous section, an example
of how n-dim enables a user to deal with changing context by the interactive use of
NLP programs. n-dim enables the use of ML techniques in contexts that may change
over time (Design_Context in Figure 5). Once various portions of the context of a
design problem are modeled in n-dim, ML techniques can make use of this context.
As the context changes, the changes are accounted for in the model.
The Input Preparation and Schema Preparation contain operations for mapping
items in the context into structured input suitable for ML programs. A mapping
can be elaborated by rIBIS models that record the assumptions behind the mapping
operations and their origin in the design context.
Creating the modeling languages for interactive use of NLP programs to support
learning was relatively easy since: (1) the NLP programs accept unstructured text
as their input; and (2) at least some important aspects of a new design context are
reflected simply by the availability of new texts, such as available project memos,
manuals, reports, etc., as well as literature from disciplines relevant to the design
project.
The creation of languages for interactive learning of most ML programs is more
difficult than the one needed for NLP programs since they require structured data,
such as lists of property-value pairs, as their input. The input is not simply marked-
up text, but a mapping from new design contexts into the structured input required
by the ML program. By in large, the operations provided by such languages are
manual, rather than automatic. These languages need to evolve in response to better

Al in Engineering, 1993, 8(3):165-181 18

Reich et al. (1993)

understanding of design problems and the mapping operations.
The next two issues raised in Section 2.1 are handled separately.

(4) Selecting the learning program.

Gradually, we intend to build models of uses of different learning techniques (in-
cluded in the model ML_Selection). Initially, a model can be specified according to
basic dimensions such as: supervised/unsupervised, incremental/non-incremental,
similarity-based /explanation-based learning. Later, more detailed characteristics of
the methods employed such as: divide-and-conquer/covering can be employed (see
Figure 6).!° New models will be gradually created that incorporate the specific
context of using these techniques.

Machine_leaming

Machine_leaming

Multi- Strategy - Learing

Inductive- Leaming Explanation - Based- Leaming
Unsupetvised - Concept - Learming Supervised- Concept- Leaming 4
\ haz-spbhgacshbtupe
utype has—sybtype
has-subtype

Micro- Perspective Macro- Perspective

A ¥
Divide- and - Congquer
nembg r-skEmber-of
=z

Bridger

contAains

Eprotos FOCL
Ecobwseh

IND- family

CHZ HMewlID C4.5 ID3 FOIL

Figure 6: Classification of ML techniques

Such models can provide information for selecting learning programs in particular sit-
uations. The selection process, including its pro and con arguments, can be recorded

19Most of the objects in Figure 6, (i-e., AuToCLass, BRIDGER, CN2, EcoBwWEB, EproTos, FOCL, FOIL, IBL,
IND-family, and NEWID) are not merely “empty” boxes, but contain information about the programs including
documentations, source code, data files and results.

Al in Engineering, 1993, 8(3):165-181 19

Reich et al. (1993)

by using the rIBIS modeling language. When experience about the use of particular
ML program grows, the reasons documented in the selection model, can be reflected
upon and corrected.
(5) Selecting operational parameters for the learning program, and testing them.

This activity is part of the ML _Program model. The problem of selecting operational
parameters for learning programs can be addressed in a way similar to addressing the
issue of program selection. Fach program can have its own model evaluating different
uses of the program in different design contexts, different operational parameters,
and different feedback on performance. These evaluations can be used to select
operational parameters for new learning problems.

Addressing the last issue,

(6) analyzing the results, is a culmination of addressing the first five. The results of
learning programs always refer to the design context and to the choices made in the
five preceding steps. It is these analyzes that close the loop and allow experience to
accumulate and better inform future uses of ML programs.

4.4 Validation—learning from feedback

This section addresses the fourth learning activity in Section 3.1. We believe that design practice
can be enhanced by the use of computer tools that help professionals in their task. The devel-
opment of these tools must be done in collaboration with the professionals who are expected to
use the tools (57; 58; 59). Our initial conjecture, based on the study of many approaches, is
that improved practice can be achieved in this manner (6; 60). The participation of designers
means that the tools must be flexible enough to accommodate their needs and the regulations of
their organization much in the same way as n-dim is able to accommodate the needs of the ML
techniques expected to be integrated with it. We propose that a significant part of this flexibil-
ity is achieved by providing designers with an ability to adapt their computing environment to
their needs. The aforementioned flexible modeling feature of n-dim, provides this functionality
to designers.

This practical goal, is also the key to validation of computer tools aimed at improving
practice. The development of tools in collaboration with practitioners means that practitioners
use the tools and provide input as to how it can be further improved. This approach provides
the basis for validation of computer tools in the context of practice.

n-dim contains some facilities to collect and organize feedback from users. Modeling lan-
guages such as the rIBIS can be used to record and elaborate issues raised by users. Feedback
in the form of text can be analyzed by the NLP procedure and subsequently, models that or-
ganize this information can be created. Improvements in n-dim can then refer directly to issues
and feedback models, thereby maintaining their rationale and preventing recurring mistakes.

5 Summary and Future work

Starting with a critical examination of the received view of developing and using ML techniques
in (computational models of) design, we arrived at describing an approach that is aimed at

Al in Engineering, 1993, 8(3):165-181 20

Reich et al. (1993)

supporting design practice. This approach relies on several principles:

(1) The goal of the research is to advance design practice.

(2) Design is multi-faceted and heterogeneous, therefore, any technique that supports
design must address these properties. Most computational techniques are limited to
a simple subtask of design or one that operates on a fixed formalized model of the
designed artifact.

(3) The creation of shared meaning and the management of shared memory is funda-
mental to the success of design. It is through this evolving body of information that
successful design is possible.

(4) Flexible modeling facilities can aid in the creation, management, and use of shared
memory. These facilities can be significantly enhanced by the creation of indexing
mechanisms that use the evolving conceptual networks of the particular domain.

Based on these principles we propose an approach for using machine learning in design. First,
research must be built on top of a flexible modeling facility to allow for impacting practice.
Second, the research must address the development of a toolbox of techniques that can be used
by designers depending on their particular learning needs. Third, research on flexible modeling
and ML must be performed in parallel.

We described an implemented system called n-dim that provides the integration framework
for our approach and illustrated how it can support four primary learning activities in design. We
also discussed how this approach circumvents critical problems faced by current ML approaches
in design, but nevertheless, creates its own research agenda.

Our proposed approach addresses the criticism raised in section 2 but creates a new set of
issues that must be addressed for attaining its stated goal: improved use of ML programs in
design practice. Two issues are critical to our approach: usability and validity in practice. These
issues open a host of other issues to be addressed.

The issue of usability means that the activities described in the description of n-dim must be
easy enough to execute so as not to discourage potential users. The activities include:

(1) The creation of modeling languages.
A critical part of the activities discussed in Section 4 involved creating modeling
languages with the functionality required to carry out interactive learning in context.
Currently, such languages are created by programming. While this is sufficient for
the initial development and it also provides a basic set of languages that can be used
by any n-dim user, it cannot serve as a mode of use for design practitioners.
The critical issue is not having the ability to create languages with fancy syntax
and functionality, but the provision of facilities to create such languages without
programming, that is, via modeling: the natural way of doing things in n-dim.

(2) The presentation of learned information.
Most ML programs are limited in the way they present learned information, the
most common ways being decision trees, rules, or, even less comprehensible, weights
in a neural network. Learning from the enormous amount of information expected
to accumulate in using n-dim requires additional ways of inspecting information. We
propose to do it by creating models on top of learned information and providing
multiple ways of viewing these models. This separation of content and presentation
of models is in the process of being integrated into the next version of n-dim.

Al in Engineering, 1993, 8(3):165-181 21

Reich et al. (1993)

(3) The learning from unstructured data.
The data presented in n-dim models are unstructured. While at some level, one
sees objects and links with labels, these objects and links can represent arbitrary
complex n-dim information, including text, figures, and voice bitstreams. The use of
this information goes beyond concepts such as multistrategy learning. We address
such learning by providing manual mappings from unstructured to structured data
but, by in large, this item remains completely open to research initiatives.

The issue of validity means that the benefits from using ML techniques in our approach
must outweigh the benefits currently available from the use of ML. Furthermore, we would
like to demonstrate that it improves design practice. Therefore, addressing usability becomes
mandatory for addressing the validity issue. Two of the issues related to validity are:

(1) How do we accumulate information on learning experiences?
Since we would like to impact practice, feedback must be collected from practitioners.
Experience will be collected directly through practitioners creating models as part
and parcel of doing design. This information must then be analyzed which is where
ML techniques are expected to play a significant role.
One conceptual issue to be addressed is the development of methods that learn
from semi-structured information stored in relational databases, where n-dim model
structures are stored. It seems possible that this process will bootstrap itself: the
more the approach is used, the easier it will become to design and integrate these
techniques.
In addition, the deployment of computer programs for their evaluation and further
development — technology transfer in a broad sense — presents a critical problem
which we try to address through participatory design (6).

(2) Creation of shared memory.
Implicit in the use of ML techniques by different practitioners is the creation of a
shared memory for organizations (3). We conjecture that such memory can be cre-
ated by the approach outlined in this paper, and that subsequently, this evolving
body of shared memory can improve design practice. In keeping with our general
approach, this conjecture must itself be tested constantly to further guide the devel-
opment of our approach.

Acknowledgments

This research has been supported in part by the Engineering Design Research Center, a
National Science Foundation Engineering Research Center. We would like to thank Robin King
for comments on an earlier draft, to Steven Meyer and Steven Fenves for allowing us access to
their study protocols, and to the reviewers for their constructive comments.

The views and conclusions contained in this document are solely those of the author(s) and
should not be interpreted as official policy, either implied or expressed, of the SEI, CMU, the
US Air Force, the Department of Defense, or the US Government.

References
[1] E. Subrahmanian and J. Davis, “Validation of expert systems: Two perspectives,” Tech.

Al in Engineering, 1993, 8(3):165-181 22

Reich et al. (1993)

Rep. EDRC-05-11-87, Engineering Design Research Center, Carnegie Mellon University,
Pittsburgh, PA, 1987.

[2] M. V. Wilkes, “Artificial intelligence as the year 2000 approaches,” Communications of the
ACM, vol. 35, no. 8, pp. 17-20, 1992.

[3] S. Konda, I. Monarch, P. Sargent, and E. Subrahmanian, “Shared memory in design: A
unifying theme for research and practice,” Research in Engineering Design, vol. 4, no. 1,
pp- 23-42, 1992.

[4] L. L. Bucciarelli, “Reflective practice in engineering design,” Design Studies, vol. 5, no. 3,
pp. 185-190, 1984.

[5] L. L. Bucciarelli, “An ethnographic perspective on engineering design,” Design Studies,
vol. 9, no. 3, pp. 159-168, 1988.

[6] Y. Reich, S. Konda, I. Monarch, and E. Subrahmanian, “Participation and design: An
extended view,” in PDC’92: Proceedings of the Participatory Design Conference (Cam-
bridge, MA) (M. J. Muller, S. Kuhn, and J. A. Meskill, eds.), (Palo Alto, CA), pp. 63-71,
Computer Professionals for Social Responsibility, 1992.

[7] J. B. Strauss, The Golden Gate Bridge. San Francisco: Golden Gate Bridge and Highway
District, 1937.

[8] S. Hales, Analysis of The Engineering Design Process in an Industrial Context. PhD thesis,
Department of Engineering, University of Cambridge, Cambridge, UK, 1987.

[9] C. Floyd, H. Zillinghoven, R. Budde, and R. Keil-Slawik, eds., Software Development and
Reality Construction. Berlin: Springer-Verlag, 1992.

[10] I. A. Monarch and E. Subrahmanian, “Artificial intelligence and interactive learning: A
decision support exemplar,” in Proceedings of AISIG 90 Research Workshop on Full-Sized
Knowledge Based Systems (Washington, D.C.), 1990.

[11] P. Piela, B. Katzenberg, and R. Mckelvey, “Integrating the user into research in engineering
design systems,” Research in Fngineering Design, vol. 3, no. 4, pp. 211-221, 1992.

[12] D. Kaminetzky, Design and Construction Failures: Lessons From Forensic investigations.
New York, NY: McGraw-Hill, 1991.

[13] M. H. Magued, M. Bruneau, and R. B. Dryburgh, “Evolution of design standards and
recorded failures of guyed towers in Canada,” The Canadian Journal of Civil Engineering,
vol. 16, no. 5, pp. 725-732, 19809.

[14] H. Petroski, To Engineer is Human. New York: Vintage Books, 1992. (First Edition, 1982).

[15] P. G. Buckland, “The inherent beauty of cable-stayed bridges,” in Esthetics In Concrete
Bridge Design (S. C. Watson and M. K. Hurd, eds.), (Detroit, MI), pp. 233-246, American
Concrete Institute, 1990.

[16] D. Haussler, “Quantifying inductive bias: AI learning algorithms and Valiant’s learning
framework,” Artificial Intelligence, vol. 36, no. 2, pp. 177-221, 1988.

Al in Engineering, 1993, 8(3):165-181 23

Reich et al. (1993)

[17] P. E. Utgoff, Machine Learning of Inductive Bias. Boston, MA: Kluwer Academic Publish-
ers, 1986.

[18] L. J. Leifer, “Instrumenting the design process,” in Proceedings of ICED-91 (Zurich), 1991.

[19] E. Subrahmanian, A. W. Westerberg, and G. Podnar, “Towards a shared information en-
vironment for engineering design,” in Computer-Aided Cooperative Product Development,
MIT-JSME Workshop (Nov., 1989) (D. Sriram, R. Logcher, and S. Hukuda, eds.), (Berlin),
Springer-Verlag, 1991.

[20] Y. Reich, “The development of BRIDGER: A methodological study of research on the use of
machine learning in design,” Artificial Intelligence in Engineering, vol. 8, no. 3, pp. 217-231,
1993. Special issue on Machine Learning in Design.

[21] J. Mingers, “An empirical comparison of selection measures for decision-tree induction,”
Machine Learning, vol. 3, no. 4, pp. 319-342, 1989.

[22] J. Mingers, “An empirical comparison of pruning methods for decision-tree induction,”
Machine Learning, vol. 4, no. 2, pp. 227-243, 1989.

[23] Y. Reich, “Measuring the value of knowledge,” International Journal of Human-Computer
Studies, 1995. (in press).

[24] J. Doyle, “On rationality and learning,” Tech. Rep. CMU-CS-88-122, Computer Science
Department, Carnegie Mellon University, Pittsburgh, PA, 1988.

[25] T. M. Mitchell, “The need for biases in learning generalizations,” Tech. Rep. CBM-TR-117,
Rutgers University, New Brunswick, NJ, 1980.

[26] W. Buntine and D. Stirling, “Interactive induction,” Tech. Rep. TIRM-88-030, The Turing
Institute, Glasgow, 1988.

[27] A. Newell, “The knowledge level,” Artificial Intelligence, vol. 18, no. 1, pp. 87-127, 1982.

[28] T. Arciszewski, M. Mustafa, and W. Ziarko, “A methodology of design knowledge acqui-
sition for use in learning expert systems,” International Journal of Man-Machine Studies,
vol. 27, no. 1, pp. 23-32, 1987.

[29] Y. Reich and S. J. Fenves, “The formation and use of abstract concepts in design,” in
Concept Formation: Knowledge and Frperience in Unsupervised Learning (D. H. J. Fisher,
M. J. Pazzani, and P. Langley, eds.), (Los Altos, CA), pp. 323-353, Morgan Kaufmann,
1991.

[30] S. C.-Y. Lu and K. Chen, “A machine learning approach to the automatic synthesis of mech-
anistic knowledge for engineering decision-making,” Artificial Intelligence for Engineering
Design, Analysis, and Manufacturing, vol. 1, no. 2, pp. 109-118, 1987.

[31] Y. Reich and S. J. Fenves, “Inductive learning of synthesis knowledge,” International Jour-
nal of Expert Systems: Research and Applicalions, vol. 5, no. 4, pp. 275297, 1992.

[32] Y. Reich, “Design knowledge acquisition: Task analysis and a partial implementation,”
Knowledge Acquisition, vol. 3, no. 3, pp. 237-254, 1991.

Al in Engineering, 1993, 8(3):165-181 24

Reich et al. (1993)

[33] R. S. Michalski and G. Tecuci, eds., Proceedings of the First International Workshop on
Multistrategy Learning. Fairfax, VA: Center for Artificial Intelligence, George Mason Uni-
versity, 1991.

[34] S. Salzberg, “Heuristics for inductive learning,” in Proceedings of The Ninth International
Joint Conference on Artificial Intelligence, (Los Angeles, CA), pp. 603-609, Morgan Kauf-
mann, 1985.

[35] R. E. Stepp, B. L. Whitehall, and L. B. Holder, “Towards intelligent machine learning algo-
rithms,” in Proceedings of the 8th European Conference on Artificial Intelligence, (Munich,
W. Germany), pp. 333-338, Pitman, 1988.

[36] Y. Reich, “Macro and micro perspectives of multistrategy learning,” in Machine Learning:
A Multistrategy Approach, Vol. IV (R. S. Michalski and G. Tecuci, eds.), (San Francisco,
CA), pp. 379-401, Morgan Kaufmann, 1994.

[37] Y. Reich, Building and Improving Design Systems: A Machine Learning Approach. PhD
thesis, Department of Civil Engineering, Carnegie Mellon University, Pittsburgh, PA, 1991.
(Available as Technical Report EDRC 02-16-91).

[38] E. S. Ferguson, Engineering and the Mind’s Eye. Cambridge, MA: MIT Press, 1992.

[39] A. D. Kerr and R. B. Pipes, “Why we need hands-on engineering education,” Technology
Review, vol. (October), pp. 36-42, 1987.

[40] J.-L. Le Moigne, “The paradoxes of the contemporary engineer,” Furopean Journal of
Engineering Fducation, vol. 6, pp. 105-115, 1981.

[41] E. Subrahmanian, S. L. Konda, S. N. Levy, Y. Reich, and A. W. Westerberg, “Modeling
and analysis in design,” in Proceedings of the AID’92 Workshop on Preliminary Slages of
Engineering Analysis and Modeling, 1992.

[42] N. Cross and M. Nathenson, “Design methods and learning methods,” in Design: Science:
Method, Proceedings of the 1980 Design Research Society Conference (R. Jaques and J. A.
Powell, eds.), pp. 281-296, Guildford, England: Westbury House, 1981.

[43] C. M. Eastman, “On the analysis of intuitive design processes,” in Emerging Methods in

Environmental Design and Planning (G. T. Moore, ed.), pp. 21-37, Cambridge, MA: MIT
Press, 1970.

[44] M. T. H. Chi, R. Glaser, and M. J. Farr, eds., The Nature of FExpertise. Hillsdale, N.J.:
Lawrence Erlbaum Associates, 1988.

[45] B. R. Gaines, “Positive feedback processes underlying the formation of expertise,” IFEFE
Transactions on Systems, Man, and Cybernetics, vol. 18, no. 6, pp. 1016-1020, 1988.

[46] J. A. Bermingham, “Why product development at sony is driven by the engineering and

manufacturing groups rather than marketing.” Lecture given at The Graduate School of
Industrial Administration, 24th September, 1991.

Al in Engineering, 1993, 8(3):165-181 25

Reich et al. (1993)

[47] Y. Reich, R. Coyne, A. Modi, D. Steier, and E. Subrahmanian, “Learning in design: An
EDRC (US) perspective,” in Artificial Intelligence in Design’91, Proceedings of The First
International Conference on Artificial Intelligence in Design, Edinburgh, UK (J. Gero, ed.),
(Oxford, UK), pp. 303-321, Butterworths, 1991.

[48] L. Hyafil and R. L. Rivest, “Constructing optimal binary decision trees is NP-complete,”
Information Processing Lelters, vol. 5, no. 1, pp. 15-17, 1976.

[49] S. Levy, E. Subrahmanian, S. L. Konda, R. F. Coyne, A. W. Westerberg, and Y. Reich,
“An overview of the n-dim environment,” Tech. Rep. EDRC-05-65-93, Engineering Design
Research Center, Carnegie Mellon University, Pittsburgh, PA, 1993.

[50] D. Ungar and R. B. Smith, “SELF: the power of simplicity,” LISP and Symbolic Compu-
tation, vol. 4, no. 3, pp. 187-205, 1991.

[51] E. Subrahmanian, S. L. Konda, S. N. Levy, Y. Reich, A. W. Westerberg, and I. A. Monarch,
“Equations aren’t enough: Informal modeling in design,” Artificial Intelligence in Engineer-
ing Design, Analysis, and Manufacturing, vol. 7, no. 4, pp. 257-274, 1993.

[52] S. Meyer and S. J. Fenves, “Structural design of tall buildings, knowledge acquisition study
report,” Tech. Rep. EDRC 12-58-93, Engineering Design Research Center, Pittsburgh, PA,
1993.

[53] J. Conklin and M. L. Begeman, “gIBIS: A hypertext tool for exploratory policy discussion,”
ACM Transaction on Office Information Systems, vol. 6, no. 4, pp. 303-331, 1988.

[54] K. Morik, “Balanced cooperative modeling,” in Proceedings of the First International Work-
shop on Multistrategy Learning (R. S. Michalski and G. Tecuci, eds.), (Fairfax, VA), pp. 65—
80, Center for Artificial Intelligence, George Mason University, 1991.

[655] E. Subrahmanian, S. L. Konda, S. N. Levy, I. A. Monarch, Y. Reich, and A. W. Westerberg,
“Computational support for shared memory in design,” in Automation-Based Creative De-
sign: Current Issues in Computers & Architecture (A. Tzonis and 1. White, eds.), Elsevier
Science Publishers, 1993.

[56] B. R. Gaines and M. L. G. Shaw, “Comparing the conceptual systems of experts,” in Pro-
ceedings of The Eleventh International Joint Conference on Artificial Intelligence, (Detroit,
MI), pp. 633-638, Morgan Kaufmann, 1989.

[57] H. Barki and J. Hartwick, “Rethinking the concept of user involvement,” MIS Quarterly,
vol. 13, no. 1, pp. 53-63, 1989.

[58] A.-M. K. Baronas and M. R. Louis, “Restoring a sense of control during implementation:
How user involvement leads to system acceptance,” MIS Quarterly, vol. 12, no. 1, pp. 111-
123, 1988.

[59] P. Tait and I. Vessey, “The effect of user involvement on system success: A contingency
approach,” MIS Quarterly, vol. 12, no. 1, pp. 91-108, 1988.

[60] G. Salaway, “An organizational learning approach to information systems development,”
MIS Quarterly, vol. 11, no. 2, pp. 245-264, 1987.

Al in Engineering, 1993, 8(3):165-181 26

