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1 Introduction

Given a set of input-output data (x,y), one can build an unlimited number of models that represent
an implicit mapping y = f(x). There is no best model for arbitrary data or function. In fact,
for classification tasks, averaged over all modeling problems, all methods are equal as shown by
the conservation law for generalization performance (Schaffer, 1994) and the no-free-lunch (NFL)

theorem (Wolpert, 1995).

In the traditional approach, the information available on the problem is examined and a choice
is made among available models that might best solve the problem. Such choice could employ
heuristics or guidelines derived from experience. The choice might fail because the true function f
is unknown, the information available is limited or even erroneous, and the guidelines or heuristics

would be overgeneralization of past experiences.

Inevitably, through the modeling process, the data nature is better understood and new insight
about the modeling problem emerges. Consequently, the process iterates where different models
are examined or additional data is collected (Reich, 1997; Reich, 1998). At the end of modeling,

the intermediate models are usually discarded.

A more systematic model selection will follow a comparative statistical testing among candidate
models. Such testing would require large data for model building and tuning, and for model
comparison. A common test to use is cross validation but others, especially for classification, are

explored in the machine learning (ML) community (Reich and Barai, 1998a).

Whether a model is selected systematically or not, it is clear that the remaining models that
were developed and discarded contain potentially valuable information about the problem. If we
wish to better understand the nature of data and the process that generated it, and not necessarily
estimate the function f for making future predictions, we could definitely benefit from multiple

perspectives provided for by different models (Reich et al, 1996).

It has become clear that prediction models could also be improved by the combination of mul-
tiple models into one, an approach called ensemble modeling (see Sharkey, (1996) for a summary).

Numerous practical modeling problems were solved successfully using ensembles. However, we must
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not think that the combined model or ensemble is guaranteed to perform better than any of its
constituents or that the same combination approach will work equally well on another arbitrary
modeling problem. This is a corollary of the conservation law or NFL theorem. The choices be-
tween models are merely deferred to a meta level: which models to select as the ensemble members

and how to combine them?

An important concept that underlies model selection or combination is the bias-variance tradeoff
(Geman et al, 1992). These could be explained in terms of this tradeoff. This tradeoff emerges
from decomposing the expected value of the error of an estimator f of some function y into three
terms: bias, variance, plus some noise factor. For a square loss function the decomposition of the

error can be written very generally as (for a precise formulation see (Geman et al, 1992)):

Elly— () = Elly— €7 “noise”
+  (E[f(2)] - Ely|x])? “bias"
+ El(f(z) - Ef(2)])?]  “variance”, (1)

where, -] represents expected value. The noise element reflects the variance of y given z including
measurement and human coding errors; it is fixed for the data. It turns out that when model
complexity increases the bias is reduced but the variance is increased. Therefore, there is a tradeoff
between the two terms that yields the “optimal” estimator. This insight can be used to design

better estimators or select between them.

This paper reviews the problem of model selection and model design guidelines in the context
of neural networks modeling (Section 2). We discuss heuristics for combining models into an
ensemble in order to improve performance and review a formalization that makes these heuristics
explicit (Section 3). We present two examples of ensemble modeling (Section 4); one example
demonstrates that opportunistic ensemble modeling based on models generated in an exploratory
iterative modeling process can lead to improved performance even when data quality is poor. This
example highlights the problems of models generation and combination which are addressed by the
second example. The second example constitutes the main contribution of this paper; it describes
and demonstrates a new method based on a set of modified stacked generalization instantiations

(Wolpert, 1992) for systematically generating quality ensembles. The method is called the SG(k-
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NN) ensemble. This method succeeds in improving results even when it seems that close to optimal

performance has already been achieved.

2 Model selection

Model selection is one of the steps in building models from data (Reich, 1997; Reich, 1998). It has
been perceived that using the best single tool for solving a problem is the best solution approach.
However, it is also recognized that no ML tool is better than all others on all problems (Schaffer,
1994; Wolpert, 1995). A critical issue is therefore determining for each model the class of problems
it can solve best. This requires collecting data on the use of different tools for different problems
including successes and failures and compiling such a mapping (Reich, 1994). Such compilation
requires significant effort. An attempt to use ML to assist in this task is demonstrated in the
StatLog project. Following the testing of 22 classification programs on more than 20 databases,
knowledge was extracted in the form of heuristics that can direct ML program selection given
a particular learning problem (Michie et al, 1994). It is unclear whether this approach can be

generalized to handle the variety of learning situations and solution methods.

Depending on the choice of modeling approach, several parameters are often available for selec-
tion. For example, in the context of modeling a function by neural networks (NN), the following

choices are available:

e Model type. This selection is based on the particular problem: A simple feedforward network
might be sufficient for modeling a simple function, while a recurrent network might be better
for a time-dependent function. In the former case, both multilayer perceptron (MLP) network

or a radial basis function (RBF) network could be used.

e Model configuration or topology. This choice is one of the most common design decisions:
determining the number of hidden layers, the number of hidden units, and the type of acti-
vation functions of the NN model. Model complexity must produce a good tradeoff between

the bias and variance of the model error (Geman et al, 1992).

e Model estimation. First, the error or cost function between the training data and NN output
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needs to be formulated. Second, there are two broad categories of model estimation methods
to minimize this function. The first method is the one developed for the particular NN such
as back propagation for a MLP. The second method involves using minimization programs to

minimize the error or cost function directly (Sarle, 1994).

e Implementation. Many implementations of NN algorithms are available. They vary in reli-
ability and details. For example, the generation of random numbers may be different thus
leading to different initializations of NN weights. Such discrepancies undermine the ability of

different implementations to replicate results (Nabney et al, 1997).

There are two methods for generating guidelines: theoretical and empirical. To illustrate them,

consider the choice of model configuration.

Theoretical guidelines.

Many guidelines are based on interpretations of theoretical results related to NN. In particular,
there are various proofs that NN are universal approximators. For example, Kolmogorov’s mapping
neural network existence theorem (Hecht-Nielsen, 1990) states that every real continuous function

£ :10,1]* = R can be written as

2d+1 d
yi= Yy ¢ (Z N (2 + he) + h) (2)

h=1 k=1

where A is real, 1 are continuous real monotonically increasing functions independent of f, ¢ is a
rational number as small as desired, and ¢, are continuous real functions dependent on f and e.
Some authors interpreted this as a guideline that in no situation does one need more hidden units
h than 2d+ 1, where d is the number of inputs (Swingler, 1996). This, however, is wrong since the
activation functions required to prove the theorem are problem dependent, unknown, and certainly

do not resemble those used in any common NN architecture.

Another related theorem states that a two-hidden layer NN with a step activation function
would require a number of hidden units that is polynomial in the desired error and exponential in
the number of inputs (Kirkové, 1991; Scarselli and Tsoi, 1998). Consequently, A = O(a?), for some
constant a. The proof of this theorem is constructive: it describes the method of building the NN

and its usage. Obviously, the two results are markedly different. If we use any of them as guidelines
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for one or two-hidden layer MLP with sigmoid activation function, we would have abstracted those
results out of their context, rendering them useless. Swingler (1996) mentions many such guidelines
with their origin in theoretical results. However, he wrongly maintains the bound on hidden units

as h <2d+1.

Theoretical guidelines can also emerge from different theoretical analyzes. For example, Fu and
Chen (1993) suggested using b < 4 in the sigmoid function 1/(1+e~") of an MLP instead of b =1

in order to reduce the sensitivity of the MLP output to variations in inputs.

Many other theory-based guidelines are based on NN degrees of freedom or various criteria
such as the Vapnik-Chervonenkis (VC) dimension (Lawrence et al, 1996). In one such example,
Baum and Haussler (1989) relate the size of a MLP with linear threshold functions, the number
of training examples, and the training error to the confidence in future predictions. However, the
bounds derived from those analyses are too conservative. There is still a gap between theoretical

and empirical results in NN as the gap associated with symbolic ML (Turney, 1991).

Empirical guidelines.

Most often, empirical guidelines are based on parametric studies involving various NN architectures
applied to several databases or modeling problems. The guidelines are then generalized from the
studies (Carpenter and Hoffman, 1997). In performing such tests, attention should be given to the
following issues. Similar to what we know about ML, in order to get useful generalized guidelines
they have to be extracted from modeling problems that are representative of the problems we might
encounter in the future. The number of these problems must be sufficient to obtain meaningful

generalization.

The generalized guidelines should be formulated carefully following analyzing the results with
acceptable statistical tests. In particular, when comparing multiple models on multiple modeling
problems, the problem of multiplicity must be addressed so as to minimize spurious statistical

results (Feelders and Verkooijen, 1995; Reich and Barai, 1998a).

In addition, statistical tests have their own bias and variance. Some tests (e.g., cross validation),
are more accurate (i.e., have less bias) than others but must be interpreted with care. It is best to

control their variance with respect to test execution conditions and data sampling by performing
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several tests and averaging the results. One such test is K’, where I runs of k-fold cross validation

(CV) are averaged (Reich and Barai, 1998a).

A k-fold CV is performed as follows (Reich, 1997). The data D is divided into k subsets of
roughly equal size. The ML program is trained k times, each time leaving out one of the subsets
from training, and using it for testing. The error estimation is the average accuracy of the k£ runs.
If £ = n, n ths size of the data set, the test is called a LOO test. It has been common in general ML
studies to use a 10-fold CV method when the number of instances, n, exceeds 100, or a leave-one-out

method for small databases.

Instead of formulating general guidelines, one can employ statistical tests to select a particular
model for a particular modeling problem. The process is similar to the generation of general
guidelines except that only one modeling problem is solved and less testing is performed since the

selection need not apply in general.

3 Ensemble modeling

No guideline is always correct. No single method is always the best. This has lead to the idea
of trying to combine models into an ensemble rather than selecting among them. The idea seems
to work well as demonstrated by many practical classification applications (although note that
failures are rarely reported). Wolpert (1992) proposed two heuristics for assessing the potential of

an ensemble.

1. The ensemble should span the space of generalizers. The ensemble members should be of

different types and not merely variants on the same model type.

2. The ensemble models should be “orthogonal”. This ensures that each adds additional infor-
mation towards building an accurate model. Correlated models are not useful for ensemble

construction.

These heuristics are clear when using ML to gain better understanding of data: the use of diverse

methods provides different perspectives, and many different perspectives improve understanding
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(Reich et al, 1996). Krogh and Vedelsby (1995) formalized these heuristics as an instance of the

bias-variance tradeoff (Geman et al, 1992). The ensemble error is given by:

E;=F; -4, (3)

where,

E; =37, w;;6; is the weighted average of error of individual networks of the jt* output parame-
ter;

A; = Y wijayj, is the weighted average of ambiguities (a;;, defined below) in the jt" output
parameter;

w;; is the weight assigned to the output of the jt* parameter of the i*® model; these weights satisfy
2iwij =1

8;; is the sum square error (SSE) of the j**

th model;

parameter of the i
a;; = (yi; — %)2 is referred to as the ambiguity in the j** parameter of the i** model;
y;; is the output of the jt* parameter of the i** model; and

n

y; is the weighted average output of the j'" parameter, i.e., 3 WY -
i=1

Equation 3 separates the generalization error into one term that depends on the errors of the
individual models and another term that contains all the correlation between them. The first is low
if models quality is high (heuristic 1) and the second is high if the diversity is high (heuristic 2).
Krogh and Vedelsby (1995) also show how to compute the values of optimal weights w;;. However,
this calculation requires a large data set for training and testing. Thus, in cases where a small

dataset is available, it is advisable to assign equal weights that lead to a conservative ensemble.

Figure 1 shows the differences between the model selection and combination approaches. The
general framework is similar however, the combination approach has many more degrees of freedom.
It also has many more opportunities to address the bias-variance tradeoff. Instead of optimizing the
tradeoff for each model before combination, one can generate basic models with lower bias and let
the ambiguity of the ensemble (i.e., the ambiguity term in equation 3) reduce the variance (Naftaly

et al, 1997). This requires integrating tightly the two steps in the model combination approach.
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Put Figure 1 about here

Figure 1: Model selection versus combination

Most work on ensembles to date have dealt with classification. We will present two examples of

using ensembles for multidimensional regression.

Lawrence et al, (1996) pointed out that the more noisy the data, the more beneficial is ensemble
construction. Qur first example has two levels of noise. Our results lead to similar findings: the
advantage of using ensemble increases with the level of noise in, or variance of, the data. We also

show that ensembles do not always improve results.

Most previous work on ensembles have not dealt with actively generating a good set of diverse
models. Opitz and Shavlik (1996) operationalized Equation 3 into a procedure for such generation.
Their algorithm is based on genetic search in the space of NN configurations for those NN that
contribute most to lowering the F;’s. Our second example implements a novel heuristic approach

for systematic generation of good quality ensemble models.

4 Opportunistic and principled ensemble modeling: case studies

We illustrate two approaches of ensemble modeling: opportunistic and principled. The opportunistic
approach emerges from the usual iterative data modeling process. During modeling, various models
are explored, the problem is gradually better understood, and hopefully, modeling improves. Yet,
at the end of the process, one remains with all the intermediate models, some of which may perform
better than the final model. Instead of discarding these models, ensemble modeling combines them
into one. If the models are quite different (i.e., diverse) and reasonably good, the ensemble will

improve upon the best of them. We demonstrate this approach through modeling corrosion data.

The principled approach seeks to generate systematically a set of as accurate as possible and
diverse models from which a single model is composed. We develop a new method with these

properties and demonstrate it through modeling marine propeller’s behavior data.
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4.1 Opportunistic method: Combining intermediate models

This exercise deals with the stress corrosion cracking (SCC) of a sensitized, wrought type 304
stainless steel (Congleton et al, 1995). The goal of modeling is establishing relationships between
the environmental conditions and their effects on the steel. The environmental conditions are
temperature (T), potential (V), solution types (ST1 and ST2) and the effects are crack length
(CL), ultimate tensile strength (UTS), time of failure (TF), reduction of area (RA), and the crack
type (CT1 with four distinct values or CT2 with two aggregated values “yes” and “no-crack”).
Preliminary data analysis suggested that the data, consisting of 93 instances, is sparse, noisy, and

its quality is rather poor.
Neural Networks Models

We selected multilayer perceptron (MLP) and a self-organizing map (SOM) for creating input-
output mappings and for locating possible outliers in the data. We used the implementations in

the MATLAB Neural Network Toolbox (Demuth and Beale, 1994). From these two basic models,

five model combinations were synthesized and summarized in Table 1.

Model 1: This is the basic model where MLP creates one mapping between the input and

output parameters.

e Model 2: This modeling is based on the assumption that classifying the data points into
similarity regions will improve predictability. First, SOM forms clusters considering all the
parameters. Second, a model is built to recognize these clusters given input data only. Third,

a model is built to map the input parameters and the class onto the output parameters.

e Model 3: This approach tries to subdivide the prediction task into two steps. First, the CT1
is predicted and second, CT1 and the other input parameters determine the other output

parameters.

e Model 4: Same as model 1 except that whitening (Bishop, 1995) is performed on the data
before training. Whitening is a linear transformation with correlations of attributes that is

done using eigenvectors calculated from the data.
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e Model 5: Same as model 1 except that CT1 is replaced by CT2.

Put Table 1 absut here

Selectisn sf Neural Netwerks Mwedel Parameters

The topology and training parameters (number of epochs, and learning rate (Ir)) of the different
models are given Table 1. The topology specifies the number of input units, units in two hidden
layers, and number of output units. SSE was set to 0.005, but was never reached in our experiments;
rather, the training cut-off was determined by the number of epochs. There was no optimization
of the parameters. Rather, we selected parameters that gave reasonable results with reasonable

execution time to allow us to execute the study.
Evaluating and Interpreting Results

Due to the small data size we used leave-one-out (LOO) to determine the accuracy of the NN
models (Reich, 1997; Reich and Barai, 1998a). Two cases were analyzed: the first case used the raw
data and the second case used cleaned data. The data cleaning was carried out manually considering

the following criteria:

e Focusing on the parameter RA and removing inconsistent or repetitive examples from the

data set.

e Performing resubstitution and LOO tests on the raw data. Identifying patterns that gave

high errors for the output parameters and removing them from the data.

In the context of RA, 14 patterns were removed from original data set.

Put Table 2 absut here

Put Table 3 absut here

The results of the LOO tests in terms of SSE for each model and the ensemble results for the
two cases are shown in Tables 2 and 3. In the case of raw data (Table 2), the ensemble improved

the predictive accuracy of all four parameters by a significant amount, in particular the accuracy
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of the two difficult to predict parameters: CL and RA. In the case of cleaned data (Table 3), we
expected less improvement. Indeed, this was the case and for one parameter (TI"), the ensemble

performed worse than the best model.

We did not perform any statistical test to assess the significance of the results we obtained.
Such tests would be extremely time consuming. However, in order to study the sensitivity of the
ensemble to model’s availability, we calculated the ensemble accuracy for each combination of the
six models. The maximum and minimum errors, with the model combinations that generated
them, are shown at the end of Tables 2 and 3. The results show significant variations. Two of
the combinations in Table 3 (for parameters UTS and Time to failure) lead to ensembles that are
worse than the best model. Consequently, ensembles are not guaranteed to improve results upon
the best model. It becomes critical to determine a systematic method for generating diverse, good

quality ensembles.

4.2 Principled method: The SG(k-NN) ensemble

The principled method involves using stacked generalization (SG) in an innovative manner. SG is
a method for improving the accuracy of one model or combining several models into an ensemble
(Wolpert, 1992). To improve one model, SG is used in the following manner (see Figure 2). One
model may represent a function from x to y in the original data space, y = f(x) The errors
between the data and the model prediction are used as input to a second algorithm in the error
space to create a model between an augmented input x’ and the errore =y —y°, &€ = f’(x’), where
y is the target output from the dataset and y? is the output of the first model. The augmented
input is the original input x and the description of the instance closest (nearest neighbor) to the
new input in the training set. The second model could be used to predict the error that the first
model would have when predicting the output of a new input. Together, both models can yield
better estimation that is calculated by y 4+ é. To be safe, the contribution of the second model

could be halved to yield (Wolpert, 1992):
+05 8 (4)
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Put Figure 2 about here

Figure 2: Error prediction with stacked generalization

The process of applying SG to a model extracted from a data set is quite involved. Figure 3
shows the data arrangement for SG and Figure 4 provides the algorithm. The figure shows one
iteration of testing SG on T after building it from D. If D is composed of k — 1 folds of a CV test

and T is the last fold, the procedure can iterate k times to yield a complete k-fold CV test.

Put Figure 3 about here

Figure 3: Stacked generalization data management

Put Figure 4 about here

Figure 4: The stacked generalization algorithm

The original SG uses one nearest neighbor to augment the input space. Instead of using one
nearest neighbor, we employ k-nearest neighbors. We anticipate improved performance similar to
the improved performance when using £-NN regression instead of 1-NN regression in statistics. Thus
by varying k we can generate different models that are denoted by SG(k-NN), £ = 1,...,n. For
each problem and a database, there is an optimal value for & that will yield the best performance.
k also depends on the level of noise (Lawrence et al, 1996). We experimented with n = 6. This

exercise yields good quality and evidently, quite diverse models.

With the same approach we could have used SG to combine models instead of improve one. The

same scheme would then become an ensemble of ensembles.
Case Study Problem Definition

This study deals with predicting the behavior of marine propeller given certain operating con-
ditions and design parameters. The data were created in open sea trials (Denny et al, 1989). The
data include 301 instances and cover the following dimensionless parameters: thrust coefficient

(KT), torque coefficient (Kgq), efficiency (n), advance coefficient (.J), pitch diameter ratio (P/D),
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expanded area ratio (FAR), number of blades (Z), and cavitation number (¢). The task is to build
a model that maps the input data described by the propeller geometry and operating conditions
(i.e., Z, FAR, P/D, J, etc.) to the output which is the performance of the propeller (i.e., K,

Kg, and n).
Neural Networks Models

An MLP was selected due to its proven ability to perform non-linear regression; the apparent
smoothness of the function being modeled; and the availability of seemingly sufficient data. We
chose to use the implementation (with improved backpropagation) of MATLAB Neural Networks

Toolbox (Demuth and Beale, 1994).
Selection of Neural Networks Model Parameters

Three NN were used in this study as shown in Figure 4: ATM, LTM, and EPM. Their topology
and parameters were:

1. ATM: 5-30-30-3, SSE=0.5, Ir=0.02; SSE was the governing stopping training criterion.

2. LTM: 5-30-30-3, SSE=0.5, Ir=0.02; SSE was the governing stopping training criterion.

3. EPM: 5-30-30-3, SSE=0.05, epochs 50,000; number of epochs was the governing stopping

training criterion.

As before, there was no optimization of parameters involved. Again, we selected parameters that

gave reasonable results with reasonable execution time to allow us to perform the study.

The set of models we obtained was then used to create an ensemble by assigning equal weights

to the different SG(£-NN) models.
Evaluating and Interpreting Results

A basic 10-fold CV test was performed whose data subdivisions were used in all other tests.
SG(k-NN), k =1,---,6, were created and their results calculated according to Equation 4. Further,
the ensemble approach was used on the SG(k-NN) results according to 3. The results of these
exercises are tabulated in Table 4. The use of the SG(k-NN) algorithm with different k& values

improved the basic SG and was better than the results of the particular CV test whose data
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subdivision was used in all the tests (shown as the first entry in the table). Nevertheless, these
improvements are rather small. In contrast, the ensemble results show significant improvement

above each of the models alone and above the original CV test.

The ensemble of six SG(k-NN) models gave results better than any other sequence with lower
k. However, different combinations of different models gave better (or worse) results for the differ-
ent parameters. The maximal and minimal accuracies and the models that participated in these

ensembles are given at the end of Table 4.

Interestingly, the worst results are associated with an ensemble of the first two models. This
could be explained by the high correlation that exist between them. In contrast, the best results
involve ensembles composed of either the 4th and 5th SG models or the 5th and 6th models.
Instead of the optimal value of k& that we find in £-NN, there is a different £ value that optimizes

the ensemble accuracy. We intend to explore whether this observation applies to other situations.
Note on statistical tests.

As noted earlier, no statistical tests were performed. Conducting such tests with SG is extremely
time consuming. For example, the computational cost of obtaining the values in Table 4 could be
decomposed as follows (see Figures 3 and 4). Testing the accuracy of one SG is done with £-fold
CV. In each of the k iterations, an SG is developed from k — 1 subsets of the total k& (the set D in
Figure 3). This development is done with CV that is executed in an inner loop. Consequently, in
the process of testing one SG, k% models are trained from n - ((k — 1)/k)? instances, and 2k models
are trained with n - (k —1)/k instances, where n is the size of the data. For six models with & = 10
and n = 301, these numbers are 720 training sessions with a database of about 250 instances. Any
statistical test would involve at least 10 executions of a similar procedure—a very costly endeavor.
Instead of statistical tests, we provide a different measure of the quality of these results: Elsewhere
(Reich and Barai, 1998b), we conducted an analysis of the measurement error in the collection of
data for this problem and found that our ensemble results come close to being optimal considering

these errors. Additional confidence in this technique will emerge from future applications.

Put Table 4 about here

15



Barai and Reich (1998) Ensemble Modeling/Al EDAM

5 Conclusions

Modeling data is a hard problem that often requires a long iterative modeling process where different
choices are explored and evaluated. Most often a model would include useful information even if it
is inferior to all other models. Even opportunistic combination of models generated in the course
of iterative modeling could be useful. We demonstrated this by combining five models created in

the course of modeling material corrosion data.

Engineering data, particularly those generated in experimental setting are often noisy, sparse,
and of mediocre quality from the perspective of NN modeling. Fortunately, the usefulness of using
ensembles increases when the data quality is poor, since the ensemble averaging reduces the variance
contribution to model error. Ensembles can also succeed if data quality is good and the basic models
are selected and combined carefully. Nevertheless, there are also chances that the combination of

models will result in models less accurate than the best model available.

All these phenomena were demonstrated in the exercise of modeling material corrosion; they
suggest that additional work is needed on the generation and combination of good, diverse models
and on the influence of the general goal of modeling—obtaining accurate ensemble—on the training

of the basic models.

We presented a novel heuristic approach called the SG(k-NN) ensemble to the systematic gen-
eration of good quality and diverse ensembles. The approach was tested on good quality data and
proved useful in improving the best single basic model we generated. Even the worst combination
performed better that any single model. This exercise demonstrates that careful generation of

ensembles can improve on good-quality models created from good-quality data.

In spite of these results, no general method will work always. Therefore, we can only state that
a particular method for creating an ensemble can be better than the best single model and continue
to work on identifying the generation and combination methods that can best solve different classes

of data modeling problems.
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Figure Captions

1. Model selection versus combination
2. Error prediction with stacked generalization
3. Stacked generalization data management

4. The stacked generalization algorithm

Table Captions

1. A summary of modeling approaches
2. NN performance study of material corrosion-Raw data
3. NN performance study of material corrosion-Cleaned data for RA

4. Error rates of SG(k-NN) and their ensemble
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Modeling Problem
Goal: obtain a predictor with best performance

Selection ?

Combination ?

Y

y

1. Generate good quality models

using the bias-variance tr adeoff
2. Select best model based on some
criteria/ statistical test

1. Generate complimentary diverse model
set using the quality-diver sity tradeoff

2. Select best combination approach
based on somecriteria/ statistical test

v

‘ Deploy Solution I

Figure 1
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Training data, D

_ N Error Final
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Figure 3
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Training

1 Create the prediction model from all training data D (ATM)
ATM: 2P — yP
2 Repeat on all subdivisions of D to L and F (LU E = D)
LTM: zF — b e; = (yF) — (yF)°, (yF) is the target value, (y7)° = LTM (2F)
is the output value.
This repetition creates the complete set of eiD.
3 Create the error prediction model EPM

2P

k3

NN(zP)

EPM: — eP, NN(2P) is the nearest neighbor of z; in D

Testing

4 Test on all items in T
EPM (2}, NN(zT)) = ¢;
ATM («]) = (y])°

— (., T . — .
Ysa — (yj )O T €, €sg = €ATM — €;

Figure 4
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Table 1: A summary of modeling approaches

Model Step |Input Parameters Output Parameters [Modeller | Topology | Epochs| Ir
1 1 | ST1,ST2,T,V CL,UTS, TF,RA,CT1 | MLP 4-18-18-6 | 25,000 | 0.02
2 1 | ST1,ST2,T,V Classification som 2,000 | 0.1

2 | ST1,ST2, T,V Class MLP 4-18-18-1 | 10,000 | 0.02
3 | ST1,ST2,T,V,Class CL,UTS, TF,RA,CT1 | MLP 5-18-18-6 | 25,000 | 0.02
3 1 | ST1,ST2, T,V CT1 MLP 4-18-18-2 | 25,000 | 0.02
2 | ST1,ST2,T,V,CT1| CL,UTS TF,RA MLP 6-18-18-4 | 25,000 | 0.02
4 1 | ST1,ST2,T,V CL,UTS,TF,RA,CT1 | MLP 4-18-18-6 | 25,000 | 0.02
5 1 | ST1,ST2,T,V CL,UTS, TF,RA,CT2 | MLP 4-18-18-5 | 25,000 | 0.02

© SOM was trained for 8 classes, 6 points in each class, and a standard deviation of 0.05
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Table 2: NN Performance Study of Material Corrosion- Raw Data

Error of Individual Networks

Parameters

NN Model | Crack UTS Time of | Reduction

Length failure of area

Model 1 0.4236 | 0.1460 | 0.2361 4.0897

Model 2 0.5963 | 0.2343 0.1643 5.9212

Model 3 0.4610 | 0.2335 0.2335 4.5191

Model 4 | 0.3321 | 0.1634 | 0.1146 3.9106

Model 5 0.4524 | 0.1481 0.2775 3.3689

Ensemble Error

o

0.4289 | 0.1861 0.2167 4.2812

=

0.2082 | 0.0608 0.1349 1.6582

0.2496 | 0.1295 | 0.0865 2.7733

min(E) 0.2305 | 0.1259 | 0.0856 2.7456

Models | 1,3,4 | 1,4,5 | 1,2,3,4| 1,2,4,5

max(E) 0.3968 | 0.1646 | 0.1627 3.8604

Models 2,3 2,3 3,5 2,3
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Table 3: NN Performance Study of Material Corrosion- Cleaned Data for RA

Error of Individual Networks

Parameters
NN Model Crack UTS | Time of | Reduction
Length failure of area
Model 1 0.2529 0.1204 | 0.0427 1.2165
Model 2 0.8039 0.2237 | 0.1269 2.8658
Model 3 0.2458 0.1603 | 0.0804 1.9874
Model 4 0.1934 | 0.2578 | 0.0746 1.7532
Model 5 0.2107 | 0.1888 | 0.0965 1.2779
Ensemble Error
E 0.3189 0.1775 | 0.0865 1.8121
A 0.1691 0.0603 | 0.0388 0.9860
0.1659 | 0.1255 | 0.0528 0.8612
min(E) 0.1317 | 0.1149 | 0.0476 0.8612
Models 1,3,4,5 1,3 1,4 1,2,3,4,5
max(E) 0.3498 | 0.1867 | 0.0808 1.4394
Models 2,3 2,4 2,5 2,4
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Table 4: Error rates of SG(k-NN) and their ensemble

Error of Individual Networks

Parameters

Kr I(Q n

10-fold CV — 8.09 4.47 4.20

No. of neighbors |

1 (original SG) 7.41 4.48 4.30

2 7.03 4.48 4.12
3 7.21 4.57 4.16
4 7.27 4.59 4.10
5 7.33 4.45 4.19
6 7.45 4.56 4.13

Ensemble Error

E 7.28 4.52 4.17
A 1.45 1.03 0.73
5.83 | 3.50 | 3.43
min (E) 5.0975 | 2.9443 | 2.9916
Models 4,5 4,5 5, 6
max(E) 6.0197 | 3.5623 | 3.5881
Models 1,2 1,2 1,2
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