egie

Ecobweb:

Preliminary User’s Manual

Software & Documentation

Copyright (©)1992, 1993

Yoram Reich

Present Address:

Department of Solid Mechanics Materials and Structures
Faculty of Engineering

Tel Aviv University

Ramat Aviv 69978

Israel

email: yoram@eng.tau.ac.il

Department of Civil Engineering http://or.eng.tau.ac.il:7777/
Carnegie Institute of Technology

Carnegie Mellon University Original report date: June 1, 1991
Pittsburgh, Pennsylvania 15213-3890

(412) 268-2940

Contents iii
Contents
1 Imtroduction 1
2 About ECOBWEB 2
2.1 Assumptions e 2
2.2 ECOBWEB’s learning algorithm oL o 3
2.3 ECOBWEB’s synthesis process 4
2.4 performance L e 7
3 Program structure oL 8
3.1 Files . . o o e
3.2 Terminology 8
4 Getting startedo 8
4.1 Organizing your directory e 8
4.2 Global parameters 9
4.3 Preparing your data 9
4.3.1 Defining the domain L L 9
4.3.2 Describe yourdata 10
4.3.3 Choose your environment and functionso 10
4.4 Running ECOBWEB e 10
5 Basic functions 10
5.1 Learning 10
5.2 Prediction 11
5.3 IO 11
5.3.1 Imput 11
5.3.2 Output 11
5.3.3 Figures 11
5.4 Experiments 11
5.4.1 Background e 11
5.4.2 Coverage e 11
5.4.3 Performance 12
6 Advanced functions 12
7 Auxiliary functions oL L 12

List of Figures 1

8 Samplefiles L 12

A The domain of chairs 14

List of Figures

1 A classification hierarchy of the chair domain generated by EcoBwWEB. The property names

are obvious abbreviations of those appearing in Tables 1 and 2 of Appendix A)
2 Synthesis methods
3 Chairs 14

List of Tables

1 scaling statistics of candidateso
2 Parameters most commonly used oL 9
3 Parameters that should be added
4 Functional properties of chairs 14
5 Observable properties of chairs 15

1 Introduction

The following lines warn you about the status of the program.
¢ EcoBWEB was developed as a research project. While it was tested on many domains, its stage may
be described as being a prototype program.

¢ EcoBwEB is not fully documented. This manual gives a partial account of the main functions only,
but those that will get you most of the functionality.

e No provision for extensive checking of input or selection of parameters is coded.
e (there are probably inconsistencies in defining functions (read-example-set, read-tree))

Since ECOBWEB is still under development, I will appreciate getting bug reports, suggestion for useful
features, and comments. Please send them to yoramcmu.edu

The following Copyright notice appears in the all the program files. Do not remove it:

EcoBWEB: Users Manual 2

HHH Ecobweb 0.99 released 11/20/92 contact: yoram@cmu.edu

HEHH by Yoram Reich

HHH Engineering Design Research Center, Carnegie Mellon University,
HHH 5000 Forbes Ave., Pittsburgh, PA 15213, USA

;53 Copyright (C) 1992 Yoram Reich

HHN All rights reserved. This software comes with N0 WARRANTY of any kind.
HH This software may not be distributed to any other party without

HEHH explicit permission from Yoram Reich. This software is distributed

HHH for research purposes only.

2 About ECOBWEB

ECOBWEB is a system that learns and uses knowledge for synthesis (Reich and Fenves, 1992). It is the
core part of BRIDGER, a system developed to explore the utility of using machine learning techniques for
assisting in the design of cable-stayed btidges (Reich, 1991a). ECOBWEB is re-implementation with extensions
of the concept formation learning program CoBWEB (Fisher, 1987) to synthesis tasks. Therefore, many
properties of ECOBWEB discussed here are inherited from its predecessor. Since the purpose of this paper
is not the evaluation of ECOBWEB, we do not emphasize the distinctions between the two learning systems.
Such evaluations are described elsewhere (Reich, 1991a; Reich and Fenves, 1991; Reich and Fenves, 1992).
Rather, this section reviews the assumptions underlying ECOBWEB and illustrates its operation using the
chair domain which is described in Appendix A.

2.1 Assumptions

EcoBWEB makes the following assumptions about design that are believed to be appropriate for the prelim-
inary design of a large class of design problems.

AssuMPTION 1 (Artifact representation): Artifacts and their specifications are described by (finite)
lists of property-value pairs.

This assumption restricts the scope of designs to those with fixed topologies. Therefore, the design of artifacts
that are described via graphs, such as layouts, cannot be supported under this assumption. If the restriction
on the finite number of properties is removed, the representation becomes general, but of course, impossible
to implement computationally.

AssuMPTION 2 (Structure of design knowledge): Design knowledge is represented in a hierarchical
classification tree.

This assumption does not impose any restrictions on the potential application. The crucial issue is how the
knowledge structure is being used.

AssuMPTION 3 (Quality of design knowledge): The quality of design knowledge is recursively
determined by a syntactic function called category utility.

To elaborate the assumption, ECOBWEB evaluates a classification of a set of designs into mutually-exclusive
classes C1,Cy, ..., Cy by a statistical function called category utility (CU):
U - Yok=1 P(Cr) 32 325 P(Ai = Vig[Cr)® — 32,575 P(Ai = Vig)?)

n

EcoBWEB: Users Manual 3

where C}, is a class, A; = Vj; is a property-value pair, P(z) is the probability of z, and n is the number of
classes. The first term in the numerator measures the expected number of property-value pairs that can be
guessed correctly by using the classification. The second term measures the same quantity without using the
classes. Thus, the category utility measures the expected increase of property-value pairs that can be guessed
above the guess based on frequency alone. The measurement is normalized with respect to the number of
classes. The higher is the value of CU, the better the quality of the knowledge is.

The knowledge quality assumption approximates the more desired quality measure stating that a classifi-
cation is ‘good’ if the description of a design can be guessed with high accuracy, given that it belongs to a
specific class, or even the better measure, that a classification is ‘good’ if it results in good design perfor-
mance. Although the quality assumption compromises quality, it supports the use of an efficient algorithm
for building the knowledge®.

AssuMPTION 4 (Design process): Design is a direct mapping from the specification to the artifact
description.

Defining design as a mapping is very general unless the nature of the mapping is restricted to be direct as
it is in the above assumption. This assumption almost excludes the use of explicit knowledge in design. On
the other hand, information can be compiled into implicit knowledge embedded in the mapping.

AssuMPTION 5 (Nature of design knowledge): The structure of design knowledge is static. It can
only be altered incrementally if new design knowledge warrants it.

This assumption states that knowledge is believed to be correct, unless additional information becomes
available. The nature of the additional information is restricted to the description of new designs and to
procedures that evaluate the knowledge quality. Another consequence of this assumptions is that knowledge
is built incrementally and continuously since it will always be incomplete.

Assumption 5 determines that a system that supports design must be able to learn and modify its content
incrementally. Assumption 2 establish the structure of the knowledge that needs to be generated and
Assumption 3 determines how this knowledge should be evaluated. Assumption 1 restricts the scope of
artifact discussed, thereby allowing available learning techniques to be used for the knowledge generation.
Of course, all these assumptions lead to the selection of CoBWEB (Fisher, 1987) as a potential tool. Since
COBWEB has several limitations in the context of design (Reich, 1991a; Reich and Fenves, 1991), a new
system was developed, called ECOBWEB, that will be able to support all the assumptions in design domains.

The next two subsections describe the realization of these assumptions in ECOBWEB learning and synthesis
processes.

2.2 EcOBWEB’s learning algorithm

EcoBwWEB learns from a sequence of design examples. Examples need not be classified as feasible, optimal,
or by any other classification scheme. However, any a prior: classification can be assigned to an example and
treated as any other property. When a new design is introduced, ECOBWEB tries to accommodate it into
the existing classification hierarchy starting at the root. The system performs one of the following operators
(see (Fisher, 1987) for a detailed description of these operators):

(1) expanding the root, if it does not have any sub-classes, by creating a new class and attaching the
root and the new design as its sub-classes;
(2) adding the new design as a new sub-class of the root;

1In this paper, we are using the terms design knowledge and its quality rather loosely; elsewhere, we try to address these
issues in more detail while pointing at some of the difficulties in being precise about them (Reich, 1995).

EcoBWEB: Users Manual 4

(3) adding the new design to one of the sub-classes of the root;
(4) merging the two best sub-classes and putting the new design into the merged sub-class; or
(5) splitting the best sub-class and again considering all the alternatives.

If the design has been assimilated into an existing sub-class, the process recurses with this class as the top
of a new hierarchy. ECOBWEB uses the category utility function (CU) to evaluate the results of the operator
applications and selects the operator that results in the highest CU score.

Figure 1 shows the hierarchy generated from the eight chairs (see Part I of the study (Reich, 1991b) for a
detail description) by EcCoBWEB. The classes are described with all their properties. The properties that
are shown in bold font are the characteristic properties. Intuitively, characteristic property values of a class
are those property values that are very common in the class and rarely appear in the other classes of the
same level. Translating this intuition into probability terminology, characteristics are property values that
satisfy P(A; = Vj;|Cy) > threshold and P(Cy|A; = Vi;) > threshold, where threshold is a pre-determined
fixed value that potentially, can be learned for each domain. The figure also shows the name of each class
and the value of P(A; = V;;|C}), denoted by P, for each property value of an abstract concept.

2.3 ECOBWEB’s synthesis process

EcoBWEB has several synthesis methods which can be described along two dimensions: the refinement
dimension which can be eztensional or intentional; and the generation dimension which can be case-based
or prototype-based. Figure 2 illustrates these dimensions. In the extensional approach, refinement classifies
a new specification with a new subclass starting from the top class (class 1 in Figure 2) until the process
terminates at class 3. In the intentional approach, while classifying the new specification, characteristic
property-values of the classes traversed (classes 1, 2, and 3 in Figure 2) are assigned to the new design. In
the generation stage, the case-based approach views a class as representing the extension of all its leaves.
Therefore, leaves 4, 5, and 6 are selected as candidates in conjunction with the extensional refinement
approach, or are used to complete the missing properties in conjunction with the intentional refinement
approach. The prototype-based generation approach takes the current class (class 3 in the example) and
uses its property-value pairs to create candidate designs in conjunction with the extensional refinement
approach, or to complete several descriptions in conjunction with the intentional refinement approach.

Three design scenarios from the chair domain illustrate the synthesis techniques. The design scenarios assume
that the current state of knowledge is as appears in Figure 1.

ExamMPLE 1: The first design scenario deals with designing a chair that is movable, contemporary
and stably support back. Even though, the set of examples that satisfy this specification is empty,
EcoBWEB still proceeds to synthesize a candidate. In the case-based/extensional method, ECOBWEB
starts by selecting G5 for further refinement. It is interesting to note that the selection between classes
GbH and G3J is almost arbitrary since both are almost equally good for the first refinement step. The final
candidate is a random choice between chairs F' and G, which both satisfy two of the three specification
properties. In the case-based/intentional method, the characteristic property values of G2 is used to refine
the specification (revolve, seat, support back) and the design (light-weight, not hanging, no stopper).
Again, G5 is selected for further refining the design and the final result is the addition of the properties
of F' to the current partial design description. The two prototype approaches yield the same behavior
since the process does not end at an intermediate class; therefore there is no “true” prototype that can
generate several alternatives.

ExAMPLE 2: The second design scenario deals with designing a chair that revolves and is movable. In
the case-based/extensional method, ECOBWEB stops at class G2 since both the specification properties
are matches by characteristic values. Therefore, all the eight chairs are candidate designs. In the case-
based/intentional method, the characteristic property values of G2 are used to refine the specification

EcoBWEB: Users Manual

(€]
Prop Val P
seat + 1.0
sup back + 1.0
revol ve + 0.875
novabl e + 0.75
s back sup + 0.5
ordi nary - 0.75
cont enp - 0.625
has seat + 0.75
h back sup + 0.625
has | egs - 0.625
has wheels - 0.625
has vr dof + 0.5
light w + 0.875
hangi ng - 0.875
h stopper - 0.875
I I
G3 4 €9
Prop Val P Prop Val P Prop Val P
seat + 1.0 seat + 1.0 seat + 1.0
sup back + 1.0 sup back + 1.0 sup back + 1.0
revol ve + 1.0 revol ve + 0.667 revol ve + 1.0
novabl e - 0.667 novabl e + 1.0 novabl e + 1.0
s back sup + 0.667 s back sup - 1.0 s back sup + 1.0
ordi nary - 1.0 ordi nary - 0.667 ordi nary - 0.5
contenp + 1.0 cont enp - 1.0 cont enp - 1.0
has seat + 1.0 has seat - 0.667 has seat + 1.0
h back sup + 1.0 h back sup - 1.0 h back sup + 1.0
has | egs - 0.667 has | egs - 1.0 has | egs + 1.0
has wheels - 1.0 has wheels - 0.667 has wheels + 1.0
has vr dof + 1.0 has vr dof - 1.0 has vr dof - 0.5
light w + 0.667 light w + 1.0 light w + 1.0
hangi ng - 0.667 hangi ng - 1.0 hangi ng - 1.0
h stopper - 1.0 h stopper - 1.0 h stopper + 0.5
l I |_|_I
| I | | |
E3=C E4=D E2=B El1=A & E7=G E6=F
Prop Val Prop Val Pr op Val Prop Val Prop val P Prop Val Pr op Val
seat +| | seat + seat + seat + seat + 1.0 seat +] |seat +
sup back +| |sup back + sup back + sup back + sup back + 1.0 sup back +] |sup back +
revol ve +| | revol ve + revol ve + revol ve - revol ve + 1.0 revol ve +] |revol ve +
novabl e - novabl e + novabl e - novabl e + novabl e + 1.0 novabl e +] | novabl e +
s back sup +| |s back sup - s back sup + s back sup - s back sup - 1.0 s back sup +| |s back sup +
ordinary -| |ordinary - ordinary - ordinary + ordinary - 1.0 ordinary -] Jordinary +
cont enp +| | contenp + cont enp + cont enp - cont enp - 1.0 cont enp - cont enp -
has seat +| | has seat + has seat + has seat + has seat - 1.0 has seat +| | has seat +
h back sup +] | h back sup + h back sup + h back sup - h back sup - 1.0 h back sup +| |h back sup +
has legs +| |has legs - has legs - has legs - has legs - 1.0 has legs +| |has legs +
has wheels -| | has wheels - has wheel s - has wheel s - has wheels - 0.5 has wheels +| |has wheels +
has vr dof +| |has vr dof + has vr dof + has vr dof - has vr dof - 1.0 has vr dof -| |has vr dof +
light w - light w + light w + I'ight w + light w + 1.0 I'ight w +] |light w +
hangi ng -] | hangi ng - hangi ng + hangi ng - hangi ng - 1.0 hangi ng - | | hangi ng -
h stopper - h stopper - h stopper - h stopper - h stopper - 1.0 h stopper +| |h stopper -
E8=H E5=E
Prop Val Prop Val
seat + seat +
sup back + sup back +
revol ve + revol ve +
novabl e + novabl e +
s back sup - s back sup -
ordi nary - ordi nary -
cont enp - cont enp -
has seat - has seat -
h back sup - h back sup -
has | egs - has | egs -
has wheel s - has wheels +
has vr dof - has vr dof -
light w + light w +
hangi ng - hangi ng -
h stopper - h stopper -

Figure 1: A classification hierarchy of the chair domain generated by ECOBWEB. The property names are
obvious abbreviations of those appearing in Tables 1 and 2 of Appendix A.

egie

al

Manu

EcoOBWEB: Users

Intensional

Extensional

Tl

Tl

o ea

based

Prototype-

NN

NN

Figure 2: Synthesis methods

EcoBWEB: Users Manual 7

(ordinary, seat, support back) and the design (has seat, light-weight, not hanging, no stopper). The eight
chairs that are again candidates are only used to complete the partial description accumulated thus far
from the characteristic values. In the prototype/extensional method, ECOBWEB generates 14 candidates
from the various com binations of property values represented in class G2. The prototype/intentional
approach yields 14 candidates from variations on property values that are not characteristics.

ExAMPLE 3: The third problem is to design a contemporary chair. The first refinement step chooses
class G3. In the case-based/extensional method, ECOBWEB selects chairs B, C, D as candidates. In
the case-based/intentional method, ECOBWEB generates 6 candidates from class G3. As in example 1,
The two prototype approaches yield the same behavior since the process does not end at an intermediate
class.

There are two observations from the three examples and other examples not described here. First, ECOBWEB
always generates alternatives that not always satisfy all the requirements and it generates alternatives that
did not exist in the original set of chairs. Second, in deep hierarchies generated by many examples, it is
observed that the path traversed by the guidance of the category utility function can be interpreted as a
progressive matching of the specifications or even as a design derivation?. this behavior is desirable, even
though the coherence of the knowledge structure generated is not conceptualized as a criterion for the success
of the learning approach.

2.4 performance

EcoBWEB was tested in many domains (Reich, 1991a) and demonstrated performance comparable and often
better than other learning programs in classification domains. but more important, it demonstrated good
performance in design domains (Reich, 1991a). to illustrate the performance, we review some results of
ECOBWEB’s evaluation in the domain of cable-stayed bridge design (Reich, 1991a).

Table 1: scaling statistics of candidates

knowledge scaling

k1 3.07
ko 2.15
ks 2.09
ka 1.32

table 1 illustrates the performance of ECOBWEB by providing the values of one performance measure gener-
ated from statistics of 48 test problems. the measure, called scaling, calculates how close was the span of the
synthesized bridge to the required span. the measure is provided for four knowledge hierarchies, k1, k2, k3,
and k4, generated by learning. hierarchy ki was generated from the original 96 bridge examples. hierarchy
ko was generated from the 96 examples after their analysis and redesign; therefore it contains higher quality
examples. hierarchies k3 and k4 were generated from 144 and 192 good quality examples, respectively. since
k1 was built from lower-quality examples it does not participate in the statistical analyses performed. two
models were hypothesized: (1) scaling linearly depends on the number of examples in a hierarchy; and (2)
the logarithm of scaling depends on the logarithm of the number of examples. the latter reflect the power
low of practice (Newell and Rosenbloom, 1981).

2it is important to acknowledge that the sequence of design description property-value assignments does not approximate in
any way the explicit intent and domain knowledge on the order in which design derivations are to proceed. such concerns may
be supported when domain knowledge is incorporated in the learning or synthesis processes.

EcoBWEB: Users Manual 8

a general linear model (glm) procedure with a MANOVA analysis was performed to assess the differences
between the scaling values observed according to the two models. in both models, the scaling values satisfy:
ko, ks >0.01 ka; where the >0 indicates that ko and ks are greater than ks with statistical significance
at the p < 0.01 level and that the difference between ky and ks was not statistically significant. note
that the second model was better than the first, although the statistical significance of this statement was
not assessed. therefore, the more knowledge ECOBWEB has, the more relevant are the retrieved candidates.
the improvement is not a smooth function, but occurs in steps. this performance evaluation shows that
ECOBWEB captures knowledge and gradually uses it more effectively in design.

3 Program structure

3.1 Files

undocumented

3.2 Terminology

ctree : classification tree

example-set : a set of examples

example : an example data structure

depth : depth of the node measured from the root
property-list : a list of properties

step : number of examples learned before the next prediction
cardinality : number of examples in the set

learning-set : examples used to create the classification tree

partial-examples : a set of examples to be predicted, assumed to be missing the predicted property

4 Getting started

4.1 Organizing your directory

The distribution file is an encoded compressed “tape.” To retrieve the files:

Remove mail header (until begin 644) and store in a file, say "foo”.
uudecode foo

uncompress ecobweb.tar.Z

= N =

tar xvf ecobweb.tar

Then look for ”’README?” file

Ot

The following files are important:

definitions.l contains definitions of the domain

EcoBWEB: Users Manual 9

Table 2: Parameters most commonly used

name default for more info
cobweb-type regular 5.1
random-state machine generated
design-description nil 4.3
property-list nil 4.3
*specifications™ nil 4.3
misc-descriptors nil 4.3
continuous-classes 8

prediction-method leaf 5.2
property-types global hash table
expected-interval global hash table

Pov-cl 0.75

P.v-cl2 0.85

P.cl-v 0.75

prediction-utility nil

continuous-ranges static, adaptive, or dynamic

Table 3: Parameters that should be added

name default for more info
print-utility nil
print-tree nil
print-operators nil

test.l contains the parameters and specific functions to be performed
run.l load and compile (if necessary) the program

examples contains the examples in the required format

4.2 Global parameters

These parameters control various aspects of ECOBWEB. Many of them were used in the development and
are not required too much attention. it is important to have them all, otherwise lisp will complain.

Use the existing files as templates and modify their values.

The following usually stay fixed:

4.3 Preparing your data

Several files need to be prepared before running ECOBWEB

4.3.1 Defining the domain

All properties are set to be nominal by default. They should be declared if they are different (continuous,
hierarchical (not supported yet)).

EcoBWEB: Users Manual 10

For continuous properties, approximate expected range of each property should be given; ECOBWEB is not
too sensitive to the choices of ranges.

4.3.2 Describe your data

Prepare a data file containing your examples.

4.3.3 Choose your environment and functions

Set global parameters.

Choose the desired function to run.

4.4 Running ECOBWEB

EcoBwWEB should work in (almost) any common-lisp environment. Experience has shown that Allegro
Common-Lisp is preferable whenever possible.

Before you start lisp is is useful to increase your available memory by typing:
unlimit datasize

at your Unix propmt. Make sure you don’t affect other users of the machine. Type cl (or other such as lisp)
to start Lisp. At the lisp interpreter type the following:

(load "run.1l")
(load "test.1l")

This will load (and compile, if necessary) ECOBWEB’s files based on the particular machine and lisp and run

your specific functions (look inside make.l to see whether your platform is supported).

5 Basic functions

This section describes pre-defined functions that can be used to learn, print, and test the results. FEach
function is described in turn with the global parameters that influence its execution.
5.1 Learning
(top-cobweb example ctree)
cobweb-type

regular — This will cause the regular ECOBWEB program to run. The operators that apply are the four
original operators of COBWEB.
full — This will cause four other operators to be considered.

double This will run the original ECOBWEB with an example set that was doubled

classit This will run CLASSIT on the data. Make sure all the properties are continuous.

(top-cobweb-on-example-set example-set ctree)

EcoBWEB: Users Manual

11

5.2 Prediction

(predict-by-method partial-examples tree)

The *prediction-scheme* parameter governs the type of prediction performed.

5.3 10

5.3.1 Input

(read-example-set)

(read-ctree file)

5.3.2 Output

(prety-print-ctree ctree)
(prety-print-ctree-limited ctree depth)
(prety-print-ctree-limited-normatives ctree depth)
(print-example example)

(compact-print-example example property-list)
(print-example-set example-set)
(print-ctree-into-file ctree file)

(print-example-set-into-file example-set file)

5.3.3 Figures

5.4 Experiments

5.4.1 Background

Needs to be written! (from yoram90civil)

5.4.2 Coverage

(experiment cardinality step learning-set test-data print-depth)

(statistical-experiment step print-depth trials data-set
&rest design-property-list)

EcoBWEB: Users Manual 12

5.4.3 Performance

6

(detail-experiment cardinality step learning-set print-depth
property-list &rest design-property-list)

(detail-statistical-experiment step print-depth trials data-set
property-list &rest design-property-list)

(detail-experiment-cv-k test-set training-set
property-list &rest design-property-list)

(detail-statistical-experiment-cv-k k trials data-set
property-list &rest design-property-list)

Advanced functions

experimentation

several trees

constructive induction

artificial domains

acquisition of examples

tree correction

8

(find-nodes-violating-characteristics property-set tree)

(tree-quality-correction-properties property-set tree)

Auxiliary functions

(divide-random-k k set)

(delete-partial-examples-from-set example-set property-list)
(query-example-set example-set query)

(choose-randomly cardinality number)
(choose-randomly-from-set set number)

(clean-descriptors-from-set example-set property-list)

Sample files

definitions.l

EcoBWEB: Users Manual 13

(defparameter true t)
(defparameter *print-gensym* nil)
(defparameter *print-level* 5)
(defparameter *print-length* 30)
(defparameter *min-utility* -10)
(defparameter *start-run-time* (get-internal-run-time))
(defparameter *specifications* ’(river location erected
purpose length lanes clear-g))
(defparameter *design-description#
’(t-or-d material span rel-1 type))
(defparameter *relevant-property-list* (append #*specifications*
design-description))

(defparameter *misc-descriptors* ’(name cost no-spans))
(defvar *domain*)
; will hold the properties values instead of going to space structures
(defvar *properties-values* (make-hash-table :test #’eq))
(defvar *debug-run* nil)
(defvar *prediction-method* ’leaf)
(defvar *P.v-cl* 0.75)
(defvar *P.cl-v* 0.75)
(defvar *property-types* (make-hash-table :test #’eql))
(dolist (property *relevant-property-list*)

(setf (gethash property *property-types*) ’nominal))
(defvar *expected-interval* (make-hash-table :test #’eql))
(defvar *continuous-classes* 8)

EcoBWEB: Users Manual 14

A The domain of chairs

Figure 3 depicts eight chairs which are used to explain the concepts and ideas discussed in this study. Each
chairs in the figure is denoted with a letter. The chairs provide some functionality that is summarized in
Table 4. Each row describes a different function of a chair. The + in the table denotes that a chair provides
the corresponding function, and a — denotes its lack thereof. Additional functions that chairs may have but
that are not mentioned include comfort, access to ceiling, resistance to fire, etc. In addition to providing
functions, each chair has properties that can be observed and therefore describe the attributes or the structure
of the artifact; some of these are summarized in Table 5. Additional observable properties that chairs may
have include color, material texture, type of upholstery, dimensions, etc.

box suspended joint scandinavian office whed "bean-bag"
chair chair chair chair chair charr

Ha0 103

Figure 3: Chairs

Table 4: Functional properties of chairs

chair

function A B C D E F G H
1 seating + + + 4+ 4+ + + +
2 back support + 4+ 4+ 4+ + 4+ + +
3 revolving — + 4+ 4+ o+ o+ o+ o+
4 movable + — — 4+ 4+ + 4+ o+
5 stably support back — + + — — + + —
6 ordinary design + - - - — 4+ — —
7 contemporary design — + + + — — — —

Naturally, there are functions that are directly derived from the structure of a chair. For example, a chair
that has wheels is movable or a chair that has a vertical rotational degree of freedom (dof) is revolving. Note
that this structure-function relation may be an approximation; for example, chair C with a rotational dof
does not allow for 360° rotation. Other functions may be more complex and could no be inferred from one
observable property. To illustrate, a chair can provide back support although it does not have a back. For
instance, chair A provides back support due to its location near a wall. Its function is context dependent.
Also, chair E provides back support due to its complex structure although is does not have a physical back
support. Some functions may qualify other functions. For example, the function stable back support qualifies

EcoBWEB: Users Manual 15

Table 5: Observable properties of chairs

chair

E

structure A
has seat* +
has back support —
has legs —
has wheels —

| + + |
| + +|o

has vertical rotational dof —
has light weight +
is hanging —
has stopper —
A seat is a horizontal stiff object.

L+
|+ 4+ + 4+ 4|

|+ |+ | +++|Q
|+ 4

|+ 4+ + |

+ |+ | ++++H D
|

¥ 00 ~J O O f» W N —

the function back support. This function is quite complex to assess. Chairs B and C are stable due to static
considerations, whereas chairs D and H are not stable; chairs A, F, and G are structurally stable; and chair
E does not even have a physical support.

All the previous examples have concentrated on inferring potential functionality from artifact structure.
This is useful in analysis. We are mainly interested in synthesis which is the generation of artifact structure
that will satisfy a desired function. For example, the specification of a chair that will be movable and stably
support back leads to two potential designs F' and (G. These designs can be generated in two ways. The
first way starts with {A, D, E, I, G, H} as the movable designs and refines them with the stably support back
property. The second way starts with {B, C, F, G} as the stably support back designs and refines them with
the movable property. The most concise description of the solution is chairs that have physical back support
and wheels. Of course, this description can lead to chairs not depicted in Figure 3. The design process was
made easier by the use of the eight representative chairs as mediating between the specification and the
design description. In the absence of these chairs, the process is much more difficult.

As an another example, assume that in addition to the previous specification, it is also required that the
chair will have a contemporary design. There is no chair that satisfies these three functions. A redesign
process can be invoked by taking the current candidate designs {F, G} and retracting either the mowvable or
the stably support back specification properties and then trying the new specification. Since we are working
with extensional description of the candidate designs, there will still not be any candidate that satisfies all
the three specification properties. Nevertheless, we will have three sets of nearly good candidates: (1) stably
support back and contemporary {B,C}, (2) movable and contemporary {D}, and (3) movable and stably
support back {F,G}. If the set of designs was not confined to the eight chairs, the second group could be
made stably support back by adding a stopper. In contrast, the first group cannot be easily made movable:
B is attached to the ceiling and C' would have to receive wheels and a stopper.

References

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning,
2(7):139-172.

Newell, A. and Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the power law of practice. In
Anderson, J. R., editor, Cognitive Skills and Their Acquisition. Erlbaum Associates, Hillsdale, N.J.

Reich, Y. (1991a). Building and Improving Design Systems: A Machine Learning Approach. PhD thesis,
Department of Civil Engineering, Carnegie Mellon University, Pittsburgh, PA. (Available as Technical
Report EDRC 02-16-91).

EcoBWEB: Users Manual 16

Reich, Y. (1991b). Design theory and practice I: A critical review of General Design Theory. Technical
Report EDRC 12-45-91, Engineering Design Research Center, Carnegie Mellon University, Pittsburgh,
PA.

Reich, Y. (1995). Measuring the value of knowledge. International Journal of Human-Computer Studies,
42(1):3-30.

Reich, Y. and Fenves, S. J. (1991). The formation and use of abstract concepts in design. In Fisher, D. H. J.,
Pazzani, M. J., and Langley, P., editors, Concept Formation: Knowledge and Experience in Unsupervised
Learning, pages 323-353, Los Altos, CA. Morgan Kaufmann.

Reich, Y. and Fenves, S. J. (1992). Inductive learning of synthesis knowledge. International Journal of
Ezpert Systems: Research and Applications, 5(4):275-297.

efie

