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Abstract: The application of machine learning (ML) to solve practical problems is
complex. Only recently, due to the increased promise of ML in solving real problems
and the experienced difficulty of their use, has this issue started to attract attention.
This difficulty arises from the complexity of learning problems and the large variety of
available techniques. In order to understand this complexity and begin to overcome it, it
is important to construct a characterization of learning situations. Building on previous
work that dealt with the practical use of ML, a set of dimensions is developed, contrasted
with another recent proposal, and illustrated with a project on the development of a
decision-support system for marine propeller design. The general research opportunities
that emerge from the development of the dimensions are discussed. Leading toward
working systems, a simple model is presented for setting priorities in research and in
selecting learning tasks within large projects. Central to the development of the concepts
discussed in this paper is their use in future projects and the recording of their successes,
limitations, and failures.

1 Introduction

The ability of humans to learn is fundamental to development and survival. The fascination with
this ability has attracted many researchers in an attempt to exploit learning when building artifacts
such as computer programs. Initially, these efforts concentrated in specific large expert systems
projects (e.g., Teiresias for MYCIN (Davis, 1979), RULEGEN for Meta-Dendral (Buchanan and
Mitchell, 1978), and later, LEAP for VEXED (Mitchell et al, 1985)) and their objective was very
practical — to solve the knowledge acquisition bottleneck of building these systems. Over time
and in a bottom up fashion, two major research thrusts have emerged: (1) creating computer
programs for solving some task by learning from data instead of by programming, and (2) creating
programs that improve their performance speed. The mutual goal of the two thrusts was improved
performance: solving problems better and faster. As time passed, the emphasis of these thrusts
shifted from the practical aspects of solving problems to the theoretical issues underlying learning
mechanisms; these were often studied on simplified problems.

ML in design research begun in the opposite direction. Simple problems were formulated and
researchers tried to solve them with available machine learning (ML) techniques (Arciszewski et al,
1987; Lu and Chen, 1987; McLaughlin and Gero, 1987). One study presented a bottom-up analysis
of six such projects carried out at the EDRC, CMU at the time (Reich et al, 1991). The six projects
differed in their underlying assumptions about the scope of learning: from automated to human
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directed. The goal of the analysis was to abstract some fundamental roles of ML in design from the
particular project experiences while attending to practical needs. The analysis identified human
learning as a key to progress in engineering and design and listed four core learning processes (see
Figure 1):

(1) Machine learning. The availability of a large knowledge base and an experience base supports
using a variety of machine learning techniques for converting design experiences into design
knowledge to be used by computational tools or humans.

(2) Knowledge Acquisition. The availability of expert designers who are willing to share their
knowledge provides an opportunity to use a variety of knowledge acquisition and other tools
to transfer knowledge from the experts into knowledge bases. The knowledge once encoded
and managed is available for use by computational tools and further dissemination.

(3) Human learning (including formal teaching). Facilities for browsing, visualizing, exploring,
and analyzing large repositories of design experiences and knowledge bases support the ability
of humans to comprehend their content and assimilate valuable design knowledge. In addition,
facilities that aid interaction with the design system, e.g., devices that support exploration
of the design space via experimentation, support human learning of the particular problem.

(4) Organizational shared memory creation. Facilities that organize and manage design experi-
ences, design knowledge, and other data from multiple designers and systems into coherent
structures can support the creation of organizational or disciplinary knowledge and aid in its
dissemination (Konda et al, 1992).
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Figure 1: A system perspective of learning in design

Figure 1 shows the relationships between the learning activities in a design setting composed of
designers and design support systems. In addition to the shown arrows, designers have full control
over the workings of all the learning and design mechanisms.

This study continues and stresses the focus on the practical objective of ML: “The aim of com-
putational research with respect to learning should ... be to produce computational environments
that fit and enhance human practice.” (Reich et al, 1993, p. 165). After reviewing the roles that
ML could play in design (section 2), Section 3 refines a previously developed process of using ML
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(Reich et al, 1993; Reich, 1997) by identifying eight dimensions, henceforth denoted by RD, that
characterize ML tools for enhancing human design practice. Section 3 also contrasts these dimen-
sions with a set of dimensions recently proposed by Grecu and Brown (1996) that will be denoted
by GBD. This set is one amongst several others that appeared in the past (e.g., Persidis and Duffy,
1991; Reich et al, 1991; Waldron, 1991). Section 4 illustrates the use of the dimensions in one
project and Section 5 concludes the paper.

2 Solving practical learning problems with ML

The four learning processes discussed in the introduction define the possible interaction schemes
between a learning design system components. Each of these processes can be realized in a variety
of ways. This section analyzes two general roles assigned to ML and the steps and issues related
to applying ML tools to solve learning problems.

2.1 Functional roles of ML

In order to set the ground for understanding the roles of ML in design it is instrumental to analyze
the functionality of ML programs and the roles that ML, programs can assume abstracted from any
particular task domain. The common task of ML, has always been the generation of knowledge (or
models) from examples (in the form of decision rules, e.g., CN2 (Clark and Niblett, 1989) or trees,
e.g., C4.5 (Quinlan, 1992)) for predicting some missing values of a new example. Examples could
be the inspection data of bridges and the prediction would be whether a newly inspected bridge
needs maintenance work within the next six months. This role of ML is the performance role.

Figure 2(a) depicts the process of building models using ML techniques and subsequently using
them to make predictions in the performance role. When used for prediction, the best model
possible should be constructed and validated using appropriate statistical tests. In order to create
good performance models, large data is required. Performance models can be comprehensible,
thus allowing some debugging or verification to take place, but can also be incomprehensible thus
operating as black boxes.

Figure 2(b) presents the process of building models, and using them to better understand the
data used as input or its source. The process is the same as for the performance role except that
instead of obtaining the best prediction the user controls the learning process in order to inspect
results and gain insight about the data. For example, when attempting to understand a complex
decision procedure, one can generate traces of the procedure and its recommendations, and use
several ML programs to learn multiple simple models of the procedure (Reich et al, 1996b). This
process is sometimes called metamodeling (Blanning, 1975). The models need not be good, they
can even be poor, as long as they are comprehensible and lead to better understanding of the data.
Since quality of models from a statistical perspective is not required, this role can be employed even
with small data. This role of ML is the understanding role recently, it has branched off from ML to
form its own discipline: data mining or knowledge discovery from databases. Table 1 summarizes
the two ML roles.
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Figure 2: Performance and understanding roles of ML

Table 1: Performance versus understanding roles of learning

Learning role Performance Understanding

Who is learning Programs Humans

Input Large data Data

How is learning performed Best ML program Different ML programs
Knowledge representation  Symbolic 4+ “sub-symbolic” Symbolic

Nature of process

Structured, algorithmic

[ll-structured

2.2 Process of using ML techniques

Only recently has the study of practical use of ML been recognized as critical by the general
ML community (Kodratoff et al, 1994; Brodley and Smyth, 1996). The two ML roles are two
extreme specific instances of using ML. A more refined analysis revealed a seven-step process called
Conteztualized ML Modeling (CMLM) which is shown in Figure 3 (Reich, 1997).

There is significant variety built into the seven-step process. FEach step can be executed in
different ways. Thus, following Ashby’s law of requisite variety (Ashby, 1958), this process has the
potential to match the significant variety in learning contexts. The learning context manifests in
step 1. The remaining steps deal with how this context is addressed. In order to better understand
the nature of learning contexts a set of dimensions is developed.
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Figure 3: CMLM: A model of ML use in practice (Reich, 1997)

3 Dimensions of learning contexts: Top down analysis of learn-
ing in design

Learning contexts deal with learning tasks or activities as they are embedded in a particular engi-
neering practice and organization. In general, any task or activity can be associated with an actor,
the reasons for action, the prerequisite for action, the way the action takes place, its results, and
the resources required to carry it out. The application of these items to a learning task leads to
the following questions:

(1) Learners: Who is learning?

2) Fliniteness of knowledge: Why does the learner want to learn?

3) Timing: When does the learner learn and when are the results of learning needed?
) Activities: What is the learner doing?

5) Improvements: What is learned?
)
)
)

N

6) Prerequisites and Processes: How does the learner learn?
7) QOutcome: What are the consequences of learning?
8) Cost: How much resources are needed to carry out the learning activity?

o~ — — p— — p—
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Table 2: Summary of ML in design dimensions

Reich’s dimensions (RD) CMLM steps Grecu & Brown’s dimensions (GBD)
1 Who is learning 1 Problem analysis 6 Local  wvs. global
learning
2 Why does the learner want | 1 Problem analysis 1 Trigger for learning
to learn
3 When does the learner | 1 Problem analysis — —
learn and when are results
needed
4 What is the learner doing | 1 Problem analysis — —
5 What is learned 1 Problem analysis 3 What might be learned
6 How does the learner learn | 2-5  Collecting data, creat- | 2, 4,5 Elements support-
ing representations, se- ing learning, availabil-
lecting programs and ity of knowledge, and
parameters methods
7 What are the | 6,7 Testing and system |7 Consequences of
consequences of learning deployment learning
8 How much resources are | —  — — —
needed to carry out the
learning activity

The answers to these questions can serve as dimensions for describing the space of learning
situations. While the 7-step process concentrates on the development of solutions to learning
problems, these dimensions focus on the nature of the problems. The relation between the steps
and dimensions is shown in Table 2. From the table, new dimensions (RD) are more elaborate
than Grecu and Brown’s dimensions (GBD). The next subsections, each discusses one dimension
of RD. Where applicable, after each paragraph that raises issues related to the dimensions there
follows a paragraph that discusses the supporting ML tools or techniques for the issues raised. Each
subsection concludes with a brief discussion on the relation of the dimension and GBD.

3.1 Learners: Who is learning (in the context of design)?

An agent is referred to as a primary learner if it can extract knowledge from data and use it while
solving real problems. According to the four core learning mechanisms reviewed in the introduction
there can be two primary learners. The machine learning process corresponds to the case where ML
programs are the primary learners. ML programs have been the focal learners in design research.
The knowledge acquisition and human learning processes assume designers as the primary learners.
Less attention was given to these processes (exceptions include (Duffy and Duffy, 1996; Dong and
Agogino, 1997; Reich et al, 1991; Reich et al, 1993; Waldron, 1991)). Note that in participatory
design, designers are whomever participate in the project including customers (Reich et al, 1996a).

The organizational shared memory creation process focuses on the learning of a group of de-
signers. This process results in disciplinary knowledge in forms such as design codes and manuals,
mathematical models, and organizational memory that captures organizational culture, practices,
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or language. The complex and critical organizational aspects that often determine the fate of
projects are central to this process yet, almost no work has been done in ML in design on this
process.

When ML are the primary learners, the role of learning is performance. When a designer or
designers learn, the role of ML is understanding. Designers as primary learners may employ ML
as mechanisms of learning which would be considered the secondary learners.

Relationship to GBD: This dimension relates to item 6 in GBD: the “Local vs. Global Learning”;
however, it does not distinguishes between one or several ML programs if they use exactly the
same vocabulary or even if they do not — in real design, a major part of the problem is learning
about other participants’ perception of the problem, forming interaction schemes, and common
vocabularies. Knowledge of these aspects is as part of design knowledge as are other types of
knowledge such as mathematical models. Thus, learning to interact is not separable from learning
domain knowledge.

3.2 Finiteness of knowledge: Why does the learner learn?

There are several fundamental reasons that force whoever is engaged in technological activity to
learn. They are derived from the dynamic nature of the environment and our limited resources to
engage in learning.

(1) Ontological reason: The dynamic nature of the environment forces people to continually

adapt. In design contexts, people’s needs change, technology change, and with them, the
nature of design problems and design knowledge change.
Supporting ML tools/techniques. Learning incrementally and detecting change in an environ-
ment is important to knowing when is it time to learn. ML work on this subject includes
adapting to changing domains (Reich and Fenves, 1992; Schlimmer and Granger, 1986) and
the potential use of natural language processing (NLP) to detect terminological changes in a
domain (Reich et al, 1993; Dong and Agogino, 1997).

(2) FEpistemological reason: One cannot know all knowledge. Knowing means engaging in some
interaction with the environment - an activity that requires resources. Limited resources
prevent one from knowing all knowledge even in one discipline. Thus, in order to solve
problems even in a quasi-static environment, one is constantly learning additional knowledge
relevant to the present design.

Supporting ML tools/techniques. Knowledge acquisition (KA) and ML tools (in the under-
standing role) are capable of assimilating new knowledge. However, ML could be further used
to learn the limits of particular knowledge and to predict the resources for learning knowledge
in a domain with particular characteristics. These can support planning to address future
learning needs.

Knowledge is also subjective. Even a consensus between design participants is only appreci-
ated subjectively by group members (Reich et al, 1996a). Theories are also subjective because
our understanding of their working and applicability is subjective (Subrahmanian et al, 1993).
The problem of multiple model or multiple language reconciliation is critical for learning and
communication. Two agents will never use the same language or meaning of terms unless
they were carefully crafted by the same person and unless a very strict vocabulary use has
been enforced — a task practical only for simple problems. A proof of the complexity of this
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task are the difficulties encountered in the CYC project over the years.

Supporting ML tools/techniques. NLP can help agents construct common shared languages.
Communication also plays a critical role as demonstrated by Steels (1997). He showed how
robots with communication channels, start without a common language, and gradually built
terms and mutual understanding of objects through interaction.

(3) Behavioral reason (which is a part of the epistemological reasons): One can only perform
as fast as one can. Improved performance on tasks (including learning how to learn better)
allows for spending less resources on previous tasks and spending additional resources on
solving new problems and on learning.

Supporting ML tools/techniques. Explanation-based learning (EBL) (Mitchell et al, 1986) is
a mechanism for narrowing search including failure avoidance. EBL can be costly (Minton,
1988), thus, will benefit from learning to predict the cost of learning.

The ontological, epistemological, and behavioral reasons emphasize the central role of learning
in problem solving. In particular settings, explicit learning is exercised when it becomes apparent
that something is deficient (e.g., failure of a product). In real design, a failure may take a long time
to feed back into practice or even to be detected (e.g., Quebec Bridge) and its fix may be costly
(e.g., failure of the Tacoma Narrows Bridge and the subsequent strengthening of bridges such as
the Golden Gate Bridge). It is often hard to locate the sources of failures; they could be beyond
the scope of theoretical knowledge, domain practice, or personal expertise. It is sometimes even
unclear how to determine that a failure occurred and how to act upon it.

Supporting ML tools/techniques. When using a DSS, all activities performed with the system
could be recorded and ML could analyze them. The availability of historical records presents
opportunities to understand the sources of failures and the limitations of available design knowledge
and procedures. In addition, historical records could be analyzed to help the adaptation of the
programs to their users needs and thus, improve their usability.

Relationship to GBD: This question relates to the “trigger of learning” in GBD . Instead of listing
various specific triggers, the present dimension starts with the fundamental reasons underlying
learning and focuses on the central role of failure as a driver for design advances (Petroski, 1989).

3.3 Timing: When does the learner learn and when are the results of learning
needed?

This dimension is influenced by the previous dimension. People mostly learn pro-actively by formal
training in schools and universities. Later on, they learn when a need arises, if they have spare
time, or by consciously allocating resources. For example, people may learn while planning a new
project when they understand that it involves new technologies or the use of new design tools.

People learn unconsciously while performing design or explicitly when introspecting on last
activities or on the whole process. If recent activities led to a failure or shortcomings of the design,
then the learning experience has been expensive. It is therefore, cost effective to detect when certain
decisions are at the limit of existing expertise and learn in advance. Although pro-active learning
is most cost effective, both timings are critical for improved problem solving capabilities.

Supporting ML tools/techniques. In order to determine when to allocate resources for learning, one
could learn the applicability and reliability of knowledge. This may allow for planning pro-active
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learning activities instead of leaving them to the last minute. It is also useful to learn the cost of
learning in order to determine when is it best to learn.

Relationship to GBD: There is no corresponding dimension in GBD. However, ML. mechanisms
described in item 5 of RD and other ML techniques could be classified into traditional ML types:
(1) pro-active learners are those using concept learning (supervised and unsupervised) and (2)
reactive learners are those using explanation-based learning, knowledge compilation, case-based,
analogical learning, or other techniques. Nevertheless, this classification is a simplification because
a primary learner can learn reactively by employing a learning system that is a batch (or a pro-
active) learner.

3.4 Activities: What is the learner doing?

Learning is interwoven in design problem solving. The design context determines the learning
context (e.g., representation language, bias, background knowledge, and consequently, the com-
plexity of the learning task). Thus, it is important to know what is the activity that an agent
performs when it is learning. Maintaining the context for future reference is a critical and very
hard undertaking (Reich et al, 1993).

Design activities could be classified into traditional problem-solving methods. They can be
useful if analyzed at the right granularity. To illustrate this issue consider finite-element analysis.
Although it is analysis at the highest level, it involves synthesis tasks amongst others: the generation
of mesh and the selection of appropriate element types. More generally, if by performing a task
analysis, large tasks are decomposed into smaller tasks, one can better grasp the large tasks by
integrating the solutions to the smaller tasks (Reich, 1991).

Supporting ML tools/techniques. In ML, very syntactic characterization of data has been developed
in order to associate it with the success of classification algorithms to learn from such data. The
association was done using learning as well (Gama and Brazdil, 1995; Michie et al, 1994). Thus,
meta-learning was used to create rules for predicting which algorithm can be best for which domain
characterization. In design domains, the characterization is more complex but the benefits could
be significant if there would be a mapping between such a characterization and appropriate ML
tools. This was the goal of CMLM.

Relationship to GBD: There is no corresponding dimension in GDB.

3.5 Improvements: What is learned?

This item is closely related to the discussion in sections 3.2, 3.3, and 3.4. Insight about the
role of ML in design originates from observing the kinds of things that are learned in real design
processes.

(1) First, designers learn technical (in most cases analytical) knowledge.
Supporting ML tools/techniques. KA and ML techniques are obvious methods for learning
technical knowledge. The discovery of analytical knowledge from data presents new oppor-
tunities to speed up learning. Such discovery would be more appealing if ML tools could
explain the origin of the knowledge they generate.
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(2) Second, in the course of designing, designers learn about the particular problem they solve.
They can develop a language for discussing the problem, and can uncover implicit constraints,
interactions, or trade-offs, between the problem parameters or objectives. The knowledge
uncovered during design is contextualized in particular situations, it may be generalizable or
not.

Supporting ML tools/techniques. Many techniques can assist in this learning activity starting
with KA, ML, or NLP tools, continuing with tools for knowledge organization, and finishing
with tools for data modeling, visualization, and analysis.

(3) Third, designers assimilate experiences for use in future design problems. These experiences

include whatever designers can remember about the design processes. Such experiences and
especially their organization differentiate experts from novices (Chi et al, 1988). Designers
must always be aware that new design situations prevent the “as-is” application of previous
experiences. Designers need to learn the similarities as well as the differences between current
and previous problems and adapt old solutions to new situations.
Supporting ML tools/techniques. Tools for information or knowledge organization can be more
effective to users if they can learn to tune to their users. One example involves improving the
ability of case-based reasoning (CBR) to index cases based on their performance and users
requests.

(4) Fourth, from user feedback or from the failures of artifacts, designers learn about the viability
of certain design beliefs, judgments, decisions, or practices in certain situations. Feedback
from users (customers) about design arrives after a product is released to the market, thus,
tends to be hard to use.

Relationship to GBD: This dimension relates to item 3 in GBD: “What might be learned?” However,
item 3 focuses on aspects expressed in Al concepts that can be learned by programs. Without
specifying these aspects in detail, and independent of the way design is modeled, candidates for
learning are all aspects of these models.

3.6 Prerequisites and processes: How does the learner learn?

Humans as primary learners learn in a variety of ways as discussed before. However, in order to
be effective learners, they require certain conditions. For example, they can benefit from certain
felicity conditions (VanLehn, 1983) that make sure that newly learned knowledge extends existing
knowledge by a small margin that could be integrated well with what the learner already knows.
The same conditions can be used when designing specific ML programs or for training existing
incremental learners.

Human learning also benefits from mechanisms that organize information and knowledge. It
is easier to associate new information with organized body of knowledge. In order to analyze
information and comprehend it, search facilities as well as different modeling and visualization
facilities can be used. Humans can also benefit from collaborative learning environments (Kaye,
1991).

Supporting ML tools/techniques. When ML programs are the primary learners or if they are
used as secondary learners, the process of using them to solve learning problems follows CMLM
(Section 2.2). Most applications of ML have used supervised and unsupervised concept learning
techniques and not the more complex techniques (Langley and Simon, 1995). Even so, there still

10
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is a significant variety of ML techniques, each with a variety of parameters and alternative ways
of learning. Consequently, it is important to gradually meta-learn a refined characterization of ML
programs and a mapping between different learning tasks and ML programs.

Relationship to GBD: This dimension combines the second, fourth, and fifth dimensions of GBD
and also deals with human learning. Also, the fourth dimension corresponds to the 2nd step in
CMLM, the fifth dimension to the 4th step, and the second dimension to parts of steps 1, 2, 6.
Specific details on these steps can be found in (Reich, 1997).

3.7 Outcome: The consequences of learning

This is one of the most critical dimensions. The ultimate goal of learning is the improved per-
formance of design systems including designers and programs. A practical learning context will
determine the required improvements such as increased design speed or improved design quality.
Research projects tend to be less precise or stringent in setting their goals and often, the conse-
quences of learning are established following simple demonstrations.

One in-depth discussion on testing focused on statistical testing of models created by ML (Reich,
1997). Another important way of testing involves the solution of benchmark problems which have
to be constructed carefully to be useful. They need to be used carefully since their results do not
necessarily generalize. Another testing involves the creation of artificial design problems that model
real design problems. Since their characteristics vary at will, they provide ways to obtain detailed
understanding of the working of ML programs. If complicated systems are developed in research
they can hardly be replicated. Therefore, it is important that not only test problems are shared
but also ML programs. For example, ECOBWEB (Reich and Fenves, 1992) was made available and
already used by different research groups.

Testing the results of learning in a real setting is more complex. Ultimately, any learning
problem is solved only once. Therefore, the mode of research and development follows a case-study
approach (Reich, 1994) and the testing of results is multidimensional (Reich, 1995).

Relationship to GBD: This dimension corresponds to item 7 in GBD, however, the present dimension
stresses practical consequences and the development of valid measures.

3.8 Cost: How much resources are needed to carry out the learning activity?

One dimension that is often neglected is the cost of learning. It is highly dependent on the previous
dimensions. Figure 4 shows a simple conceptual picture of fictitious ML projects. Each ML project
can be ranked based on its ease of development or solvability and the importance of the design
problem it solves. The more solvable is a ML problem, the less expensive it is to implement. The
more solvable is a ML problem, the more complex and important issue could be tackled given a
fixed development cost.

As mentioned before, it is beneficial to use ML to predict the cost of learning. With this esti-
mated cost, and given a constraint on a project budget, and the anticipated benefit from using ML,
one could maximize the total benefit by a simple procedure after recognizing that this maximization
is an instance of the knapsack problem in operations research (Winston, 1994). In order to solve

11
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Figure 4: Cost-effectiveness of ML projects

this problem, the potential ML solutions need to be sorted based on a benefit/cost index and they
are allocated resources according to this index until the budget is exhausted. This ordering relies
on a simple model but it is useful for preliminary analysis. Further, the same model can shed light
on setting priorities at several levels:

(1) Priorities in selecting critical research topics.
(2) Priorities in solving ML problems in a particular design context.
(3) Priorities in applying specific learning strategies in multistrategy programs.

Relationship to GBD: There is no corresponding dimension in GDB.

3.9 Research issues

Each of the dimensions raises issues that were matched by supporting ML tools or techniques that
promise to be valuable research topics. The explication and organization of these issues is an
example of the usefulness of creating the dimensions. The issues summary is shown in Figure 5.
Each row denotes a function that ML needs to perform and each column includes an aspect such as a
mechanism, facility, or data, that can support these functions. The issues in the figure are meant to
be generally useful to support ML in design and not specific tasks such as approximating a function
or constructing a classification. The supporting aspects, in particular, the history recording, clearly
suggest the use of an integrated approach to research and development of ML in design because
they are best realized within a comprehensive design system (Figure 1).

Most studies on ML in design have attempted to tackle specific topics or dimensions of ML in
design by solving point problems. However, general understanding of ML in design cannot emerge
from addressing issues in isolation, or as Newell said (1973) “you cannot play 20 questions with
nature and win”. The reason being that decomposition does not eliminate complexity, it merely
moves it to the boundaries therefore, general understanding must emerge from the integration of
the parts.

In contrast, an integrative approach to research risks spending too much effort on the research
infrastructure and less on the particular research problem. A combination of the two approaches
might be most beneficial: For quick examination of issues, simple problems and isolated solutions
could be developed in a divide-and-conquer strategy, but to gain real insight, these solutions must

12
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Figure 5: Matching ML functionality with supporting methods

be integrated.

4 Example

A brief description of one application, currently under development, illustrates: (1) the eight di-
mensions; (2) the complexity of, and benefits from, classifying a real design problem that involves
ML with a set of pre-defined characteristics; and (3) the setting of development priorities. The
application involves developing a DSS for propeller design (Reich et al, 1997) which is a knowledge
intensive reasonably well structured task. The system is intended to be deployed in an organization
that amongst other activities, designs marine propellers.

Who is learning? The answer is not straight forward. First, the people involved in the development
of the DSS are learners. The development of such a system is a design activity and as such, all parties
involve learn about propeller design, technology for building DSS, and methods for developing and
deploying DSS. Learning takes place in the interaction between the different participants and in the
interaction between researchers’ theories and the practical needs of users. The system is developed
to allow propeller designers to have quick access to maximum information and knowledge relevant
to their design. In addition, it is developed to allow other design participants to carry out several
design tasks themselves without interacting with propeller designers. Therefore, propeller designers
and other participants are expected to learn through using the DSS. For very specific learning
tasks such as function approximations, ML would be the primary learners. Finally, given that
several designers from the target organization will use the system, the organization will also learn
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throughout the project. The introduction of new computational technology into this organization
will have to be done incrementally, making sure that each tool demonstrates its practical utility.

Why does the learner want to learn? The purpose of building the application is to improve the
propeller design process of the organization by incorporating expertise accumulated over many years
of experience into a DSS. This corresponds to the epistemological reason applied at the organization
level. The critical aspect is shortening the design cycle thus saving money and becoming more
competitive. This points to a behavioral reason, again at the organization level. Since the domain
is stable, the ontological reason for learning is secondary. A DSS approach that supports the
recording and maintenance of design history provides a basis for continuous improvement of the
design process and knowledge. At a more specific level, some of the propeller design tasks are based
on data analysis of old data that could be improved continually using ML. Other tasks are based
on using previously designed and manufactured propellers thus could benefit from techniques such
as CBR. Presently, the developers are learning in order to better understand the nature of data
and knowledge available for building the system.

When does the learner learn and when are the results of learning needed? Most learning activities
in this project can be planned in advance pro-actively. First, the developers learn before building
the DSS. Second, specific simple design tasks will be automated by using ML programs to create
the required knowledge. The designers could learn pro-actively before starting a particular design
by inspecting information about previous similar designs. Subsequently, during design, they would
learn reactively by observing the intermediate results of the system and through interacting with
it. Occasionally, some learning mechanisms will be executed off-line to update the knowledge. At
the organization level, learning throughout the project will take place when prototypes of the DSS
are deployed. Thus learning will be reactive and will have to be planned for carefully.

What is the learner doing? The three sets of primary learners — developers, designers, and ML
programs — are engaged in building the DSS, design propeller, and perform specific design subtasks,
respectively. Concentrating on propeller designers, their task is to design a propeller including its
complex geometry given customer requirements about ship performance, and subject to physical
and regulatory constraints. In order to better understand this task it is decomposed into seven
subtasks as performed in the target organization (Reich et al, 1997):

(1) Prepare for model experiments by performing efficiency calculations and selecting the most
suitable stock propeller for model testing.

(2) Estimate the effective wake distribution by applying several possible scaling methods to the
model test results.

(3) Determine propeller profile thickness according to classification society rules.

(4) Perform lifting-line and lifting-surface calculations to determine a detailed description of
propeller geometry.

(5) Smooth the geometry obtained in step 4.

(6) Perform final hydrodynamic analysis involving all physical phenomena and perform local
redesign if necessary.

(7) Check the strength of the propeller against classification society rules and perform local
redesign if necessary.

The above decomposition is also too general and can be further detailed into subtasks that could be
supported with computational tools from Al, ML, or other disciplines. Four task types emerged:
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(1) Mapping between some numeric input data to numeric output related by some non-linear
mapping (e.g., estimating parameters, performing numerical analyzes).

(2) Selecting between available alternatives (e.g., material properties, modeling code).

(3) Performing local modifications with small overall impact (e.g., geometry smoothing).

(4) Verifying the design against design codes, constraints, etc.

These tasks could be further elaborated with specifications of the knowledge used in each instanti-
ation of the task.

What is being learned? The developers of the DSS learn about the process of designing propellers.
The development project helps designers reflect upon their own process and often improve upon
it. This process will further be refined in response to the introduction of the DSS and throughout
its life-cycle. The designers will learn a variety of issues while they design and ML programs will
learn knowledge to assist in the four general tasks mentioned in the previous paragraph.

How does the learner learn? The developers learn about the problem by communicating with
designers and by testing various tools on sample databases and subproblems. Prototyping is funda-
mental to this learning. Several techniques that could be used to implement the learning tasks were
identified. For example, history capture will help designers learn by providing complete traceability
of the process. They will also learn by easy access to previous designs and through the use of CBR.
Neural networks or instance-based learning will be used for various function mappings.

What are the consequences of learning? The consequence of process is the anticipated creation of
a knowledge-base integrated with other knowledge and numerical analyzes codes that will increase
the speed and reliability of design. The resulting DSS is expected to capture and collect vital
organizational knowledge. In order to ensure project success new tools will be introduced if they
are well established and even then, only incrementally.

Cost: How much resources are needed to carry out the learning activity? The seven design tasks
or the four task types identified in the problem analysis step present opportunities for developing
a variety of support mechanisms based on ML, Al, or other disciplines. One method — CBR
integrated with rule-base reasoning — could be used to implement most of the functionality required
(Reich et al, 1997). This will allow to minimize the cost of the software infrastructure.

A preliminary ordering of the design tasks to address can be based on a qualitative estimation of
their benefit/cost index, where cost included the effort to develop an application and the potential
acceptability by the organization. Four tasks have been identified and ordered according to this
index:

(1) Selecting a stock propeller for model testing.
Benefit: Significant. The selection quality has significant impact on the usefulness of the
model tests. Also, once supported, the task could be assigned to the project manager in the
ship model department thus shortening unnecessary communication paths.
Cost/difficulty: Moderate. This effort includes solving the problem of function approximation
which is presently explored.

(2) Provide a general solution to support propeller redesign.
Benefit: Significant. Approximately half the design time is spent on redesign.
Cost/difficulty: Not trivial. CBR might provide a framework to support some redesign tasks,
but the generalizability of the solution to all propeller redesign tasks is unclear.
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(3) Support the smoothing process.
Benefit: Moderate. Smoothing is a rather tedious labor intensive task although not too
knowledge intensive.
Cost/difficulty: Moderate. Initial analysis suggests that heuristics for smoothing can be
extracted. The implementation of this task will also rely on CBR.

(4) Select methods for scaling model test results.
Benefit: Moderate. This is not a time consuming task but its appropriate execution provides
valuable input for subsequent design steps. Improved quality of the results is the goal.
Cost/difficulty: Initial analysis suggests that this is a harder task than the previous.

5 Conclusions

In any scientific discipline the process of classification is fundamental and important. Building on
previous research on the and practical use of ML, a top-down analysis of the role of learning in
design was performed. This analysis yielded a characterization of learning situations composed of
eight dimensions. In the process of creating the dimensions interesting general opportunities for ML
were formulated. They were organized as functions that ML should support with some associated
facilities, methods, or data that could support them. These opportunities are best realized within
an integrative approach to supporting ML in design. As part of the dimensions, a method for
prioritizing the work on these issues as well as selecting which ML tasks to solve in a given project
was presented.

In order to illustrate the dimensions and the related issues, they were used to describe an
existing project. Clearly, it is not trivial to categorize real problems with a fixed set of dimensions.
Nevertheless, such analysis if done carefully and at the right level of detail, allows to better select
tools to support the tasks that solve the problem.

In order to improve our understanding of the scope of ML in design, the dimensions, the general
research issues, and their prioritization, need to be further developed and used when conducting
research and participating in real projects. Reports of successes, as well as failures, in using these
ideas will provide feedback and improve them.
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