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Abstract: The use of machine learning (ML), and in particular, artificial neural net-
works (ANN), in engineering applications has increased dramatically over the last years.
However, by and large, the development of such applications or their report lack proper
evaluation. Deficient evaluation practice was observed in the general neural networks
community and again in engineering applications through a survey we conducted of
articles published in Al in Engineering and elsewhere. This deficient status hinders un-
derstanding and prevents progress. This paper goal is to remedy this situation. First,
several evaluation methods are discussed with their relative qualities. Second, these
qualities are illustrated by using the methods to evaluate ANN performance in two
engineering problems. Third, a systematic evaluation procedure for ML is discussed.
This procedure will lead to better evaluation of studies, and consequently to improved
research and practice in the area of ML in engineering applications.

1 Introduction

The use of machine learning techniques for building models from data is growing steadily. Building
such models requires intimate understanding of the data and knowledge of available ML tools and
their properties. A systematic approach that ensures that all important aspects of the modeling
are addressed can lead to building good quality models (Reich, 1997). ML models can be built
for different roles: models for improving understanding of the data and models for prediction.
Independent of their role, one of the most critical steps when building models is their evaluation.
Evaluation determines whether the stated goal of the modeling activity has been achieved; it allows
to compare different modeling approaches and to direct future research. In spite of its importance,
evaluation has received little and sometimes no attention compared to the other modeling steps.

The long term goal of this paper is to remedy this situation. In order to set the basis for discussion,
Section 2 reviews several methods for evaluating prediction models and their properties. Section 3
illustrates these properties using two case studies: marine propeller behavior and material corrosion
analysis. The purpose of these studies is to demonstrate two critical assertions:

Assertion 1: The choice of evaluation method is critical. The results obtained by different methods
may be very different.

Assertion 2: The relations between different evaluation results vary with the properties of the data,
the learning goal, and the learning system. Therefore, it is not possible to determine these
relations a priori..

Consequently, the only way to assess the quality of ML, models is through their careful evaluation
with appropriate methods. The key is to identify which methods are appropriate for given modeling
contexts.

Section 4 reports on a review of studies published in ATl in Fngineering that used artificial neural



Reich and Barai (1999) In Artificial Intelligence in Engineering

networks (ANN) for building prediction models. The review focuses on the methods used for
evaluating the models developed in these studies. It demonstrates the deficient status of evaluation
in engineering applications. In order to improve present evaluation practice, Section 5 outlines a
systematic procedure to evaluating ML, models. It is hoped that following this paper, the evaluation
procedure or similar approaches will be used in future studies in this area and that careful evaluation
will become a prerequisite for publishing ML, modeling studies.

2 Evaluating the accuracy of ML models

In this paper we focus on the evaluation of models created for prediction. We first define the prob-
lem of evaluating prediction models, discuss some general properties, and review basic evaluation
methods. A general discussion on evaluation that includes ML models for understanding can be
found elsewhere (Reich, 1995). We use input from (Feelders and Verkooijen, 1995; Geman et al,
1992; Kohavi, 1995) and others in this section.

2.1 Theoretical background

Given an input vector x and a response vector y, where (x,y) obey some unknown joint probability
distribution F, learn to predict y from x as follows. A training set, D of size n, (x;,y:),i=1,...,n
is drawn randomly and independently from F. In a classification task, y is a scalar that takes as
a value the possible class labels. For function mapping (regression), y is a scalar whose values are
real numbers. In the more general case, y is a vector whose elements could be discrete, ordered, or
numeric.

A ML program P uses D to build a model f(x) that estimates y = f(x), i.e.,, y = f(x) Since f
depends on P and D we note it by f(x;D, P). We are interested in evaluating the performance
of P or the quality of f with respect to f. Given D and a particular x, independent of D, the
performance, or error 8, of f is often measured by a square loss function. (We assume from now
that y is a scalar y. This simplifies understanding the concepts. The formulation can be extended
to deal with the vector case. See more in section 5.2)

0= Ely—9] = El(y— f(x; D, P))*|x, D], (1)
where E[:] is the expected value with respect to F. For classification tasks, the error may be
formulated using a zero-one loss function:

0 = E[1-6(y, f(x; D, P))[x, D], (2)
where § is the Kronecker delta.

In general, F is unknown and therefore, # could only be estimated. One way to estimate it is to
test f(x; D, P)) on an independent set 7" of size [, (x;,¥;),7 = 1,...,l drawn randomly from the
same population /. The estimated value of § will be (for a square loss function):

(T, D, P) =

N|H

{
Z: f(xi; D, P))2. (3)

When [ — oo, 6 — 8. For classification tasks, [ > 1000 guarantees accurate results with confidence
above 0.95 (Highleyman, 1962). Other confidence intervals for different test sizes can be estimated
as well given that each test can be viewed as a Bernoulli trial (Kohavi, 1995). Such general
calculations of confidence intervals do not exist for function mapping.



Reich and Barai (1999) In Artificial Intelligence in Engineering

There are two situations in which testing on large number of instances is possible: (1) the database
is very large (and for classification, 1000 or more examples can be sampled for testing while others
are used for training); or (2) there is a generator (simulator) that can provide additional examples
on demand. In most real situations, however, we have a fixed size database that must be used for
training and testing. Consequently, other error estimation methods have to be used. These methods
differ in their process and the way they use the database. Before discussing any of them, two general
properties of evaluation methods, bias and precision (or variability), should be discussed.

The estimation bias reflects the difference between the expected value of the estimation, £'(6), and
the parameter being estimated, #, whose value is never known for real data (but can be calculated
precisely for simulated data), i.e.,

bias = E[6] — 6. (4)

The method precision or variability o reflects the variability of the error estimation derived by the
evaluation method. It is often measured by the standard error ¢ of the method distribution.

o® = E[(6 — E[6)Y] (5)

The method variability might be caused by many factors that directly depend upon the modeling
process. In our formulation, these are D, P, and T. In the context of ANN the following sources
are relevant for solving a particular learning problem:

D: Given the problem, sample the data D from the general data population F’. The problem
and data may be artificial or real.

P: Select an ANN architecture (e.g., number of layers, number of units, training rule and pa-
rameters); select process parameters (e.g., limit on number of epochs or system square error);
and initialize ANN training with some weights.

T: Manage the database for training and testing (e.g., subdivide the data into training and
testing sets).

The ideal evaluation method would be the least sensitive to these choices for all learning problems.
Such ideal method does not exist (Schaffer, 1994; Wolpert, 1996). However, better methods for
different practical problems can be identified.

For classification tasks, where each test instance can be viewed as a Bernoulli trial, and given large
enough test set, the variance of a method can be estimated to be 8(1 — ) /n or even (1 —6)/n. In
general, however, the value of ¢ cannot be estimated easily. (Although see the following discussion
on bootstrap, Section 2.2.4.)

If an evaluation method is based upon averaging several independent estimations then given a
sample of I independent estimations calculated by Equation 3, 8;, « = 1...1, the mean error is

estimated by 6 = (32, 8)/I and its variability can be estimated by

When using any of the evaluation methods we present later (with a fixed size database), the I
estimations are not independent thus Equation 6 is only an approximation and estimating the
variability precisely is non-trivial. A question arises regarding the influence of this dependency
on inferences we might wish to make about absolute program performance error or the relative
performance of ML methods. Independent of this complication, the method variability determines
our confidence in the estimated error.

For I independent estimations and if [ is small (so that normal distribution of the sample cannot
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be assumed), the confidence interval can be determined by using the ¢ distribution. The ¢ value is
calculated by

60
t = — .
oM

(7)
The confidence interval of 1 — o for the value of 8 would be:
0el@+t(a/2;1—1)- 6l (8)

where t(a/2; 1 — 1) is the t value for level of significance a and I — 1 degrees of freedom. That is,
with a confidence of 1 — & the value of the true 8 will fall in the range calculated by Equation 8.

Instead of using Equation 6 as an approximation to &j; and Equation 8 to calculate confidence
intervals, we can use the bootstrap (B) procedure discussed later (Section 2.2.4) which allows
to empirically calculate different properties (e.g., variance, confidence intervals) of an arbitrary
statistic. B also does not assume anything about the distribution of the statistic.

Going back to Equation 1, it is easy to show that the prediction error  can be decomposed into
three terms: bias, variance, plus some noise factor. For a square loss function (Geman et al, 1992)
the decomposition is:

El(y— f(z: D, P2, D] = “noise”
+ (ED[]i(;r; D, P)] - E[y|Aac])2 “bias'?
+ Ep[(f(z;D,P)— Ep[f(z; D, P)])Q] “variance”, (9)

where, Fp[-] represents expectation with respect to the possible D, for fixed sample size n. The
“bias” and “variance” terms correspond to those in Equations 4 and 5, respectively. For a zero-one
loss function there is a different decomposition (Kohavi and Wolpert, 1996).

Typically, there is a tradeoff between the bias and variance terms. The variance can be reduced by
smoothing or by modeling data with a restricted number of degrees of freedom. Such constraints
on the model would lead to high bias. In contrast, fitting a complicated model may lead to low bias
but increase the variability. We cannot obtain an a priori optimal choice between bias and variance
that minimizes the overall error (by manipulating P or T). Different error estimation methods have
different tradeoffs between bias and variance that influence their suitability as discussed next.

2.2 Error estimation methods

There are several methods that have been used to estimate the performance of ML, models in general
as well as ANN models including: (1) resubstitution (R), (2) hold-out (H), (3) cross-validation (CV)
such as leave-one-out (L) or k-fold cross validation (K), and (4) bootstrap (B). There is a growing
interest in the ML community in understanding the properties of these tests (Bailey and Elkan,
1993; Breiman et al, 1984; Dietterich, 1996; Efron, 1983; Efron and Tibshirani, 1993; Flexer,
1995; Jain et al, 1987; Kohavi, 1995). Such properties are derived empirically from many tests
on artificial and real databases. By and large, most of this work was conducted on classification
tasks. In contrast, in this paper we are mainly interested in function mapping (regression). We
assume that these properties approximately generalize to regression; however, more theoretical and
empirical work is required to study error estimations of function mappings.

2.2.1 Resubstitution (R)

In resubstitution the complete data set D is used to train the network. The model created by the
network is subsequently tested on the same data set (7" = D). The estimation of generalization
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error of resubstitution #p is highly optimistic, i.e., its error estimation is biased downward. The
performance of R is highly dependent on the sampling of D from F), i.e., it has high variability.
If we restrict the ability of P to overfit the data D (e.g., by early stopping in ANN training), 6r
might be less biased, but in view of the bias-variance tradeoff, the variability might increase even
further. Consequently, R is a poor evaluation method.

2.2.2 Hold-out (H)

H is the most common method for estimating generalization error. The data set D is randomly
divided into disjoint training and testing sets (part of the influence of T'). It is common to select 2/3
of the set for training and the remaining 1/3 for testing. After training, the network is evaluated
on the test set and the errors give an estimate of the generalization error 8. The results of H have
high variability that depends upon this random subdivision, in addition to the variability due to
the sampling of D from F. Also, the results of H may be pessimistic because not all available data
is used for training, i.e., its error estimation is biased upward.

As mentioned before for classification tasks, in order to produce results with confidence above
0.95, the testing set should include more than 1000 instances (Highleyman, 1962). No such general
bounds exist for regression.

In smaller databases, a variation of H called random subsampling and denoted here by H’, is
performed. Random subsampling is simply repeating H I times with random subdivisions into
training and test sets. Each such repetition is called an iteration. The resulting estimation is the
mean of the I iterations. Note that these I iterations are not independent, having used the same
database. Therefore, special care should be exercised when interpreting results from multiple runs

of H.

2.2.3 Cross-validation (CV): k-fold (K) or leave-one-out (L)

In k-fold cross-validation, one divides the data D into k subsets of roughly equal size. The ML
program P is trained k times, each time leaving out one of the subsets from training, and using it
for testing (see Figure 1). The error estimation fx is the average accuracy of the k runs (i.e., the
k internal iterations). This estimate is dependent upon the subdivision to k subsets. To account
for this variability source a complete C'V could be performed in which all the < n;bk ) possibilities
of selecting the testing subset of n/k instances are exercised. Still the results depend upon the
sampling of D from F. If P is stable for the problem (Breiman, 1996), 0x will be unbiased. If k
is too small, fx is pessimistically biased because fewer data points are used for training, however,

it might have lower variability.

Instead of running the costly complete CV test, K can be run I times with different subdivisions
into k sets. This test will be denoted by K! and its estimation would be the average of the I K
estimations. As in H’, we need to approximate the standard deviation or confidence intervals of
this test or evaluate them empirically by B.

If k =n, K is called a leave-one-out (L) test. L. is always a complete CV test. It has been common
in general ML studies to use a 10-fold CV method when the number of instances, n, exceeds 100, or
a leave-one-out method for small databases (Henry, 1994; Michie et al, 1994; Weiss and Kapouleas,
1989).
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2.2.4 Bootstrap

In the bootstrap, a sample of n instances is drawn with replacement from the original n instances,
where each instance has equal probability to be sampled. On an average, 1—1/e = 0.632 of the
original instances are drawn into this sample. The new sample is used for training and the old
sample for testing. The result of this testing provides a measure of the optimism of resubstitution.
I such samples are drawn and their optimism measure is calculated. Experiments show that [
should be in the range of 50 <+ 200. The final estimation is the average of these measures added to
the resubstitution estimation. Bootstrap reduces the variability observed in previous methods and
is only slightly optimistic. Other versions of bootstrap such as the .632 bootstrap (.632B) improve
upon this bias in some experiments (Efron, 1983). The .632B is calculated as follows:

I
1
06308 = = »_(0.632- 05, +0.368 - Or), (10)
1 =1
where g, is the holdout estimate for the I — th iteration (i.e., training on n instances sampled
from D with replacement and testing on the instances that were not sampled into the training set)
and g is the resubstitution estimate (i.e., training and testing on the complete database D).

More generally, bootstrap can be used to estimate the value of any statistic and not just the error
statistic. Its advantage is that no assumption regarding the distribution F’ is made. For example,
the variability of an evaluation method X could be estimated as follows:

(1) Sample with replacement [ bootstrap samples Di,i=1,...,1,from D.

(2) Calculate the error estimation x, (D") for each sample i =1,...,1.

(3) Estimate the variability of X by calculating the standard deviation of the sample 8x,, i =
1,...,1.

This procedure will fail if we try to estimate some “narrow feature of the original sampling process”
(Stine, 1990, p. 286) such as the maximum of a sample.

Confidence intervals can also be calculated not using any distribution assumption but using the
percentile method (Efron and Tibshirani, 1993). An 1 — a confidence interval can be estimated by
taking the a/2 and 1 — /2 percentiles of the sample of I bootstrap estimations. Such procedure
works when the number of bootstrap samples is large, e.g., I > 1000. It also assumes that the
estimation is unbiased.

2.2.5 Summary of evaluation methods

The above methods are the very basic evaluation tests. They do not include any distinction
between different types of errors (e.g., false positive or negative in classification, or positive vs.
negative errors in function prediction), although different types of errors might be very different
in terms of cost or severeness for the particular engineering application. Also, they do not include
improvements such as stratified methods for classification tasks where, for example, training and
test sets are sampled randomly but with the constraint that they have the same distribution of
classification values (Feelders and Verkooijen, 1995). These and other issues that arise in the context
of specific applications require further elaboration. Additional information on evaluation methods
can be found in the statistics and general ML literature (e.g., Breiman et al, 1984; Dietterich, 1996;
Efron, 1983; Gascuel and Caraux, 1992; Henry, 1994; Kohavi, 1995; Weiss and Kapouleas, 1989).

Table 1 summarizes the four evaluation methods. In the Table, the number of internal iterations
denotes the number of times a basic procedure is executed in order to obtain one estimation, 4, of
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the true accuracy 6. The number of iterations denotes the number of times the complete process
is performed. The two iteration figures influence the computational cost of the method. Figure
2 roughly illustrates the expected bias and variability (or confidence interval) of some of these
evaluation methods relative to the true error.

There are results in the literature that differ from these expected values. In some cases these
discrepancies have good explanations. For example,

e Jain et al, 1987 suggested that .632B is inappropriate for nearest neighbor classifiers because
they do not make use of duplicate equal instances generated in bootstrap samples.

o Weiss, 1991 found B to perform poorly when applying nearest neighbor classifiers to small
databases in cases with high true error rates. B was worse in the case of 1-NN than 3-NN.
This discrepancy can be explained by the ability of 3-NN to partially benefit from multiple
similar instances compared to the lack of 1-NN to benefit from it.

e Bailey and Elkan, 1993 found B to perform poorly on FOIL. This might result from FOIL’s
inability to benefit from the duplicate equal instances generated in bootstrap samples.

e Shao, 1993 found L to perform poorly for selecting between linear models because L is asymp-
totically inconsistent (Stone, 1977). (A consistent estimator of a parameter satisfies that the
probability of getting the parameter within some range around the estimation converges to 1
as the data size grows.)

From these examples and theoretical work, no method is always better than another (Schaffer,
1994; Wolpert, 1996); however, some evaluation methods are better than others on some classes
of problems. Figure 2 expresses the general practical relation between these methods as suggested
by past experiments. A case where deviations are found between results of these methods on some
problems and the figure is a trigger that this learning context might have special features worth
studying.

3 Case studies

3.1 General description

Two case studies were performed to prove the assertions from the introduction. The systematic
procedure outlined by Reich (1997) is followed in discussing them. For each case, we conducted
five tests: R, H (2/3 for training, 1/3 for testing, with 10 repetitions), L, K (10 folds with 10
repetitions), and .632 bootstrap with (100 resamplings). The results for each case are tabulated
and displayed graphically.

The tables provide the raw data. In the case of R and L they give the results and in the case of
.632B, K, and H they give the minimum and maximum values in all iterations, and the mean and
standard deviation of the iterations sample.

The figures display the values of R, L, and B, and the mean of H and K with their 0.95 confidence
intervals. The confidence intervals for H and K where calculated from Equation 8 assuming that
the [ iterations are independent and that the data reflects the overall method variability. Since
these assumptions are incorrect (as discussed above), and furthermore, the latter assumption is
not conservative, we performed several B tests to assess the confidence intervals of H, K, and also
R and found the discrepancies to be minimal. For the purpose of this paper, the approximation
used is sufficient. The confidence interval of B was not calculated. In order to calculate it, we
would have to perform many B evaluations with different original databases. Alternatively, we
could assess confidence intervals of B by using B itself. This, however, is a very time consuming
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and impractical exercise. Also, note that the confidence intervals neglect the dependency between
the different output parameters. Consequently, they cannot be the basis for hypothesis testing in
general. (See more in Section 5.2.)

In the discussion of the results we refer to K and H. However, since K/ and H! are means of several
K and H tests, stronger statements (i.e., with tighter confidence intervals) apply to them as well.

3.2 Example 1 : Marine propeller behavior

e Problem Definition

The goal of this study was to establish a mapping between propellers design parameters and their
performance.

e Data Collection

In establishing the actual performance of marine propeller, one has to go through the laborious,
intensive design process followed by extensive tank or open sea experimentations. We took a
typical example of the USN series data of marine propeller design for the present study (Denny
et al, 1989). The data were created in actual sea trials using suitably modified USN 36 ft boat. The
experimental data of 301 instances cover the parameters thrust coefficient (K1), torque coefficient
(Kg), efficiency (n) versus advance coefficient (.J) for various values of pitch diameter ratio (%),
expanded area ratio (K AR), number of blades (z), and cavitation number (¢). The accuracy in
data collection during the experiment was within the ranges of 0.5% for propeller thrust and 0.2%
for propeller torque. We used data extracted from the original graphical data by Neocleous and
Schizas, 1995.

e Preliminary Data Analysis

Five parameters - J, %, FAR, z, and o - were selected as inputs and three - K7, Kg, and 7 - as
outputs. Simple normalization was performed on the parameters.

e Selection of Neural Networks Model
The multilayer perceptron was selected due to its recognized ability to perform regression.
e Selection of Neural Networks Model Parameters

The neural network architecture had two hidden layers with 30 hidden units in each layer. The
program was implemented using improved backpropagation in MATLAB Neural Networks Toolbox
(Demuth and Beale, 1994). After several exercises, the sum square error was selected as 0.5 and
learning rate as 0.02, keeping a compromise between the accuracy and the computational time.
Note that no optimization of the architecture or training parameters was performed. In contrast,
we selected common architecture and parameters and set the parameters so that the time consuming
exercises will take reasonable time.

e Evaluating and Interpreting Results

The computed average relative error for the parameters K7, Kq, and 7 are are tabulated in Table 2.
The graphs depicting the results of the tests are shown in Figure 3. We used the relative error and
not the square loss function which measures absolute error because the former is more informative
from the ANN user perspective.

Also, we did not sum the errors of the three outputs into one measure because this would have given
us only one coarse measure. Note that this complicates statistical analysis when comparing between
two programs because the dependence between the results of the output parameters requires that



Reich and Barai (1999) In Artificial Intelligence in Engineering

instead of using ¢ test one has to perform 72 test for testing between vectors of means (Morrison,
1990) (see more in Section 5.2).

e As expected, H gives pessimistic results relative to the other tests and with higher variance
than K. From Figure 3, the results of H are statistically significant far beyond 0.95 confidence
from the rest of the tests. In this case this conclusion is conservative; a 7 test on the three
dependent parameters, K7, K¢, and 7, outputs a confidence level of 0.9999 that K is different
from H.

e As expected, resubstitution gave optimistic results compared to the other tests. Based on
the confidence interval of K and H, in most cases these results are different from R with
confidence beyond 0.95.

The results would have been further away if we did not use early stopping which caused R
not to overfits the data and therefore, produce higher (less optimistic) errors that were close
to the other tests.

e L. gave poorer results compared to K due to data overfitting that occurred during this test.

e Out of the 100 .632B samples, several caused the ANN to “diverge”. No such behavior was
observed in any of the other many runs we performed. We hypothesize that this behavior
results from the replication of some of the instances due to the use of bootstrap samples.
We removed those samples from the analysis. In Table 2 the [ in the .632B test denotes the
number of samples maintained in the analysis.

In spite of all the above significant or insignificant differences, we must always focus on the engi-
neering relevance of these evaluations. The performance errors in the evaluations range from 7.8%
between the maximum value of H and R for K7 to 2% between the same for 7. If we eliminate H
as an evaluation method, the errors between the other methods range from 2.1% to 0.6%. From
an engineering perspective the first set of ranges may be unacceptable while the latter acceptable.
Therefore, for this application, it might not matter which test we use out of R, B, L or K.

Note, however, that the data we have does not take into account the variability due to sampling
of D from F, nor the variability due to the choice of learning parameters and ANN architecture.
These will definitely increase these ranges. Consequently, the conservative user will still have to
look for the most appropriate tests.

3.3 Example 2: Corrosion data analysis

e Problem Definition

The goal of this exercise was to analyze empirical data on the stress corrosion cracking (SCC) of a
sensitized, wrought type 304 (UNS S304000) stainless steel and establish relationships between the
environmental conditions and their effects on the stainless steel.

e Data Collection

We used experimental corrosion data of sensitized wrought type 304 stainless steel tested in argon
gas and lithiated water doped with 20 ppm SOZ_, 20 ppm + SOZ_ 20 ppm C'[~, 100 ppm SOZ_ and
100 ppm CI~ (Congleton et al, 1995). In the data set of 93 samples, the environmental conditions
are temperature (T), potential, solution types and effects are crack-length (CL), ultimate tensile
strength (UTS), time to failure (TF) and reduction of area (RA).

e Preliminary Data Analysis

Preliminary data analysis suggested that the data is sparse and required careful modeling. However,
for this study only simple normalization was performed on the parameters.
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e Selection of Neural Networks Model
Again, due to their general capability to perform regression, multilayer perceptron was selected.
e Selection of Neural Networks Model Parameters

A multilayer perceptron with two hidden layers and 18 hidden nodes per layer was used in this
study. Learning rate was set to 0.02 and based on few runs, the cut-off threshold was set to 25000
epochs for training. Again, no optimization of architecture or parameters was performed; rather,
the parameter selection was a compromise between reasonable accuracy and training speed.

e Evaluating and Interpreting Results

The ANN performance was evaluated and the results for two parameters (CL and RA) were found
unsatisfactory (errors ranging beyond 100%). Therefore, we decided to clean the data manually.
We focused on improving the prediction of the RA parameter. We identified data points that gave
high errors of this parameter in both R and L tests and removed those that looked as potentially
erroneous. Also, several repetitive instances were removed. As a result we obtained two data sets:

e Raw data case: The original data given in Congleton et al. (1995) with 93 instances.
o Cleaned data for RA: Remaining 79 instances after cleaning.

Some of the instances in the data have output parameters CL. and RA with zero values. For these
instances, the computation of the percent error of the ANN prediction was impossible. Therefore,
for the corrosion data we represented the errors as the common mean square error. The results of
the two cases are tabulated in Tables 3 and 4 and their graphic presentations are shown in Figures
4 and 5, respectively.

e By and large, the results of the two cases follow the observations of the results obtained for
the propeller behavior exercise. However, there are some discrepancies. For example, the
results of the K and H tests while different are not statistically different with confidence of
0.95. A T? test found that K and H are different with confidence of 0.90 in the first case and
0.93 in the second.

e Some of the discrepancies between the results and the anticipated relations from Figure 2
might be a consequent of the ANN parameters used, the training schedule, or the initial
weight setting.

e In general, when moving toward the “cleaner” data in the second case, the performance graphs
resemble more the anticipated behavior shown in Figure 2.

e We did not find clear cases of divergence when using B as in the marine propeller case. This
might result from the general high error rates of RA and CL that in many cases exceeded
100% (not shown). Also, it might be that sparse data is less susceptible to such phenomena.

e Although not shown, the differences between the tests for parameters CL and RA are seri-
ous from an engineering perspective. Therefore, in this application selecting an appropriate
evaluation test is critical.

3.4 Summary of exercises

From the case studies we can summarize the following main observations:

e Assertion 1: Independent of data quality (e.g. good as the propeller behavior or bad as the
material corrosion analysis), R gives optimistic results and H pessimistic results relative to
each other. In all cases but one these results are statistically significant with confidence above
0.95 while in other cases, less significant.

10



Reich and Barai (1999) In Artificial Intelligence in Engineering

o Assertion 2: The relations between the evaluation methods, whether statistically significantly
different or not, varies with data quality. Therefore, one cannot replace one test with another
and only evaluation methods appropriate for the context may be used.

e Similarly, the engineering relevance of choosing an appropriate method varies with applica-
tions and cannot be determined a priori.

e The selection of ANN model, architecture, and training parameters, influence the evaluation
and therefore, influence the relations between the results of the different evaluation methods.
For example, early stopping in training may result in R estimates that are close to L. or K
estimates. However, these pseudo optimal parameters cannot be determined a priori. We did
not perform sensitivity analysis or multiple evaluations with many parameters in our exercises
because our goal was to prove the assertions. Nevertheless, careful evaluation in applications
should consider performing such multiple tests.

e Among the two CV tests, we found K to be comparable to L in susceptibility to data overfitting
or other data quality problems. Therefore, for databases larger than about 100 it is acceptable
to use it. Given its observed small variability due to different subdivisions into 10 sets, a small
number of such subdivisions can lead to good accuracy estimation. This recommendation is in
line with other researchers (e.g., Bailey and Elkan, 1993; Kohavi, 1995; Weiss and Indurkhya,
1994).

4 Review of evaluating ANN models for prediction

ANN are by far the ML tools most heavily used for building prediction models from data. They
are used due to their demonstrated capabilities to create mappings from input to output data even
if the data is noisy and when no model of the data exists. They can handle a variety of data types
as well as time-variable data. Careful empirical evaluation of models created by ANN is critical
to selecting ANN architectures, setting their parameters, as well as to selecting between different
ANN approaches. Unfortunately, there is little awareness to evaluation issues within the neural
network community (Flexer, 1995; Prechelt, 1996). Flexer, 1995 also mentioned several minimal
requirements for evaluating neural networks models and the percentage of their use in studies in
two leading ANN journals (see Table 5).

The status of testing in engineering applications of ANN is similar and sometimes worse. In some
studies, no report on testing is mentioned. Other studies provide one anecdotal example showing
what the technique might be doing in a particular situation. Even studies that perform some testing
may be deficient if their tests are methodologically wrong, or if they do not complete the testing
procedure, leaving readers to interpret the results (Reich, 1997).

We performed a detailed study of twenty six articles published in Artificial Intelligence in Engineer-
ing on neural networks modeling from 1992 to 1997. The review analyzed each application (total
of 32 in the 26 articles) according to the modeling steps identified in Reich (1997) for developing
practical ML applications. The review results related to evaluation are summarized in Table 6.

Clearly ANN models in engineering applications have been tested improperly: 31.3%, 18.7%, 3.1%,
and 12.5% have used respectively R, H, L, and TTV tests. (These TTV tests divided the data into
three parts: one used for training, second for testing and tuning parameters, and third for testing
the optimal ANN. Both tuning and testing employed the H method. See more on TTV in Section
5). Most of these did not mention the basis for selecting their testing methods. The remaining
studies (34.4%) did not clearly mention which approach was used for evaluation.
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Among the CV methods . was used only once and K never. B was never used. While H or
TTV may also give reasonable results for classification when the testing set size exceeds 1000, such
testing set sizes were used only twice, and not on classification tasks. Therefore, these testing
sizes do not guarantee reliable results, especially if the domain is complex and data is sparse. The
remaining tests, in particular, resubstitution, cannot be considered as reliable or as a basis for
future comparisons.

5 A systematic approach to evaluating ML models

In the general ML community, ML problems can be classified based on several aspects (see e.g.,
Dietterich, 1996):

G Goal of study. This will involve either an absolute evaluation or a relative comparison between
several programs.

D Domain or data studied. In some cases a single domain is studied and in others programs are
compared relative to multiple domains. The data might be large or small (limited), real or
artificial.

P Nature of the modeling activity or the ML program studied. Depending on the problem, the
ML modeling might be supervised (e.g., regression, classification) or unsupervised.

Proper evaluation depends upon the goal of the study. The focus or goals of engineering applications
of ML are different than those of the general ML community. In engineering applications, whether
in research or practice, solving an engineering problem is the focus rather than the solution method
or its generalization across problems or domains.

When solving an unsolved problem, we would be content with one reliable solution. Subsequently
we may seek improvements. Even if we adopt a method that already solved one class of problems,
we are not necessarily interested in the old problem but rather in solving the new problem. Thus,
generality across classes of problems is not critical. Consequently,

G initially we would be interested in reliable absolute evaluations and subsequently in reliable
comparisons.

D We are less interested in multiple domain comparisons and are interested in artificial data
only as a way to understand how to work with real data.

P While we might be interested in both supervised and unsupervised learning, we will focus
only on evaluating supervised learning.

The following discussion focuses on absolute evaluation and comparisons between supervised ML
programs.

5.1 Absolute evaluation of ML programs

Absolute evaluation requires the least biased method (and one with small variability). Most em-
pirical studies found K to be reasonably unbiased and with reasonable variability. In general, K
was found to be more stable than L, and given its reasonable computational requirements, K is
the recommended test for absolute evaluation. For small databases one has to use L. or B although
there are cases where both fail (see Section 2.2.5). When better estimations are required and if
computational resources are available K' should be used. Tt is sufficient to use I = 10 for this test.

In order to get most out of the evaluation process, we recommend executing all the evaluation
methods and plotting graphs similar to Figure 2. Any deviation from the anticipated results requires
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explanation and might lead to better understanding of the data, ML program, the evaluation
method, or their interaction.

An important aspect when solving practical problems is obtaining the best possible performance
out of the data. Therefore, it is natural to wish to optimize ML program parameters. However, this
requires special attention related to evaluation. Iigure 6 illustrates an estimation method called
training-testing-validation (TTV) that can be used for tuning operational parameters and options
of programs, and finally, estimating the performance accuracy of the ML. model. In the first step,
the data is subdivided into data for model learning and model testing. In the second step, the
data for model learning is used to select the best model (i.e., learning approach) and operational
parameters. The evaluation in this step is done by K in order to generate better ground for selecting
between the different parameters. In the third step, a model is created from the complete model
learning set by the best approach and best operational parameters. This model is validated on the
testing set. Obviously, the final experiment is a hold-out estimation method with all its limitations.

When optimization of parameters is not performed and parameters are selected based on “common
practice” it is useful to analyze the sensitivity of the evaluation to the parameter choices. This can
be done by conducting several parametric studies.

Any absolute evaluation should be accompanied with some measure of precision (or variability).
When using real data, there is no direct way to estimate the variability of the evaluation caused by
the sampling of D from F. The variability due to operational parameters could be addressed by
sensitivity studies and the variability due to the testing process can be assessed by subsampling.
As discussed earlier, different subsampling iterations are statistically dependent and care should
be given to the calculation of confidence intervals. It could be approximated by assuming inde-
pendence, but such confidence intervals better be checked using B. For real limited data, all the
variability sources (including the one due to the sampling of D from F') could be estimated by B
as described in Section 2.2.4. In our experiments we found small differences between confidence
intervals calculated by B and the approximation by Equation 8.

When using simulated data, all these variabilities could be estimated by simply sampling different
databases D and conducting experiments on them. Assessment of precision is time consuming
especially for ANN. It is hardly ever estimated and consequently, evaluations lose much of their
anticipated reliability.

5.2 Comparing between ML programs

So far we have addressed the performance evaluation of a single ML, program. However, in order to
improve solutions, we develop new methods and compare them to existing solutions. It has been
common to compare between different ML programs by calculating their performance accuracy
using K without performing any statistical analysis. This procedure may lead to wrong conclusions
due to the variability of K as observed in our exercises. As in absolute evaluation, any comparison
must be accompanied with a calculation of confidence interval or statistical significance.

Many researchers recommend the use of K or even K!. Therefore, when comparing between pro-
grams, we could carry out K/ on each and test whether the difference between the two estimates
(which involves comparing between two means) is statistically significant. First, ¢’ is given by:

(6, — 62) — (6, — 62)
Gaiff

t' = : (11)
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where 6; and 5 are the estimates from applying K! on both programs,

Gaiff = ?fgl + &i’ (12)

and &51 and &52 are the standard errors of the I evaluations of K within each K’ as calculated by

Equation 6. (Again, this calculation assumes independence and is only an approximation.)

The following consideration apply sequentially for obtaining a value for ¢ for some desired confi-
dence:

(1) If I is large enough (say, above 30), we can use z values of the normal distribution instead of
t" (Winer, 1962).

(2) If we assume equal standard error of the evaluation methods, and the observed errors from
the samples are different we can use a pooled standard error. For I equal in both methods,
G4iff stays as above. We can then use the ¢ distribution to obtain the value of ¢’ = t(a/2;v)
for v =2- (I — 1) degrees of freedom, and the desired significance «.

(3) If 95 is different from ;. then t' does not follow a normal or a t distribution and the next
three approximations could be used.

(4) When comparing between two programs, if we maintain equal number of iterations [ in both
evaluations, we could use a ¢ distribution as in item 2 because the comparison becomes less
sensitive to deviations from the test assumptions (Hays, 1988).

(5) Otherwise, we can use the ¢ distribution with corrected degrees of freedom (Welch, 1947).
For I equal in both methods, v = (I — 1)/(c? + (1 — ¢)?), where ¢ = &g /(&g + &g ).

(6) In any case, if the two evaluation tests were run with different numbelr of ilterati?)ns I, I,
using the ¢ distribution with degrees of freedom v = min (/3 —1, Iy —1) would give conservative
results, i.e., differences found significant are guaranteed to be significant when using a correct
test.

After choosing the correct ¢’ for the confidence 1 — «, a confidence interval can be calculated by:
61— 0, € [(91 - 92) + 1 Gaifgl, (13)

That is, with confidence 1 — « the difference between the estimation will be in the range. If the
lower bound exceeds 0, it means that with confidence 1 — a the true estimations are different.

There are three complications that arrise when comparing between programs. First, the evaluations
of two programs are dependent since they use the same database for training and testing. A simple
improvement for dealing with this dependency is the use of a paired sample t test. This requires
that all programs use the same training and testing data in parallel. This poses a problem because
one cannot use published results that do not specify how to replicate the data subdivisions for the
purpose of employing this statistical test.

When using pairing, the standard error 4y,

(Afdiff = \/(AT% +62 — 2001](51, 52), (14)
01 [

replaces the one from Equation 12 (Hays, 1988). In most cases pairing leads to positively correlated
él and ég. Hence, 64,y becomes smaller and the confidence intervals will be smaller. In this case
therefore, a paired sample test without considering this dependence becomes conservative.

We can even avoid considering this dependence if instead of comparing between the results of the
methods on the complete set, we do a comparison on each testing instance (Hays, 1988). This will
lead to a simples ¢ test but with I — 1 instead of 2(I — 1) degrees of freedom which makes the test
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less powerful.

The second complication arises when using ANN in regression to predict several output (dependent)
variable. In our formulation, we return to the vector notation of y instead of the scalar y. If we wish
to compare between the performance of two ML programs as reflected by the results of this vector
of variables, we must use multivariate tests to account for the dependency between them. In the
simple case of comparing between two programs we could use the 72 test, which could be viewed
as the extension of the ¢ test to multivariate populations (Morrison, 1990). In more complicated
comparisons we would have to use other tests based on multivariate analysis of variance (MANOVA)
(Morrison, 1990).

Figure 7 illustrates the difference between uni- and multivariate analyses. Suppose the test is
to check whether the mean of the population y = [y1,y2] is different from [0, 0] with confidence
beyond 0.95. In (I), the distribution is such that the independent use of the univariate ¢ tests
would not reveal any statistical difference (i.e., the confidence intervals both overlap [0,0]) while
the multivariate test would reveal significance. In (1), we see that both tests reveal statistical
significance beyond the desired confidence. In such cases, if we find significance with the univariate
test, we would be able to skip the more complicated one. Nevertheless, since the use of simple and
complicated tests is available in commercial statistical packages, one can easily use the appropriate
tests. The complexity only lies in interpreting the results.

The third complication involves, in the general case, a comparative evaluation of several ML pro-
grams tested on several databases. In this case, previous tests need to be modified to account for
the multiplicity effect. Consider that the evaluation of each program on each database gives us a
sample by executing a test several times. The overall comparison would involve multiple compar-
; ) = I(/ — 1)/2 independent
comparisons and found in each comparison statistically significant difference with confidence 1 — «
we would have a chance of 1 — (1 — a) = a to make an error in one judgment and 1 — (1 — )’
to make at least one error in all J comparisons. To illustrate, if we compared between 3 programs
on 2 databases we would have 6 means and 15 comparisons. Given an original confidence of 0.95,
we would have a chance of 1 — 0.95'® = 0.54 to make at least one error in these comparisons. In
order to reduce this chance one can adjust the significance level a to a/.J, also called Bonferroni
adjustment (Hays, 1988). For a small number of tests this adjustment is appropriate but it is
overly conservative for a large number of tests. Other corrections or tests have been developed and
are available in commercial statistics packages. Again, the problem is not using these tests but
selecting the right test and interpreting its results.

isons between means. If we compared I means by using J = (

5.3 General considerations

There are several general considerations related to evaluation.

(1) There is no best ML method or error estimation method. One has to become familiar with
the interaction between evaluation methods, ML methods, and problems to fit the former
to the others. Following a preliminary attempt to generate a mapping between ML program
applicability and problem characteristics (Gama and Brazdil, 1995), one could try and extend
such or different analysis to the applicability of evaluation tests given ML programs and
problems. This would be more complex than the above attempt.

(2) When comparing between programs care should be exercised to have a sound basis for com-
parison, for example, give the programs similar amount of training. When dealing with ANN,
there are two ways to interpret “equal training”: use equal sum system error or equal number
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of epochs. In the marine propeller exercise we used the former and in the material corrosion
the latter. Both may be acceptable if we avoid excessive overfitting. Equal number of epochs
is harder to control in this respect. Different settings of initial weights can lead to very differ-
ent training speeds. Insisting on a fixed number of epochs can easily drive an easily trained
network to the range of overfitting.

(3) K and H have large variabilities. K’ and H’, being means of several estimates, have much
smaller variabilities.

(4) The use of non-parametric methods such as B for estimating the precision of a statistic allows
to remove assumptions about the distribution of the statistic but increases the size of the
resulting confidence interval. Therefore, whenever parametric methods are applicable they
should be used.

(5) When evaluation results contradict those anticipated from Figure 2, they need to be studied
and justified.

(6) Engineering relevance must play a critical role in selecting between evaluation methods. There
is no need to spend effort on selecting between methods or using time consuming one (e.g., K')
if the use of a simpler method will lead to acceptable results from the engineering perspective.

6 Conclusions

The status of evaluating ANN applications is poor as revealed by a survey of articles that appeared
from 1992 to 1997 in Artificial Intelligence in Fngineering. This is also the prevalent status of
evaluation elsewhere. Given the critical nature of evaluation it is essential to improve this situation.
The first step involves improving our understanding of evaluation methods. Towards this end, we
reviewed several error estimation methods and discussed their properties. The discussion identified
methods that lead to good error estimates and some that yield poor estimates. We demonstrated
the two assertions from the introduction in two case studies: (1) the evaluation methods indeed are
very different from one another and (2) there is no way to determine a priori the relations between
the results obtained by running them. Therefore, in order to estimate the accuracy of ML models
correctly, one has to select carefully the appropriate methods.

While no evaluation method is superior to others in all contexts, some are better than others in
certain practical settings and others are clearly deficient in certain contexts. It is important to build
classification knowledge that given a learning problem and a program will assist us in identifying
appropriate evaluation methods and warn us against others.

There are many issues that compound the problem of performance evaluation such as data quality,
whether certain error calculations can be performed (e.g., percentage error with correct zero values
cannot be calculated), statistical assumptions underlying evaluation procedures, etc. Therefore,
modifications to existing tests might be inescapable. In such cases, it is critical to explain and
justify such deviations.

In order to evaluate ML programs or models one has to become familiar with statistics beyond
the basic level. We identified several complications that require special treatment and there can
be others depending on the particular evaluation context. It is necessary to understand statistical
tests including their assumptions in order to select between them and interpret their results.

Without proper evaluation there is no meaning to results. Therefore, appropriate report of the
evaluation performed in a study must be a prerequisite to its publication. Such report should
include explanation of the nature of the data and program(s), the reason for selecting an evaluation
method, the data necessary for checking the evaluation, the data needed to verify statistical tests
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that are reported, as well as explanations of deviations from anticipated results.
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Tables

Table 1: Properties of error evaluation methods

Estimation Size of Size of Number of | Number of Method Method
method training testing internal iterations variability | bias
set set iterations
Resubstitution (R) n n 1 1 very high | very
optimistic
Hold-out (H) (06=-08)-n|(02+04) n |1 1 high pessimistic
Random subsampling (H) | (0.6+0.8)-n | (0.2+0.4) -n | 1 I << n, O(10) | moderate- | pessimistic
high
Cross-validation
K-fold CV (K) n(k—1)/k n/k k(~ 10) 1 moderate- | nearly
high unbiased
I K-fold CVs (KY) n(k—1)/k n/k k(~ 10) I << n,0(10) | moderate | nearly
unbiased
Leave-one-out (L) n—1 1 n 1 moderate- | nearly
high unbiased
.632 Bootstrap (B) n (see text) n (see text) 1 I(50 + 200) low slightly
optimistic
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Table 2: Error rates for marine propeller behavior

Exercise KT | KQ | Efficiency
(1) Resubstitution 5.92 | 3.46 3.41

(2) .632 Bootstrap ( I = 92)

Minimum | 5.19 | 3.12 3.15

Maximum | 8.35 | 4.94 4.31

Mean | 6.81 | 3.90 3.59

Std. Dev. | 0.69 | 0.32 0.23

(3) Cross-Validation

(i) Leave-one-out 8.04 | 4.21 3.62

(ii) K-fold analysis
Minimum | 7.49 | 4.03 3.93

Maximum | 8.52 | 4.93 4.34

Mean | 7.91 | 4.57 4.18

Std. Dev. | 0.36 | 0.28 0.12

(4) Hold-out
Minimum | 6.93 | 4.57 4.23

Maximum | 13.69 | 7.31 5.38

Mean | 9.79 | 5.79 4.60

Std. Dev. | 1.46 | 0.70 0.26
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Table 3: Mean square error for material corrosion analysis: raw data

Exercise Crack UTS Time of | Reduction
length failure of area
(x1073) | (x 1073) | (x 1073) | (x 1073)
(1) Resubstitution 0.53 0.63 0.26 0.95
(2) .632 Bootstrap ( I = 100 )
Minimum 0.50 0.40 0.20 3.80
Maximum 7.00 2.70 11.40 51.20
Mean 2.10 1.00 1.30 17.50
Std. Dev. 1.70 0.40 2.70 9.10
(3) Cross-validation
(i) Leave-one-out 4.60 1.60 2.50 44.0
(ii) K-Fold Analysis
Minimum 3.19 1.48 0.74 33.2
Maximum 5.62 2.11 2.73 47.6
Mean 4.42 1.77 1.02 41.1
Std. Dev. 0.87 0.20 0.59 4.3
(4) Hold-out
Minimum 1.52 0.89 0.73 31.86
Maximum 28.41 3.82 1.56 83.94
Mean 6.09 2.29 1.10 54.33
Std. Dev. 8.06 0.97 0.33 19.05
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Table 4: Mean square error for material corrosion analysis: cleaned data for RA

Exercise Crack UTS Time of | Reduction
length failure of area

(x1073) | (x 1073) | (x 1073) | (x 107%)

(1) Resubstitution 0.40 0.60 0.20 1.40
(2) .632 Bootstrap ( I = 100)

Minimum 0.20 0.30 0.10 1.20

Maximum 8.40 7.20 1.06 3.22

Mean 1.60 1.10 0.60 6.70

Std. Dev. 1.50 0.80 1.50 4.70

(3) Cross-validation

(i) Leave-one-out 3.20 1.50 0.50 15.40
(ii) K-Fold Analysis
Minimum 2.77 1.51 0.54 13.20
Maximum 6.81 2.44 0.90 32.70
Mean 3.92 2.03 0.71 19.40
Std. Dev. 1.28 0.30 0.12 5.80
(4) Hold-out
Minimum 1.00 1.37 0.44 13.39
Maximum 8.37 3.96 5.14 72.03
Mean 4.29 2.69 1.32 35.64
Std. Dev. 2.59 0.82 1.39 17.35
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Table 5: Survey of empirical studies of algorithms in leading ANN journals (Flexer,1996)

Requirement Requirement was met
Yes No Unclear
1. The use of different training and testing | 72.2 % | 1.6 % | 26.2 %
set

2. Computation of multiple runs using an ap- | 57.3 % | 36.1 % | 6.6 %
propriate resampling techniques
3. The use of 3rd independent data set in | 49% | 0.0% | 95.1%
case of parameter tuning
4. Reporting of mean, variance, confidence | 27.7 % | 72.3 % | 0.0 %

intervals
5. Statistical test for comparison of | 49% |93.5% | 1.6%
performances
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Table 6: Use of evaluation methods in published in ATl in Fngineering

Evaluation method | Nature of Data | Total
Simulated Real

1 R 7 3 10
2 H 1 5 6
3 K 0 0 0
4 L 0 1 1
5 B 0 0 0
6 TTV 2 2 4
7 NM 10 1 11

Resubstitution (R), Holdout (H), Leave-one-out (L), K-fold (K), Training-testing-validation (TTV),

Not (clearly) Mentioned (NM)
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Figure Captions

1. Performance accuracy estimation using a k-fold cross-validation method
2. Relative performance of different error estimation methods

3. Error rates for marine propeller behavior

4. Mean square error for material corrosion analysis: raw data

5. Mean square error for material corrosion analysis: cleaned data for RA
6. Optimizing parameters using a 3-stage evaluation process

7. Univariate versus multivariate confidence intervals
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Procedure

1. Subdivide the data into k subsets
2. Perform k foldssuch that for each fold j:
a. Learn amode from the (k- 1) training
subsets(all but thejth subset).
b. Tes the model performance on thejth
subset and record the accuracy.
3. Calculate the average accuracy over thek folds
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Figure 1: Performance accuracy estimation using a k-fold cross-validation method
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Figure 2: Relative performance of different error estimation methods
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Figure 3: Error rates for marine propeller behavior
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Figure 4: Mean square error for material corrosion analysis: raw data
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Figure 5: Mean square error for material corrosion analysis: cleaned data for RA
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3. Assessment of best learner:
a. Creat amodel from all training data using
the best learner and parameters.
b. Test the model on the testing set.

Figure 6: Optimizing parameters using a 3-stage evaluation process
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Figure 7: Univariate versus multivariate confidence intervals
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