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Abstract: Neural networks (NN) have become to be general tools for modeling func-
tional relationships in engineering. They are used to model the behavior of products and
the properties of processes. Nevertheless, their use is often ad hoc. This paper provides
a sound basis for using NN as tools for modeling functional relationships implicit in em-
pirical engineering data. First, a clear definition of a modeling task is given, followed by
reviewing the theoretical modeling capabilities of NN and NN model estimation. Sub-
sequently, a procedure for using NN in engineering practice is described and illustrated
with an example of modeling marine propeller behavior. Particular attention is devoted
to better estimation of model quality, insight on the influence of measurements error
on model quality, and the use of advanced methods such as stacked generalization and
ensemble modeling to further improve model quality. Using a new method of ensemble
of SG(k— N N), one could improve the quality of models even if they are close to being
optimal.
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1 Introduction

The process of building functional models from empirical engineering data is important in all
engineering disciplines. Tools for fitting parametric models to data such as non-linear regression
require a priori selection of a parametric model. This selection introduces bias that might have
significant impact on the success of modeling. Non-parametric techniques avoid this problem at
the potential cost of additional computational resources. Examples of these methods are k-nearest
neighbor (Duda and Hart, 1973), smoothing splines (Wahba, 1990), other non-parametric statistical
techniques (Bishop, 1995), and neural networks (NN). NN have gained significant popularity due
to two reasons. First, it has been proven that under certain conditions, NN can create nonlinear
mappings between input and output variables (Scarselli and Tsoi, 1998). Second, this property has
been demonstrated in many applications.

NN popularity is also driven by the wrong belief that using NN for modeling is straightforward
or easy. This, in turn, could lead to incorrect use. Two elements are crucial to the application of
a modeling method;

e Understanding the theory underlying the modeling method, as well as knowledge of advanced
methods for improving modeling results.

e Understanding the process of applying the method to real data including model testing and
result interpretation.

This paper addresses these ingredients through ideas and methods that are expected to work well not
only on propeller behavior data but also on other similar data. More specifically, the contribution
of this paper includes:

e Sections 2 and 3: Reviewing the theory and practice of using NN for data modeling. We
formulate the data modeling task and the capabilities of NN models as generalized function
estimators and the process of estimating NN models. We focus on the theory and practice of
NN usage and demonstrate it on marine propeller behavior data.

e Section 4.1: Discussing the influence of data quality on the quality of models including;:
measurement errors, model building errors, and human coding errors. We show how NN
could be used to improve data integrity (Section 3.2) and analyze the influence of measurement
errors on the quality of models. Such analysis requires that the original data measurements
and their accuracy be provided.

e Section 4.2: Improving model quality by using advanced modeling techniques such as stacked
generalization (SG) (Wolpert, 1992) and ensemble modeling. We combine the two approaches
into an ensemble of SG(k — NN) models and show how several good quality models can be
combined to further improve model quality.
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2 Theory of modeling

Data modeling is a process of building a model of data. We focus on models that are used for
predicting values of new input data and not those that are used to better understand the data. We
first formulate the data modeling task and subsequently, discuss the theoretical capabilities of NN
models and their estimation.

2.1 The abstract modeling task
The problem of building a prediction model from data can be formulated as follows:

Given a training set, S of size n, (x;,y;),? = 1,...,n, drawn randomly and inde-
pendently from some unknown joint probability distribution F over the pair (x,y) of
vectors x, y, learn to predict y from x.

The solution is as follows:

A modeling tool M uses S to build a model f(x) that estimates y = f(x), i.e.,
y = f(x) Since f depends on M and S, we note it by f(x;S, M).

There are always multiple ways to create f(x; S, M). Some methods will have many degrees of
freedom and will fit the data perfectly but in doing so will in fact overfit it by wiggling through the
data points. The ability of these methods to predict new data will be rather poor. In statistical
terms, these models have large variances. Methods that have few degrees of freedom will be smooth,
thus have low variance, but might be poor approximations of f and thus be biased. More, formally,

the model bias reflects the difference between the expected value of the estimation, £(f), and the
parameter being estimated, f:

bias = E[f] - f. (1)

The model variance o reflects the variability of the difference between the model and the expected
value of the model measured by the standard error ¢ of the model distribution:

o’ = E[(f - E[f)?] (2)
The best model will be the one with best quality or best accuracy. Intuitively, model selection
will be a compromise between the bias and variance of the candidate models. Model quality and
this intuition can be formalized. Given S and a particular x, independent of S, the accuracy 6 of
f could be measured by a square loss function:

6=_Elly —9)"1=Elly - J(x; 5, M))*Ix, 8], (3)
where &[] is the expected value with respect to F.

In general, £ is unknown and therefore, # could only be estimated; for example, by testing

f(x;S, M) on an independent set C of size [, (x;,yi),¢ =1,...,[, drawn randomly from the same
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distribution /. The estimated value of 8 will be (for a square loss function):

{

S (yi — Fxi; S, M), (4)

=1

6(C, 5, M) = %

In order to be accurate, [ must be very large. Unfortunately, in most real situations we have a
fixed size database that must be used for training as well as testing. If the complete data set is used
for training and testing (i.e., S = ('), we obtain the resubstitution test which is optimistic. If we
divide the data into separate training and testing sets we get the holdout test which is pessimistic
because not all data is used for training. A better test than these two is the k-fold cross validation
(CV). In this test, the data is subdivided into k subsets. The procedure iterates on these subsets
and in each iteration, the particular subset is held for testing and the other subsets are used for
training. At the end of the process, all the data instances were used once for testing. Although it is
a better test, like the former two its results vary with different samplings of the data (i.e., of S and
C from F). In addition, the results of both holdout and k-fold CV vary due to data subdivision
into training (S) and test (C') sets. If k equals the data size, the test is called leave-one-out. For
additional details on these tests and others for comparing between models, see Reich and Barai
(1997).

Going back to Equation 3, it is easy to show that 8 can be decomposed into three terms: bias,

variance, plus some noise factor. For a square loss function the decomposition is (Geman et al,
1992):

Elly — f(x;9,M))?x, 8] = E[(y — Ely X)), 5] “noise"
+ (Es[f(x; S, M)] - Ely[x])* “bias"
+ 55[(f(X; S, M) — Ss[f(x; S, M) “variance”, (5)

where, Eg[-] represents expectation with respect to the possible S, for fixed sample size n. The
“bias” and “variance” terms correspond to those in Equations 1 and 2, respectively. The noise
element reflects the variance of y given x including measurement and human coding errors.

Typically, there is a tradeoff between the bias and variance terms. The variance can be reduced
by smoothing or by modeling data with a restricted number of degrees of freedom (e.g., through
the use of parametric techniques). Such constraints on the model would lead to high bias. In
contrast, fitting a complicated model (e.g., such as non-parametric models) may lead to low bias
but increase the variance. We cannot obtain an @ priori optimal choice between bias and variance
that minimizes the overall error (by manipulating M or S).

For feed-forward neural networks (see next section),varying the number of hidden units ef-
fectively can yield models that vary from parametric to non-parametric (Sarle, 1994). Indeed,
smoothing can be done by using a network with a small number of hidden units while overfitting
can result from a model with many hidden units.
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2.2 Theoretical background on NN models and model estimation

Some people state that the use of NN is straightforward as shown in Figure 1. In the first stage of
model estimation, data is used by the NN to build a model and in the second stage of model use,
the model is used to predict output of new input data. In contrast to this statement, the use of NN
is not straightforward but complex. Often, modeling is done without sound theoretical basis and
result interpretations are unsound. Therefore, this subsection reviews the theory of NN modeling
subdivided into two separate topics: (1) the model and its capabilities and (2) model estimation.

Figure 1: Put about here

2.2.1 NN models

Briefly, neural networks are computational architectures that combine simple units in an arrange-
ment that can then exhibit complex behavior. One of the most familiar architecture is the feed-
forward multilayer perceptron (MLP) or feed-forward multilayer NN. The architecture is composed
of layers of units called perceptrons: one layer being the input, another being the output, and in
between are additional hidden layers. Figure 2 shows a network with 2 hidden layers.

Figure 2: Put about here

The computation is done as follows. The input to the network - the vector x - is multiplied
by the matrix of weights Wy and with an additional bias vector B¢ yields the input vector to the
second layer Wox + fg. The output of units is a function of their input fo(Wox + fg), where
f is called the activation function. Those outputs are again input to the second layer; therefore,
its output is: f1 (W1 fo (Wox+ Bo) + f1). The output of the network y is calculated in a similar

manner:

y =f2(W2 fi (W1 fo(Wo x+ Bo) + B1) + 02) (6)

A common activation function f is the sigmoid function which for output values in the range [0, 1]
is f=1/(1+€7).

Many publications deal with the ability of MLP to act as universal approximators of functions.
A recent overview mentions some of them including (Scarselli and Tsoi, 1998):

1. Continuous functions on a bounded range (e.g., the n-dimensional cube [0,1]") could be
modeled arbitrarily closely using 1-hidden layer if the number of hidden units is varied as
needed (Bishop, 1995). The activation function of the hidden layer must not be a polynomial.

2. Arbitrary functions (e.g., piecewise continuous) could be modeled with 2-hidden layers. These
NN may be more efficient for modeling continuous functions (e.g., may require less hidden
units or require less model estimation time) than 1-hidden layer NN.
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In many cases, theoretical results do not provide guidelines about NN configuration or the number
of data instances required to achieve a certain performance. Although, there are studies that
provide partial information; for example, a 2-hidden layers NN with a step activation function
would require a number of hidden units that is polynomial in the desired error and exponential in
the number of inputs (Scarselli and Tsoi, 1998). Other difficulties related to NN models include:
(1) the aforementioned results hold for noise-free data, and (2) the models that are used to prove
the results might be computationally inefficient. Consequently, we should expect difficulties when
applying the theory in practical settings.

2.2.2 NN Model estimation

In order to build an approximation of a function from data the model parameters need to be
estimated. Model estimation is performed in the training phase of the MLP. In this phase, the
network is presented with a set of input-output pairs (x;,yi),? = 1,...,n. For each input x;,
the network calculates its output y?. Following Equation (4), the sum square error (SSE) for the
training set is calculated by:

i

SSE:Z(yi—yf)Q. (7)

i=1

In order to become a good model of the data, SSE must be minimized. This could be done by varying
the network parameters, i.e., weights (W) and biases (). Most often, the minimization is done
by gradient descent and the weights are updated using the generalized delta rule. Together, these
comprise the back-propagation algorithm. Note that if the activation functions f are differentiable
(as in the case of the sigmoid function), one can easily derive the gradient of SSE with respect to
the weights (e.g. by differentiating SSE in Equation (7) and using Equation (6) to calculate y?).
This simplifies the use of the gradient method. Nevertheless, the nature of gradient methods is
that they may get stuck in local minima and may not reach the optimal weight. Such problems
may be more severe in 2-hidden layer NN but could be addressed by using traditional optimization
methods to estimate the model parameters (Sarle, 1994).

There are several theoretical issues that have practical implications in model estimation and
model quality assessment:

e What shall we do if we get additional data? This question relates to the concept of consis-
tency (Geman et al, 1992). A consistent method is one that if given enough data it can estimate any
function. With a fixed architecture, NN are inconsistent. In order to make them consistent, their
number of hidden units must be increased with the size of the training set. Therefore, additional
data would probably require enlarging the NN.

e What may happen when data changes? This relates to the concept of stability (Breiman,
1996). Briefly, a method is regularized if it can be used to build a sequence of models indexed by
a sequence of real numbers. For example, MLP with one layer with m hidden units is a sequence
of models indexed by m. A regularized sequence is unstable if small changes in the data could
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cause large changes in the accuracy of models in the sequence. According to this definition, ML.P
are unstable. Consequently, systematically picking an optimal number of hidden units is difficult
because the quality of models may vary significantly when adding or removing units depending on
available data. Instability makes model quality assessment hard and model selection even harder
since statistical tests for model quality assessment such as leave-one-out or k-fold CV manipulate
data in various ways to create their estimates.

Unstable models can be stabilized (Breiman, 1996). This can be done by replacing a single test
with the average of several tests, each of which uses the same input-output pairs (x;,y;) but in
each test, noise is created independently from a normal distribution to result different (x;,y; + €;)
training sets.

e Are NN models reliable? NN in general and MLP in particular replicate known statistical
models and extend them in various ways (Sarle, 1994). However, while estimating NN models,
no confidence in the estimated parameters is provided. This contrast with confidence intervals
associated with estimated parameters of statistical models. Consequently, we cannot know whether
particular NN weights are significant or not.

In spite of these difficulties and other issues, NN are promising modeling tools. We shall now
elaborate on the practice of modeling.

3 The practical modeling task

3.1 The practice of modeling

The process of modeling real data is more complicated than the theory of model estimation be-
cause in contrast to the problem formulation in Section 2.1, many aspects of the practical problem
are initially unknown. Only recently the practical use of machine learning (ML) has been recog-
nized as critical by the general ML, community (Reich, 1997; Reich, 1998). A seven-step process
called Conteztualized ML Modeling (CMLM) which is shown in Figure 3, can be used for directing
modeling.

Figure 3: Put about here

As the figure shows, sometimes these steps must be revisited if subsequent modeling steps fail.
For example, better understanding of a problem at the end of step 2 might reveal that critical
information was not recorded (e.g., measurement errors, see Section 4.1). Improving the model
would then require collecting the missing information. Modeling iterations are costly but are
inherent parts of modeling.

There is sufficient evidence in the literature to reveal that none of the seven modeling steps is
trivial or could be executed without deep understanding of the issues involved in modeling. To
illustrate them, their execution in the context of modeling propeller behavior is detailed next.
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3.2 An example: Modeling marine propeller behavior

We now illustrate the seven modeling steps of Figure 3 in the context of modeling marine propeller
behavior. Creating behavioral models of marine propeller behavior from empirical test data is
extremely valuable for the design iterations of such propellers.

e Problem Analysis

The practical modeling task deals with creating a model that can be used to estimate the
behavior of a series of propellers at various operating conditions.

The quality of available empirical data is poor and can hardly be used for constructing new
models. New good quality data is required (i.e., (x;,¥yi),? = 1,...,n) that is representative of the
possible situations we anticipate to encounter (i.e., S must be representative of C). The data must
be sufficient to cover the domain of interest (i.e., enough to “cover” the distribution F); although,
collecting large data requires significant resources, especially when tests involve sea trials.

e Collecting data and knowledge

The data for our study were created in open sea trials using a modified USN 36 ft. boat fitted
with commercial propellers (Denny et al, 1989). The data include 301 instances and cover the
following dimensionless parameters: thrust coeflicient (K7), torque coefficient (Kq), efficiency (7),
advance coefficient (.J), pitch diameter ratio (P/D), expanded area ratio (EAR), number of blades
(7), and cavitation number (o). The task is to build a model that maps the input data described
by the propeller geometry and operating conditions (i.e., Z, FAR, P/D, J, etc.) to the output
which is the performance of the propeller (i.e., K7, Kg, and 7). The reported accuracy of data
collection during the experiment was:

e Propeller rps (n): +1 rpm (£1/1000 = 0.1% full scale; max rpm is not given therefore
this figure is an approximation assuming engine rpm to be 1500 and given 1.5:1 reduction
gear-box). Note, the full-scale relative error of rps is equal to that of rpm.

e Ship speed (V): £0.1 knot (£0.1/20 = 0.5% full scale; max ship velocity is not given
therefore this figure is an approximation).

e Thrust (7): £25 [b (+£0.5% full scale; for lower T values, the relative error is larger).

e Torque (Q): £64.8 in — (b (£0.2% full scale; for lower () values, the relative error is larger).

The experimental data is displayed in many graphs that include all test instances described by
the dimensionless parameters. We used data extracted from the original graphical data and given
to us by Neocleous and Schizas (1995). In their study, propeller behavior models were created
using three types of NN: feed-forward, recurrent nets, and another proprietary net. For each type
of NN, different architectures were explored. The accuracy of the models in terms of SSE was
evaluated using resubstitution and holdout (248 instances were used for training the NN and 53
test for testing it). These tests are suboptimal; nevertheless, additional, previously conducted tests
(Reich and Barai, 1999) and the tests in this study reaffirm that NN can be used to model marine
propeller behavior data effectively.
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e Creating representations for the problem, data, and knowledge

Five parameters - J, P/D, KFAR, Z, and o - were selected as inputs and three - K7, Kg, and
7 - as outputs. Simple normalization was performed to the parameters. These parameters are
dimensionless; otherwise, it is theoretically better to transform the data into dimensionless format

(Rudolph, 1997).
e Selecting solution method

The feed-forward multilayer perceptron was selected due to its recognized ability (Section 2.2)
to perform non-linear regression; the apparent smoothness of the function being modeled; and
the availability of seemingly sufficient data. We chose to use the implementation (with improved
backpropagation) of MATLAB Neural Networks Toolbox (Demuth and Beale, 1994).

e Selecting neural networks model parameters

After several training exercises, we fixed the neural network architecture to have two hidden
layers with 30 hidden units in each layer. The stopping criteria were SSF equals 0.5 and learning
rate equals 0.02, keeping a compromise between the accuracy and the computational time. Note
that no optimization of the architecture or training parameters was performed. In contrast, we
selected a common architecture and a set of parameters that is suboptimal in terms of quality
but that will require reasonable training time. We needed reasonable training time because the
statistical exercises conducted in this work require many cycles of training and testing. In situations
where no restrictions on computational time are relevant, the setting of parameters should reflect
the tradeoff between error bias and variance. Setting these parameters is more an art than a science.
They depend on the amount of data and its quality and on the complexity of the function to be
approximated.

e Evaluating and Interpreting Results

The NN performance was evaluated using several accuracy estimation tests and the results for
three instances were found to be poor. They caused errors that ranged between 30% to 170% in
the leave-one-out test and also high errors in the resubstitution test. These errors indicate that
those instances might be erroneous. Following the inspection, two instances were identified as
coding errors introduced in the first extraction of data from the original charts and the third was
identified as a suspected data collection error. This activity demonstrates the careful use of tests
for checking data integrity or novelty. Subsequent results reported in this paper are based on the
original electronic data without any modification.

A good assessment of model quality can be obtained from a 10-fold CV test (see Section 2.1);
we performed ten such tests to account for the variability due to the subdivision of data into ten
folds. The minimum and maximum values of these runs, as well as the computed mean relative
error and standard deviation for the parameters K7, Kqg, and 7 are tabulated in Table 1. The
sensitivity of estimating K to data subdivisions seems larger than the other parameters. The
scatter of some of the original graphs (Denny et al, 1989) suggests that we should not anticipate
getting more accurate results than the present model provides (see also Section 4.1). Altogether,
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this exercise demonstrates the non-trivial nature of model quality assessment and its dependence
on the quality of data and complexity of function being estimated.

Table 1: Put about here

Note, however, that the results do not include take into account the variability of model quality
due to sampling of S and C from F’ (e.g., the choice of the particular sea trials performed), nor do
the variability of model quality due to the choice of learning parameters and NN architecture. The
first dependence could be assessed with bootstrapping: another statistical test for model assessment
(Reich and Barai, 1999). However, bootstrapping is a tedious and time consuming process. Also,
the first dependence has implications to the design of data collection: how should sea trial conditions
be selected to maximize model quality? The second dependence could be assessed by a careful study
of NN modeling parameters; however, we did not do it in this study.

e Solution deployment and maintenance

Our studies show that NN build practical quality models of marine propeller behavior. Our
intention is to develop the modeling capabilities further and deploy such models as parts of a
complete solution for supporting propeller design (Reich et al, 1997).

4 Understanding and improving model quality

In order to understand and further improve model quality, we focused on two topics:

1. The influence of measurement errors on model quality.

2. Improving modeling using stacked generalization and NN ensembles.

The first topic provides a lower bound on the quality of models we can hope to estimate, and the
second topic, generates the best model quality.

4.1 Influence of measurement errors on model quality.

Experimental data always have measurement errors. This raises questions such as: how reliable
is the model given that measurement errors exist? The measurement errors in the propeller data
collection were given in Section 3.2. Since the modeling uses dimensionless parameters, their errors
need to be calculated from raw data. The errors in the five input variables can be calculated as
follows:

e P/D, FAR, Z, are assumed to be error-free.

o J=Vy/nD=V(1—-Wr)/nD; therefore, AJ = J - (AV/V+ A1 -Wr7)/(1-Wr)+ An/n+
AD/D).

10



Reich & Barai (2000), Eng App of AI, 13(5):377-386

D is assumed to be accurate. Also, we assume that (1 — Wr) is constant for all operating
conditions although it is certainly not so. There are obviously errors associated with calcu-
lating Wr as seen from Figure 5 in (Denny et al, 1989). This assumption might contribute
significant error that cannot be incorporated into the present analysis. Therefore, based on
the available data, a lower bound on the relative error of .J is 0.5% + 0.1% = 0.6%. This
figure is a lower bound since it sums full scale relative errors that are also lower bounds. If
we had the original data we could have calculated directly the error of each dimensionless
parameter.

o 0 =2gH/V2=29H/(V(1 — Wr))?% therefore, Ao = o - (AH/H +2- (AV/V + AWp/Wr)).
As before, no error is associated with the calculation of the mean thrust wake factors. The
error in measuring H is not given but might be quite significant. Therefore, the lower bound
of the relative error of .J is 2 - 0.5% = 1% although, in fact, it is much higher.

The errors in the output variables K7, Kg, and 7 are:

o Ky =T/pn?D*; therefore, AKT = Ky - (AT/T +2 - An/n).
The lower bound of the relative error of K7 is thus 0.5% + 2-0.1% = 0.7%.

o Ko =Q/pn?D5, therefore, AKg = Kg - (AQ/Q + 2 - An/n).
The lower bound of the relative error of K¢ is thus 0.2% + 2 -0.1% = 0.4%.

o n=(J27)(K1/Kg) = (V(1 — Wr)/nD2r)(TD/Q); therefore, Anp=n- (AV/V + An/n +
ATT+ AQJQ).
The lower bound of the relative error of 7 is thus 0.5% + 0.1% + 0.5% + 0.2% = 1.3%. As
before, Wr could have contributed large error to this figure.

These error figures are underestimated lower bounds of the true relative errors since: (1) some
parameters are assumed to be accurate while in fact, they are not; and (2) the calculated relative
errors are correct only for the full scale while for smaller values of parameters, they are higher.

The contribution of measurement errors of output variables to model accuracy is included in
the “noise” term in Equation 5. Therefore, even if we minimize the bias and variance, We cannot
expect to obtain models with relative accuracy better than the measurement errors or the calculated
relative errors as reflected in that term. Moreover, the noise term does not include the contribution
due to errors in the input x. Likewise, most studies dealing with noise assume the output parameters
are noisy. Input errors may lead to a biased solution that blur or smooth the original function (Tresp
et al, 1994).

4.2 Improved modeling by using ensembles

The quality assessment figures obtained by statistical tests such as 10-fold CV are global quality
measures averaged over many predictions. They say nothing about the quality of predicting a

11
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particular propeller behavior in one particular operating condition. Stacked generalization (SG)
is a method that can be used to estimate the local prediction error of another model (Wolpert,
1992). To illustrate (see Figure 4), one algorithm may create a function from x to y in the original
data space, y = f(x) The errors between the data and the model prediction are used as input to
a second algorithm in the error space to create a model between an augmented input x’ and the
errore=y —y°, é= f’(x’)7 where y is the target output from the data set and y? is the output
of the first model. The augmented input is the original input x and the description of the instance
closest (nearest neighbor) to the new input in the training set. The second model could be used
to predict the error that the first model would have when predicting the output of a new input.
Together, both models can yield a better estimation that is calculated by ¥ + é. To be safe, the
contribution of the second model could be halved to yield (Wolpert, 1992):

$+05-8 (8)

Figure 4: Put about here

Unfortunately, SG does not always work. Figure 5 shows the equivalent of Figure 4 for noisy
data. The error in the original space fluctuates around the model and the model of the error is
close to zero. SG would fail to improve model quality with such data because the nearest neighbor
to a new input does not provide useful information for predicting its output.

Figure 5: Put about here

We are developing improved versions of SG. The original SG uses one nearest neighbor to
augment the input space. Our initial improved version uses the k-nearest neighbors instead of one.
We denote this version by SG(k-NN). We anticipate improved performance similar to the improved
performance when using k-NN regression instead of 1-NN regression in statistics. The best value
of k depends on the particular problem and available data.

Many ways exist to create models in the original and error spaces. In our implementation, the
models in the original space are the same as before and the model in the error space was implemented
by a NN as well. The results of SG(k-NN) for £ = 1,---,6, calculated according to Equation 8,
are shown in Table 2. The use of the SG(k-NN) algorithm with different £ values improves the
basic SG and is better than the results of the particular CV test whose data subdivision was
used in all the tests (shown as the first entry in the table). Nevertheless, these improvements are
small. We repeated these tests several times and obtained similar trends. No statistical tests were
conducted because the results are clearly statistically insignificant and conducting such assessment
is computationally expensive for SG. From these results we can infer that our situation resembles
Figure 5 rather than the one depicted in Figure 4. We should also acknowledge that model quality
is very high given the lower bounds derived from measurement errors we calculated before and our
understanding that indeed they are underestimated lower bounds on model quality. Nevertheless,
we can still use the data we have collected thus far to further improve model quality.

12
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Table 2: Put about here

The use of SG(k-NN) has generated a family of models. We could use them as an ensemble of
models. Under certain conditions an ensemble performs better than any of its constituent models.
In particular, the following heuristics apply: (1) quality: the ensemble models should be of good
quality; and (2) diversity: the errors the models make should not be in the same cases so that they
could compensate each other.

Krogh and Vedelsby (1995) showed that an ensemble error can be calculated by:
Ej=E; - 4, 9

where,
E; is the ensemble error for jt* output parameter,
F; is the weighted average of error of individual networks for jt* output parameter, and

A; is the weighted average of ambiguities in j** output parameter.

The weighted average of error of individual networks for j** output parameter, E;, is calculated

by

FJ' = ; w;;0;5, (10)
and the weighted average of ambiguities in j** output parameter is calculated by

7= Yo, (11)
where, )

w;; is the weights assigned to output of jt* parameter of i*" network model,
d;; is the SSE of jt" parameter of i network model, and
«;; is the ambiguity in jt* parameter of i** network model.

The ambiguity «;; is calculated by
—\2
Q5 = (yfj - yj) (12)
where,
y;; is the output of jt" parameter of i network model, and
n

y; is the weighed mean output of j** parameter i.e. 3 Wiy
=1

Equation 9 separates the generalization error into one term that depends on the generalization
errors of the individual models and another term that contains the correlations between them. The
first is low if models quality is high (heuristic 1) and the second is low if the diversity is high
(heuristic 2). Krogh and Vedelsby (1995) also show how to compute the values of optimal weights
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w;;. This calculation requires large data set for training and testing. In cases where a small dataset
is available, it is advisable to assign equal weights that lead to a conservative ensemble.

In this study, we assigned equal weights to the different models generated by SG(k-NN). No
particular attempt has been made to generate a diverse ensemble; however, the ensemble turned out
to be diverse. Meaning, the errors that different models make are related to different predictions.
Therefore, the different ensemble models complement each other. The results of the ensemble of
SG(k-NN) are given at the end of Table 2. They show significant improvements above each of the
models alone and above the original CV test. Again, given the lower bounds on model quality,
ensemble modeling moves us very close to the optimal model given the available data and nature
of function. Additional details on ensemble modeling can be found elsewhere (Barai and Reich,
1999).

5 Summary and conclusions

In respect to modeling all kinds of problems, no method can be singled out to be superior than
their peers (Schaffer, 1994; Wolpert, 1995). In fact, in classification problems, averaged over all
modeling problems, all methods are equal. For the modeling of marine propeller behavior, NN are
candidates for generating good quality models.

Multilayer perceptron neural networks provide means for modeling arbitrary functions. They
can clearly model the behavior of marine propellers. These capabilities were demonstrated with
basic NN modeling without any optimization to NN configuration or parameters. New methods
for improving the quality of the basic models, SG(k-NN) and ensemble modeling, were discussed
and demonstrated. They will work also on other similar problems. These methods generated near-
optimal models, given the nature of empirical data available and the function being estimated.

Model building should be done carefully, starting from data collection, model quality estimation,
to solution deployment. We presented a seven-step process for modeling data and demonstrated
it. Since modeling technology changes rapidly, one has to constantly monitor it. We demonstrated
that even in cases when basic modeling performs well, advanced methods can still improve the
model quality.

Before closure, one note about research methodology is needed. A great amount of data is
collected on a regular basis for various studies in different applications. However, in research
reports, some data is manipulated, summarized, or transformed, rendering it unusable for future
uses. It will be beneficial for future knowledge advances if this data can be made available in its
raw form in central repositories accessible to researchers.
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6 Nomenclature

A
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F,e
FAR
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Ensemble ambiguity

Testing set

Propeller diameter

Model error

Expanded area ratio

Function from z to y

Joint probability distribution
Acceleration due to gravity

Total static head at shaft centerline
Advance coefficient J = V4 /nD
Torque coefficient, Ko = Q/pn?D®
Thrust coefficient, K7 = T/pn*D*
Size of testing set

Modeling tool

Propeller rps (revolutions per second)/ size of dataset or training set
Propeller pitch

Torque

Training set

Thrust

Ship speed

Advance speed V4 = V(1 — Wr)
Thrust wake fraction

NN weight matrix

Ensemble weights

Input vector

Output or output vector

Number of blades

Ensemble ambiguities

NN biases

Errors of single ensemble models
Propeller efficiency, n = (J/27)(K1/Kg)
Noise

Expectation

Water density

Cavitation number / model variance
Model accuracy or error

Estimate of z

Measurement or calculated error of z
(Weighted) average of z
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Table Captions:

1. Relative error rates for marine propeller behavior in ten 10-fold CV test

2. Error rates of SG(k-NN) and their ensemble
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Table 1

Kt

I(Q

Minimum
Maximum

Mean
Std. Dev.

8.52
7.48

4.93
4.03

4.34
3.93

7.91
0.36

4.57
0.27

4.18
0.12
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Table 2

Error of Individual Networks

Parameters
Kt I(Q n
10-fold CV — 8.09 | 4.47 | 4.20
No. of neighbors |
1 (original SG) 7.41 | 4.48 | 4.30
2 7.03 | 448 | 4.12
3 7.21 | 4.57 | 4.16
4 7.27 | 4.59 | 4.10
) 7.33 | 445 | 4.19
6 7.45 | 4.56 | 4.13
Ensemble Error
E 7.28 | 4.52 | 4.17
A 1.45 | 1.03 | 0.73
E 5.83 | 3.50 | 3.43
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Figures Captions:

1. Using NN to build mappings

2. MLP architecture

3. CMLM: A model of ML use in practice (Reich, 1997)
4. Error prediction with stacked generalization

5. Error prediction of noisy data with stacked generalization
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(a) Model Estimation

(Input data,Output data)

(b) Model Use Modeling

Model

New |nput _
(1/0 mapping)

——— Predicted Output

Figure 1
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Figure 2
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