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ABSTRACT
The quality of knowledge a system has substantially influences its performance. Often, the terms knowledge,
its quality, and how it is measured or valuated, are left vague enough to accommodate several ad hoc
interpretations. This paper articulates two definitions of knowledge and their associated value measures.
The paper focuses on the theory underlying measurements and its application to knowledge valuation; it
stresses the issue of constructing meaningful measures rather than discussing some of the desirable properties
of measures (e.g., reliability or validity). A detailed example of knowledge valuation using the measures
is described. The example demonstrates the importance for system understanding and the difficulty of
valuating knowledge. It shows the importance of employing several different measures simultaneously for
a single valuation. The paper concludes by discussing the scope of and relationships between the measures.

1 INTRODUCTION

In a world with information highways, many kinds of data, information, or knowledge become commodities
whose trade will be based on, or requires methods of, valuation (Mowshowitz, 1994). The study of
knowledge valuation methods is also motivated by more immediate reasons. The first and most general
motivation is related to education and knowledge acquisition: Knowledge valuation methods can help
identify good knowledge to be used by people or for inclusion in computer systems. The second motivation
is methodological: Knowledge valuation methods can support the evaluation of systems developed in
research or practice and the determination of their relative merit. This evaluation is essential for providing
feedback on research progress and for supporting the refinement of ideas. In some situations, such as when
developing systems by prototyping or developing learning systems, knowledge valuation methods must be
used within projects and not only for comparing between them. A third motivation is related to building
integrated systems: When a complex computer system has several competing modules for solving each of
its task, knowledge valuation can identify which module to invoke for solving the task.

There may be other motivations to study knowledge valuation but in this study, we limit the discussion to the
second function: The valuation of knowledge embedded in, or to be used by, computer support systems. This
motivation is related to the general need to evaluate intelligent systems and to the active field of verification

1An different version appeared in the Proceedings of the Seventh Banff Knowledge Acquisition for Knowledge-Based Systems
Workshop, Banff, Canada, 1992
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and validation of expert systems. The state of evaluating intelligent systems was documented by Green and
Keyes (1987) and seemingly has not progressed much since (Guida and Mauri, 1993; Gupta, 1993). Green
and Keyes described the reluctance of system developers to verify and validate their products. The lack of
effort spent on evaluating software systems in general, and expert systems specifically is also discussed by
Adelman (1991) and by Cohen and Howe (1989) who also illustrate the benefits from evaluation to research
and the need to support evaluation.

When evaluation of systems is addressed in studies, it is often performed in an ad hoc manner (Guida and
Mauri, 1993). The evaluation criteria are often ill defined or even meaningless. Even recent proposals about
evaluation (e.g., (Guida and Mauri, 1993)) or group projects aimed at evaluation (e.g., the Sisyphus project
(Linster, 1992)) do not address the theoretical issues underlying measurements we list below.

This status is not surprising given that in the more general field of software engineering the status is the same.
For example, Zuse and Bollmann (1987) discussed the chaotic state of measures in software engineering.
Most of the software measures appearing in the literature do not conform to the notions of measurement
theory (Pfanzagl, 1971; Roberts, 1979; Stevens, 1946). The argument is not that some measures are superior
to others for different purposes or under certain conditions, but that measures must have certain properties
that determine their meaningful status, and that those properties are violated in most studies. This paper
attempts to remedy this situation by presenting key issues that must be addressed when developing measures
for system evaluations.

The topic of knowledge valuation introduces several prerequisite issues. First, how is something in general
being valuated or measured? Tied with this question are the concepts of measure (or metric) and scale
we review in Section 2. Second, what do we mean by knowledge? Third, how can valuation methods be
applied to knowledge. Section 3 provides two definitions of knowledge and Section 4 proposes four methods
for valuating knowledge: structural qualitative and quantitative, and functional qualitative and quantitative.
Section 5 describes the experimental design support system BRIDGER that is used to illustrate the valuation
measures. Section 6 provides a detailed example of measuring the bridge design knowledge that BRIDGER

has. The extent of the valuation allows the appreciation of the many aspects affecting the selection and
application of different valuation measures of knowledge. Section 7 analyzes the example, discusses the
construction of measures, and outlines some future work.

The discussion in this paper should be viewed as outside the controversy about whether computer can
think. We will define knowledge without relation to human knowledge or intelligence and similarly in the
example, will refer to design knowledge without reference to human design. By stating this, we intend to
avoid McDermott’s (1981) criticism about the misuse of terminology, refrain from dealing with unresolved
controversies that are orthogonal to the topic of the paper, and maintain the focus on the methodological
aspects of system evaluation, in general, and knowledge valuation, specifically.

2 MEASURES AND SCALES

2.1 Basic definitions

In order to measure something meaningfully, one has to use an appropriate measure or a scale.2 These
concepts can be formalized. First, consider two relational systems, empirical or observed denoted by and
formal denoted by . is defined by

= A R1 . . . Rn O1 . . . Om where (1)

A is a non empty set of objects

2The following discussion on the theory of measurement borrows much from Zuse and Bollmann (1987).
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Ri are relations on A and

Oj are binary operations on A;
and is defined similarly, with the set of objects B, relations Si, and binary operations Pj on B. For example,
an observed relational system may contain the set of physical objects, the relation heavier-than, and the
binary operation of assembling-two-objects . The formal relational system can consist of the set of positive
real numbers, the relation larger-than, and the addition operator.

Second, there must be a function , called metric or measure, from the observed to the formal relational
system. If this metric preserves the relations and binary operations, i.e., i j and a b a1 . . . ak A

Ri (a1 . . . ak) Si ( (a1) . . . (ak)) and (2)

(a Oj b) = (a) Pj (b) (3)
it is called a homomorphism. The tuple ( ) where is a homomorphism is called a scale. A mapping
that assigns each object its weight is a homomorphism and therefore a scale.

Intuitively, preserving the relations (equation 2) means preserving the equivalence classes of the original
relation, so that the ordering between entities is maintained. This is a basic requirement for measures.
Preserving the binary operations (equation 3) means that if we want to create entities from others, that we
need not measure the new entities but we could assess their value from those of their building blocks. In the
area of knowledge acquisition, machine learning, or validation of expert systems, this aspect is often ignored,
but is most critical because the systems being measured continually evolve and increase their knowledge
“content.”

2.2 Types of scales

There are several types of scales: nominal, ordinal, interval, and ratio. The meaning of the different scales
is intuitive. They can be defined formally depending on the type of transformations, g : (A) B, that can
map the scale ( ) to another scale of the same type. For example, a ratio scale admits only a similarity
transformation, i.e.,

g(x) = ax a 0 (4)
whereas an interval scale admits the following transformation

g(x) = ax + b a 0 (5)
For example, the mapping that assigns each object its weight is a ratio scale; it can work with Kg or lb as the
measuring units. The translation between them works according to equation 4.

The type of scale determines its uses for valuation. For example, we can calculate the arithmetic mean
of interval and ratio scales, but can only calculate percentage with a ratio scale. Thus, it is meaningful to
calculate the percent increase of weight, but meaningless to calculate this for temperature which is based on
an interval scale. The types of scales can be ordered depending on their “informativeness” where the ratio
scale is the most informative, i.e.,

nominal ordinal interval ratio (6)

To be meaningful, measures used to valuate knowledge should have all the aforementioned properties of
scales, especially the preservation of the binary operations that is often neglected.3 These are the binary
operations that give hope for the ability to combine small building blocks such as pieces of knowledge into
larger, more “knowledgeable” one. To illustrate the benefit from this requirement, consider that instead of
the observed system with the physical objects we had an observed system whose set of objects consisted of
sets of rules, its relation was more-knowledgable, and its binary operation was the union of rule sets. We
could have mapped a set of rules to a positive number denoting its knowledgeability or IQ. If we were able

3Roberts (1979) briefly mentioned that there is a controversy about whether the binary operations are required for the definition
of measures or not.
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to devise a mapping that would be a homomorphism, we would have been able to tell what is the IQ of a
combination of several rule sets by adding their corresponding IQs.

One note about quantification of metrics is due. The informativeness of a scale correlates with it being
quantified. Thus interval or ratio scales are much sought after compared to nominal or ordinal scales. Often,
the quantified scales are perceived to be related to more “scientific” procedures, or to reflect a more mature
understanding of a subject matter, or even to be objective. We note that in many cases, there can be many
quantified scales between two relational systems and there may be situations that no perfect quantified scale
can be defined,4 yet some are used nonetheless. If such a choice is not considered subjective, it is theory-laden
and intersubjective, or at best, interpersonal (Kyburg, 1984). Thus, no valuation can be objective.5

Also, often a quantified valuation is impossible and sometimes it is inappropriate for some measurements. In
such cases, combined qualitative and quantitative valuation methods are appropriate (Kaplan and Duchon,
1988). In all cases, however, independent of the type of scale used, the valuation methods must be designed
to have the properties of scales. That is, the construction of a good metric or measure for knowledge involves
creating the observed and the formal systems as defined in equation 1 and making sure that the metric is a
homomorphism. In particular, it is critical to guarantee the preservation of the binary operations (equation
3).

2.3 Direct and indirect measures

Some properties of objects can be measured directly.6 Weight and length have direct scales. Length is the
prototypical direct measure. We can “observe” its value and the measurement directly corresponds to our
observations. It is almost as if we do not need the formal system for defining the metric since it is almost
identical to the observed one. We cannot, however, measure directly intelligence or the knowledgeability
(or expertise) of a person or a system. We may have some intuition about who is smarter or more expert than
another but there is no dependable way that we can define an ordering and be able to generate equivalence
classes for defining a relation in the observed system and subsequently a scale to allow for a direct measure
of intelligence (Kyburg, 1984).

Since we have a tendency to seek quantifications, we may look for an indirect way to measure intelligence,
such as using IQ or performance tests. An indirect measure has to satisfy some necessary conditions. It
has to conform to our intuition about the direct measure. That is, it has to be valid. Since we have no
way to “combine” human intelligence (unless we talk about committees of experts, and if we do, there
is no way to predict what is the “intelligence” of a committee from that of its members), validity only
relates to our intuition about the relations in the observed system. Thus, the indirect measure must be some
monotonic transformation of the direct measure. However, with respect to the indirect measure, such as
an IQ test, any monotonic transformation of it will also fit our direct judgment and potentially many other
non-monotonic transformations of IQ. Therefore, validity may not be such a strong condition. The second
necessary condition is reliability. It relies not merely on replicability of measurements but on our believe
that the property being measured is somehow invariant. A reasonable assumption when dealing with systems
that do not learn or evolve through development.

Measuring human intelligence is different than measuring the knowledge of intelligent systems. As we
said, we cannot “combine” human intelligence. Therefore, for human intelligence, the binary operations in

4Consider the study in (Adelman, 1989) reporting no (or almost no) significant differences in knowledge base quality when it
was developed by varying the domain expert, elicitation method, and the knowledge engineer. Since we would have anticipated
differences, the results suggest that quality scales are extremely hard to formulate.

5We disagree with Gaines and Shaw (1989) reference to “objective knowledge” as the knowledge arrived at by consensus among
experts; we view such knowledge as been intersubjectively created within a constructivist viewpoint.

6This section borrows from Kyburg (1984).
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equation 1 are ignored. This omission neglects the major difficulty underlying the meaning of measures that
arises in the presence of the binary operations, and leaves us to deal with a task similar to the validation of
intelligent systems by various types of performance experiments as discussed elsewhere (Adelman, 1991).

In contrast, for the knowledge sharing initiative, it is required that knowledge be combined to yield better
knowledge. Thus, the binary operations are critical and must be taken into consideration when developing
measures. Consequently, indirect measures of systems’ knowledge are much harder to devise than those for
human intelligence.

3 WHAT IS KNOWLEDGE?

Before discussing the value of knowledge and how it may be measured we must define what do we mean
by the term knowledge. The two definitions offered are not a contribution of this work, they merely reflect
existing perspectives. In defining knowledge it must be understood that the definition dictates the type of
valuation measures that can be applied.

Many researchers or studies on knowledge-based systems avoid the question of what knowledge is by
discussing knowledge representation.7 Implicitly, these studies define knowledge as:

STRUCTURAL DEFINITION: Knowledge is whatever is represented.

Knowledge is therefore a static entity; it may include facts, axioms, derivations, causal relations, mathe-
matical models, etc. Knowledge may be measured directly. There is also a definition of knowledge as a
dynamic entity:

FUNCTIONAL DEFINITION: Knowledge has a purpose. Knowledge is what a system has that allows it to
attain goals.

Thus, knowledge cannot be observed (or measured) directly, but rather, indirectly through observing the
intelligent behavior of a system.

Doyle (1988) termed these definitions as: (1) explicit knowledge which is what is represented; and (2)
implicit knowledge which is what can be deduced from explicit knowledge which, in turn, depend upon
the inference mechanism. Doyle argued that adopting the explicit definition has several limitations: (1) it
cannot explain actions that are not logical, default or nonmonotonic reasoning; (2) it cannot explain some
psychological phenomena; and (3) it cannot handle inconsistencies that naturally arise, for example, in
knowledge generated from several experts.

Defining knowledge in the structural way and considering the reasoning mechanisms that operate on it is
different than defining knowledge as a functional entity. It is only with very simple knowledge representation
schemes, small knowledge bases, and simple inference mechanisms that a prediction about the expected
performance of knowledge will be reasonable based solely on structural inspection; and even then, it will
only be a prediction. In more complex situations, (and in agreement with Doyle,) these predictions will fail.
In general, it is undecidable to determine performance from structural knowledge even when considering
the mechanisms that manipulate it. Finally, the distinction between structural knowledge plus reasoning
mechanisms and functional knowledge is analogue to the distinction in science between a hypothesis and its
testing — definitely two distinct concepts.

7It is interesting to recall a recent exchange in the KAW electronic mailing list about what knowledge is and whether it is even
necessary to answer this question. This exchange demonstrated the confusion and differences in understanding the concept of
knowledge.
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3.1 Structural Definition

The structural definition has several appealing properties. The main one is knowledge sharing (and/or
trading). If knowledge is what is represented, then knowledge can be abstracted from the system using it and
shared with another reasoning mechanism. Two “quantities” of knowledge could be added to yield a larger
knowledge base, or knowledge could be transferred between knowledge systems (Neches et al., 1991). A
knowledge interface format such as KIF (Genesereth and Fikes, 1992) is expected to facilitate this transfer.
Another appealing property of the structural definition is that it facilitates easy valuation performed by simply
inspecting the declarative structure of knowledge (with or without considering the inference mechanisms).
This is much cheaper than executing behavior assessment experiments.

There are some difficulties with the structural definition. It detaches knowledge from its method of acqui-
sition, although almost by definition, the act of acquisition determines the meaning of knowledge. When
knowledge acquisition terminates, some meaning may be unrecoverable. For example, in the process of
knowledge acquisition, uncertainties regarding the knowledge are established and their manipulation is not
axiomatized declaratively but embedded in the inference mechanism. Later it may be impossible to recover
the sources or the exact meaning of the uncertainties even if they were axiomatized. To illustrate, it has been
observed that if the uncertainty handling mechanisms are changed, the ability to use the knowledge or the
performance may decrease (Shortliffe, 1976). This difficulty suggests that one cannot generate knowledge
by one mechanism that employs certain probabilistic models and “plug” it into an expert system that uses
different models and expect the system to function properly.

Another difficulty with the structural definition arises since even though this definition focuses on what
is represented, the ultimate aim of knowledge sharing or exchange is the solution of complex problems.
Therefore, it is acknowledged that knowledge has a purpose which is not tested and, at best, can only be
hypothesized from the structural measure.

Last, it is unclear that knowledge can be plugged into a system and function well. Humans require education
and learning to assimilate new knowledge rather than reading declarative structures. This was the idea
behind developing GUIDON2 to use the knowledge of NEOMYCIN to teach students (Clancey, 1988) without
letting the students look at the low level knowledge representation. Similarly, it may be required to train
systems with new knowledge rather then plug it into their memory.

3.2 Functional Definition

Newell (1982) opposed to the structural view of knowledge. He argued that “knowledge is a distinct notion,
with its own part to play in the nature of intelligence,” independent of representation. In order to define
knowledge, Newell defined the “principle of rationality: If an agent has knowledge that one of its actions will
lead to one of its goals, then the agent will select that action.” This principle governs the use of knowledge
for making the appropriate actions. Knowledge is therefore defined as “whatever can be ascribed to an
agent, such that its behavior can be computed according to the principle of rationality. [...] Knowledge
is a competence-like notion, being a potential for generating action;”8 therefore, knowledge manifest and
should be evaluated functionally. This means that knowledge can be described in terms of its operation to
satisfy the goals of the design system. If a system cannot use a piece of information in its reasoning, then
the system does not have this knowledge. The relation between knowledge and representation is clear. First,
“representations exist at the symbol level” and not at the knowledge level. Second, “knowledge serves as

8See Fetzer (Fetzer, 1990) (1990, p. 127-130) for a critic on this definition. In addition to this criticism, continental philosophy
has significantly different ideas about the nature of knowledge, its interpretation, and understanding (Mueller-Vollmer, 1985). See
also (Mallery et al., 1986), for a review of hermeneutics related to computer understanding.
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the specification of what a symbol structure should be able to do.”9 Even though, the actual implementation
of the symbol structure is only an approximation of the knowledge level.

4 VALUATION MEASURES

The valuation of knowledge depends on what we define as knowledge. For each of the definitions, two
complementary measures, qualitative and quantitative, are proposed.

4.1 Structural Measure

The process of structural valuation is similar to a “brain surgery.” Knowledge is measured based on its
internal structure. Since a crucial aspect of knowledge is its use in performance tasks, the structural measure
will probably involve projecting how the knowledge will perform in solving problems.

Qualitative measure. The qualitative structural measure (QLS) is based on the assumption that humans
can understand declarative knowledge embedded in systems. The assumption is based on past practice with
small expert systems having simple knowledge representation schemes such as traditional production rules.
In rule-based systems (albeit without uncertainties) knowledge can be verified to be free of redundancy,
conflicts, circularity, and incompleteness (Nazareth, 1989). Much work on the evaluation of (rule-based)
expert systems deals with these kinds of verifications. Once problems are discovered, it is the task of the
expert (or knowledge engineer) to assess the situation and address it. This assessment is done qualitatively.10

Similarly, in machine learning, the comprehensibility of knowledge generated is described as an important
measure by some researchers (Michalski, 1986). This measure, however, has evolved from research
on concept learning where the structure of knowledge is sufficiently simple and the task is a single-
step classification that is easy to comprehend and evaluate, and it is often easy to predict the knowledge
performance from its structure.

Contrary to small and simple systems, in large and complex systems, it is hardly possible to understand what
is the role of a small piece of knowledge and envision its potential run-time interactions with additional
knowledge. Thus, such systems are hard to validate structurally.

It will become clear from the example that it is difficult to define the QLS to have an ordinal scale so it can
be used to compare between different knowledge contents. The straight forward solution of using expert or
user ratings will probably not support a homomorphic measure.

Quantitative measure. The quantitative structural measure (QNS) quantifies the structure of knowledge.
Viewing knowledge as information allows such quantification (e.g., (Shannon, 1948; Boulton and Wallace,
1973)). A heuristic measure for assessing the quality of a classification, which is relevant to the example
described later, was proposed by Gluck and Corter (1985). A generalized form of this measure, called
knowledge utility (KU) is used in the illustrative example (Section 5).

In the context of statistical decision theory, (and with several other assumptions,) one can attempt to quantify
the value of knowledge. Skyrms (1990) defined knowledge as something that allows making informed

9The view of knowledge as a specification for its structural description was used, for example, by Levesque (1984) for building
knowledge representation that can support certain functions; and by Kyburg (1988) to draw conclusions on how uncertainties should
be represented to support decision making.

10Verification may fit well into the quantitative measure discussed next if it only deals with the detection of problems without
their corrections.
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decisions; he then used this definition to valuate knowledge as the increase in the expected utility of making
a choice due to this knowledge. This valuation was possible due to the simple nature of the knowledge
involved: a single piece of evidence.

A QNS is easy to apply with a knowledge representation formalism whose content could be quantified.
Nevertheless, from the example it will be clear that it is difficult to create a meaningful quantified measure
(i.e., a homomorphism). Compared to the QLS, it is even less clear what is the relation between this measure
and the expected performance of a system.

4.2 Functional Measure

This measure valuates knowledge based on its performance in various tasks. Cohen and Howe (1989)
discussed the evaluation of large artificial intelligence systems. They suggested several performance exper-
iments that can be used for this purpose. They showed how performance evaluations guided their research
through three generations of the system DOMINIC, which deals with routine design of mechanical devices
(Howe et al., 1986).

More generally, Adelman (1991) classified performance experiments into three classes: (1) experiments
which are suited for the early stages of system development and may generate fully reproducible results; (2)
quasi experiments which are for the operational stage of systems and consists of fully controlled artificial
studies; and (3) case studies which are opportunistic and wholly unconstrained to be used for operational
system. The first two evaluations can support the definition of quantitative measures and the latter can
support qualitative measures.

The focus of these studies were the illustration of the kinds of experiments that could be done for certain
assessments and their reliability and validity properties. There are many other studies discussing various
types of qualitative and quantitative performance measures (Gupta, 1993). Nevertheless, these studies, do
not address the issues pertaining to measurement theory discussed here which govern the meaningfulness of
measures.

Qualitative measure. The qualitative functional measure (QLF) can be viewed as “performing protocol
analysis” (Ericsson and Simon, 1980) on a system for evaluating its knowledge. The system is used to solve
a variety of representative problems, and its problem-solving behavior, including the intermediate results is
coded and analyzed (Chandrasekaran, 1983). This is one of the important techniques for evaluating systems
and can lead to significant insight about a system’s behavior. It can also tell whether a system’s performance
is a success or merely a fluke (Pople, 1985).

As with the QLS, it is difficult to define a QLF to have an ordinal scale (i.e., homomorphic ordinal measure)
so it can be used to compare between different levels of knowledge functionality.

Quantitative measure. The quantitative functional measure (QNF) is based on the performance of a
system over many problems that span the range of problems the knowledge of the system is expected
to solve. The performance of the system is compared with the solutions generated by human experts or
normative theories such as decision theory or other acceptable solutions.

In general, the performance measurement of systems and their comparisons is not straight forward. In the
context of performance evaluation of learning programs, Kononenko and Bratko (1991) suggested that one
cause for this difficulty is that the types of answers from different programs are not exactly the same. In
addition, two systems may not solve exactly the same problem.

Similar to the dependency of the qualitative measures on the particular system or knowledge measured,
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functionality measures are equally contextualized. For example, Gaines (1989) measured the quality of the
initial state of knowledge of a learning program by counting the number of examples the system needed
for training (in addition to its initial knowledge) to achieve a predetermined performance level. The initial
knowledge was ordered on an intuitive ordinal measure and reflected issues most relevant to supervised
concept learning systems. The performance measure roughly corresponded to the intuitive measure. Gaines
suggested that a value measure could be defined based on the logarithm of the data used for training the
system. Note that in this measurement, the issue of the binary operation was not considered.

Since the QNF summarizes the results in statistics, it tends to hide some details of the system’s behavior.
Many controlled studies are needed to uncover behavior patterns that can be identified (even though only
qualitatively) by the QLF. This measure may be perceived as easy to construct; nevertheless, as we see from
(Gaines, 1989) and from the example, creating a measure that is a homomorphism is not straight forward. Its
creation is part of the process of understanding the performance of the system whose knowledge is valuated.

The QNF could be integrated with the previous measures as in the evaluation of the quality of concept
descriptions created by learning (Bergadano et al., 1988). This evaluation included three measures: (1)
accuracy (i.e., QNF) that tested knowledge on previous training examples; (2) comprehensibility (i.e., QLS)
that was operationalized by a syntactic complexity measure thus really became a QNS; and (3) cost (i.e.,
QNS) that measured the storage and computation needed to manipulate the learned knowledge. These
measures were ordered and assembled into one evaluation with a lexicografic evaluation function. Note that
there was no reference to any binary operation on knowledge by these measures. In contrast, in the example
that follows, the focus will be the development of homomorphic measures of knowledge.

4.3 Relation to other definitions of measures

The measures presented are not new. They have been mentioned elsewhere in different names. For example,
the structural measure corresponds to static analysis of software (Howden, 1978) or domain validation of
intelligent systems (Benbasat and Dhaliwal, 1989). The functional measure corresponds to dynamic analysis
of software or procedural validation of systems. Also, the QLS, the QLF, and the QNF correspond to content
validity, construct validity, and empirical validity of systems, respectively (Hollnagel, 1989).

Another similarity is between QNF, QLF, QNS, and QLS and a black-box, white-box, consistency, and
completeness methods, respectively for testing expert systems (Kirani et al., 1992). For each of these
methods there are several different strategies that can be used to execute it, each with its own advantages
and disadvantages for particular purposes. The above is demonstrated through a comparative study of the
methods.

There are many other existing measures or evaluation methods that resemble the measures we discussed.
While their collection and analysis are important, they are beyond the scope of this paper.

5 BRIDGER

In order to ground the different valuation measures and their tradeoffs we illustrate them in a concrete
valuation of the design knowledge accumulated within BRIDGER, a system developed to explore the potential
of knowledge acquisition techniques for building a design assistant for the preliminary design of cable-stayed
bridges.

The section starts by describing the bridge domain and then reviews the system’s architecture and operation.
Since the purpose of this paper is to focus on knowledge valuation and not on BRIDGER, only the necessary
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parts required for the demonstration are described.11

5.1 Domain of Cable-Stayed Bridges

Figure 1 describes the main components and dimensions of a cable-stayed bridge. It is composed of a
superstructure and a substructure. The superstructure is composed of a deck, towers, and stays that are
attached to the towers and support the deck. The figure shows some of the properties which are used to
describe a cable-stayed bridge; additional properties include: SPAN-N, the number of spans of the bridge;
DECK-A, DECK-MI, TOWER-A and TOWER-MI, the cross-sectional areas and moment of inertia of the
deck and the tower, respectively; DECK-M, the material of the deck; and STAY-A, the cross-sectional area
of the stays.

——————————————————

Put figure 1 about here

——————————————————

In a design scenario the requirements are expressed as a set of specification property-value pairs (e.g., the
required length of the bridge). Design is then executed by making design choices as assignments of design
properties (e.g., SPAN-M=500ft., STAY-N=20).

A rough illustration of the complexity of the domain can be conveyed by the number of properties used
to describe various aspects of the problem: 9 properties describe a specification; 30 properties describe a
design, 15 properties describe the analysis results, and 4 properties describe the evaluation of a bridge.

5.2 BRIDGER’s Architecture

BRIDGER’s architecture, shown in Figure 2, consists of two main systems: synthesis and redesign. The
synthesis system is responsible for synthesizing several candidates from a given specification. Synthesis
knowledge is generated by learning from existing designs and from successful design examples that are
selected by the user.

——————————————————

Put figure 2 about here

——————————————————

Candidate designs are transferred to a module that analyzes them based on US code for bridge design
and submits them to a redesign module, if necessary. The redesign module retrieves the best design
modifications for the bridge. The user can override the redesign modifications and supply explanations
that enhance redesign knowledge. The results of the redesign system are acceptable designs. The designer
evaluates the results and can submit a subset of them to the synthesis system for further training.

ECOBWEB, an enhanced version of COBWEB (Fisher, 1987), is the learning program that implements the
synthesis system. It acquires synthesis knowledge and uses it to synthesize new bridges. ECOBWEB

represents knowledge in a classification hierarchy. It has several operators that build the classification from
examples. Learning and synthesis progress by one-step look-ahead search in the space of classification
hierarchies directed by an evaluation function to select the best operator.

11See (Reich, 1991a; Reich, 1991b; Reich, 1993; Reich and Fenves, 1995) for further details on BRIDGER.
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The evaluation function, called category utility (CU) (Gluck and Corter, 1985), evaluates a classification of
a set of designs into mutually-exclusive classes C1 C2 . . . Cn, by:

CU =
n
k=1 P(Ck) i j P(Ai = Vij Ck)2

i j P(Ai = Vij)2

n
(7)

where Ck is a class, Ai = Vij is a property-value pair, P(x) is the probability of x, and n is the number of
classes. The first term in the numerator measures the expected number of property-value pairs that can be
guessed correctly by using the classification. The second term measures the same quantity without using
the classes. Thus, the category utility measures the expected increase of property-value pairs that can be
guessed above the guess based on frequency alone. The measurement is normalized with respect to the
number of classes. The higher is the value of CU, the better the quality of the classification is.

BRIDGER has a variety of synthesis strategies, ranging from case-based to prototype-based design and from
extensional to intentional strategies. To simplify the discussion we use the simplest strategy: an extensional
case-based strategy. In this approach, BRIDGER retrieves a pre-determined number of candidate designs
from the classification hierarchy. The candidates are complete descriptions of previously designed bridges.
BRIDGER then adapts these candidates to fit the new specification by performing various scaling operations.

6 EXAMPLE

This section describes a detailed valuation of BRIDGER’s design knowledge as it develops through learning.
Learning allows to make observations about preserving the binary operations in equation 1 in a natural
manner. Four knowledge hierarchies, K1, K2, K3, and K4, were generated by learning. Hierarchy K1 was
generated from a set of 96 bridge examples that were compiled from the (partial) description of existing
bridges around the world. Hierarchy K2 was generated from the 96 examples after their completion, analysis
and redesign to satisfy the US code for bridge design. Therefore it contains higher quality and uniform
examples. Hierarchies K3 and K4 were generated from K2 by training it with 48 and 96 good quality artificial
descriptions of bridges, respectively.

We hypothesize that a reasonable “unit” of knowledge will be one training example that is used by ECOBWEB.
Each additional training example modifies the knowledge and the system’s subsequent performance. Thus,
this unit is a theory-laden choice natural to ECOBWEB, but one that may not make sense for other systems.
We will test the hypothesis and subsequently modify it.

In the terminology of measurement theory the empirical relational system is:
= A R O where (8)

A is the set of knowledge hierarchies Ki

R is the better quality than relation on A and

O is the appending hierarchies operation on A

There are some assumptions underlying this definition and thus, this empirical system is only approximate.
First, the knowledge quality of BRIDGER depends heavily on the quality of its training examples. Thus, we
have to control the uniformity of the quality of the training examples; in what follows, they are designs that
satisfy bridge design codes but, nonetheless, are not optimal. Also, since hierarchy K1 is equal to K2 in
terms of the number of examples, but was trained with poor quality examples, we cannot treat it as part of
the empirical system. Nevertheless, for reference purposes we included its valuation as well.

Second, the relation better-quality-than remains undefined. It may denote many intuitive and subjective
direct measures of knowledge. Thus, we have some degrees of freedom when we attempt to construct an
indirect measure that will fit it.
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Third, the binary operation appending-hierarchies can be defined in several ways. One definition takes one
hierarchy and trains it by the examples used to generate the second hierarchy. This is an order dependent
procedure that is undesirable because the operation will not be commutative or worse, non-unique. Another
definition creates a new root and attaches to it the two hierarchies. This definition will fail to support a scale,
unless gradually, the split and merge operators of ECOBWEB will re-structure the new hierarchy.

Fourth and related to the previous item, we note that for the same set of examples we can create many
different hierarchies since ECOBWEB’s learning is order dependent. Therefore, the number of examples in a
hierarchy does not determine any of the measures uniquely; moreover, there may be significant variations
between the values of the measures even though they can partially be mitigated by some techniques (Reich,
1991a).

The formal relational system and the homomorphic mapping remain to be defined for each of the four
measures we discuss next.

6.1 Structural Measure

The structural content of knowledge was evaluated in two ways: qualitative and quantitative. The qualitative
measure attempts to analyze the knowledge generated from a domain perspective; and the quantitative
measure is based on the evaluation function employed by ECOBWEB for assessing classifications.

Qualitative measure (QLS). Figure 3 shows the K2 synthesis hierarchy generated from 96 examples of
bridges. The classes are described with some of their properties. Some properties are shown in bold font;
these are the characteristic properties. Intuitively, characteristic property values of a class are those property
values that are very common in the class and rarely appear in the other classes of the same level. The figure
also shows the name of each class and in parenthesis the number of bridges used to generate it.

——————————————————

Put figure 3 about here

——————————————————

The hierarchy is subdivided into two large subclasses: class C which contains long bridges (i.e., long
LENGTH and SPAN-M properties) with many stays, and class B which contains short bridges with fewer
stays. Further subdivisions mainly reflect differences in the LENGTH, CROSS-L, SPAN-M, SPAN-N, and
DECK-M properties. Several patterns emerge in the hierarchy. They can be interpreted using domain
knowledge, and may point to some design heuristics. The number of examples, however, is not sufficient to
allow learning to discover strong patterns; any explanation should cautiously be accepted.

For example, class B contains only bridges with steel decks and class C contains 44% concrete-deck bridges;
in addition, the average main span of class B is shorter than that of class C. These trends point to a preference
for using concrete for longer bridges and steel for shorter bridges. The first is correct, but the second is not.12

A close look at the subclasses of C shows that H and I, which contain only steel bridges, have longer average
main span than the two other classes, containing mainly concrete-deck bridges. Therefore, the preferences
stated before no longer apply. The conclusion is that the average main span value of C is only a common
value of the class but does not necessarily provide a good characterization of the class.

This example demonstrates the subjective and imprecise nature of a qualitative inspection of knowledge.
It is unclear which aspects in the class description are important and how they should be interpreted. It is

12See Table 3.3 in (Podolny and Scalzi, 1986) showing lower bids for concrete bridges as opposed to steel bridges for several
recent long bridges. Also see Figure 3.8 of that reference showing that concrete is preferred to steel for short spans.
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unclear how the value of the measure is to be defined. Since the valuation depends on personal inspection,
we may try to operationalize it by experts ratings of the 4 knowledge hierarchies through some controlled
experiment, even though we are now aware of its limitations. In this case, the formal system will include
a set of some ordinal values such as poor, modest, good, and excellent; and the relation better-quality-than
on this set will be the experts intuitive ordering between them. Unfortunately, we can hardly think of a
reasonable binary operation on these values that will reflect the appending-hierarchies binary operation on
knowledge hierarchies. A binary operation in which, for example, poor “+” modest “= ” good will be very
poor. In general, when experts ratings are used, the binary operation issue is neglected.

The best that we can do with the binary operation is salvage some information by inspecting a hierarchy as
it grows by training (as a special case of applying the binary operation). Such inspection may potentially
explain some of the behavior revealed by the other measures. Figure 4 illustrates the growth pattern of
the synthesis hierarchy. It reflects the organization of knowledge rather than its content, but for uniform,
good quality, examples, the organization may be indicative of the content. Initially, the hierarchy is “flat,”
consisting of the root node and its leaves. When additional information is accumulated, a second level starts
to grow. Approximately twice the number of examples is required to form that second level. This pattern of
growth continues later.

——————————————————

Put figure 4 about here

——————————————————

Given this, the design performance (i.e., quality and time) is not expected to improve continuously, but rather
in stages. To illustrate (see Figure 4), assume that a design is initiated with hierarchy (a) and that the best
candidate is class C2. If BRIDGER is asked to synthesize n candidates, it will consider all the sons of C1 and
output the n best matches to the new specification. After additional training, hierarchy (b) is generated and
used for the same design; synthesis progresses from C3 to C4, and finally, to C5. Now, synthesis chooses
the best n sons of class C4 as candidate designs. The sons of C4 form a more homogeneous class than the
sons of C1, but this has required doubling the number of training examples. Additional training leads to the
generation of of hierarchy (c). If synthesis progresses through the path C6, C7, C10, and C11, then candidates
are generated from the sons of C10 (n out of the 6, assuming than n 6). If the path ends at class C9, the
candidates are generated from the sons of C7 (n out of the 20, assuming than n 2). The first case will
demonstrate an overall performance improvement, but the second will show similar performance quality and
degraded time performance to that demonstrated by hierarchy (b). These differences suggest that learning is
not continuous, although it may seem so when performance is averaged over many cases.

This valuation suggests that the number of training examples in a hierarchy may not be an adequate measure
for knowledge value and that the depth of the hierarchy may.

Summary of QLS.
This measure is subjective; it can provide qualitative insight about the behavior of knowledge mainly, since
the internal mechanisms of the system were known to the evaluator. However, in general, the internal
mechanisms of a system are unknown or too complex and it may be hard to extrapolate the functionality
of knowledge from this valuation. Due to these properties, a coarse scale could be devised based on
subjective experts ratings of knowledge hierarchies. This scale will probably ignore the binary operation of
appending-knowledge-hierarchies.

Quantitative measure (QNS). In order to quantify knowledge, we can attempt to construct a formal
system as follows: The set of entities is the real numbers; the relation is the larger-than; and the binary

ReichInternation Journal of Human-Computer Studies (was Knowledge Acquisition) (1995, in press)



November, 1994 Page 14

operation is the addition of numbers. Knowing the internal mechanisms of ECOBWEB — the system that
created the knowledge — we seek a measure that will reflect them.

We define the quantity of knowledge by a measure, called knowledge utility (KU), that estimates the increase
in the number of properties that can be predicted for a given specification when using the knowledge
hierarchy, relative to the number of properties that can be predicted by using values’ frequency. We recall
that the category utility function (CU) which governs part of ECOBWEB’s behavior, estimates that increase
for a classification but not for a hierarchy. Therefore, we apply CU recursively, starting from the root of the
hierarchy, and obtain the following measure:

knowledge utility (class) : (9)

if class is a class return 0 0;

else return CU n +
Ck sons of class

P(Ck) knowledge utility (Ck)

where CU and the other symbols are defined as in equation 7. After the calculation, the value is normalized
by the number of properties describing artifacts.

Figure 5 shows the knowledge utility as a function of the examples learned by ECOBWEB. The value of about
0.1 reached after learning 192 examples suggests that approximately 8 out of the 58 properties describing
designs can be predicted accurately. This may seem to be a rather disappointing result since it is difficult to
envision that a knowledge with such a low utility can be helpful.

——————————————————

Put figure 5 about here

——————————————————

It is clear that KU does not preserve any intuitive better-quality-than relation since it is not a monotonic
function of the number of examples within a hierarchy. Moreover, we will see later that poor KU values are
not good predictors of the good performance we observe later. Thus, KU is a poor measure of knowledge
even though it was intuitively good.

Summary of QNS.
This measure is abstracted from the mechanisms that manipulate knowledge; even though, in our example
it relies on CU which certainly governs parts of the system’s behavior. The bad values obtained by this
measure are in contrast to the good performance reported later. This discrepancy illustrates the difficulty
in formulating good QNS that can be used to predict performance. Whereas in the QLS we could have
suggested experts ratings as a qualitative measure, we cannot do this with the quantitative one.

It is extremely hard to find a QNS that will be a homomorphism. We predict that basing QNSs for other
knowledge representations on counting items such as rules, frames, conditions per rule, etc., will result in
similar poor measures.

6.2 Functional Measure

The functional value of knowledge was measured by evaluating BRIDGER’s performance in synthesis activ-
ities performed on 48 test specifications (see (Reich, 1991a) for details). The four knowledge hierarchies,
K1, K2, K3, and K4, were used to synthesize 4 new candidates for each specification. The 192 (48 4)
synthesized bridges were used in the qualitative and quantitative functional evaluations.

Qualitative measure (QLF). Instead of analyzing the complete trace of synthesis, we focus the valuation
on one important synthesis step: the retrieval of candidate designs. Table 1 shows the number of different
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existing designs retrieved, and the names of the designs most commonly used. The number of times each
existing design was used in the generation of candidates, out of the 192 new candidates, is given below each
name. The small number of designs retrieved reflects an internal tendency that characterizes the knowledge.
In light of the discussion on Figure 4, it is not surprising that the structure of the hierarchy can lead to such
behavior at the early stages of learning.

——————————————————

Put table 1 about here

——————————————————

The difference in the number of designs retrieved suggests a synthesis pattern similar to that presented in
Figure 4. In particular, the synthesis pattern emerging from the K1 and the K2 hierarchies is probably similar
to the path C6, C7, C8, and C9. Such a path forces the retrieval of designs from classes of designs higher in
the hierarchy. Since a large class is used as a source of existing designs, the selection would usually favor
a small number of ‘strong’ matches. If the path is from C6 to C11, the selection would be from smaller and
different groups of classes, leading to the retrieval of a larger number of distinct designs. This is the case
when K3 and K4 are used.

Figure 6 shows the four designs most often used when synthesizing with the K2 hierarchy. These designs
are listed in Table 1. The two designs on the right are scaled down by a factor of two. All four designs are
two-span bridges with average main span (224 m). The range of spans is large, allowing the retrieval of
designs that are relevant to a new specification therefore do not require significant scaling.

——————————————————

Put figure 6 about here

——————————————————

Figure 7 shows the 12 designs most often used when synthesizing with the K3 hierarchy. Most of them are
three-span bridges. The average length of the main span is 179 m. A surprising observation is that most of
the bridges have a small number of stays. This fact and the observation that almost no three-span bridges
were used by the K2 hierarchy point to the existence of a shadowing phenomenon. Certain bridges are not
retrieved since they reside on hierarchy branches that are rarely visited. But once these branches become
accessible, their leaves start being used as candidates.

——————————————————

Put figure 7 about here

——————————————————

Figure 8 shows the 8 designs most often used when synthesizing with the K4 hierarchy. There is a better
balance between two- and three-span bridges, and more variation in the number of stays. The length of the
main span of these designs is longer than before (345 m) and its variability is slightly less then that observed
for the K2 hierarchy. The increasing average length helps design large bridges without compromising the
design of bridges with small spans.

——————————————————

Put figure 8 about here

——————————————————
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As with the QLS, it is hard to create a metric from the above discussion. As before, experts ratings could be
used for creating an ordinal scale that will most probably neglect the binary operation.

Summary of QLF.
This measure can be used to estimate the QNF by generalizing over system’s behavior patterns. It can also
be used to confirm the QLS. A more detailed QLF can point to important issues that need to be addressed
in improving the system; for example, should the shadowing effect discussed before and confirmed here be
handled?

Quantitative measure (QNF). This measure valuates the performance of BRIDGER while designing can-
didates for the 48 test specifications. It measures the two main sources of power of BRIDGER’s synthesis
process: (1) the retrieval of designs closely related to the new specification; and (2) the adaptation of
candidates with scaling values.

The retrieval process is evaluated by the amount of scaling of the main span of the retrieved design needed
to satisfy the new specification; it measures how close is the retrieved design to fulfilling the dimensional
specification which is the most significant controlling parameter over the design. The candidate adaptation
process cannot be tested independently. The combination of the two processes is tested by measuring the
quality of candidate designs which is a weighted summation of the constraints that a design violates (Reich,
1991a).

The formal system for this measure is created with the set of real numbers that denote either the scaling
or quality values; the relation is the larger-than; and the binary operation is the arithmetic addition. The
homomorphism maps a hierarchy to its performance values.

Table 2 provides the statistics of the scaling needed to adapt the candidates to the specifications of the 48
test problems and the quality of the designs synthesized. The columns denoted by total provide the average
of these measures. The columns denoted by lower, average, and upper, provide the results for three groups
of specifications corresponding to far-lower-than, similar-to, or far-higher-than, the average specification of
bridges in the training examples. These groups roughly divide the set of 48 test problems into three equal
parts.

——————————————————

Put table 2 about here

——————————————————

A MANOVA (Hays, 1988) analysis was performed to assess the statistical significance of the differences in
the performance levels observed. This is performed to assess whether the measure fits our intuition about
the quality of knowledge in the observed system. The total scaling values satisfy: K2 K3 0 01 K4;13

where the 0 01 indicates that the scaling values of K2 and K3 are greater (greater are worse) than K4 with
statistical significance at the p 0 01 level and that the difference between K2 and K3 was not statistically
significant. Therefore, the improvement is not a smooth function, but occurs in steps as predicted by the
QLS. The total quality values satisfy: K2 0 01 K3 K4. The group of specification also influences the
results. The scaling values satisfy: lower 0 01 average 0 01 upper, whereas the quality values satisfy:
lower average 0 01 upper. This is in agreement with a known engineering heuristic stating that it is
relatively easy to design artifacts that are similar to past experience or slightly scaled down and harder if
designs are to be scaled up.

In terms of measurement theory, the fact that some measures were not different in a statistically significant

13As mentioned before, the results of K1 are not analyzed.
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manner suggests that the mapping between the observed and the formal system is inadequate since the
major differences in the hierarchies (i.e., different number of examples) did not result in different values of
performance. This suggests that performance (or the value of knowledge) is not proportional to the size of
the hierarchies or the number of examples used to generate them.

If we summarize results from previous measures we note that the two qualitative measures suggested that
it is the depth of hierarchy, rather than the number of examples, that may govern the system performance.
If we recall the power law of practice, where there is a power (or a log-log) relationship between training
and performance (Newell and Rosenbloom, 1981), we may consider that performance (or the value of
knowledge) varies as a power function of the number of examples. Or that the logarithm of performance
varies as a logarithmic function of the number of examples or as a linear function of the depth of a hierarchy.

Another MANOVA analysis was run with this model. The results of the scaling remained as before, but, the
results of the quality were more conclusive: K2 0 01 K3 0 01 K4 and lower 0 01 average 0 01 upper.
Therefore, we may conclude from this analysis and the supporting evidence from previous measures that a
power law model better explains the data than the linear model.

Summary of QNF.
This measure is the most precise of all measures, but it also depends on the mapping between the observed
and the formal systems used to define it. Therefore, the meaning of the statistical results is also subjective.
The measure used in the example is system and domain dependent; other systems or domains will lead to
the creation of different measures. This exercise further demonstrates: (1) the difficulty in creating accurate
quantitative measures; and (2) the need to test quantitative measures and contrast their valuation with other
measures.

7 DISCUSSION AND SUMMARY

Starting from a review of key concepts in measurement theory, we gave two definitions of knowledge, each
leading to two types of value measures. The four measures were demonstrated in the evaluation of the design
system BRIDGER. We saw that none of the measures was perfect, but that together they supported each other
in providing a better understanding of the system behavior and the relation between its behavior and its
knowledge. This understanding led us to refining a QNF measure of knowledge (for BRIDGER) that looks
meaningful: the value of BRIDGER’s knowledge varies as a logarithmic function of the number of examples
or as a linear function of the depth of its knowledge hierarchy.

We would like to suggest that a measure based on the logarithm of data, e.g., logarithm of the number of rules
in a rule-based system or the number of problem spaces (or rule clusters) rather the number of production
rules in an architecture such as Soar (Laird et al., 1987), may be more universal than was demonstrated.
Nevertheless, this is just a hypothesis.14

Table 3 summarizes the different measures used in the example according to the terminology of measurement
theory. A question mark denotes an unspecified entry. The only measure that managed to preserve roughly
the binary operation of appending-hierarchies was the QNF measure, and only after is benefited from insight
from the two qualitative measures. The two qualitative measures were totally unconstrained in their textual
output and the QNS failed.

——————————————————

Put table 3 about here
14Gaines (1989) also suggested it but without providing a rationale.

ReichInternation Journal of Human-Computer Studies (was Knowledge Acquisition) (1995, in press)



November, 1994 Page 18

——————————————————

We note that the valuation context as determined by a system’s characteristics and the domain of interest
has a major influence over the types of measures that may be used for knowledge valuation. There are no
objective or truly system independent measures. For example, accuracy or completeness are operationalized
by testings that depend on the system’s characteristics and the domain of interest. If so, what can be
transferred from this exercise to other systems or domains? Were the measures used in this exercise ad hoc?

Since, none but the QNF succeeded, even if roughly, to be a homomorphism, we need only discuss it. The
first unit of knowledge posited, i.e., one training example, was ad hoc and proved to be wrong. The depth
of the hierarchy (or the logarithm of the number of examples) was better as a unit of knowledge, but it is
only the corroboration of this hypothesis with data from the other qualitative measures that allowed us to
understand why this unit worked. Due to this understanding we can claim that this measure is not ad hoc.

None of the measures can be transferred as is to other systems or domains. Therefore, how does one construct
measures for different contexts? The key lies in understanding the process of measure construction. It is an
iterative process of hypothesizing several measures and testing them, during which a better understanding of
the system’s knowledge, mechanisms, and behavior emerges. While some measures may be fruitless, others
may together provide enough data to assist in the specification of better measures that should be tested again.

The kind of measure hypothesized or model posited (e.g., knowledge utility or power law of practice)
has a significant impact on the success, failure, or meaningfulness of the valuation, or on the number of
iterations required to achieve some interesting results. Often, finding good models is the significant research
problem. When a hypothesized measure works as a homomorphism, we say that it provides a representation
of the observed relational system (Roberts, 1979). We can appreciate the difficulty of constructing such a
representation given the stringent conditions it needs to satisfy (i.e., equations 2 and 3). We can also agree
that it is not only the measurement of knowledge as an end that is important but the construction of measures
is equally critical for understanding the system whose knowledge is being valuated.

Even though the measures are context-dependent, there is still some insight that can be learned and may be
transferred to other contexts. Table 4 summarizes some general observations about the 4 measures. The
QNS is mainly driven by the representation formalism, it is the most difficult to construct and will probably
not be cost-effective to develop. The qualitative measures require domain expertise for understanding the
knowledge represented or the system’s solution traces. While the QLF can be used if such traces are
provides, the QLS can be used only on small chunks of knowledge. Occationally, once problems or issues
are uncovered by the QLF, the QLS can address them with a narrow focused valuation.

In the example, the qualitative measures were summarized by text and some numeric data. This does not
suffice for defining a scale. Nevertheless, they can be turned into an ordinal scale by devising questionnaires
and having several experts relatively rate the systems under investigation. Such ratings could be used to
create an ordinal scale. Different questionnaires could be developed for different experts such as system
maintainers or expert users, and give rise to values that depend on the task of these experts in relation to the
systems (see (McGraw and Harbison-Briggs, 1989) for more details).

——————————————————

Put table 4 about here

——————————————————

Future work includes several important tasks. The first task is the collection of data on evaluations of
additional systems or studies comparing between different evaluation methods. This data will discuss
different ways to operationalize vague criteria such as “appeal: usability; how well the knowledge base
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matches our intuition and stimulates thought; ...” (Marcot, 1987, p. 442); and it will address the relative
utility of different methods for different evaluation purposes as well as their failures. This data will assist the
future contextualized selection of measures and will lead to a better understanding of the issues underlying
the valuation of knowledge.

Another task deals with the formation of guidelines for system development that will facilitate appropriate
valuation. It is best if a system allows for all four types of valuations to be performed. Therefore, detailed
traces must be provided on demand and simple representation formalisms are preferred to more complex
ones.

Finally, research should address the valuation of knowledge embedded in a decision-support setting where a
human expert or a user is cooperating with its computer assistant. After all, is it the improved performance
of this “team” that was the motivating goal for developing the system.
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Table captions

1. Summary of retrieved designs

2. Scaling and Quality statistics of candidates

3. Measures of design knowledge

4. Observed and formal systems
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Table 1:

Knowledge # of different designs retrieved
designs # of times retrieved (out of the 192)

K1 12 E10 E12 E49 E60
45 45 45 45

K2 8 E46 E55 E78 E91
43 43 43 43

K3 19 E2 E10 E32 E88 E19 E22
16 16 16 16 12 12
E24 E26 E29 E49 E115 E111
12 12 12 12 12 9

K4 19 E80 E144 E192 E3 E159 E162 E168 E135
25 25 25 15 13 13 13 13
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Table 2:

Knowledge Scaling Quality
lower average upper total lower average upper total

K1 1.25 3.58 5.85 3.074 1188.31 35.63 62.22 278.36
K2 0.97 2.50 4.08 2.154 0.34 4.61 325.81 50.19
K3 0.97 2.53 3.57 2.092 0.57 2.55 5.67 2.89
K4 0.88 1.32 2.85 1.325 0.41 0.73 3.06 1.20
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Table 3:

Observed Formal
Structural Functional

Qualitative Quantitative Qualitative Quantitative
QLS QNS QLF QNF

Set knowledge ordinal values positive real ordinal values positive real
hierarchies numbers numbers

Relation better-than intuitive intuitive
Operation appending ? + ? +

hierarchies
Mapping expert inspection KU expert inspection performance

tests
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Table 4:

Structural Functional
Qualitative Quantitative Qualitative Quantitative
QLS QNS QLF QNF

1 Require domain precise domain expertise, domain expertise,
expertise formalism solved test cases solved test cases,

normative theories
2 Apply on simple simple systems with everything

(after satisfying representation, representation detailed traces including
row 2) manageable size a black box

knowledge
3 May be approximately predict scant relation predict quantify

used to performance, to performance performance, performance
uncover simple uncover behavior
problems patterns

4 Summarized textual quantitative textual + quantitative concise quantitative
by information data information data

5 Best possible scale ordinal interval ordinal interval
6 Method to expert system expert performance

construct ratings dependent ratings tests (hard)
best scale (very hard)
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Figure captions

1. Bridge description

2. BRIDGER’s architecture

3. K2 synthesis knowledge base

4. Qualitative description of hierarchy growth

5. Improvement of design knowledge

6. Functional assessment of K2

7. Functional assessment of K3

8. Functional assessment of K4
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STAY-N: number of stays

CROSS-L: crossing length

LENGTH: total bridge length

STAY-IN: 
  stay inclination

TOWER-H: 
  height of tower

STAY-SPD

SPAN-M: main spanSPAN-SA: side spans

TOWER-B:
    bottom of tower CLEAR-V:

    vertical clearence

CLEAR-H: 
    horizontal clearence

FMM: free
    main span

DECK-D:
     depth of deck

FIM: free
internal  span

Figure 1:
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  C (55)

CROSS-L     434

SPAN-M       255  
SPAN-N       2.64

TOWER-H     55
STAY-N       6.16
LENGTH     920

Property      Value      

  A (96)

Property              Value      

DECK-M            Steel         
SIDE-S   Unsupported

CROSS-L             407

SPAN-M               235  
SPAN-N               2.76

TOWER-H             53

STAY-N               5.01

LENGTH             582

  B (41)

DECK-M     Steel         

Property      Value      

TOWER-B   2.14
DECK-A      0.05

CROSS-L      371

SPAN-M       208  

SPAN-N      2.93

TOWER-H    52
STAY-N      3.46

LENGTH     413

DECK-MI    0.07

  G (10)

Property             Value      

CROSS-L                  265

SPAN-M                   146  

SPAN-N                     2.9
TOWER-H                 44

STAY-N                   3.3

LENGTH                  280

  I (14)

Property       Value      

CROSS-L         429

SPAN-M           301  

SPAN-N           2.07

TOWER-H         72

STAY-N            3.1

  J (17)

Property   Value      

CROSS-L      459

SPAN-M       248  
SPAN-N       2.88

TOWER-H      62

STAY-N    10.94
LENGTH    1854

WIDTH-T                  36
CABLE-SA-RATIO  0.8

  H (14)

Property      Value      

CROSS-L     533
SPAN-M       296  

SPAN-N        2.71

TOWER-H      62

STAY-N        5.4
LENGTH      685

DECK-A      0.05 TOWER-B          2

LENGTH         480

DECK-MI    0.06

DECK-A        0.07

CROSS-L     393
STAY-N        1.8

  E (5)

Property      Value      

SPAN-M       225  

SPAN-N         3.0

TOWER-H      39

LENGTH      393

SPAN-SA       86
TOWER-A  0.07

  F (19)

Property    Value      

CROSS-L    440

SPAN-M      235  

SPAN-N      3.26

TOWER-H     57

STAY-N      5.35

LENGTH     507

TB-CON   Fixed

  D (16)

Property      Value      

CROSS-L     287

SPAN-M       174  
SPAN-N       2.56

TOWER-H      51

STAY-N        1.8
LENGTH      377

DECK-M         Concrete DECK-M     Steel DECK-M       Steel

DECK-M Concrete

Figure 3:
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Figure 6:
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Figure 7:
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Figure 8:
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