
Lattice Coding for Signals and Networks

A Structured Coding Approach to Quantization, Modulation and Multi-user

Information Theory

Unifying information theory and digital communication through the language

of lattice codes, this book provides a detailed overview for students, researchers

and industry practitioners.

It covers classical work by leading researchers in the field of lattice codes

and complementary work on dithered quantization and infinite constellations,

and then introduces the more recent results on “algebraic binning” for side-

information problems, and linear/lattice codes for networks. It shows how high-

dimensional lattice codes can close the gap to the optimal information theoretic

solution, including the characterization of error exponents.

The solutions presented are based on lattice codes, and are therefore close to

practical implementations, with many advanced setups and techniques, such as

shaping, entropy-coding, side-information and multi-terminal systems. Moreover,

some of the network setups shown demonstrate how lattice codes are potentially

more efficient than traditional random coding solutions, for instance when gen-

eralizing the framework to Gaussian networks.

Ram Zamir is a Professor at the Department of Electrical Engineering Systems at

Tel-Aviv University, Israel. He consults in the areas of radar and communications

(DSL and WiFi), and is the Chief Scientist of Celeno Communications.



Lattice Coding for Signals and
Networks

A Structured Coding Approach to Quantization,

Modulation and Multi-user Information Theory

RAM ZAMIR
Tel Aviv University

with contributions by

BOBAK NAZER
Boston University

and

YUVAL KOCHMAN
The Hebrew University of Jerusalem

and with illustrations by

Ilai Bistritz



University Printing House, Cambridge CB2 8BS, United Kingdom
Cambridge University Press is part of the University of Cambridge.
It furthers the University’s mission by disseminating knowledge in the pursuit of education,
learning and research at the highest international levels of excellence.
www.cambridge.org

Information on this title: www.cambridge.org/9780521766982
© Cambridge University Press 2014
This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.
First published 2014
Printed in the United Kingdom by Clays, St Ives plc
A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Zamir, Ram.
Lattice coding for signals and networks : a structured coding approach to quantization,
modulation, and multiuser information theory / Ram Zamir, Tel Aviv University.

pages cm
Includes bibliographical references and index.
ISBN 978-0-521-76698-2 (hardback)
1. Coding theory. 2. Signal processing – Mathematics. 3. Lattice theory. I. Title.
TK5102.92.Z357 2014
003′.54 – dc23 2014006008
ISBN 978-0-521-76698-2 Hardback
Cambridge University Press has no responsibility for the persistence or accuracy of
URLs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

www.cambridge.org
www.cambridge.org/9780521766982


To my parents Eti and Sasson Zamir



Contents

Preface page ix

Acknowledgements xi

Notation xiv

1 Introduction 1

1.1 Source and channel coding 4

1.2 The information theoretic view 7

1.3 Structured codes 8

1.4 Preview 8

2 Lattices 11

2.1 Representation 11

2.2 Partition 17

2.3 Equivalent cells and coset leaders 21

2.4 Transformation and tiling 25

2.5 Algebraic constructions 28

Summary 34

Problems 35

Interesting facts about lattices 37

3 Figures of merit 39

3.1 Sphere packing and covering 39

3.2 Quantization: normalized second moment 46

3.3 Modulation: volume to noise ratio 49

Summary 56

Problems 56

Historical notes 57

4 Dithering and estimation 59

4.1 Crypto lemma 61

4.2 Generalized dither 66



vi Contents

4.3 White dither spectrum 71

4.4 Wiener estimation 74

4.5 Filtered dithered quantization 77

Summary 80

Problems 81

Historical notes 83

5 Entropy-coded quantization 84

5.1 The Shannon entropy 84

5.2 Quantizer entropy 85

5.3 Joint and sequential entropy coding* 89

5.4 Entropy-distortion trade-off 92

5.5 Redundancy over Shannon 94

5.6 Optimum test-channel simulation 98

5.7 Comparison with Lloyd’s conditions 101

5.8 Is random dither really necessary? 102

5.9 Universal quantization* 103

Summary 106

Problems 107

Historical notes 108

6 Infinite constellation for modulation 110

6.1 Rate per unit volume 110

6.2 ML decoding and error probability 112

6.3 Gap to capacity 114

6.4 Non-AWGN and mismatch 117

6.5 Non-equiprobable signaling 119

6.6 Maximum a posteriori decoding* 128

Summary 130

Problems 132

Historical notes 132

7 Asymptotic goodness 134

7.1 Sphere bounds 137

7.2 Sphere-Gaussian equivalence 142

7.3 Good covering and quantization 147

7.4 Does packing imply modulation? 150

7.5 The Minkowski–Hlawka theorem 152

7.6 Good packing 154

7.7 Good modulation 156

7.8 Non-AWGN 161

7.9 Simultaneous goodness 164



Contents vii

Summary 172

Problems 173

Historical notes 175

8 Nested lattices 178

8.1 Definition and properties 179

8.2 Cosets and Voronoi codebooks 181

8.3 Nested linear, lattice and trellis codes 185

8.4 Dithered codebook 188

8.5 Good nested lattices 191

Summary 194

Problems 195

Historical notes 195

9 Lattice shaping 197

9.1 Voronoi modulation 199

9.2 Syndrome dilution scheme 205

9.3 The high SNR case 206

9.4 Shannon meets Wiener (at medium SNR) 212

9.5 The mod Λ channel 220

9.6 Achieving CAWGN for all SNR 227

9.7 Geometric interpretation 234

9.8 Noise-matched decoding 235

9.9 Is the dither really necessary? 237

9.10 Voronoi quantization 240

Summary 242

Problems 244

Historical notes 246

10 Side-information problems 248

10.1 Syndrome coding 251

10.2 Gaussian multi-terminal problems 259

10.3 Rate distortion with side information 263

10.4 Lattice Wyner–Ziv coding 268

10.5 Channels with side information 280

10.6 Lattice dirty-paper coding 283

Summary 290

Problems 291

11 Modulo-lattice modulation 296

11.1 Separation versus JSCC 297



viii Contents

11.2 Figures of merit for JSCC 299

11.3 Joint Wyner–Ziv/dirty-paper coding 300

11.4 Bandwidth conversion 306

Summary 310

Problems 310

Historical notes 311

12 Gaussian networks 313

12.1 The two-help-one problem 314

12.2 Dirty multiple-access channel 327

12.3 Lattice network coding 336

12.4 Interference alignment 356

12.5 Summary and outlook 363

Summary 365

Problems 367

Historical notes 370

13 Error exponents 374

13.1 Sphere packing exponent 375

13.2 Measures of lattice to noise density 378

13.3 Threshold-decoding exponent 379

13.4 Nearest-neighbor decoding exponent 382

13.5 Distance spectrum and pairwise errors 385

13.6 Minimum-distance exponent 388

13.7 The expurgated MHS ensemble 388

13.8 Error exponents of Voronoi codes 390

Summary 397

Problems 398

Historical notes 400

Appendix 402

A.1 Entropy and mutual information 402

A.2 Success-threshold exponent 404

A.3 Coset density and entropy 405

A.4 Convolution of log-concave functions 406

A.5 Mixture versus Gaussian noise 406

A.6 Lattice-distributed noise 407

References 410

Index 427



Preface

Digital communication and information theory talk about the same problem from

very different aspects. Lattice codes provide a framework to tell their mutual

story. They suggest a common view of source and channel coding, and new tools

for the analysis of information network problems.
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This book makes the language of quantization and modulation more accessible

to the hard core information theorist. For him or her, lattices serve as a bridge

from the high dimension of Shannon’s theory to that of digital communication

techniques. At the same time, lattices provide a useful tool for the communication

engineer, whose scope is usually limited to the low – sometimes even one or two

– dimensions of practical modulation schemes (e.g., QAM or PCM). She or he

can “see,” through the lattice framework, how signals and noise interact as the

dimension increases, for example, when modulation is combined with coding.

Surprisingly for both disciplines, the generalization of the lattice framework to
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“Gaussian networks” is not only very natural, but in some cases is more powerful

than the traditional techniques.

This book is beneficial to the “Gaussian-oriented” information theorist, who

wishes to become familiar with network information theory from a construc-

tive viewpoint (as opposed to the more abstract random-coding/random-binning

approach). And it is a useful tool for the communication practitioner in the

industry, who prefers a “geometric” and “signal-processing oriented” viewpoint

of information theory in general, and multi-user problems in particular. The

algebraic coding theorist can celebrate the variety of new applications for lattice

codes found in the book. The control theorist, who wishes to add communication

constraints into the system, will find the linear-additive model of dithered lat-

tice quantization useful. Other readers, like those having a background in signal

processing or computer networks, can find potential challenges in the relations

to linear estimation and network coding.

Ram Zamir

Tel Aviv

March 2014
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Λ lattice
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Q
(NN)
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NΛ(dmin) kissing number of Λ
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σ2(Λ) second moment

G(Λ) normalized second moment (NSM)
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U, Ueq dither, equivalent dithered quantization noise
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1 Introduction

Roughly speaking, a lattice is a periodic arrangement of points in the n-

dimensional Euclidean space. 1 It reflects the “geometry of numbers” – in the

words of the late nineteenth century mathematician Hermann Minkowski. Except

for the one-dimensional case (where all lattices are equivalent up to scaling), there

are infinitely many shapes of lattices in each dimension. Some of them are better

than others.

Good lattices form effective structures for various geometric and coding prob-

lems. Crystallographers look for symmetries in three-dimensional lattices, and

relate them to the physical properties of common crystals. A mathematician’s

classical problem is to pack high-dimensional spheres – or cover space with such

spheres – where their centers form a lattice. The communication engineer and the

information theorist are interested in using lattices for quantization and modu-

lation, i.e., as a means for lossy compression (source coding) and noise immunity

(channel coding). Although these problems seem different, they are in fact closely

related.

The effectiveness of good lattices – as well as the complexity of describing or

using them for coding – increases with the spatial dimension. Such lattices tend

to be “perfect” in all aspects as the dimension goes to infinity. But what does

“goodness” mean in dimensions 2, 3, 4, . . .?

In two dimensions, the hexagonal lattice is famous for the honeycomb shape

of its Voronoi cells. The centers of the billiard (pool) balls in Figure 1.1 fall on a

hexagonal lattice, which forms the tightest packing in two dimensions. The same

hexagonal lattice defines a configuration for deploying cellular base stations that

maximizes the coverage area per base station.

Interestingly, however, for higher dimensions the problems of packing and

covering are not equivalent. In Figure 1.2, the centers of the oranges fall on

the face-centered cubic (FCC) lattice, which is the best known sphere packing

in three dimensions. In contrast, the best deployment of cellular base stations

in a skyscraper (which maximizes their three-dimensional coverage) is over a

body-centered cubic (BCC) lattice, illustrated in Figure 1.3.

1 See the Wikipedia disambiguation page for other meanings of the word “lattice”: in art and
design, music, math and science.
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Figure 1.1 Billiard (pool) balls packed in a triangle, for an initial game position.

Figure 1.2 Packing oranges in a pile: each row is half-diameter shifted with respect to

the previous row to reduce the unused volume. Similarly, each layer is staggered to fill

the holes in the layer below it. The centers of the oranges form a lattice known as a

face-centered cubic (FCC) lattice.

Which is the “best” lattice in each dimension is a question we shall not address;

issues of efficient design and coding complexity of lattices are not at the focus

of this book either. Instead, we characterize the performance of a lattice code

by its thickness (relative excess coverage) and density (relative packed volume),

and by the more communication-oriented figures of merit of normalized second

moment (NSM) for quantization, and normalized volume to noise ratio (NVNR)

for modulation. We define these quantities in detail in Chapter 3, and use them

in Chapters 4–9 to evaluate lattice codes for the basic point-to-point source and

channel coding problems. As we shall see, high-dimensional lattice codes can
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Figure 1.3 Three-dimensional sphere covering with a BCC lattice, describing the best

deployment of cellular base stations in a skyscraper. The solid line shows even layers;

the gray line shows odd layers. Compare the staggering pattern with that of the pile

of oranges in Figure 1.2.

close the gap to the information theoretic limits of communication: the capacity

and rate-distortion function, quantities introduced by Shannon in his seminal

1948 paper [240], and further refined during the 1950s and 1960s.

The 1970s and 1980s saw the blooming of network information theory.

Remarkably, some of the fundamental network problems were successfully solved

using Shannon’s information measures and random coding techniques, now with

the additional variant of random binning. Simple examples of such network

setups are side-information problems: the Slepian–Wolf and Wyner–Ziv source

coding problem, and the Gelfand–Pinsker “dirty-paper” channel coding problem.

The lattice framework provides a structured coding solution for these problems,

based on a nested pair of lattices. This nested lattice configuration calls for

new composite figures of merit: one component lattice should be a good channel

code (have a low NVNR), while the other component lattice should be a good

quantizer (have a low NSM). For joint source-channel coding problems, lattices

with a good NSM-NVNR product are desired. We shall develop these notions in

Chapters 10 and 11.

The curious reader may still wonder why we need a book about lattices in infor-

mation theory. After all, Shannon’s probabilistic measures and random coding

techniques characterize well the limits of capacity (channel coding) and com-

pression (source coding), and they also allow the study of source and channel

networks [53, 64]. From the practical world side, communication theory provides

ways to combine modulation with “algebraic” codes and approach the Shannon

limits.
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Quantization
Lossless Source

Coding

Source Coding

S1,...,Sn b1,...,bk Error Correction
Code

Modulation

Channel Coding

X1,...,Xm

Figure 1.4 Source coding followed by channel coding. For an analog source and

channel, the combined system maps a point in R
n (a source vector) to a point in R

m

(a channel input vector). The ratio m/n is known as the “bandwidth-expansion

factor.”

All this is true, yet between the theoretical and the constructive points of

view something gets lost. Both the probabilistic and the algebraic approaches

somewhat hide the interplay between analog signals like sound or noise (created

by nature) and digital modulation signals (created by man). Lattices are discrete

entities in the analog world, and as such they bridge nicely the gap between the

two worlds. At large dimensions, good lattices mimic the behavior of Shannon’s

random codes. For small dimensions, they represent an elegant combination of

modulation and digital coding. As a whole, lattices provide a unified framework

to study communication and information theory in an insightful and inspiring

way.

Recent developments in the area of network information theory (mostly from

the 2000s) have added a new chapter to the story of lattice codes. In some setups,

structured codes are potentially performance-wise better than the traditional

random coding schemes! And as Chapter 12 shows, the natural candidates to

achieve the benefit of structure in Gaussian networks are, again, lattice codes.

1.1 Source and channel coding

Let us describe briefly how lattices fit into the framework of digital communica-

tion and classical information theory.

By Shannon’s separation principle, transmission of an information source over

a noisy channel is split into two stages: source coding, where the source is mapped

into bits, and channel coding, where the digital representation of the source is

mapped into a channel input signal. These two stages, which we describe in detail

below, are illustrated in Figure 1.4.

The source coding (or compression) problem deals with compact digital repre-

sentation of source signals. In lossless compression, our goal is to remove redun-

dancy due to asymmetry in the frequency of appearance of source values, or to

“memory” in the source. In this case, the source signal is available already in
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Figure 1.5 Scalar uniform quantization of a Gaussian source, followed by

variable-length coding, i.e., n = 1 and k is varying. Each quantization level represents

a range of source values.

a digital form, say, as a sequence of binary symbols. And the task is to map n

“redundant” source bits s = s1, . . . , sn into k = k(s) code bits, where k < n. 2

In lossy compression, the source is usually continuous in nature: an analog

representation of speech, sound, picture or video signal. Digitizing an analog

signal consists first of converting it into a discrete form (both in time and in

amplitude), and then coding it in the discrete alphabet domain. In discrete time

the source is again a vector s = s1, . . . , sn, representing n consecutive source

samples. After the vector s is encoded into a k-bit codeword, it is decoded and

reconstructed as ŝ = ŝ1, . . . , ŝn. The overall operation of mapping s to ŝ is called

quantization, and the image (for a fixed k, the set of all 2k possible reconstruction

vectors ŝ in Rn) is the quantization codebook.

A lattice quantizer codebook consists of points from an n-dimensional lattice.

The codebook can be a truncated version (of size 2k) of the lattice, or the whole

lattice (with a variable codeword length k = k(ŝ)). We would like to make the bit

rate R = k/n (or the average coding rate R = k̄/n) as small as possible, subject

to a constraint on the reconstruction fidelity. Figure 1.5 shows the case of a scalar

(n = 1) lattice quantizer with a variable code length k(ŝ).

2 We would like k to be smaller than n for most source vectors (or for the most likely ones)
in order to compress; but not too small, so the mapping would be invertible for (almost) all
source vectors, for lossless reproduction.
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Figure 1.6 Two-dimensional finite lattice constellations, consisting of 16 points

(k = 4). (A) A simple square constellation, representing uncoded

quadrature-amplitude modulation (QAM); here n′ = k = 4. (B) A hexagonal lattice

constellation, represented as a mapping of redundant binary vectors of length n′ = 5

into a rectangular constellation.

Channel coding deals with transmitting or storing information over a noisy

channel or on a storage device. Our goal here is to add redundancy to the trans-

mitted signal, to make it distinguishable from the noise. The channel input alpha-

bet may be discrete, say, binary. In this case, transmission amounts to mapping

k bits of information into n “redundant” code bits, where n > k.

The most common communication links are, however, over continuous media:

telephone lines, cables or radio waves. The baseband channel representation is in

discrete time, so the channel input is a vector x = x1, . . . , xn. Coding over such

a channel turns out to be in many ways the dual of encoding an analog source.

It consists of two stages: an error-correction coding stage, where redundancy is

added in the discrete alphabet domain (e.g., by converting k information bits to

n′ > k code bits); and a modulation stage, where the digital codeword is mapped

into the vector x. The overall encoder mapping is thus of a k-bit information

vector into a point in Rn (representing n consecutive channel inputs). The set

of all 2k possible input vectors x is called a codebook or a constellation.

A lattice constellation is a truncated version (of size 2k) of an n-dimensional

lattice. We would like to make the coding rate R = k/n – which is now the

(usually fixed) number of transmitted information bits per channel input – as

large as possible, subject to a constraint on the probability of decoding error.

See two examples of two-dimensional lattice constellations in Figure 1.6.

One benefit of the lattice coding framework that we can immediately recognize

is that coding and modulation (or quantization) are combined as a single entity;
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a lattice code directly maps digital information (say, an index) into a vector in

Rn, and vice versa.

1.2 The information theoretic view

Information theory characterizes the ultimate performance limits of source and

channel coding, as the code block length n goes to infinity.

In the channel coding case, the coding rate R is upper bounded (for a vanishing

error probability) by the Shannon capacity C of the channel. The quantity C

(associated with a memoryless channel with a transition distribution p(y|x))
is calculated by maximizing the mutual information (a functional of p(x) and

p(y|x)) over the input distribution p(x). The maximizing input distribution p∗(x)
is used to prove the achievability of C: a set of ≈2nC codewords is generated

randomly and independently with an i.i.d. distribution p∗(x); a random coding

argument is then used to show that based on the channel output, the decoder

can guess the correct transmitted codeword with a high probability as n → ∞.

We see that à la Shannon, good codewords look like realizations of random

noise. In the case of a binary-symmetric channel, the code generating noise con-

sists of equally likely 0/1 bits. In the quadratic-Gaussian case, the code should

be generated by a white-Gaussian noise (WGN).

Rate-distortion theory uses similar ideas to establish the ultimate performance

limits of lossy source coding [18]. The Shannon rate-distortion function R(D)

lower bounds the coding rate R of any lossy compression scheme with distortion

level of at most D (under some given distortion measure). And similarly to the

channel coding case, computation of R(D) induces an optimal reconstruction

distribution, which is used to generate a good random codebook: independent

realizations of a Bernoulli(1/2) sequence compose the codewords for a binary-

symmetric source under Hamming distortion, while independent realizations of

WGN compose the codewords for a white-Gaussian source under mean-squared

distortion.

The fact that good codewords look like white noise is intriguing. Intuitively,

one would expect the symbols of a codeword to be dependent, to distinguish

them from the channel noise. This has made the random coding idea, on the one

hand, a source of inspiration for many since Shannon presented his landmark

theory in 1948. On the other hand, it sets a challenge for finding more structured

ways to approach the information theoretic limits, ways in which the dependence

between the code symbols is more explicit. Can noise be realized in a structured

way?
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1.3 Structured codes

The Hamming code – mentioned already in Shannon’s 1948 paper – was the early

bird of the structured coding approach. It was followed by the breakthrough of

algebraic coding theory in the 1950s and 1960s [21]. The implication was that,

in fact, a good collection of random-like bits can be constructed as an additive

group in the binary modulo-2 space. These linear codes take various forms, such

as Reed–Muller, BCH and, more recently, LDPC, turbo and polar codes, and

they also have extensions to non-binary (Reed–Solomon) codes and convolutional

(trellis) codes.

Common to all these codes is that for a randommessage, the resulting n-length

codeword is indeed roughly uniformly distributed over the n-dimensional binary

space. That is, each code bit takes the values 0 and 1 with equal probability;

furthermore, small subsets of code bits are roughly independent.

The extension of this concept to continuous signals is however less obvious:

can a code mimic Gaussian noise in a structured way? A first step towards this

goal is provided by Shannon’s asymptotic equipartition property (AEP). In a high

dimension n, the typical set of WGN of variance σ2 is a spherical shell of radius

≈
√
nσ2. Thus, the codewords of a good code are roughly uniformly distributed

over such a spherical shell.

The concept of geometrically uniform codes (GUC) [86] suggests a determin-

istic characterization for a “uniform-looking” code: every codeword should have

the same distance spectrum to its neighboring codewords. This concept captures

the desired property of a good Euclidean code, in both the block and the con-

volutional (trellis) coding frameworks.

Due to their periodic and linear structure, lattices are natural candidates for

unbounded GUCs. For example, the commonly used QAM constellation shown

in Figure 1.6(A) is a truncated version of the square lattice, while the more

“random-like” set of two-dimensional codewords shown in Figure 1.6(B) is a

truncated version of the hexagonal lattice. Moreover, the code designer can shape

the borders of these constellations to be more round, for example, by truncating

them into a circle or into a coarser hexagonal cell. And as the dimension gets

high, lattices which are truncated into a “good” coarse lattice cell become closer

to a randomly generated Gaussian codebook.

1.4 Preview

We shall get to the exciting applications mentioned earlier after building up some

necessary background. The book starts by introducing lattices in Chapter 2, and

the notions of lattice goodness in Chapter 3. Chapter 4 introduces two central

players in our framework: dithering, which is a means to randomize a lattice

code, and Wiener estimation, which is a means to reduce the quantization or
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channel noise. The importance of these techniques will be revealed gradually

throughout the book.

Equipped with these notions and techniques, we consider variable-rate

(“entropy-coded”) dithered quantization (ECDQ) using an unbounded lattice in

Chapter 5. In particular, we shall see how the NSM characterizes the redundancy

of the ECDQ above Shannon’s rate-distortion function. The reader who is inter-

ested primarily in channel coding may skip Chapter 5, and continue directly to

modulation with an unbounded lattice constellation in Chapter 6. 3 This chapter

shows how the NVNR determines the gap from capacity of a lattice constellation.

It also describes variable-rate dithered modulation, which is the channel coding

counterpart of ECDQ.

Before moving to more advanced coding setups, we stop to examine the exis-

tence of asymptotically good lattices in Chapter 7. In Chapter 8 we define nested

lattices, and finite Voronoi-shaped codebooks taken from a lattice. These notions

form in Chapter 9 the basis for Voronoi modulation, which achieves the capac-

ity of a power-constrained AWGN channel, and for Voronoi quantization, which

achieves the quadratic-Gaussian rate-distortion function. In both these solutions,

dither and Wiener estimation play crucial roles.

A small step takes us from the point-to-point communication setups above to

side-information problems in Chapter 10. We shall construct lattice code solu-

tions for the Wyner–Ziv problem (source coding with side information at the

decoder) and the “dirty-paper” problem (channel coding with side information

at the encoder). These lattice coding schemes serve as building blocks for com-

mon multi-terminal communication problems: encoding of distributed sources

and broadcast channels. Before moving to more general networks, we exam-

ine in Chapter 11 a lattice-based joint source-channel coding technique, called

modulo-lattice modulation (MLM). A combination of MLM and prediction leads

to “analog matching” of sources and channels with mismatched spectra, and to

“bandwidth conversion.” Chapter 12 extends the discussion on multi-terminal

problems to general Gaussian networks. There we shall see that when side infor-

mation is distributed among several nodes of the network, lattice codes are not

only attractive complexity-wise, but sometimes they have better performance

than traditional random coding and binning techniques.

Chapter 13 complements the discussion of asymptotically good lattice codes

in Chapter 7 by examining their error exponents. As for capacity, good lattice

codes turn out to be optimal also in terms of this more refined aspect.

Information theory is not a critical prerequisite for reading this book, but

(starting from Chapter 5) we use information measures, such as entropy, mutual

information and capacity, to assess system performance. To keep the book self-

contained, the Appendix includes elementary background in information theory,

as well as some other complementary material.

3 Sections which are optional reading for the flow of the book are denoted by an asterisk.
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As mentioned above, dithering and Wiener estimation are central concepts in

the lattice coding framework. The question of where and in what sense they are

necessary will follow our discussion throughout the book.

What’s not in the book?
The writer has the freedom to focus on his favorite subject. Naturally (in the

case of this writer) the book takes an information theoretic flavor, with less

emphasis on coding theoretic aspects. For algebra of lattices, and for specific

constructions of lattices and coded-modulation schemes from error-correcting

codes, the reader is referred to the comprehensive book of Conway and Sloane

[49], and to the excellent class notes of Forney [81] and Calderbank [28].

Encoding and decoding complexity is a topic of theoretical as well as practi-

cal importance, although traditionally neglected by information theory. A good

introduction to the subject can be found in the survey paper of Agrell et al.

[3]. The vast literature on MIMO communication contains numerous publica-

tions about the design of linear coded-modulation schemes and efficient lattice

decoding algorithms.

In the fight between a timely manuscript and time of publication, some topics

which are natural to the spirit of the book were left out. One such topic is

the extension to colored-Gaussian sources and channels; see, for example, [211,

288, 291]. Another topic is the emerging area of lattice wiretap codes; see, for

example, the survey paper by Liang et al. [156] and other recent work [118, 168].

Hopefully these topics will find their way to a later edition of the book.

Finally, since the late 1990s lattice-based cryptography has been a major area

of research in computer science. Its connection to lattice codes for communication

is yet to be explored; see the book by Micciancio and Goldwasser [186], and the

survey by Micciancio and Regev [188].



2 Lattices

The simplest lattice is the one-dimensional grid {. . . ,−2∆,−∆, 0,∆, 2∆, . . .}.
In one dimension, all lattices are equivalent up to scaling. To make life more

interesting – and to obtain better geometric properties – we must consider multi-

dimensional lattices.

∆

This chapter presents n-dimensional lattices and important ideas associated

with lattice codes that are used throughout the book. We take a geometric and,

for some asymptotic results, probabilistic viewpoint. The algebraic aspects of

lattices – although crucial for their implementation at a low complexity – are

secondary for our purposes, and will not be treated in this book.

We restrict our attention to communication problems in which the lattice code

is selected by the system designer. Thus, we rely on the existence of lattices with

certain “good” properties, and on algorithms for encoding and decoding them

at a reasonable complexity. 1

We start with the basic definitions of a lattice and lattice partition.

2.1 Representation

A lattice is a regular array in the Euclidean space. Mathematically, it is a discrete

sub-group of Rn: a set of points which is closed under reflection and real addition.

The set is discrete in the sense that the distance between any two points is greater

than some positive number. If a point λ is in the lattice then so is its reflection

−λ, and if two points λ1 and λ2 are in the lattice then so is their vector sum

λ1 + λ2. Thus, the origin (the point 0) is always in the lattice because it is the

sum of λ and −λ. Furthermore, the lattice is a countably infinite set: it must

1 The situation is different when the lattice is selected by nature or at random. For example,
in digital communication (e.g., QAM) over a fading MIMO channel, the physical multi-path
channel behaves like a random matrix which creates an equivalent lattice constellation at the
receiver. In cryptography, a “hard-to-break” lattice is created by a random number generator.
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2
1

y

x

Figure 2.1 The two-dimensional grid {(2i, j) : i, j ∈ {0,±1,±2, . . .}} contains all

points in the plane whose y-coordinate is an integer and whose x-coordinate is an

integer multiple of 2.

contain all integer multiples ±2λ, ±3λ, ±4λ, . . . of any lattice point λ, as well as

all integer linear combinations λ1 ± λ2, λ1 ± 2λ2, . . . , 3λ1 ± 2λ2, . . . , of any two

lattice points λ1 and λ2, etc.

We can obtain simple multi-dimensional lattices by taking the Cartesian prod-

uct of scalar lattices, like the two-dimensional grid shown in Figure 2.1. Such a

simple grid, however, would not allow us to obtain the efficient arrangements of

oranges and cellular base stations shown in Figures 1.2 and 1.3. Our next step

is to define a lattice in a more general and constructive way.

The linearity property of the lattice reminds us of a linear vector space. It is

only in the latter that any real-valued coefficients, and not just integer multiples,

are possible. This analogy calls for a definition of a lattice in terms of a basis.

Definition 2.1.1 A non-degenerate n-dimensional lattice Λ is defined by a set

of n linearly independent basis (column) vectors g1, . . . , gn in Rn. The lattice Λ

is composed of all integral combinations of the basis vectors, i.e.,

Λ =
{

λ =

n∑

k=1

ikgk : ik ∈ Z

}

=
{

λ = G · i : i ∈ Z
n
}

, (2.1)

where Z = {0,±1,±2, . . .} is the set of integers, i = (i1, . . . , in)
t is an n-

dimensional integer (column) vector, and the n× n generator matrix G is given

by

G = [ g1 | g2| . . . | gn ].

The resulting lattice is denoted Λ(G).

Figure 2.2 shows the famous two-dimensional hexagonal lattice – denoted as

A2. The reason why it is called “hexagonal” will become clear in the next section.
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g2

g1

g′1

Figure 2.2 The hexagonal lattice is generated by the basis vectors g1 = (0, 2)T and

g2 = (
√
3, 1)T . But it can also be generated by the pair g′1 = (

√
3,−1)T and the same

g2, or by the pair g′′1 = (
√
3, 1)T and g′′2 = (−

√
3, 1)T . Clearly this lattice cannot be

written as a Cartesian product of two scalar lattices. Nevertheless, we can construct it

by alternating between two staggered horizontal scalar lattices, one for the even rows

and one, half-step shifted, for the odd rows.

We shall soon discuss the degenerate case, where the number of basis vectors

in G is less than the dimension n, or the basis vectors are linearly dependent.

When G is an identity matrix, we get the integer lattice, Λ = Zn, also called the

cubic lattice or “Z lattice.” Any lattice can be viewed as a linear transformation,

by the generator matrix, of the integer lattice:

Λ = G · Zn, (2.2)

which is simply another way of writing (2.1).

However, the generator matrix is not unique for a given lattice. A lattice is

invariant to a unimodular transformation of its basis.

Proposition 2.1.1 (Change of basis) A matrix G′ generates the same lattice

as G, i.e., Λ(G′) = Λ(G), if and only if

G′ = G · T = [Gt1 |Gt2 | . . . |Gtn ] (2.3)

for some unimodular matrix T = [ t1 | t2 | . . . | tn ], i.e., an integer matrix with

a unit absolute determinant, det(T ) = ±1.

Proof If T satisfies the condition, then each column of G′ is an integer combina-

tion of the columns of G, i.e., g′
j = Gtj =

∑n
i=1 tijgi. Thus, by Definition 2.1.1,

Λ(G′) is contained in Λ(G). Conversely, since det(T ) = ±1, the inverse matrix

T−1 is a (unit-determinant) integer matrix too (by Cramer’s rule for matrix
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inversion), so Λ(G′) also contains Λ(G). Hence, Λ(G′) and Λ(G) must be iden-

tical. To prove the “only if” part, note that since the basis vectors are linearly

independent, T must be integer valued otherwise Λ(TG) will contain points out-

side Λ(G). The same argument shows that if | det(T )| is greater than 1, then

| det(T−1)| is smaller than 1, hence Λ(T−1G′) contains points outside Λ(G′).
Thus Λ(G′) = Λ(G) implies | det(T )| = 1. �

A by-product of Proposition 2.1.1 is that all (square) generator matri-

ces of a lattice have the same absolute determinant: det(G′) = det(GT ) =

det(G) det(T ) = ± det(G). Thus, the absolute value of the determinant of the

generator matrix is an invariant property of the lattice.

Definition 2.1.2 (Lattice determinant) 2 The lattice determinant det(Λ) is

defined as the absolute determinant of its generator matrix | det(G)|.

Due to the linear independence of the basis vectors, the matrix G is non-

singular, thus det(Λ) > 0.

As we saw in Figure 2.1, a simple way to construct high-dimensional lattices

is by taking Cartesian products of lower-dimensional lattices.

Definition 2.1.3 (Cartesian product) The Cartesian product of two lattices

Λ1 and Λ2 of dimensions n1 and n2 is an n = n1 + n2 dimensional lattice:

Λ1 × Λ2 =

{(
x

y

)

: x ∈ Λ1,y ∈ Λ2

}

. (2.4)

The generator matrix of the product lattice is a block-diagonal matrix

G =

(
G1 0

0 G2

)

(2.5)

with the component generator matrices on its diagonal, hence its determinant is

the product of the component determinants det(Λ1 × Λ2) = det(Λ1) · det(Λ2).

Equivalent dimension We expect that under a “natural” goodness measure,

the product lattice Λ× · · · × Λ is as good as its component lattice Λ; hence, both

lattices have the same equivalent dimension.

2.1.1 Characterization of lattice bases

Does the invertible generator matrix form (2.1) describe the most general

arrangement of points satisfying the linearity property at the beginning of the

section?

Degenerate and dense lattices A lattice in Rn may have less than n basis

vectors (or the basis vectors may be linearly dependent). In this case, the lattice

2 In the literature (e.g., [49]) det(Λ) is sometimes defined as det2(G), which is also the deter-
minant of the Gram matrix GtG.
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is contained in a linear sub-space of Rn, and is called degenerate. For example, the

basis vectors [1,−1, 0]t and [0, 1,−1]t span a two-dimensional hexagonal lattice,

which is embedded in some tilted plane in R3. See Problem 2.1.

On the other hand, we never need more than n basis vectors to generate a

lattice in Rn: if some of the vectors are linearly dependent then, either a smaller

basis for the lattice can be found, or the set generated by (2.1) is dense (non-

discrete) and therefore cannot be considered as a lattice.

Example 2.1.1 (Dense lattice) In one dimension, G = (1,
√
2) generates a

dense set; that is, integer combinations of 1 and
√
2 can arbitrarily approach any

point in R. 3

Example 2.1.2 (Extended basis) A basis is not necessarily a subset of an

extended basis. In one dimension, the points 9 and 10 span the entire Z lattice,

but none of them can span it alone. In two dimensions, the three points (1,2),

(2,1) and (2,2) span the entire Z2 lattice, but neither pair does.

Primitive points A lattice point λ is called primitive if it is the shortest lattice

point in its direction, i.e., αλ is not in Λ, for all 0 < α < 1. Basis vectors are

necessarily primitive, but the opposite is not true.

Example 2.1.3 (Checkerboard lattice) A set of n linearly independent

primitive vectors does not necessarily form a basis for a lattice. Consider as

an example the n-dimensional “checkerboard” lattice, which consists of all the

all-even and all-odd vectors in Rn, i.e., the union of 2Zn and [1, . . . , 1] + 2Zn.

Figure 2.3 shows the two-dimensional case. In three dimensions, this is exactly

the BCC lattice of Figure 1.3. A simple basis for this lattice consists of the all-

one vector [1, . . . , 1], plus any n− 1 vectors from the set of n elementary even

vectors [2, 0, . . . , 0], . . . , [0, . . . , 0, 2]. Note that the elementary even vectors are

primitive, independent of each other, and, for n > 4, shorter than the all-one

vector. However, they cannot span odd vectors; hence, without the all-one vector

they do not form a basis for the checkerboard lattice. (See for comparison the

definition of the Dn lattice in Example 2.4.2.)

Good basis for a given lattice Since the basis is not unique, we may ask

which basis is “best” for a given lattice. The answer is, however, not precise. A

common rule of thumb for a good basis is that

r the basis vectors g1, . . . , gn are the shortest possible,
r the basis vectors are nearly orthogonal.

The first criterion guarantees numerical stability, while the second is useful for

reducing the complexity of searching for the closest lattice point to a given point

in space – a problem which is at the heart of the coding and decoding of lattice

3 Quasicrystals can be modeled using a basis with more than three vectors in R3 [158].
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Figure 2.3 Checkerboard lattice in two dimensions.

codes. It nevertheless turns out that the two criteria are closely related by the

Hadamard inequality [53]:

det(Λ) = | det(G)| ≤
n∏

i=1

‖gi‖ (2.6)

with equality if and only if the basis vectors are orthogonal. Thus, a short

basis also tends to be close to orthogonal. The LLL algorithm [154] reduces

a given basis into a new and usually shorter basis, which satisfies a certain

“near-orthogonality” criterion.

Interestingly, the n shortest lattice vectors do not necessarily form a basis.

Take, for example, the checkerboard lattice (Example 2.1.3): the elementary

even vectors do not form a basis for that lattice, although for dimension n > 4

they are the shortest (in particular, shorter than the all-one vector, whose length

is
√
n).

2.1.2 Cosets

The final point we should discuss before the end of this section is that of a lattice

shift, or coset, defined as

Λx = x+ Λ = {x+ λ : λ ∈ Λ}. (2.7)

A coset is a discrete set of points such that the difference vector between every

pair of points belongs to the lattice. However, the coset itself is, in general, not

a lattice, as it is not closed under reflection and addition; in particular, it does

not contain the origin.

Clearly, the union of Λx over all shifts x covers the entire space Rn. But this

union contains many overlaps. A natural question to ask then is: what is the
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minimal set of shifts S such that
⋃

x∈S

Λx = R
n ? (2.8)

This question leads us to the subject of lattice partition.

2.2 Partition

A lattice induces a division of the Euclidean space into congruent cells. Like

the lattice representation, this division is not unique; there are many ways to

partition space with respect to a given lattice Λ.

From a geometric viewpoint, the most important division is the Voronoi par-

tition, which uses a nearest-neighbor (NN) rule. Let ‖ · ‖ denote some norm, for

example, Euclidean distance. The distance of a point x in Rn from Λ is defined

as

‖x− Λ‖ ∆
= min

λ∈Λ
‖x− λ‖. (2.9)

The nearest-neighbor quantizer Q
(NN)
Λ (·) maps x to its closest lattice point:

Q
(NN)
Λ (x) = argmin

λ∈Λ
‖x− λ‖, (2.10)

and the Voronoi cell Vλ is the set of all points which are quantized to λ:

Vλ = {x : Q
(NN)
Λ (x) = λ}. (2.11)

The breaking of ties in (2.10) is carried out in a systematic manner, so that the

resulting Voronoi cells {Vλ, λ ∈ Λ} are congruent.

If not stated otherwise, the Voronoi partition refers to using the Euclidean

norm in (2.9) and (2.10). In this case, the Voronoi cell Vλ is a convex poly-

tope, which – like the lattice – is symmetric about the origin. See Problem 2.2.

Each face of Vλ is determined by a hyperplane, crossing orthogonally to the

line connecting λ to one of its neighbors. These neighbors are then called face-

determining points.

Example 2.2.1 (Honeycomb) The Voronoi partition of the lattice of Fig-

ure 2.2 (with G =
(
0

√
3

2 1

)
) divides the plane into equilateral hexagonal cells

with edge length 2/
√
3, as shown in Figure 2.4(A). A possible “tie breaking”

rule, which keeps the cells congruent, is that each cell contains three out of its

six edges and two out of its six corners, with the same orientation for all cells. 4

4 Any systematic association of half the (non-corner) boundary points to each cell would keep
the cells congruent. This is because each of these points is on the border of two cells, while
each corner point is on the border of three cells. For n-dimensional cells, boundary points are
classified into n types of k-dimensional edges, for k = 0, 1, . . . , n− 1. Although the boundary
has zero volume, its association to the cell is critical for lattice codebooks (see Chapter 9).
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Figure 2.4 Hexagonal lattice with four possible partitions: (A) Voronoi partition; (B)

parallelepiped partition; (C) “brick wall” partition generated by successive

quantization (first quantize the y-component then, conditioned on that, quantize the

x-component); (D) a general (non-polytope) fundamental cell.

The fundamental Voronoi cell V0 is the Voronoi cell associated with the origin

(λ = 0). Due to the periodic nature of the lattice, all the Voronoi cells are shifted

versions (by the lattice points) of V0. Hence, any point in space can be uniquely

expressed as the sum of a lattice point and a point in the fundamental Voronoi

cell.

As mentioned previously, we do not have to use the Euclidean distance in

(2.10). A periodic partition will result by using any function of the difference

x− λ; an example comparing the ℓ2 and ℓ4 norms is shown in Figure 2.5. An

alternative definition for a general lattice-based partition, which does not rely

explicitly on a distance measure, is based on the notion of a fundamental cell.

We say that a collection of sets {Si} covers the Euclidean space if any point

in space is in one of the sets, i.e., ∪iSi = Rn. We say that the sets are packed

in the Euclidean space if no point in space belongs to more than one set, i.e.,

Si ∩ Sj = ∅ for all i 6= j. Finally, if the sets both cover Rn and are packed in Rn,

then {Si} is a partition of Rn.

Definition 2.2.1 (Fundamental cell, lattice partition) A fundamental

cell P0 of a lattice Λ is a bounded set, which, when shifted by the lattice points,

generates a partition P = {Pλ} of Rn. That is,

(i) each cell Pλ is a shift of P0 by a lattice point λ ∈ Λ

Pλ = P0 + λ = {x : (x− λ) ∈ P0};

(ii) the cells do not intersect, Pλ ∩ Pλ′ = ∅ for all λ′ 6= λ; and

(iii) the union of the cells covers the whole space,
⋃

λ∈Λ Pλ = Rn.
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Figure 2.5 Examples of lattices and lattice partitions: (A) the Z
2 lattice with a

Euclidean Voronoi partition; (B) the Z
2 lattice with a fourth-power norm-based

Voronoi partition; (C) a hexagonal lattice with a Euclidean Voronoi partition; (D) a

hexagonal lattice with a fourth-power norm-based Voronoi partition.

It is convenient to think of a fundamental cell as a connected region, although

the definition does not require that.

Definition 2.2.1 implies that given a lattice Λ and a fundamental cell P0, any

point x in space can be uniquely expressed as a sum

x = λ+ xe, where λ ∈ Λ and xe ∈ P0. (2.12)

We may think of λ in (2.12) as the quantization of x to the lattice Λ,

λ = QΛ(x), (2.13)

and of xe in (2.12) as the quantization error. This extends the notion of a nearest-

neighbor quantizer (2.10) with Voronoi partition (2.11), to the case of a general

fundamental cell P0 inducing a lattice partition P = Λ + P0.

The Voronoi partition generated by the nearest-neighbor quantizer (2.10)

clearly satisfies the properties in Definition 2.2.1 (provided that ties are broken in

a systematic manner). The simplest lattice partition is, however, a parallelepiped

partition generated by some lattice basis g1, . . . , gn. Here P0 is the fundamental

parallelepiped, consisting of all points which are linear combinations of the basis
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vectors with coefficients between zero and one:

P0 =

{

x =

n∑

i=1

αigi : 0 ≤ α1, . . . , αn < 1

}

(2.14)

= G · Unit Cube, (2.15)

where Unit Cube = {x : 0 ≤ xi < 1, i = 1, . . . , n}. Note that the unit cube is the
parallelepiped partition of the Z-lattice. 5 See Figure 2.4(B).

Since the lattice has more than one basis, its parallelepiped partition is not

unique. Moreover, a shift or reflection of a fundamental cell is another fundamen-

tal cell, which generates another partition of the lattice. Interestingly, though,

it follows from a simple “volume preservation” argument that the volume of a

cell is the same under any lattice partition. And, as we shall see later, all lattice

partitions are, in fact, equivalent in several senses; for example, any fundamental

cell is a complete set of coset shifts in (2.8).

Proposition 2.2.1 (Cell volume) The cell volume

V = Vol(P0) =

∫

P0

dx (2.16)

is independent of the lattice partition P, and it is equal to the lattice determinant

of Definition 2.1.2

V = det(Λ) = | det(G)| ∆
= V (Λ). (2.17)

Proof Consider first the parallelepiped partition (2.14) induced by the generator

matrix G. By a change of variables x = Gx′, and using (2.15), we have

V =

∫

P0

dx = | det(G)|
∫

Unit Cube

dx′ = | det(G)|. (2.18)

Next, for a general partition, consider the cells contained in a large cube B.

Since the cells have a finite diameter, the volume of the fractional cells at the

boundary of the cube B becomes negligible when B is sufficiently large. Thus, if

there are N(B) lattice points inside B, then the cell volume is roughly

V ≈ Vol(B)

N(B)
, (2.19)

independent of the shape of the cells, and this approximation becomes exact when

the edge length of B, and hence also N(B), go to infinity. �

In the following section (see Corollary 2.3.1) we shall see an alternative (more

direct) proof for the second part of the proof above, showing that the cell volume

is partition invariant.

5 To see that the parallelepiped cell P0 in (2.14) satisfies the conditions of Definition 2.2.1,
note that (i) the difference between any two points in P0 is not a lattice point, and (ii)
every point outside P0 can be written as a sum of a point in P0 and a lattice point. See
Lemma 2.3.2 in the next section.
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The approximation in (2.19) holds, in fact, for any body which is large com-

pared to the cells, i.e., the number of lattice points N(S) in a large body S

is approximately Vol(S)/V (Λ). We thus define the lattice point density as the

reciprocal of the cell volume:

γ(Λ) =
1

V (Λ)
, (2.20)

measured in points per unit volume.

2.3 Equivalent cells and coset leaders

An even stronger notion of equivalence between partitions holds: all the funda-

mental cells of a lattice are identical modulo a fixed partition. More explicitly,

any fundamental cell can be decomposed into pieces and rearranged (via lattice

shifts) to form another fundamental cell. Although this may seem to be a geo-

metric property, it is, in fact, a consequence of the lattice being a sub-group of

the Euclidean space.

Definition 2.3.1 (Mod P0, Mod Λ) For a given lattice partition P with a

fundamental cell P0, the modulo fundamental cell operation is defined as

x mod P0 = xe = x−QΛ(x), (2.21)

where QΛ(x) and xe are the quantization and quantization error (2.12), respec-

tively, induced by the partition P. We shall call this a modulo-lattice operation

– and use the notation x mod Λ, or x/Λ – whenever there is no ambiguity about

the assumed partition of Λ.

Proposition 2.3.1 (Modulo laws) The modulo-lattice operation satisfies the

shift-invariance property

(x+ λ) mod Λ = x mod Λ, ∀λ ∈ Λ, (2.22a)

and the distributive law,

(x mod Λ + y) mod Λ = (x+ y) mod Λ. (2.22b)

Proof If x = λ′ + xe (with λ′ ∈ Λ and xe ∈ P0) is the unique decomposition

(2.12) of x with respect to a partition P , then x+ λ = (λ+ λ′) + xe must be

the unique decomposition of x+ λ with respect to P , i.e., both x and x+ λ

have the same quantization error xe, which proves the shift-invariance property.

The distributive law now follows because the inner modulo operation in (2.22b)

amounts to shifting x by some lattice point λ. Thus (x mod Λ + y) mod Λ =

(x− λ+ y) mod Λ = (x + y) mod Λ. �
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When considering different fundamental cells of the lattice in the modulo-

lattice (or modulo fundamental cell) operation (2.21), the following simple rela-

tions hold.

Lemma 2.3.1 (Modulo different cells) The result of the modulo-lattice oper-

ation is the same for any fundamental cell of the lattice, up to a shift by a lattice

point:

(x mod P0)− (x mod Q0) ∈ Λ, (2.23a)

where P0 and Q0 are fundamental cells of Λ. Iterating modulo-lattice operations

is dominated by the last fundamental cell:

(x mod Q0) mod P0 = x mod P0. (2.23b)

Finally, all fundamental cells of Λ are equal up to a modulo-lattice operation:

Q0 mod P0 = P0. (2.23c)

Proof See Problem 2.5. �

The following proposition provides a more direct relation between the “pieces”

created by taking one cell modulo another cell.

Proposition 2.3.2 (Breaking a cell into pieces) For partitions P and Q
with fundamental cells P0 and Q0, respectively, let

Aλ = Q0 ∩ Pλ and Bλ = P0 ∩Qλ , for λ ∈ Λ. (2.24)

Then,

Bλ = A−λ + λ. (2.25)

See the example of a hexagonal lattice in Figure 2.6, where P0 is a hexagon

and Q0 is a parallelogram.

Proof By Definition 2.2.1 of lattice partition,

Aλ = Q0 ∩ (λ+ P0) and Bλ = P0 ∩ (λ +Q0). (2.26)

Intersecting with a shift is the same as first shifting backward, then intersecting,

then shifting forward. Thus,

Bλ = [(−λ+ P0) ∩ Q0] + λ = A−λ + λ. (2.27)

�

Since the “pieces” in (2.25) are disjoint, and are identical up to a shift, Propo-

sition 2.3.2 implies that

Vol(P0) = Vol(
·∪λ∈Λ Bλ) = Vol(

·∪λ∈Λ A−λ) = Vol(Q0), (2.28)

where
·∪ denotes the disjoint union. We have therefore obtained an alternative

proof for the second part of Proposition 2.2.1.
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Figure 2.6 The basic Voronoi cell V0 modulo the basic parallelepiped cell P0: the

intersections of V0 with the Pλ cells can be rearranged (via shifts by lattice points) to

generate P0.

Corollary 2.3.1 (Volume invariance property) Every fundamental cell has

the same volume.

2.3.1 Minimal set of coset shifts

We now return to the notion of a lattice coset (2.7), and to our question regarding

a minimal set of coset shifts which covers Rn. This turns out to be related to the

properties of a valid fundamental cell.

Observe that if P0 is a fundamental cell of the lattice Λ, then the difference

vector between any two points in P0 cannot be a lattice point, i.e.,

x− x′ 6∈ Λ, for all x,x′ ∈ P0. (2.29)

Otherwise, i.e., if x− x′ = λ ∈ Λ for some x,x′ ∈ P0, then x = x′ + λ is in the

cell Pλ = λ+ P0, i.e., the point x is both in P0 and in Pλ, contradicting property

(ii) of Definition 2.2.1. We say that S is a maximal set satisfying condition (2.29)

if it is impossible to add any other point to S without violating the condition.

Lemma 2.3.2 (Fundamental cell property 1) A set P0 is a fundamental

cell of Λ if and only if it is a maximal set satisfying condition (2.29).

Proof The “only if” part (necessity) follows from the discussion above, i.e.,

condition (2.29) for a set S is necessary (and sufficient) so that the sets

{λ+ S, λ ∈ Λ} do not intersect (property (ii) of Definition 2.2.1). The “if” part

(sufficiency) follows because for a maximal set S, any point x′ outside S must be

equal to x+ λ for some pair x ∈ S and λ ∈ Λ (or otherwise x′ could be included

in S without violating (2.29)), thus also property (iii) of Definition 2.2.1 is sat-

isfied: ∪λ∈Λ(λ+ S) = Rn. �
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Returning to our question, we say that S is a minimal set of coset shifts

covering Rn if the union in (2.8) is disjoint, i.e., Λx ∩ Λx′ = ∅ for any x,x′ ∈ S,

x 6= x′.

Lemma 2.3.3 (Fundamental cell property 2) A set P0 is a fundamental

cell of the lattice Λ if and only if it is a minimal set of coset shifts covering Rn,

i.e.,

·⋃

x∈P0

Λx = R
n, (2.30)

where
·∪ denotes a disjoint union.

Proof See Problem 2.6. �

In group theory, each coset is seen as an equivalence class of elements, and

the set of all cosets is called a quotient group, denoted Rn/Λ. Lemma 2.3.3

implies that each coset in Rn/Λ has a unique intersection point with any given

fundamental cell. The intersection point can thus “represent” the coset.

Definition 2.3.2 (Coset representative) Given a fundamental cell P0, the

representative of a coset Λx is the (unique) intersection point of the coset and

the fundamental cell, i.e.,

coset representative of Λx = Λx ∩ P0.

Since the points of the coset Λx are shifts of x by the lattice points, the

modulo law (2.22a) implies that they all collapse to the representative when

reduced modulo P0, i.e.,

coset representative of Λx = Λx modP0 Λ = x modP0 Λ. (2.31)

Example 2.3.1 (Coset leader) Since a modulo-Voronoi cell operation does

not increase the length of a vector, the coset representative in the fundamental

Voronoi cell is the shortest vector in the coset, called the coset leader:

coset leader of Λx = argmin
y∈Λx

‖y‖ (2.32)

with ties broken according to the Voronoi partition rule (2.10); see Problem 2.7.

It follows that the Voronoi cell V0 is the set of all coset leaders.

We have considered two alternative necessary and sufficient conditions for a

set to be a fundamental cell of the lattice: a maximal set of non-lattice differences

(Lemma 2.3.2), and a minimal covering set of coset shifts (Lemma 2.3.3). By the

latter condition, any fundamental cell P0 is a complete set of coset representa-

tives, and the quotient group (set of all cosets) can be expressed as

R
n/Λ = {Λx : x ∈ P0}. (2.33)
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While the choice of a fundamental cell P0 determines the result of the modulo

operation in Definition 2.3.1, it is irrelevant for the question of whether two

points are equal modulo the lattice. That is,

x = y mod Λ (2.34)

means that x and y belong to the same coset of Λ. The equality, if true, holds

regardless of the choice of fundamental cell for Λ.

2.4 Transformation and tiling

Suppose that a lattice Λ′ is generated by a linear transformation of another

lattice Λ, i.e., Λ′ = T · Λ, for some full rank square matrix T . By (2.2),

Λ′ = T ·G · Zn, (2.35)

where G is a basis of Λ. Thus

G′ = T ·G = [Tg1 |Tg2 | . . . |Tgn] (2.36)

is a basis of Λ′, i.e., each basis vector is transformed by the matrix T . (Note the

distinction from right-multiplication when changing a basis for the same lattice

(2.3).) In particular, by Proposition 2.2.1, the cell volume of Λ′ is given by

V (Λ′) = | det(T )| · V (Λ) (2.37)

for example, for a scalar transformation, V (tΛ) = |t|nV (Λ).

It is easy to see that if P0 is a fundamental cell of Λ, then T · P0 is a fundamen-

tal cell of T · Λ. In particular, any parallelepiped partition of Λ′ = T · Λ is just

a linear transformation of some parallelepiped partition of Λ, i.e., P0(T · Λ) =
T · P0(Λ). Interestingly, however, this is not always the case for Voronoi parti-

tion, i.e., in general,

V0(T · Λ) 6= T · V0(Λ). (2.38)

Example 2.4.1 (Transformation and Voronoi partition) The hexagonal

lattice A2 can be written as G · Z2, with G as given in Example 2.2.1. The Voronoi

cells of Z2 are squares. The linear transformation of these squares results in

partition (B) (the rhombuses) in Figure 2.4, whose fundamental cell is

{x = G · α : −0.5 ≤ α1, α2 ≤ 0.5}. (2.39)

This is a centralized version of the parallelepiped fundamental cell of A2. In

contrast, the fundamental Voronoi cell of A2 is hexagonal (partition (A) in Fig-

ure 2.4). Another example, of vertical scaling of the hexagonal lattice and its

effect on the partition, is shown in Figure 2.7.

The reason for (2.38) is that, in general, ‖x− λ‖ ≤ ‖x− λ′‖ does not imply

‖T (x− λ)‖ ≤ ‖T (x− λ′)‖, unless T is proportional to some measure-preserving
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Figure 2.7 Vertical stretching of the hexagonal lattice and its Voronoi partition:

partition followed by stretch (solid line); stretch followed by partition (dashed line).

transformation (i.e., for square norm, if and only if TT t ∝ I); thus, the nearest

lattice point may change after the transformation.

Closest lattice-point search complexity

Many communication problems – like combined equalization and detection

over filter channels, or predictive quantization of correlated sources – would

be extremely simple to solve if we could interchange the order of linear

transformation and nearest-neighbor (Voronoi) partition. Unfortunately, as

illustrated in Figure 2.7, the cells at the transform domain do not reflect

minimum Euclidean association at the lattice code domain.

The same problem underlies the complexity of searching for the closest

lattice point to a given vector x in Rn. This search is at the heart of lattice

quantization under a mean-squared error criterion, or maximum likelihood

decoding of a lattice constellation in the presence of AWGN. If the lattice is

cubic, i.e., Λ = aZn, then the closest vectorQ
(NN)
Λ (x) can be obtained simply

via coordinate-by-coordinate quantization. In the general lattice Λ(G) case,

a naive approach would be to transform the search to a cubic domain by the

inverse generator matrix, quantize coordinate-by-coordinate, and transform

back to the lattice domain, i.e.,

x̂ = G ·QZn(G−1x). (2.40)

However, as explained above, x̂ 6= Q
(NN)
Λ (x), unless the matrix G is orthog-

onal, or x is “very close” to a lattice point; see [3, 46]. A sufficient condition
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for “closeness” is that x is inside the ball inscribed in the centralized funda-

mental parallelepiped associated with G; see (2.39) and the discussion about

a “good basis” in Section 2.1.1.

2.4.1 Scaling laws

Recall the unique decomposition (2.12) of a point x ∈ Rn into a lattice point

λ = QΛ(x) and a quantization error xe = x mod Λ (see Definition 2.3.1). Both

the quantizer QΛ(x) and the modulo operation are defined with respect to some

fundamental cell P0.

In the context of an invertible linear transformation T , this decomposition

satisfies the following identities:

QΛ(Tx) = T ·QT−1·Λ(x) (2.41)

and

[Tx] mod P0Λ = T · [x mod T−1·P0
T−1 · Λ]. (2.42)

See Problem 2.8. Specifically, for a scalar transformation,

QΛ(αx) = α QΛ
α
(x) (2.43)

and

[αx] mod Λ = α
[

x mod
Λ

α

]

. (2.44)

Thus, scaling a vector before quantization is equivalent to quantizing the non-

scaled vector by a scaled version of the lattice.

2.4.2 Similarity

A scaled orthogonal transformation can enlarge, shrink or rotate a lattice, but it

does not change its shape. (It can also reflect it, but a lattice is anyway invariant

to reflection.)

Definition 2.4.1 (Similarity) We say that two lattices Λ1 and Λ2 have the

same shape, are equivalent or similar, if

Λ2 = a · T · Λ1 (2.45)

for some positive scalar a and orthonormal matrix T (i.e., TT t = I).

In view of the basis-transformation (2.36) and basis-change (2.3) rules, two

matrices G1 and G2 generate similar lattices if

G2 = a · T ·G1 · T̃ (2.46)
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Figure 2.8 Tiling the plane with triangles.

for some positive scalar a, orthonormal matrix T and unimodular matrix T̃ .

Example 2.4.2 (Dn lattice) The Dn lattice consists of all integer vectors in

Rn with an even element sum:

Dn = {z ∈ Z
n :

∑n
i=1 zi is even}. (2.47)

For n = 2 it coincides with the n-checkerboard lattice of Example 2.1.3 (consisting

of all the all-even and all-odd vectors in Rn), while for higher dimensions it

strictly contains it. For n = 3, both lattices are similar to each other, and are

similar to the BCC lattice of Figure 1.3. For more than four dimensions, however,

Dn and the n-checkerboard are not similar. See Problems 2.9 and 2.12.

2.4.3 Tiling

Lattice partition is a special case of tiling space with a space-filling body. In

the general tiling case, the space is partitioned into congruent cells, where, in

addition to translation as in the case of lattice partition, we also allow rotation

of the fundamental cell. For example, as shown in Figure 2.8, we can tile R2 with

triangles, though a triangle cannot be a fundamental cell of any lattice.

An interesting question is, then: does this extra degree of freedom of rotation

allow us to obtain “better” arrangements of points in space? To answer this and

many other questions, we need a measure for lattice goodness. This is the topic

of Chapter 3.

2.5 Algebraic constructions

Lattices are tightly connected to number theory, combinatorics and algebraic

codes over finite fields. Although this is not the focus of the book, it is beneficial

to provide some background on these relations.

The matrix GtG – the product of the generator matrix and its transpose –

is known as the Gram matrix. The diagonal elements of the Gram matrix are
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the square lengths ‖gi‖2 of the n lattice basis vectors, while the off-diagonal

elements are their n(n− 1) inner products 〈gi, gj〉. Thus, the Gram matrix is

invariant to rotation or reflection of the lattice (but not to a change of basis). If

the elements of the Gram matrix are integers – not necessarily meaning that the

elements of G are integers – then the lattice is called integral. For example, the

hexagonal lattice of Figure 2.2 is integral; the length of its two basis vectors is

equal to 2, while their inner product is equal to 1. If, in addition, the determinant

of GtG is equal to 1, then the lattice is called unimodular. The only unimodular

lattice up to dimension 8 is the Z-lattice. At dimension 8 we find the first non-

trivial unimodular lattice, known as E8, or the Gosset lattice, which has a unique

algebraic nature.

Integer-valued lattices, like E8 and the Dn lattice of Example 2.4.2, can be

constructed by “lifting” a linear q-ary code into the Euclidean space. We describe

this construction – known as “construction A” – below, and start with the binary

alphabet (q = 2) case. Note that a general lattice – like the hexagonal, BCC

and FCC – whose generator matrix elements have irrational ratios, cannot be

constructed this way. See [49] for more examples and generalizations.

2.5.1 Linear codes and construction A

An (n, k, d) linear binary code C maps k information bits into binary code-

words of length n. There are M = 2k codewords c1, . . . , cM , where cm =

(cm1, . . . , cmn), each satisfying a set of (n− k) independent linear constraints:

hi1 · cm1 ⊕ . . .⊕ hin · cmn = 0, for i = 1, . . . , n− k, where hij ∈ {0, 1} and ⊕
denotes the exclusive-or (XOR) operation. These constraints can be written com-

pactly in terms of an (n− k)× n parity-check matrix H :

H · cm = 0, (2.48)

where all sums and products are modulo 2. The parameter d = dmin(C) is the

minimum distance of the code, i.e., the minimum Hamming weight (number of

ones) over all non-zero codewords.

Construction A is a method for generating a lattice by “lifting” a linear binary

code C to the Euclidean space. We use x mod 2 = (x1 mod 2, . . . , xn mod 2) to

denote a modulo-2 reduction of each of the components of x ∈ R
n. (This is

equivalent to taking x modulo the cubic lattice 2Zn.)

Definition 2.5.1 (Modulo-2 lattice) The set of all integer vectors whose

modulo-2 reduction belongs to C forms a lattice,

ΛC = {x ∈ Z
n : x mod 2 ∈ C}, (2.49)

called a modulo-2 lattice. Equivalently, ΛC = 2Zn + C.
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It is easy to verify that ΛC is closed under reflection and addition, and hence it

is indeed a lattice. 6 It is also easy to verify that the minimum Euclidean distance

between any two points in ΛC is dmin(ΛC) = min{
√
d, 2}.

Example 2.5.1 If H = (1, 1)t, then C = {(0, 0)t, (1, 1)t}, and ΛC is the D2

(“checkerboard”) lattice, consisting of all integer coordinates with even sum (Fig-

ure 2.3).

Another useful notion associated with binary codes is the syndrome. For a

general vector x in {0, 1}n, the syndrome is a vector in {0, 1}n−k, defined as

s = H · x. (2.50)

The code C is thus the set of vectors in {0, 1}n with a zero syndrome. Each

non-zero syndrome s in {0, 1}n−k defines a k-dimensional affine sub-space Cs of

{0, 1}n, consisting of all vectors x satisfying (2.50). This sub-space is a coset of C,
i.e., Cs = v ⊕ C for some vector v in {0, 1}n. If we lift Cs to Rn as in (2.49) (i.e.,

take {x ∈ Zn : x mod 2 ∈ Cs}), then we obtain an integer coset of the lattice

ΛC. And, vice versa, each integer coset of ΛC corresponds to a unique syndrome

s. Thus, ΛC has (at most) 2n−k different integer cosets.

Linear q-ary code The concept of modulo-2 lattices extends to larger alpha-

bets. For an integer q ≥ 2, let

Zq = {0, 1, . . . , q − 1} (2.51)

denote the modulo-q group, i.e., a q-ary alphabet with modulo-q addition. Let

C = {c0, . . . , cM−1} (2.52)

denote a code over Zn
q , i.e., each codeword ci is a vector of n elements from the

alphabet Zq. We say that the code is linear, or that it is a sub-group of Zn
q , if

the modulo-q sum of every two codewords (including a codeword with itself) is

inside the code:

ci ⊕ cj ∈ C, for any ci, cj ∈ C, (2.53)

where ⊕ denotes modulo-q addition. Since adding a number to itself q times

modulo-q gives zero, the zero codeword c0 = 0 is always inside the code.

A linear q-ary code can be written in terms of an n× k generator matrix G

with elements in Zq, for some 1 ≤ k < n:

C = {x = G ·w : w ∈ Z
k
q}, (2.54)

6 If x mod 2 = c ∈ C, then, by the properties of the modulo operation, (−x) mod 2 =
(−(x mod 2)) mod 2 = (−c) mod 2 = c. Thus, −x belongs to Λ as well. Closeness under
real addition follows similarly.
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where w runs over all k-dimensional column vectors with elements from Zq, and

the product of the matrix G and the vector w is defined modulo q. 7 Thus, the

code C is spanned by the k column vectors of the matrix G.

Prime alphabet Since w runs over a set of size qk, the resulting code size (the

number of distinct codewords) M is at most qk, and it is equal to qk if every w

generates a distinct codeword cm. This condition holds if q is a prime number

p and the columns of G are linearly independent within the group Zp.
8 In this

case, both the parity-check (2.48) and generator-matrix (2.54) representations

are equivalent, provided the rows of the parity-check matrix H span the null

space of the columns of the generator matrix G. Furthermore, M = pk, so the

code rate, in bit per dimension, is given by

R
∆
=

1

n
log2(M) =

k

n
log2 p. (2.55)

Similarly to the binary case, we can use construction A to lift a linear q-ary

code C to the Euclidean space and form a modulo-q lattice.

Definition 2.5.2 (Modulo-q lattice) A q-ary linear code C induces a modulo-

q lattice:

ΛC = {x ∈ Z
n : x mod q ∈ C}. (2.56)

Equivalently, ΛC can be written as ΛC = qZn + C.

Thus, ΛC consists of replications of C by shifting it with points from qZn.

Figure 2.9 shows a linear code C in Z2
11 (i.e., q = 11, k = 1, n = 2) lifted to R2.

Proposition 2.5.1 (Properties of a modulo-q lattice)

(a) ΛC is a lattice.

(b) ΛC contains and is contained in cubic lattices: qZn ⊂ ΛC ⊂ Z
n.

(c) ΛC is non-degenerate (even if C contains only a single (zero) codeword).

(d) The cell volume is equal to the number of integer cosets, and is given by

V (ΛC) = |Zn/ΛC | = qn/M , where M is the size of the code C.
(e) For a prime alphabet p, and if C is generated by a full-rank n× k matrix

(2.54), then M = pk, and

V (ΛC) = pn−k. (2.57)

7 This should not be confused with multiplication over the finite field GF (q), for q = pm.
8 Linear independence (i.e., w = 0 is the unique solution for Gw = 0) is meaningful for a

prime alphabet p, because the product (modulo p) of two elements in Zp is zero if and only
if at least one of them is zero. This is not the case for a non-prime group size. For example,
taking q = 4 and n = 2, the linear code C = {(0, 0), (2, 2)} in Z4 is generated by the 2× 1
matrix G = [2, 2]t, and it contains only two codewords, i.e., less than qk = 41 = 4 which is
equal to the alphabet size, so the “effective rank” of G is less than 1.
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Figure 2.9 Construction A of a two-dimensional lattice. Here q = 11, and a generator

matrix of the underlying linear code is G = [2, 3]t, so C consists of the codewords

(0, 0), (2, 3), (4, 6), (6, 9), (8, 1), (10, 4), (1, 7), (3, 10), (5, 2), (7, 5) and (9, 8).

Alternatively, we can take a systematic matrix G = [1, 7]t, so, by (2.59), the lattice is

spanned by the vectors [1, 7]t and [0, 11]t.

(f) The minimum distance between any two points in ΛC is at most q; for q = 2

(a modulo-2 lattice), dmin(ΛC) = min{2,
√
d}, where d is the minimum Ham-

ming distance of the generating binary code C.
(g) ΛC is spanned by the extended n× (n+ k) generator matrix

GΛC = [G | qIn], (2.58)

where G is the generator matrix of C and In is the n× n identity matrix.

See Example 2.1.2.

(h) The extended matrix (2.58) can be reduced to a standard n× n generator

matrix for ΛC, provided that C has a systematic representation. Specifically,

suppose a generator matrix of the form G = [Ik|P t]t, where Ik denotes the

k × k identity matrix and P is an (n− k)× k matrix. That is, each codeword

c = Gw consists of the information vector w itself (the “systematic part”),

concatenated with Pw (the “parity symbols”). Then,

GΛC =

[
Ik | 0

P | qIn−k

]

(2.59)

is an n× n generator matrix for ΛC.

Example 2.5.2 (From Hamming code to E8 lattice) The E8 lattice can be

obtained by construction A from a simple binary linear code known as the (8,4,4)

Hamming code (i.e., q = 2, n = 8, k = 4 and dmin = 4). A systematic basis for
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C

Natural 

Mapping

Coded Bits

Uncoded Bits

c ∈

LSB

MSB

Information Bits
n

Figure 2.10 Coded modulation: construction A defines a natural mapping from

information bits to lattice points in the Euclidean space. Trellis-coded modulation

corresponds to the case where C is a convolutional code.

this code is given by

Gt =







1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
︸ ︷︷ ︸

I4

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0







︸ ︷︷ ︸

P

(2.60)

so by the reduced form (2.59),

GΛC =

[
I4 | 0

P | 2I4

]

(2.61)

is a generator matrix for E8.

2.5.2 Coded modulation and trellis codes

In many communication systems, the channel symbols belong to some fixed low-

dimensional (say, k-dimensional) finite constellation. To increase the coding gain,

the system encodes together many (say, m) such symbols. The resulting set

of possible transmitted vectors is equivalent to a high-dimensional (n = mk)

constellation. If the underlying constellation is a scalar lattice (k = 1), then we

obtain a construction A lattice Λ ∈ Rn. See Figure 2.10.

A special case of interest is when the encoder takes the form of a convolutional

code. In this case, the equivalent dimension of the resulting lattice tends to

infinity.

A lattice of infinite dimension is a discrete set of sequences

{. . . , x−1, x0, x1, . . .} which is closed under reflection and addition. It can

be described by taking the dimension of the generating matrix in Defini-

tion 2.1.1 to infinity; this amounts to a convolution between an integer sequence

. . . , i−1, i0, i1, . . . and a real-valued time-varying filter gn,k:

Λ∞ =
{{

xn =
∑

k

gn,k · in−k

}∞

n=−∞
: ik ∈ Z for all k

}

. (2.62a)
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Alternatively, an integer-valued infinite-dimensional lattice can be generated via

construction A (Definition 2.5.2), i.e., by lifting a q-ary convolutional code Cconv
to the Euclidean space (in a convolutional code, the filter coefficients gn,k and

the information symbols ik in (2.62a) belong to some finite alphabet Zq, and all

operations are taken modulo q):

Λ∞ =
{

{xn} ∈ Z
∞ : {xn mod q} ∈ Cconv

}

. (2.62b)

In practice, it is desirable to use a finite, time-invariant filter g1, . . . , gK (or

a set of such filters in parallel). Hence, the generation rule (2.62b) has a finite

number (qK) of states. It can then be described using a trellis diagram, with one

axis playing the role of a state space, and the other the role of time. The resulting

transformation, from a digital sequence (of bits or q-ary symbols) to a real-valued

sequence xn, is known as trellis-coded modulation (for the construction A of

(2.62b)), or as a signal code (for the real convolution of (2.62a)). See [30, 93, 236].

Under appropriate conditions, a trellis code is invariant under translation,

implying some kind of uniformity in space.

Definition 2.5.3 (Geometrically uniform code) A code C in Euclidean

space is geometrically uniform if for any two codewords c, c′ ∈ C, there exists an

isometry T (a distance preserving transformation, i.e., a transformation consist-

ing only of translation, rotation and reflection) that maps c to c′ while leaving

the code invariant, i.e., T (c) = c′ and T (C) = C.

We see that lattices as well as unbounded linear trellis codes (2.62) are geo-

metrically uniform (with the transformation T consisting only of translation).

Most of the discussion in this book applies to such codes.

Summary of Chapter 2

Lattice Λ(G) = GZn = {i1g1 + · · ·+ ingn : i1, . . . , in are integers}.

Equivalent bases Λ(GT ) = Λ(G) if and only if T is a unimodular matrix.

Fundamental cell Λ + P0 covers Rn without overlap.

Cell volume V (P0) = V (Λ) = | det(G)| for any fundamental cell P0.

Lattice quantizer QΛ(x) = λ if x is in λ+ P0.

Modulo-lattice operation x = QΛ(x) + [x mod Λ].

Distributive law [[x] mod Λ + y] mod Λ = [x+ y] mod Λ.

Cosets x+ Λ has a unique representative in each fundamental cell P0.
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Fundamental Voronoi cell V0 = {x : ‖x‖ ≤ ‖x− λ‖ for all λ ∈ Λ}. V0

is the set of minimum-length coset representatives, where ties are broken

systematically.

Nearest-neighbor quantizer

Q
(NN)
Λ (x) = argmin

λ∈Λ
‖x− λ‖.

Similarity Λ(aTG) is similar to Λ(G), if T is an orthogonal matrix.

Construction A If C is a linear q-ary code, then ΛC = qZn + C is a modulo-

q lattice.

Problems

P.2.1 (Degenerate lattices, too small basis) Show that the two basis vectors

[1,−1, 0] and [0, 1,−1] generate a hexagonal lattice A2 in R3.

P.2.2 (Voronoi cell convexity) Use the triangle inequality to prove the convexity

of the cells for Euclidean Voronoi partition.

P.2.3 (Irregular fundamental cell) Show that if {P0,i} is a partition of a funda-

mental cell P0 of Λ, and λi ∈ Λ, then the union ∪i(λi + P0,i) is another funda-

mental cell of Λ.

P.2.4 (Volume formula) Prove that the approximation V ≈ Vol(B)
N(B) becomes tight

for a large B, in the proof of Proposition 2.2.1. Hint: use the fact that the

diameter d of the cells is finite.

P.2.5 (Modulo laws) Prove Lemma 2.3.1, using the decompositions (2.13) of x

relative to P and to Q.

P.2.6 (Covering Rn with cosets) Prove Lemma 2.3.3. Guidance: show that the

disjoint union (2.30) can be written equivalently as
·∪λ∈Λ (λ+ P0) = Rn.

P.2.7 (Modulo reduces length) Prove that modulo-Voronoi reduction cannot

increase the length of a vector, i.e., ‖x modV0 Λ2‖ ≤ ‖x‖. Give an example of a

non-Voronoi cell where the modulo operation increases the length.

P.2.8 (Scaling laws) Prove the transformation and scaling laws (2.42)–(2.41).

P.2.9 (Similarity) Show that the D2 lattice of Example 2.4.2 coincides with the

two-dimensional checkerboard lattice of Example 2.1.3. Show that D3 and the

three-dimensional checkerboard lattice are similar. Guidance: find an orthogonal

transformation from the basis vectors (2, 0, 0), (0, 2, 0), (1, 1, 1) of the checker-
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board lattice in R3, to a scaled version of the basis vectors (2, 0, 0), (1, 1, 0),

(1, 0, 1) of the D3 lattice.

P.2.10 (Construction A properties) Prove properties (a)–(g) of construction A,

Proposition 2.5.1.

P.2.11 (Generating matrix of a modulo-q lattice) Prove formula (2.59) for the

generating matrix of a modulo-q lattice, based on the systematic form of the

generating matrix of the code. (Guidance: show (A) that for any integer vector

i, the real multiplication GΛC · i followed by a modulo-q operation is a point in

C, and (B) (the reverse statement) if x mod q is in C (i.e., x is a shift of a point

in C by a point in qZn), then x can be written as GΛC · i for some integer vector

i.)

P.2.12 (Construction A for Dn) Show that Dn is a modulo-2 lattice, generated

by a single parity-check binary code C = {c ∈ Zn
2 : c1 ⊕ . . .⊕ cn = 0}. Use that

to show that

G =













1 0 . . . 0 −1

0 1 0 . . . 0

...
. . .

...

0 . . . 1 0

1 . . . 1 1













is a generator matrix for Dn. Conclude that Dn is not similar to the n-

checkerboard for more than four dimensions. (Hint: observe that Dn is spanned

by n of its shortest lattice vectors, while any basis of the n-checkerboard must

contain at least one non-shortest lattice vector for n > 4.)

P.2.13 (Multi-level codes and minimum distance) Construction A of a modulo-2

lattice can be viewed as encoding of the least significant bits of the coordinates of

the constellation, while leaving the most significant bits un-coded. That is, letting

LSB(z) denote the least significant bit in a binary expansion of the integer z ∈ Z,

the lattice ΛC consists of all integer vectors z = (z1, . . . , zn) such that LSB(z) =

(LSB(z1), . . . ,LSB(zn)) is a point in C. To increase the minimum distance beyond

2 (while still using binary codes – see Proposition 2.5.1(f)), we should also add

redundancy to the higher bits in the binary expansion of Z. Suppose that C2 is

an (n, k) linear binary code. Define a 4-ary linear code C4 = [C2 ⊕ 2 · C2] mod 4

(where the multiplication by 2 and addition are carried modulo 4), and form an n-

dimensional modulo-4 lattice ΛC4 = C4 + 4Zn. Show that: (i) C2 = C4 mod 2; (ii)

ΛC4 ⊂ ΛC2 ; (iii) conclude that all points z in ΛC4 satisfy that LSB(z) is a point

in C2, but the reverse statement is not true; (iv) conclude that dmin(ΛC4) ≥
dmin(ΛC2), and the inequality is strict if dmin(C2) > 2. See construction D in

Forney et al. [92] and Conway and Sloane [49, chapter 8].
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Interesting facts about lattices

The Nobel prize in chemistry in 2011 was awarded to the materials scientist Dan

Shechtman, for his discovery in 1982 of quasicrystals. Until that time, every-

one assumed that the atoms of an ordered solid material must form a three-

dimensional lattice. Materials with such a periodic structure are characterized

by a point-like diffraction pattern (i.e., a spatial Fourier series) which can only

possess a 2nd, 3rd, 4th and 6th order symmetry; in contrast, the diffraction pat-

tern of quasicrystals may have an unrestricted (typically 5th, 8th, 10th or 12th)

order symmetry [158].

The seventeenth century astronomer Johannes Kepler conjectured that the

FCC lattice forms the best sphere packing in three dimensions. While Gauss

showed that no other lattice arrangement is better, the perhaps harder part –

of excluding non-lattice arrangements – remained open until a full (computer-

aided) proof was given in 1998 by Hales.

The early twentieth century mathematician Hermann Minkowski used lattices

to relate n-dimensional geometry with number theory – an area he called “the

geometry of numbers” [36]. The Minkowski–Hlawka theorem (conjectured by

Minkowski and proved by Hlawka in 1944) will play in Chapter 7 the role of

Shannon’s random coding technique for proving the existence of “good” lattice

codes.

Although lattice codes are not mentioned in Shannon’s work, he was certainly

interested in sphere packing in high dimensions. 9 A story says that when David

Slepian was about to retire from Bell Laboratories, he invited his close colleague

Aaron Wyner to pick his favorite books from his office (before giving all of them

to his other lab mates). Wyner hesitated to take the offer before Slepian left,

and when he finally came to make his choice most books were already taken.

Yet one book on the shelf caught his eye, “An introduction to the geometry of

N dimensions,” from 1929, by Sommerville. Opening it, Wyner found “C. E.

Shannon” handwritten on the inside cover. 10

The relation between error-correcting codes, sphere packing and lattices

(called construction A in this chapter) was studied by Leech and Sloane [153],

and Conway and Sloane [49, chapter 5] in the 1970s and 1980s. They were moti-

vated by several discoveries in the mathematical literature during the 1960s, like

the 2m-dimensional Barnes–Wall lattices and the ultradense Leech lattice in 24

dimensions; see the introduction by Forney [83]. Another notable motivation was

provided by Ungerboeck’s invention of trellis-coded modulation by set partition

in 1982 [259], and de Buda’s asymptotic analysis of lattice-based codes [57, 58] in

the late 1970s and 1980s. In a series of works through the 1980s and 1990s, For-

9 Shannon’s 1953 paper “The lattice theory of information” [242], refers to another definition

of the word “lattice” (a partial order between sets).
10 Thanks are due to Wyner’s colleague, Toby Berger, for telling me this story.
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ney [83, 84, 85, 86, 87, 94] established tools to characterize and evaluate lattice

codes, towards their implementation in digital communication.

ITU-T standard V.34 for voice-band telephone channel modems at 33.6 kbits

per second uses a four-dimensional constellation selected from the D4 lattice; see

the book by Tretter [256]. In the wireless communication domain (in standards

like 802.11 [WiFi] and LTE), the set of possible coded signals corresponds to a

finite segment from some high-dimensional lattice. Lattice (“algebraic”) code-

books are also used for data compression; one recommendation for the ITU-T

729.1 speech-coding standard uses the Gosset lattice E8 as the codebook for

code-excited linear prediction (CELP) [104, 144]. And obviously, the analog-to-

digital (A/D) convertor at the interface of any signal compression scheme is a

scalar lattice quantizer.

Some of the stronger public-key algorithms today use lattice-based cryptog-

raphy, a concept that was initiated by Ajtai in 1996 [6]. Actual systems based

on lattices were proposed immediately after Ajtai’s discovery by Goldreich et al.

[108] and Hoffstein et al. [121] (the NTRU algorithm was patented in the late

1990s). These systems rely on the asymmetry of coding and decoding, and on

the difficulty of finding a “good” basis for a given lattice. It is easy to translate

an integer vector to a lattice point and to perturb it slightly, but it is hard to

find the closest lattice point to the perturbed vector – unless the decoder has a

“good” basis; see the book by Micciancio and Goldwasser [186] and the survey

paper by Micciancio and Regev [188].



3 Figures of merit

In digital communications, the cubic lattice plays the role of a simple uniform

quantizer – for source coding, or an “uncoded” constellation – for channel cod-

ing. Better source-channel coding schemes can be associated with more complex

lattices. This relation requires a definition of the notion of lattice goodness.

We shall develop two figures of merit of a lattice in the context of digital

communication: (i) the normalized second moment – a measure of its goodness

as a vector quantizer under a squared-error distortion measure, in Section 3.2,

and (ii) the volume to noise ratio – a measure of its goodness as a (coded)

constellation for the AWGN channel, in Section 3.3. Before that, in Section 3.1,

we introduce two more fundamental quantities associated with lattice goodness

for sphere packing and covering. As we may expect, all these quantities are

invariant to scaling and rotation of the lattice.

3.1 Sphere packing and covering

Which shape minimizes the surface area among all shapes of a given volume

in Rn? Which shape minimizes the diameter or the second moment? The iso-

perimetric inequality implies that for all these questions – and many more – the

unique solution is a ball. Two of the most fundamental questions about balls (or

spheres) are how efficiently they can be packed in the Euclidean space, and how

efficiently they can cover it. Although these questions do not necessarily lead

to a lattice arrangement, lattices offer the most natural and insightful sphere

packings and coverings in the Euclidean space. 1

Let Br denote an n-dimensional ball of radius r centered at zero:

Br = {x ∈ R
n : ‖x‖ ≤ r}. (3.1)

Hence, B1 is the unit-radius ball, and Br = rB1. The volume Vol(Br) =
∫

Br
dx of

an n-dimensional ball is given by

Vol(Br) = Vn · rn, (3.2)

1 In lattice literature, balls and spheres are usually synonymous, whereas in mathematics
sphere usually refers to the surface of a ball and solid sphere usually refers to a ball.
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Figure 3.1 (A) The volume Vn of a unit ball B1, compared to the approximation

Vn ≈ (2πe/n)n/2. (B) Convergence of nV
2/n
n to 2πe ≈ 17.

where Vn is the volume of a unit ball, i.e., a ball with a unit radius. That is,

V1 = 2, V2 = π, V3 = 4
3π, and, in general,

Vn = Vol(B1) =
πn/2

(n/2)!
, (3.3)

where the factorial for fractional numbers is defined via its Gamma-function

extension, i.e., (n/2)! = Γ(n/2 + 1) =
√
π · 1

2 · 3
2 · · · · · n

2 for odd n.

As Figure 3.1(A) shows, Vn increases for dimensions 1 ≤ n ≤ 6, and then it

decreases. As we shall see later, Vn ≈
(
2πe
n

)n/2
for large n up to a sub-exponential

factor; see Figure 3.1(B). Thus, to avoid a vanishing volume, the radius r must

grow with the dimension (at least roughly as
√
n). Also, noting that

Vol(Br(1−ǫ))

Vol(Br)
= (1− ǫ)n → 0, (3.4)

as n → ∞ for all ǫ > 0, we conclude that most of the volume of a high-

dimensional ball is concentrated near its outer shell. Thus, a ball and a spheri-

cal shell are asymptotically equivalent volume-wise. Furthermore, they are both

volume-wise similar to the cube inscribed in them, as discussed in the caption of

Figure 3.2.
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a√2a

Figure 3.2 It is insightful to compare the behavior of the volume of a ball with that of

a cube of “similar dimensions.” The volume of an n-dimensional cube with edge

length 2a is (2a)n. A maximal ball inscribed in this cube has a radius a, so its volume

is Vna
n, which vanishes as n → ∞ (it is ≈ (a

√

2πe/n)n for large n). On the other

hand, a circumscribed sphere of this cube has a radius a
√
n, so its volume grows like

Vn(
√
na)n ≈ (

√
2πea)n ≈ (4a)n. Thus, volume-wise, an n-dimensional ball is similar

to the cube inscribed in it, but not to the cube containing it. This may explain why

the cubic lattice is so bad for packing but quite good for covering.

3.1.1 Packing problem

Let us formalize the problem of arranging the pile of oranges in Figure 1.2. For

a given lattice Λ and a radius r, the set Λ + Br is a packing in Euclidean space,

if for all distinct lattice points λ, λ′ ∈ Λ, we have

(λ+ Br) ∩ (λ′ + Br) = ∅. (3.5)

That is, the spheres do not intersect. The packing radius rpack(Λ) of the lattice

is defined by the largest balls the lattice can pack:

rpack(Λ) = sup{r : Λ + Br is a packing}. (3.6)

As Figure 3.3 shows, rpack(Λ) is the inner radius of the Voronoi cell V0, i.e., the

radius of the largest (open) n-dimensional ball contained in V0.

The central ball Brpack(Λ) in the packing Λ + Brpack(Λ) touches each of its neigh-

bors at one point. The number of such neighbors is called the kissing number of

the lattice, which is also the number of shortest lattice vectors: 2

NΛ(dmin)
∆
= |{λ ∈ Λ : ‖λ‖ = dmin}|, (3.7)

2 This is usually smaller than the kissing number of Rn, which is the maximum number of
balls that can touch another ball of the same size [49].
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rcov(Λ)

reff(Λ)

rnoise

rpack(Λ)

Figure 3.3 Geometric picture of rpack(Λ) and reff(Λ) with respect to the Voronoi

region, as well as the other radii defined in the text.

where dmin = dmin(Λ) is the minimum distance of the lattice Λ:

dmin(Λ)
∆
= min

λ,λ′∈Λ, λ6=λ′
‖λ− λ′‖ = min

λ∈Λ, λ6=0
‖λ‖. (3.8)

Note that since the touching point is on the line connecting the centers of the

balls, the minimum distance is twice the packing radius:

dmin(Λ) = 2rpack(Λ). (3.9)

Note also that the shortest lattice vectors are generally a subset of the face-

determining points of the fundamental Voronoi cell, as illustrated in Figure 3.4.

For the hexagonal lattice, these sets are the same; all six face-determining points

are at a distance dmin(Λ) from the origin.

To assess the packing efficiency of a given lattice, we make the following defi-

nition.

Definition 3.1.1 (Effective radius) The effective radius of a lattice Λ is

defined as the radius of a sphere having the same volume as the lattice cells:

reff(Λ) =

[
V (Λ)

Vn

]1/n

. (3.10)

By the properties of a ball, reff(Λ) ≥ rpack(Λ), with equality if and only if

the Voronoi cell itself is a ball. More generally, if Vol(Br) = anV (Λ) (or larger),
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Figure 3.4 A case where the set of shortest lattice vectors is smaller than the set of the

face-determining points of the fundamental Voronoi cell.

then r ≥ arpack(Λ). In particular, if Vol(Br) = 2nV (Λ) (or larger), then by (3.9)

r ≥ dmin(Λ); i.e., Br contains all the shortest lattice vectors. 3

Definition 3.1.2 (Packing efficiency) The packing efficiency of a lattice Λ

is defined as

ρpack(Λ) =
rpack(Λ)

reff(Λ)
. (3.11)

The normalization by the effective radius guarantees that the packing effi-

ciency is invariant to scaling, i.e., ρpack(αΛ) = ρpack(Λ). One use of ρpack is to

express the proportion of space taken up by the spheres – a quantity known as

packing density:

∆(Λ) =
volume of packed spheres

volume of space
=

Vol(Brpack(Λ))

V (Λ)
= ρnpack(Λ). (3.12)

When taking a Cartesian product of lattices, the packing radius is determined

by the lattice with the minimal packing radius. The effective radius, on the other

hand, increases roughly as the square root of the number of factors. Thus, the

packing efficiency of Cartesian products generally decreases. See Problem 3.3.

Example 3.1.1 (Packing efficiency of Zn) The packing radius of the cubic

lattice Zn is 1/2 for all n. Since V (Zn) = 1, the effective radius is reff(Z
n) =

1/ n
√
Vn. Thus ρpack(Z

n) = n
√
Vn/2. It follows that ρpack(Z

n) = 1,
√
π/2 ≈ 0.886

3 This argument holds not only for a “Euclidean ball,” but, in fact, for any norm-based ball
(i.e., any norm in (3.1)). Equivalently, this argument applies to any convex body which is
symmetric about the origin. We thus obtain the Minkowski convex-body theorem: any zero-
symmetric convex body with volume greater than 2nV (Λ) contains at least one non-zero
lattice point. See Problem 3.2.
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and 3
√

π/6 ≈ 0.806, for n = 1, 2 and 3, respectively. As for large n, by the asymp-

totic expression Vn ≈ (2πe/n)n/2, we have ρpack(Z
n) ≈

√

πe/2n. In particular,

while the effective radius grows as
√
n (like the diagonal of a cubic cell), the

packing radius is fixed, hence the packing efficiency decreases to zero as 1/
√
n.

See Figure 3.2.

Hermite parameter

An alternative measure for the packing efficiency is the Hermite parameter:

h̄(Λ)
∆
=

d2min(Λ)

V 2/n(Λ)
. (3.13)

It is related to the radius-ratio measure in Definition 3.1.2, as h̄(Λ) =

4ρ2pack(Λ)/V
2/n
n . For the cubic lattice h̄(Zn) = 1, for all n. And, in gen-

eral, the Hermite parameter is invariant to taking Cartesian products of the

same lattice, i.e., h̄(Λn) = h̄(Λ) (unlike the packing efficiency ρpack(Λ)). We

shall see below, in the context of modulation in the presence of AWGN, that

h̄(Λ) plays the role of a nominal coding gain.

The packing efficiency is always greater than zero and no greater than 1:

0 < ρpack(Λ) ≤ 1. (3.14)

It is exactly 1 for one dimension, where “spheres” – i.e., intervals – can be packed

without holes, but then it drops strictly below 1 for all n > 1.

The densest lattice in the plane, i.e., the one that maximizes ρpack(Λ) over

all lattices in R
2, is the hexagonal (A2) lattice (Example 2.2.1), for which

ρpack(Λ) =
√

π/2
√
3 ≈ 0.9523. The densest three-dimensional lattice is the face-

centered cubic (FCC) (A3) lattice – formed by the centers of the pile of oranges in

Figure 1.2 – with ρpack(Λ) =
3

√

π/3
√
2 ≈ 0.9047. The densest lattices are known

for all dimensions up to eight, but are still unknown for most higher dimensions.

As the examples above seem to indicate, the density of the best known lattices

tends to decrease with the dimension (though not monotonically). On the posi-

tive side, a theorem due to Minkowski and Hlawka [36] guarantees that in each

dimension there exists a lattice whose packing efficiency is at least one-half:

max
Λ∈Rn

.ρpack(Λ) ≥
1

2
. (3.15)

Thus, there is a factor 1/2 between the upper bound (3.14), which holds for

every lattice, and the lower bound (3.15), which holds for some “good” lattices.

We shall return to this point in Chapter 7.
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Figure 3.5 Covering space with cellular base stations.

3.1.2 Covering problem

Consider deployment of cellular base stations in a three-dimensional space, where

each base station can communicate with users at a maximum range of rcov, as

shown in Figure 3.5. To ensure coverage, each point in space must fall inside a

ball of radius rcov around at least one of the base stations.

Mathematically, the associated notions for the covering problem are defined

similarly to their packing counterparts. The set Λ + Br, composed of spheres

centered around the lattice points, is a covering of Euclidean space if

R
n ⊆ Λ + Br.

That is, each point in space is covered by at least one sphere. Define the covering

radius of the lattice rcov(Λ) by

rcov(Λ) = min{r : Λ + Br is a covering} (3.16)

which is also the outer radius of the Voronoi cell, i.e., the minimum radius of a

(closed) ball containing V0. See Figure 3.3.

Definition 3.1.3 (Covering efficiency) The covering efficiency of a lattice

is defined by

ρcov(Λ) =
rcov(Λ)

reff(Λ)
, (3.17)

where reff(Λ) is defined in (3.10).
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Again, the normalization by the effective radius guarantees that the covering

efficiency is invariant to scaling, i.e., ρcov(αΛ) = ρcov(Λ).

The covering thickness – the dual of the packing density – is the average

number of spheres covering a point. It is given by the proportion of space taken

up by the spheres,

θ(Λ) =
volume of covering spheres

volume of space
=

Vol(BrcovΛ
)

V (Λ)
= ρncov(Λ). (3.18)

The covering efficiency ρcov(Λ) is by definition not less than 1. As for packing,

it is exactly 1 for one dimension, but then it goes above 1 for all n > 1. In contrast

to packing, the covering efficiency does not get much worse by taking Cartesian

products.

Example 3.1.2 (Covering efficiency of Zn) The covering radius of the

cubic lattice Z
n, which is the distance of the cube corner to the center, is

√
n/2.

The effective radius is reff(Z
n) = 1/ n

√
Vn (see Example 3.1.1). Thus ρcov(Z

n) =√
n n
√
Vn/2. It follows that ρcov(Z

n) = 1,
√
2π/2 ≈ 1.253 and

√
3 3
√

π/6 ≈ 1.396,

for n = 1, 2 and 3, respectively. For a large n, the approximation Vn ≈ (2πe/n)n/2

implies that ρcov(Z
n) ≈

√

πe/2 ≈ 2.066. That is, in contrast to its vanishing effi-

ciency for packing, the asymptotic covering efficiency of the cubic lattice is not

that bad: its covering radius is only about twice its effective radius. See Figure 3.2.

The optimum covering efficiency is unknown for most dimensions. The thinnest

lattice in the plane, i.e., the one that minimizes ρcov(Λ) over all lattices in R2, is,

as expected, the hexagonal lattice, with ρcov(Λ) ≈ 1.0996. In three dimensions

the thinnest lattice is surprisingly different than the densest one: it is the body-

centered cubic (BCC) lattice – formed by the centers of the three-dimensional

cellular base stations in Figure 3.5 – with ρcov(Λ) ≈ 1.1353. (For comparison,

the covering efficiency of the FCC lattice is ≈1.2794.)

These examples give the impression that the covering efficiency of the best lat-

tices becomes worse as the dimension increases. Nevertheless, a result of Rogers

[230] shows that there exists a sequence of lattices Λn of increasing dimension n

such that

ρcov(Λn) → 1 as n → ∞.

Thus, the thinnest coverings eventually improve and approach the lower bound

of 1. We shall return to this point in Chapter 7.

3.2 Quantization: normalized second moment

Digital communication suggests an interesting variation on the problems of

sphere packing and covering, which is more relevant for engineering applications.

Vector quantization under a squared-error distortion measure is close in spirit to
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Figure 3.6 The scalar nearest-neighbor quantizer Q∆(x), known also as a uniform

mid-thread quantizer.

the sphere covering problem, while modulation in the presence of additive white-

Gaussian noise (AWGN) is somewhat close to the sphere packing problem. As

we shall see, however, the new problems exhibit different behavior as a function

of the dimension.

We shall again restrict ourselves to lattice-based quantization and modulation,

although more general “periodic constellations” are possible. It will be easier to

start this time with the (sphere covering related) quantization problem.

For a general lattice partition P given in Definition 2.2.1, the lattice quantizer

QΛ : Rn → Λ maps all points inside a cell to the lattice point associated with

this cell:

QΛ(x) = λ, if x ∈ Pλ (3.19)

as we have already seen in (2.13). This becomes the nearest-neighbor quantizer

(2.10) if P is a Voronoi partition, and it takes the familiar staircase form shown

in Figure 3.6 in the scalar (n = 1) case.

For many sources S of interest, the quantizer error vector QΛ(S)− S is roughly

uniformly distributed over the quantizer fundamental cell, and we care about its

mean-squared value, i.e., the mean-squared error (MSE).

Definition 3.2.1 (Second moment) The second moment of a lattice is

defined as the second moment per dimension of a random variable U which is
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uniformly distributed over the fundamental Voronoi cell V0:

σ2(Λ) =
1

n
E{‖U‖2} =

1

V (Λ)
· 1
n

∫

V0

‖x‖2dx, (3.20)

where E{·} denotes expectation, and V (Λ) is the volume of the lattice cells. Note

that since the fundamental Voronoi cell is symmetric about the origin, U has a

zero mean; hence σ2(Λ) is also the variance per dimension of U.

A figure of merit of a lattice quantizer with respect to the MSE distortion

measure is the normalized second moment (NSM), or the “second-moment to

volume ratio.”

Definition 3.2.2 (Normalized second moment)

G(Λ) =
σ2(Λ)

V 2/n(Λ)
. (3.21)

The minimum possible value of G(Λn) over all lattices in Rn is denoted by Gn.

Note that G(Λ) is a dimensionless quantity which is invariant to scaling

or rotation of Λ, i.e., G(αΛ) = G(Λ) for all α > 0, and G(TΛ) = G(Λ) for an

orthonormal transformation T .

Example 3.2.1 The NSM of the scalar lattice quantizer under Voronoi partition

is given by

G1 =
1

∆3

∫ ∆/2

−∆/2

x2dx = 1/12. (3.22)

Note that the NSM does not change if we take a Cartesian product (2.4) of

the lattice, i.e.,

G(Λ × Λ) = G(Λ). (3.23)

In particular,

G(Zn) = G(Z) = G1. (3.24)

Hence, G1 = 1/12 ≈ 0.08333 provides a reference level for a general lattice quan-

tizer.

Definition 3.2.3 (Vector-quantizer gain) The quantization granular gain

of an n-dimensional lattice Λ, relative to the cubic lattice, is defined as

Γq(Λ) =
G(Zn)

G(Λ)
=

1/12

G(Λ)
. (3.25)

In the context of Voronoi modulation, this quantity is also known as the shaping

gain, and denoted Γs(Λ); see Chapter 9.

The NSM of the cubic lattice also provides an upper bound for Gn, the NSM

of the best lattice quantizer in R
n. On the other hand, a lower bound for Gn is
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provided by G∗
n, the corresponding quantity of an n-dimensional ball (i.e., the

second moment per dimension of a uniform distribution over a ball normalized by

the volume raised to the power of 2/n). This quantity is monotonically decreasing

with n, and approaches 1
2πe ≈ 0.05855 as n goes to infinity. We thus have

G1 ≥ Gn ≥ G∗
n >

1

2πe
(3.26)

for all n.

Gersho’s conjecture and lattice quantization

The hexagonal lattice minimizes the average NSM among all two-

dimensional (lattice or non-lattice) quantizers [255]. This amounts to min-

imizing the MSE in high-resolution quantization of a uniformly distributed

source (for a fixed quantizer point density). It is tempting (and analytically

convenient) to assume also that in higher dimensions, the best quantizer

has a periodic structure. Gersho conjectured that the best quantizer in each

dimension is a tiling with some optimal space-filling polytope [102]. As of

today, the best known quantizer up to 24 dimensions is a lattice quantizer

[49] (i.e., we do not know of a non-lattice quantizer which is strictly better).

While packing and covering are perfect in dimension one, and become worse as

the dimension increases, the sphere NSMG∗
n improves, i.e., decreases with n. This

may hint at the fact that increasing the dimension may be advantageous for the

quantization problem. Indeed, the NSM of the hexagonal lattice is ≈0.080188,

which is slightly better than the cubic lattice. Moreover, there exists a sequence

of lattice quantizers Λn of increasing dimension n, such that

lim
n→∞

G(Λn) =
1

2πe
. (3.27)

Thus, a sequence of “good” lattices asymptotically achieves the sphere lower

bound (3.26). More on that in Chapter 7.

The operational significance of the NSM comes from classical results in high-

resolution quantization theory, which express the distortion of lattice quantiza-

tion in terms of Gn. It also plays a role in dithered quantization, the topic of

Chapter 4, and in lattice shaping, the topic of Chapter 9.

3.3 Modulation: volume to noise ratio

An additive-noise channel is given by the input/output relation

Y = X+ Z, (3.28)
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where the noise Z is independent of the input X. In the AWGN channel case, Z is

a white (i.i.d.) Gaussian noise with zero mean and variance σ2 whose probability

density function (p.d.f.) is given by

fZ(z) =
1

(2πσ2)n/2
e−

‖z‖2

2σ2 . (3.29)

As discussed in Chapter 1, in digital communication the input X belongs to a

codebook C = {ci}, where ci carries the message i. Suppose the lattice Λ is used

as a codebook, so the messages are carried by the lattice points {λi ∈ Λ}.
Since the lattice is unbounded, the common notion of a signal to noise ratio

(SNR) is not meaningful. We replace it by the following measure for the lattice

sparsity with respect to Gaussian noise.

Definition 3.3.1 (Volume to noise ratio) The volume to noise ratio (VNR)

of an n-dimensional lattice Λ, in the presence of AWGN with variance σ2, is

defined as 4

µ = µ(Λ, σ2) =
V 2/n(Λ)

σ2
. (3.30)

The VNR (3.30) still does not reflect the performance of a lattice as a code-

book. We would like to refine this definition, to take into account the probability

of decoding error when Λ is used as a codebook for the noisy channel (3.28).

Since the AWGN distribution (3.29) is monotonically decreasing with the norm

of the noise ‖z‖, given a received vectorY it is natural to decode X as the closest

lattice point:

λ̂NN = argmin
λ∈Λ

‖Y − λ‖ = Q
(NN)
Λ (Y), (3.31)

where Q
(NN)
Λ is the nearest-neighbor (Voronoi) quantizer (2.10). An error will

then occur whenever Y falls outside the Voronoi cell Vλ of the transmitted

codeword λ. Since any cell Vλ ∈ V is a shift of the fundamental cell V0 by λ, an

error will occur if the noise Z falls outside V0; furthermore, the additivity of the

channel Y = λ+ Z implies that this event is independent of which codeword λ

was transmitted.

Definition 3.3.2 (Error probability) The error probability in nearest-

neighbor decoding of the lattice Λ, in the presence of AWGN Z with variance

σ2, is defined as

Pe(Λ, σ
2) = Pr{Z /∈ V0}, (3.32)

where V0 is the (Euclidean) fundamental Voronoi cell of Λ.

4 In the literature the VNR is sometimes normalized by 2πe, which is an asymptotic value
corresponding to the Shannon capacity.
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Figure 3.7 Error probability for a one-dimensional constellation.

Note that Pe(αΛ, σ
2) increases monotonically with the noise variance σ2, and

decreases with the lattice scaling parameter α.

Example 3.3.1 (Error probability of a Z-lattice) In the one-dimensional

case, illustrated in Figure 3.7, the decoding error probability of the Z-lattice with

Voronoi partition is given by Pe(Z, σ
2) = 2Q(1/2σ ), where Q(x) =

∫∞
x fZ(z)dz is

the tail probability of the normal distribution (known also as the Q-function). In

n dimensions, correct decoding amounts to succeeding in n independent trials,

with probability 1− Pe(Z, σ
2) each; thus

Pe(Z
n, σ2) = 1−

[

1− 2Q

(
1/2

σ

)]n

, (3.33)

which increases with n. Figure 3.8 shows this error probability as a function of

the argument of the Q-function for several values of n.

Although it is hard to calculate Pe(Λ, σ
2) exactly for general high-dimensional

lattices, there are several ways to estimate it. One way is by the probability of

hyperplane crossing, i.e., the pairwise error probability with respect to another

lattice point. In particular, Pe(Λ, σ
2) is larger than the probability that Z is

closer to one of the shortest lattice vectors than to the origin:

Pe(Λ, σ
2) ≥ 2Q

(
dmin(Λ)/2

σ

)

, (3.34)
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Figure 3.8 Error probability of a cubic lattice (3.33) as a function of the VNR = 1/σ2.

where dmin(Λ) is the minimum distance (3.8), and the factor of two is because, as

for the Z-lattice, the shortest vectors come in symmetric pairs and their pairwise

error events are disjoint. On the other hand, by the union bound, Pe(Λ, σ
2) is

smaller than the sum of pairwise errors, where the sum is taken over all face-

determining points of the fundamental Voronoi cell or, for a looser yet simpler

bound, over all non-zero lattice points. 5

Another way to estimate Pe(Λ, σ
2) is by sphere crossing, i.e., by the probability

Pe(Br, σ
2) that the noise Z falls outside a ball, centered at the origin, with

a radius r comparable with the lattice fundamental Voronoi cell: Pe(Λ, σ
2) is

smaller than Pe(BrpackΛ
, σ2), and larger than Pe(BrcovΛ

, σ2). As we shall see, it is

even larger than Pe(BreffΛ
, σ2). See more on this in Chapters 7 and 13.

By scaling the lattice Λ (or the noise variance σ2), the error probability

Pe(αΛ, σ
2) can take any value between zero and 1. For some target error prob-

ability 0 < ǫ < 1, let

σ2(ǫ) = value of σ2 such that Pe(Λ, σ
2) is equal to ǫ. (3.36)

5 That is,

Pe(Λ, σ
2) ≤

∞
∑

d=dmin

NΛ(d) Q

(

d/2

σ

)

≤
∞
∑

d=dmin

NΛ(d) e
−d2/8σ2

, (3.35)

whereNΛ(d) is the distance spectrum, i.e., the number of lattice points at distance d from the
origin, and where the second upper bound follows from the well-known inequality Q(x) ≤
1
2
e−x2/2 (which is exponentially tight for large x). If d2min/σ

2 ≫ 1, then the first term

dominates; so in light of (3.34), the error probability can be approximated as e−d2min/8σ
2
,

i.e., it is roughly determined by the minimum distance. See Section 13.5.
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Figure 3.9 The cubic lattice NVNR in dB (i.e., 10 log10[µ(Z
n, Pe)/2πe]) as a function

of Pe, for dimensions n = 1, 5 and 10, compared to the sphere NVNR µ∗
n(Pe).

We use this quantity to refine the definition of the VNR (3.30), so that it will

take into account the target error probability.

Definition 3.3.3 (Normalized volume to noise ratio) The normalized

volume to noise ratio (NVNR) of a lattice Λ, at a target error probability 0 <

Pe < 1, is defined as

µ(Λ, Pe) = µ(Λ, σ2(Pe)) =
V 2/n(Λ)

σ2(Pe)
. (3.37)

Like the NSM, the NVNR is a dimensionless number which is invariant to

scaling or rotation of the lattice, i.e., µ(αΛ, Pe) = µ(Λ, Pe) for all α > 0, and

µ(TΛ, Pe) = µ(Λ, Pe) for an orthonormal matrix T . As we can see in Figure 3.9,

the NVNR decreases monotonically with Pe, and it goes from infinity to zero as

Pe goes from zero to 1.

For a given target Pe, we wish to find the densest lattice, i.e., the lattice with

the lowest NVNR. This would imply the largest coding rate per unit volume, as

we shall see in Chapter 6. Thus, the NVNR can measure the possible performance

advantage over the “uncoded” cubic lattice constellation.

Definition 3.3.4 (Coding gain) The coding gain of a lattice Λ relative to

the cubic lattice Zn, at some error probability Pe in the presence of AWGN, is
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Figure 3.10 The coding gain of some common lattices: cubic (Z), hexagonal (A2), D4

and E8, at several target error probabilities. For a fair comparison, the y-axis shows

the equivalent error probability at dimension 8 (i.e., we compare Z
8, A4

2, D
2
4 and E8;

see (3.41)).

defined as

Γc(Λ, Pe) =
µ(Zn, Pe)

µ(Λ, Pe)
. (3.38)

As illustrated in Figure 3.10, the coding gain amounts to the extra noise power

– compared to a cubic constellation – that the lattice Λ can tolerate, for the same

point density (2.20) and error probability (3.32). Or, it can be interpreted as how

much denser Λ can be for the same AWGN power σ2 and error probability.

In the limit of small noise, the minimum distance dominates the error proba-

bility Pe; see footnote 5. Recalling the definition (3.13) of the Hermite parameter,

h̄(Λ) = d2min(Λ)/V
2/n(Λ), we thus obtain that µ(Λ, Pe) ∼ −8 ln(Pe)/h̄(Λ) (i.e.,

the ratio is going to one for a small error probability), so

Γc(Λ, Pe) ∼ h̄(Λ) as Pe → 0, (3.39)

which is known as the nominal coding gain of the lattice [81]; see Problem 3.5.

Fair comparison of lattices at different dimensions When comparing the

performance of lattices at different dimensions, we face the problem that the

significance of the error probability in Definition 3.3.2 changes with the lattice

dimension. To understand why, suppose that a k-dimensional lattice Λk is used
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m times over the n-dimensional channel (3.28), where n = mk. This is equivalent

to a product lattice (Definition 2.1.3)

Λn = Λk × · · · × Λk
︸ ︷︷ ︸

m times

(3.40)

with m factors. Since correct decoding of Λn amounts to m successful decodings

of Λk, the total error probability over the channel is

Pe(n) = 1− (1− Pe(k))
m (3.41)

where Pe(k) = Pe(Λk, σ
2) denotes the error probability of Λk. (The error proba-

bility of the Zn lattice in Example 3.3.1 is the special case k = 1,m = n.) Clearly,

Pe(n) increases with m, and goes to 1 as m goes to infinity. An immediate impli-

cation is that, unlike the NSM, the NVNR is not invariant under a Cartesian

product of the same lattice, and diverges to infinity.

For a fair comparison of lattices of different dimensions, we thus need to take a

common “equivalent dimension.” One way to do that for Λ1 and Λ2 of dimensions

k1 and k2, respectively, is to set a target n-block error probability Pe(n), at some

common block length n = m1k1 = m2k2. (This is done in Figure 3.10 for n = 8

at k = 1, 2, 4 and 8.) Alternatively, we can base the comparison on the equivalent

error probability per dimension, called the symbol error rate (SER):

SER(Λ, σ2) = 1− n
√

1− Pe(Λ, σ2), (3.42)

where n is the dimension of Λ. Note that if the SER of an n-dimensional lattice

Λ is equal to that of a scalar constellation Z, then Pe(Λ, σ
2) = Pe(Z

n, σ2); i.e.,

the SER amounts to the error probability of a scalar constellation having the

same block error probability.

Increasing the dimension The minimum possible value of µ(Λ, Pe) over all

lattices in Rn is denoted by µn(Pe). What can be said about the behavior of

µn(Pe) with n? It is clearly better (lower) than the NVNR of the cubic lattice

µ(Zn, Pe), but as we saw this is a poor upper bound for a large n. From below,

µn(Pe) is lower bounded by the NVNR µ∗
n(Pe) of an n-dimensional ball:

µn(Pe) ≥ µ∗
n(Pe) > 2πe (3.43)

for all n, where the second lower bound holds for Pe smaller than some thresh-

old P th
e ≈ 0.03. The first inequality follows since an n-dimensional ball contains

more probability mass of an AWGN vector than any other body of the same vol-

ume. As for the second inequality, we shall see in Chapter 7 that the ball NVNR

is monotonically decreasing (i.e., improving) with n for 0 < Pe < P th
e , and it

approaches 2πe, as n → ∞, for all 0 < Pe < 1. The latter fact hints that increas-

ing the dimension may be advantageous also for the lattice modulation problem.

Indeed, there exists a sequence of “good modulation” lattices Λn of increasing
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dimension n, which approaches the sphere lower bound on the NVNR:

lim
n→∞

µ(Λn, Pe) = 2πe, for all 1 > Pe > 0. (3.44)

Non-AWGN The noise variance, hence the VNR (3.30), is not a meaning-

ful measure for lattice sparsity when the noise is not white Gaussian. Also the

nearest-neighbor rule (3.31) is not optimal in the non-AWGN case. In Section 6.4

we extend the definitions of VNR, optimal decoding, error probability and NVNR

for general noise distributions.

Summary of Chapter 3

Table 3.1 A table summarizing the various figures of merit (V = V (Λ))

Goodness Representative Normalization Volume Normalization

aspect parameter by reff ratio by V 2/n

Packing rpack = dmin
2 ρpack =

rpack
reff

∆ = ρnpack h̄ =
d2
min

V 2/n

Covering rcov ρcov = rcov
reff

Θ = ρncov –

Quantization σ2(Λ) – – G(Λ) =
σ2(Λ)
V 2/n

Modulation Pe(Λ, σ
2) – – µ(Λ, Pe) =

V 2/n

σ2(Pe)

Problems

P.3.1 (Volume of a product of lattices) Find an expression for the effective radius

of a product of two lattices, and for a product of m times the same lattice.

P.3.2 (Minkowski convex-body theorem) Prove Minkowski’s convex-body the-

orem for a general convex zero-symmetric body (footnote 3). Hint: use the fact

that a convex zero-symmetric body is a “ball” with respect to some general norm.

P.3.3 (Sphere packing in a product lattice) Prove that the packing radius of

a Cartesian product of lattices Λ1 × Λ2 is the minimal one. Find the packing

efficiency of a Cartesian product of the same lattice Λ× · · · × Λ, as a function

of the number of factors m.
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P.3.4 (Hermite parameter and coding gain) Prove that

Pe(Λ, σ
2) ≥ 2Q

(√

h̄(Λ) · µ(Λ, σ2)

2

)

,

where h̄(Λ) is the Hermite parameter (3.13), and µ(Λ, σ2) is the VNR (3.30).

Hint: use (3.34).

P.3.5 (Nominal coding gain) Use the bound Q(x) ≤ 1/2 · e−x2/2, and the

asymptotic approximation Q(x) ∼ 1/x · e−x2/2 for large x, to prove the asymp-

totic approximation σ2(Pe) ∼ d2min/8 ln(1/Pe) for a small Pe, which implies that

the NVNR is given asymptotically by

µ(Λ, Pe) ∼
8 ln(1/Pe)

h̄(Λ)
as Pe → 0,

proving the asymptotic equivalence to the nominal coding gain in (3.39).

Historical notes

The packing and covering properties of n-dimensional lattices, as well as non-

lattice arrangements of points in Rn, have been explored extensively in the math-

ematical literature. The book of Conway and Sloane [49] is probably the best

source for what is known about this topic, and how it relates to the quantization

and coding problems.

Zador [282, 283] defined the coefficient of quantization efficiency under the

MSE criterion (and more general rth power norm-based measures) for general

(unstructured) vector quantizers in the limit of high resolution. Gersho [102]

applied Zador’s ideas to tessellations and lattices, and defined the normalized

second moment (NSM) of the corresponding polytope. (Gersho acknowledged

Sloane, his colleague at Bell Laboratories, for providing the information about

lattices.) Conway and Sloane [45] examined the second moments of some well-

known lattices. Their work served as a bridge between the source coding and the

mathematically oriented literature about lattices. Surprisingly, it is still unknown

(at least not for certain) whether the optimal quantizer in each dimension has

the form of a lattice, and even not which is the optimal lattice quantizer in

dimensions larger than three [248]. Tóth [49, 255] proved that the optimal two-

dimensional quantizer (for a uniform source under MSE) is the hexagonal lattice

quantizer. Barnes and Sloane [14] showed that the BCC is the optimal three-

dimensional lattice quantizer. From a different angle, Marcellin and Fischer [178]

introduced trellis-coded quantization, whose mean-squared error efficiency was

further studied by Calderbank et al. [32].

The channel coding goodness of a lattice (as an infinite constellation in the

presence of AWGN) is a more recent and evolving notion in the communication

literature. The traditional approach uses the minimum distance dmin (for a fixed
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lattice cell volume) and the number of nearest neighbors NΛ(dmin) to estimate

the error probability, hence to assess the goodness of a lattice constellation in

the presence of AWGN. Calderbank and Sloane [34], Conway and Sloane [49,

chapter 3] and Forney and Wei [94] defined the coding gain of a constellation

as the transmit power reduction (for the same minimum distance and coding

rate) compared to the integer lattice. See the tutorial paper by Forney and

Ungerboeck [93] for an extension to binary and trellis-coded signaling. However,

this approach is not very accurate for rates approaching capacity; later work

uses the minimum volume to noise ratio (VNR) required for a small decoding

error probability; see the papers by Poltyrev [221] and Forney et al. [92] (the

former calls it “generalized SNR,” while the latter normalize it by a factor of

2πe). In this book we measure the channel coding goodness of a lattice Λ by the

normalized VNR µ(Λ, Pe), i.e., the VNR required to meet an error probability

Pe. This quantity has two advantages: (i) it is an accurate, though hard to

compute, goodness measure, which is valid at all noise levels; and (ii) it is dual

to the NSM (the quantization-goodness measure), and therefore it symmetrizes

the characterization of schemes combining source and channel coding.

As for the quantization problem, except for the two-dimensional case (where

the hexagonal lattice is optimal), it is unknown whether the best infinite con-

stellation for an AWGN channel has the form of a lattice. The FCC lattice,

for example, is known to be the best three-dimensional packing (the recently

proved Kepler conjecture [49]). But this only implies asymptotic channel coding

optimality in the limit of high SNR.



4 Dithering and estimation

In quantization theory, as well as in some non-linear processing systems, the

term “dithering” corresponds to intentional randomization aimed at improving

the perceptual effect of the quantization. Although it seems somewhat strange

that adding noise can improve performance, dithering is used in practice to

produce more natural sounding digital audio, while visual forms of dither reduce

“blockiness” in picture coding and enable thousands of color shades on a limited

256-color display.1

In the context of lattice quantization or shaping, dither is an effective means of

guaranteeing desired distortion or power levels, independent of the input statis-

tics. Its role is particularly important for quantization at low resolution (or mod-

ulation at low SNR), where – without the dither – the quantization error is highly

dependent on the quantized source (or the modulated signal is highly discrete).

In Section 3.2 we considered quantizing an “analog” source vector s =

(s1, . . . , sn) using an n-dimensional lattice Λ with some lattice partition P . Recall

that a lattice quantizer QΛ = {Λ,P} represents a source vector s that falls into

the cell Pλ by the lattice point λ (3.19):

QΛ(s) = λ if s ∈ Pλ. (4.1)

In the special case of Voronoi partition, λ is the closest lattice point to s (2.10).

Example 4.0.2 (n = 1) The code points of the scalar lattice quantizer are

located at {0,±∆,±2∆, . . .}. Under “parallelepiped partition” (2.14) the associ-

ated cells are . . . , [−∆, 0), [0,∆), [∆, 2∆), . . ., so quantization of a point s is given

by ⌊ s
∆⌋∆, where ⌊·⌋ denotes rounding down to the nearest integer. Under Voronoi

1 A Web article posted by an audio engineer (Google search: dither) tells that the con-
cept of dither dates back to the 1940s, when British naval airmen discovered that the
cogs and gears in the mechanical navigation systems of their airplanes would chatter
and stick on the ground. Once the planes were airborne, vibration of the engines of
the airplanes had a lubricating effect on these mechanical navigation systems, smooth-
ing out their operation. This discovery led the British Navy to install small motors in the
mechanical navigation systems to vibrate the cogs and gears intentionally, thus improv-
ing their performance on the ground. The “Einstein Prob-B” project in Stanford (see
http://einstein.stanford.edu/highlights/hl 050605.html) uses dither to smooth out telescope
vibrations.
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Figure 4.1 Level probabilities in scalar lattice quantization of a Gaussian source.

partition, the index of the lattice point λi representing s is given by

argmin
i∈Z

|s− i∆|,

hence the cell edges are located at {±∆/2,±3∆/2, . . .}. The resulting quantizer,

Q∆(s), is known as a step-∆ uniform “mid-thread” quantizer.2 Figure 4.1 illus-

trates the probability distribution of Q∆(S), for a zero-mean Gaussian source

S.

The quantization error is defined as the difference between the input and the

output3

quantization error = QΛ(s)− s = λ− s = −(s mod Λ), (4.2)

where the modulo-lattice operation was defined in (2.21), and where mod Λ

is understood as mod P0 (see Definition 2.3.1). Clearly the quantization error

depends on the source vector s, in fact, it is a deterministic function of it. Can

we make this error “independent” of the source?

Section 4.1 gives an affirmative answer, provided that we use a subtractive

dither which is uniform over the quantizer cell. Section 4.2 shows that other

2 The term mid-thread follows since the input/output relation of Q1(s) takes the form of
a step function, which is horizontal at the origin; see Figure 3.6. If we shift the level and
threshold points by ∆/2, then the quantization function becomes vertical at the origin, and
the quantizer is known as mid-rise.

3 The sign is opposite to that of the error xe in (2.12), because of the convention in the
quantization literature.
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Figure 4.2 Dithered quantization.

(simpler) forms of dither result in the same answer. Section 4.3 deals with the

second-order statistics of the dither; it shows that in many cases of interest,

the dither can be regarded as a white noise. Sections 4.4 and 4.5 then show

how to combine dithering with linear estimation in order to reduce the total

mean-squared error.

4.1 Crypto lemma

Suppose a company sitting around a dinner table wishes to compute the sum

of the ages of the participants, but without revealing the individual age of any

one of them. One trick to do that (inspired by the “key” in crypto systems) is

that the first participant would take a random number U and pass it on to his

right neighbor, who will add to it her (true) own age, pass it on to her right

neighbor, and so on. When the final number reaches the first participant he will

add his own age, and then subtract U to get the age sum. If U is large enough,

then we can argue that the information on the individual ages was kept secret.

Or in statistical terms: without having U at hand, the number each participant

gets is (almost) statistically independent of the individual ages of the preceding

participants.

The idea of dithered quantization is similar; it is based on common randomness

shared by the encoder and the decoder. Such a randomness can be obtained

from the output of a pseudo-random number generator, whose seed is agreed in

advance by the encoder and the decoder.

Definition 4.1.1 (Randomized quantization) We say that a random vector

U is “subtractive dither” if it is known at both the encoder and decoder ends,

and the final reconstruction is given by

Ŝ = QΛ(s+U) −U. (4.3)

As illustrated in Figure 4.2, the encoder adds the dither to the source prior to

quantization, while the decoder subtracts the dither from the associated lattice
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Figure 4.3 The saw-tooth function in Example 4.1.1.

point. The dithered quantization error now becomes

Ŝ− s = QΛ(s+U) −U− s, (4.4)

or equivalently −((s+U) mod Λ) as in (4.2).4

Example 4.1.1 Assume quantizing a source sample s, for some 0 ≤ s < 1,

using a scalar lattice quantizer with step size ∆ = 2 and Voronoi partition, as

in Example 4.0.2. As shown in Figure 4.3, the dithered quantization error as a

function of u, for u inside the fundamental cell −1 ≤ u < 1, has a “saw-tooth”

shape (up to a minus sign):

(s+ u) mod ∆ =

{
s+ u, for −1 ≤ u < 1− s

s+ u− 2, for 1− s ≤ u < 1,

which spans the range −1 ≤ error < 1. This function has a unit slope over the

entire range, except for a discontinuity at u = 1− s. Thus, if the dither U is a

random variable uniform over [−1, 1), then so is the resulting quantization error.

This behavior is, in fact, true for dithered lattice quantization in general. As

illustrated in Figure 4.4, a specific dither value amounts to a shift of the lattice

partition, hence to a shift of the quantization error function. A random uniform

dither makes the error uniform.

4 We shall not discuss non-subtractive dithered quantization, where the dither is known only
at the encoder, and the reconstruction is given by ŝ = QΛ(s + u); see [112].
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–u

Figure 4.4 Addition and subtraction of a vector u before and after lattice quantization

amounts to shifting the lattice quantizer QΛ(·) by the vector −u.

Lemma 4.1.1 (Crypto lemma) If the dither U is uniform over the funda-

mental cell P0, i.e., with a p.d.f.

fU(u) =

{
1

V (Λ) , u ∈ P0

0, u 6∈ P0,
(4.5)

then (s+U) mod Λ (with mod Λ understood as mod P0) is uniform over P0,

independent of s.

Proof See the proof for a generalized dither (Lemmas 4.2.1 and 4.2.3) in the

next section. �

This property is well known for finite groups (or “modulo-additive channels”):

the sum of any element with a random variable uniform over the group is uniform

as well. Lemma 4.1.1 ensures that the same property holds when the group is

a fundamental cell of a general lattice. Informally speaking, the modulo-lattice

operation is a periodic function in space, with the period being any fundamental

lattice cell P0; thus, a shift of the argument s by a vector U which is uniformly

distributed over that period, makes the function (i.e., the error) statistically

independent of s, and uniform (as can be seen by setting s = 0).

As a corollary from Lemma 4.1.1, we have the following.

Theorem 4.1.1 (Equivalent channel for dithered quantization) For a

random source S and a uniform dither (4.5), the quantization error (4.4) is

statistically independent of S and distributed as minus the dither:

[QΛ(S+U)−U− S] ∼ Unif(−P0). (4.6)

A few more simple corollaries follow from Theorem 4.1.1.
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Figure 4.5 Equivalent additive-noise channel of the dithered lattice quantizer (4.3).

1. The reconstruction Ŝ (4.3) is the sum of S and the dithered quantization

error; thus, it is equivalent to the independent sum

Ŝ
dist
= S−U

dist
= S+Ueq, (4.7)

where
dist
= denotes equality in distribution, and where the equivalent dither is

distributed as

Ueq ∼ Unif(−P0), (4.8)

i.e., as −U, as shown in Figure 4.5. If the lattice quantizer QΛ(·) is an NN

quantizer (2.10), then the fundamental (Voronoi) cell V0 is symmetric about

the origin, hence Ueq ∼ Unif(V0).

2. While, for a specific dither value, the reconstruction Ŝ = QΛ(S+ u)− u has

a discrete distribution (Figure 4.6(A)), for a random uniform dither it is

continuous (Figure 4.6(B)).

3. By Theorem 4.1.1, the MSE of the dithered quantizer

σ2
Q =

1

n
E‖Ŝ− S‖2 (4.9)

is equal to the second moment of the dither (or the second moment of the

fundamental cell P0), independent of the source S. Under Voronoi partition

this becomes the lattice second moment (3.20),

1

n
E‖U‖2 = σ2(Λ). (4.10)

For example, for the step-∆ uniform scalar quantizer of Example 4.0.2,

MSE = E{[(s+ U) mod ∆]2} = E{U2} =
∆2

12
. (4.11)

4.1.1 High-resolution quantization theory

High-resolution quantization (HRQ) theory assumes that the quantizer cells are

small compared to the variations in the source p.d.f. This implies that the con-

ditional distribution of the source vector S, given that S falls in some quantizer

cell Pi, is roughly uniform in that cell:

fS|S∈Pi
(s) ≈ Unif(Pi), (4.12)
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Figure 4.6 Distribution of the dithered quantizer output (4.3), for a Gaussian source

S ∼ N(0, 1), quantized by a uniform scalar quantizer with step size ∆ = 1: (A) a

specific dither value U = 1/2; (B) a random dither U ∼ Unif[0, 1).

as illustrated in Figure 4.7. Under this assumption, it is common to model the

quantization process as adding an independent uniform noise to the source.

Although, strictly speaking, this model is untrue for deterministic quantization,

it is a useful tool for the analysis of systems combining quantization with (linear)

signal processing.

For subtractive dithered quantization, Theorem 4.1.1 implies that the equiva-

lent additive-noise model of Figure 4.5 is accurate at any resolution. The role of

the dither, however, becomes less prominent as the quantizer resolution increases.

For example, for any continuous source S with a p.d.f. (see [17, 165, 205]),

E[S mod ∆]2

∆2/12
→ 1, as ∆ → 0. (4.13)

Thus, even without the dither in (4.11), the second moment of the quantization

error approaches that of a uniform distribution.

The question of how far a given lattice-source pair is from the high-resolution

quantization assumption (4.12) is discussed in Section 4.2.3 below.

Discretization of the dither

In practice the dither is a pseudo-random noise, which can only take a

finite number of values. The continuous uniform dither U must therefore

be replaced by some discrete approximation Ud. How fine should the dither

values be, so that the crypto lemma still – at least approximately – holds?
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Figure 4.7 High-resolution approximation. The additive-noise model becomes a good

approximation when the quantizer cells are small compared to the variations in the

source p.d.f.

The answer depends on the “smoothness” of the source p.d.f. Let Ud denote

the quantization of a continuous dither U ∼ Unif(P0(Λ)) by some “fine”

lattice Λf . If Λf satisfies the high-resolution quantization assumption (4.12)

with respect to the source S, then S+Uf and S are approximately equal

in distribution, whereUf = Unif(P0(Λf )). Thus, S+U = S+Ud +Uf can

be well approximated by S+Ud; i.e., [S+Ud] mod Λ is approximately uni-

form over P0(Λ).

4.2 Generalized dither

The crypto lemma – and the consequent uniformity of the dithered quantization

error (Theorem 4.1.1) – hold under more general subtractive dithering schemes.

For example, since the lattice is periodic in space, shifting it by u+ λ for some

λ ∈ Λ is equivalent to shifting it by u. Thus, a dither which is uniform over any
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cell Pλ = λ+ P0, or even a union of cells Pλ ∪ Pλ′ , is equivalent to a dither

which is uniform over P0.
5

Definition 4.2.1 (Generalized dither) We say that U is generalized dither

(for a lattice Λ with a fundamental cell P0), if (s+U) mod Λ is uniform over

P0, for all s ∈ Rn.

We shall find three equivalent conditions for U to be a generalized dither. The

first condition, modulo uniformity, implies that it is enough to verify uniformity

of the dithered quantization error for the case s = 0.

Definition 4.2.2 (Modulo-uniform dither) We say that U is modulo-

uniform (with respect to a lattice Λ with a fundamental cell P0) if (U mod Λ) is

uniform over P0.

Lemma 4.2.1 (Generalized crypto lemma I) U is a generalized dither if

and only if it is modulo-uniform.

This condition holds, in particular, if U itself is uniform over P0. Hence the

crypto lemma (Lemma 4.1.1) is a special case of Lemma 4.2.1. See the proof

below.

4.2.1 Periodic replication

The proof of Lemma 4.2.1 is based on a relation between modulo-lattice reduction

of a set and periodic replication of the set by the lattice or, more generally, a

relation between modulo reduction of a random vectorX and periodic replication

of its density fX.

Folding and periodic replication

How do we know that a shape with area less than one can always be shifted,

so that it will not intersect the integer lattice? Imagine folding the plane into

the fundamental square. Since the shape area is less than one (and the folded

shape can only be smaller), it must leave an uncovered hole. Now, shift the

shape so that this hole falls on the corners of the fundamental square, and

unfold the plane. Observation: instead of folding the plane, replicate the

shape by the square lattice, and get the same projection on the fundamental

square.

5 This is in contrast to non-subtractive dither (footnote 4), which is sensitive to translation
of the support of the dither.
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Periodic replication of a function g : Rn → R by a lattice Λ is defined as

grep Λ(x) =
∑

λ∈Λ

g(x− λ); (4.14)

i.e., it is the sum of the function over the coset of x. Clearly, grep Λ(x) is “Λ-

periodic,” i.e.,

grep Λ(x+ λ) = grep Λ(x), (4.15)

for all λ ∈ Λ.

Lemma 4.2.2 (Folded distribution) Let X be a random vector with a density

fX. The density of X, after modulo-Λ reduction to a fundamental cell P0, is given

by

fX mod Λ(x) =

{
fX rep Λ(x), x ∈ P0

0, x 6∈ P0,
(4.16)

where fX rep Λ is the periodic replication (4.14) of fX by the lattice Λ.

Proof The proof follows since (X mod Λ) = y amounts to X being in the coset

of y. See Appendix A.3, which follows Linder [162]. �

Note that given X and Λ, the choice of a fundamental cell P0 only affects the

support of the distribution of X mod Λ in (4.16). In fact, we can view fX rep Λ

as a distribution of cosets induced by X; see Appendix A.3.

Lemma 4.2.2 implies an equivalent statement for the generalized crypto lemma

(Lemma 4.2.1), in terms of the periodic replication of the dither p.d.f.

Lemma 4.2.3 (Generalized crypto lemma II) U ∼ fU is modulo-uniform

iff the periodic replication of its density (4.14) is constant in space:

fU rep Λ(x) =
∑

λ∈Λ

fU(x − λ) = constant, (4.17)

for all x in Rn.

Proof of Lemmas 4.2.1 and 4.2.3 Lemma 4.2.2 implies that (U mod Λ) is uni-

form over P0 if and only if condition (4.17) holds, i.e., the periodic replication

of fU is constant in space. Similarly, (s+U) mod Λ is uniform over P0 if and

only if the periodic replication of fs+U is constant in space. But fs+U is just a

shift of fU. Thus the two statements are equivalent, and the lemmas follow. �

The constant periodic-replication condition (4.17) is simple to check. The first

two examples below are corollaries of this condition.

Example 4.2.1 (Cases of generalized dither)

r U is uniform over any fundamental cell of Λ (not necessarily the one used in

the modulo operation).
r U is uniform over a fundamental cell of a sublattice Λc ⊂ Λ (Problem 4.2).



Generalized dither 69

r U = Ũ+X is the sum of uniform dither Ũ with an arbitrary random vector

X (equivalently, fU = fŨ ∗ fX, where ∗ denotes convolution).

The first case above can also be deduced from the modulo equivalence of fun-

damental cells (2.23c). A useful consequence is that the dither can be drawn

uniformly over the fundamental parallelepiped. Such a dither is easy to generate;

we simply draw a vector of i.i.d. components uniform on [0, 1), and multiply by

the generator matrix G. For a construction A lattice (described in Section 2.5),

where aZn ⊂ Λ, the second case above implies that the dither can be uniform

over the cube [0, a)n. Again, we can simply generate such a dither by drawing

i.i.d. components uniform on [0, a). The third case above amounts to “spreading”

of the dither, and it follows from the crypto lemma.

4.2.2 Zeroes on dual lattice in frequency domain

The constant periodic-replication condition (4.17) has an interesting “frequency

domain” interpretation, that gives rise to the notion of a dual lattice.

Definition 4.2.3 (Dual lattice) Lattices Λ and Λ∗ in Rn are dual (or recip-

rocal) if the inner products of their points are integers, i.e., 〈λ, λ∗〉 ∈ Z for all

λ ∈ Λ, λ∗ ∈ Λ∗. This is equivalent to the condition that the rows of the inverse

G−1 of the generator matrix of Λ form a basis for Λ∗, i.e.,

Λ∗ = Λ(G−t) (4.18)

where (·)−t denotes inverse-transpose.

Since the determinant of the inverse is the inverse of the determinant, V (Λ∗) =
1/V (Λ).

Example 4.2.2 (Duality and self-duality) The dual of the rectangular

lattice {(2i, j) : i, j ∈ Z} in Figure 2.1 is the lattice {(1/2i, j) : i, j ∈ Z}. The

dual of the hexagonal lattice in Figure 2.2 is another hexagonal lattice, scaled by

1/
√
12, and rotated 90 degrees (see Problem 4.4). The Gosset lattice E8 is dual

to itself, which is a property shared by all unimodular lattices (Section 2.5).

It is convenient to think of a function g : Rn → R1 as a multi-dimensional

signal (e.g., a picture is a two-dimensional signal). If g is not periodic, then its

Fourier transform G = F{g} is defined as

G(f) =

∫

Rn

g(x) · e−j2π〈f ,x〉dx, for f ∈ Rn, (4.19)

where j =
√
−1. While if g is Λ-periodic (4.15), then its Fourier series G = F{g}

is defined as

G(λ∗) =
1

V (Λ)
·
∫

P0

g(x) · e−j2π〈λ∗,x〉dx, for λ∗ ∈ Λ∗, (4.20)
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where P0 = P0(Λ) can be any fundamental cell of Λ, and Λ∗ is the dual of Λ. We

can think of the argument f of the Fourier transform (4.19) as spatial frequency,

and of the vectors λ∗ in (4.20) as the spatial harmonies of the Λ-periodic function

g. By a standard argument in Fourier analysis, the Fourier series of a Λ-periodic

replication of a function g is given by sampling the Fourier transform of g at the

points of the dual lattice Λ∗, and normalizing by 1/V (Λ) [11].

The Fourier transform φX = F{fX}, of a probability density function fX, is

known as a characteristic function. Since fX is non-negative and integrates to 1,

we have |φX(f)| ≤ 1 with equality at f = 0. Due to the relation between modulo

reduction and periodic replication (Lemma 4.2.2), it follows from the sampling

property above that the characteristic functions of the folded and unfolded dis-

tributions coincide on the dual lattice:

φX mod Λ(f = λ∗) = φX(f = λ∗), for λ∗ ∈ Λ∗, (4.21)

where φX = F{fX}, and φX mod Λ = F{fX mod Λ}.6 See Problem 4.5. This rela-

tion implies a frequency-domain characterization for a generalized dither.

Lemma 4.2.4 (Generalized crypto lemma III) U ∼ fU is modulo-uniform

if and only if its characteristic function φU = F{fU} is zero for all dual lattice

points λ∗ ∈ Λ∗ except at zero:

φU(λ∗) =

{
1, λ∗ = 0

0, λ∗ 6= 0.
(4.22)

Proof See Problem 4.6. �

Nyquist pulses

The communication engineer may recognize the conditions in Lemmas 4.2.3

and 4.2.4 as the Nyquist conditions for zero inter-symbol interference in

pulse-amplitude modulation (PAM). A “Nyquist pulse,” sampled at the sym-

bol rate, is zero for all non-zero sampling points; equivalently, the periodic

replication of its Fourier transform is constant at all frequencies.

4.2.3 Imperfect dither

In various problems of interest, we may want to assess approximations for

the modulo-uniformity condition of Lemmas 4.2.1, 4.2.3 and 4.2.4. The high-

resolution quantization assumption (4.12), for example, implies that a source S

is approximately modulo-uniform with respect to a sufficiently fine lattice Λ;

hence, S can approximate a generalized dither for Λ.

6 By the replication-Fourier relation discussed above, the Fourier series of fX rep Λ is given

by normalizing (4.21) by 1/V (Λ).
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Definition 4.2.4 (Flatness factor) Given a lattice Λ and a random vector

X ∼ fX(x), the flatness factor is defined as the normalized ℓ∞ distance between

the folded distribution – i.e., the density of X mod Λ with the modulo taken with

respect to some fundamental cell P0 – and a uniform distribution:

F (Λ,X) =
maxx∈P0 |fX mod Λ(x)− 1/V (Λ)|

1/V (Λ)
. (4.23)

The flatness factor F (Λ,X) is zero if and only if X is modulo-uniform. Note

that by Lemma 4.2.2, we can take the maximum in (4.23) over all x in Rn,

provided that we replace fX mod Λ by the periodic replication fX rep Λ. It follows

that F (Λ,X) is, in fact, invariant of the choice of the fundamental cell P0.

See Problems 4.8, 4.9 and 4.10 for more relations (frequency-domain analysis,

Gaussian case and high-resolution quantization).

4.3 White dither spectrum

Since a uniform dither plays the role of the equivalent “quantization noise” (Fig-

ure 4.5), it is useful to have better knowledge of its second-order statistics. We

shall see that the dither which is uniform over the Voronoi region of the best

lattice quantizer is white.

Definition 4.3.1 (Dither auto-correlation) The auto-correlation matrix RQ

of a lattice quantizer Q = {Λ,P} is defined as

RQ
∆
= E{U Ut} =

1

V (Λ)

∫

P0

u utdu, (4.24)

where U is uniform over the fundamental cell P0, and (·)t denotes transpose,

i.e., RQ is the n× n auto-correlation matrix of the dither. The second moment

of the dither is given by the normalized trace of the auto-correlation matrix

σ2
Q =

1

n
E{‖U‖2} =

1

n
trace{RQ}, (4.25)

where the trace of a square matrix is defined as the sum of its diagonal elements.

For example, under Voronoi partition, σ2
Q is the lattice second moment σ2(Λ);

while under a centralized parallelepiped partition (where the center of P0 is at

the origin), the dither U can be written as U = G · Ũ, where Ũ1, . . . , Ũn are i.i.d.

samples uniform over (−1/2,+1/2], so

RQ = G ·E{Ũ Ũt}Gt =
1

12
GGt.

Lemma 4.3.1 (NSM upper bound)

G(Λ) ≤
1
n trace{RQ}
V 2/n(Λ)

(4.26)
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with equality if and only if Q is the nearest-neighbor quantizer Q
(NN)
Λ = {Λ,V},

in which case U is uniform over the fundamental Voronoi cell V0.

Proof The result follows since the fundamental Voronoi cell minimizes the sec-

ond moment over all fundamental cells. �

Definition 4.3.2 (White dither) A lattice quantizer Q is white if the samples

of the dither are uncorrelated and have the same second moment, i.e.,

RQ = σ2
Q · I, (4.27)

where σ2
Q is the second moment of the dither, and I is the identity matrix.

Note that uncorrelation does not imply independence; for example, a vector

U = (U1, U2) which is uniform over a hexagon is white, i.e., E{U1 · U2} = 0,

although clearly U1 and U2 are dependent. Yet, in general, the dither is not

white, even under nearest-neighbor quantization; take, for instance, a rectangular

lattice, and rotate it less than 45 degrees.

Lemma 4.3.2 (NSM lower bound) If Q
(NN)
Λ is the nearest-neighbor quan-

tizer of Λ (i.e., the dither U is uniform over V0), then

G(Λ) ≥ det(RQ)
1/n

V 2/n(Λ)
(4.28)

with equality if and only if the dither is white.

Proof For the nearest-neighbor quantizer, (4.26) holds with equality. Further-

more, by the arithmetic-geometric means inequality for non-negative definite

matrices (see, e.g., [53, Theorem 16.8.4]), the numerator of (4.26) is lower

bounded by

1

n
trace{RQ} ≥ det(RQ)

1/n

with equality if and only if RQ is proportional to the identity matrix, and the

lemma is proved. �

An optimal lattice quantizer in Rn, denoted Qopt
n , is a lattice quantizer with

the minimal possible normalized second moment Gn over all lattices in Rn. See

Definition 3.2.2. Note that since G(Λ) is invariant to scaling, Qopt
n is determined

up to scaling. The search for the optimum lattice quantizer can thus be done

over a compact set of basis vectors, so the minimum is actually achieved by some

lattice.

Clearly the quantizer Qopt
n uses a Voronoi partition. Our main result states

that it is also white.

Theorem 4.3.1 (The dither of an optimal lattice quantizer is white)

The optimal lattice quantizer Qopt
n is white (Definition 4.3.2), and the auto-
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correlation matrix of its dither is given by

RQ = Gn · V 2/n(Λ) · I, (4.29)

where I is the identity matrix.

This theorem implies, for example, that the hexagonal lattice quantizer and

the body-centered cubic (BCC) lattice quantizer, which are known to be optimal

in dimensions n = 2 and 3, respectively, are white.

To prove Theorem 4.3.1, recall the definition of a linear transformation Λ′ =
A · Λ of a lattice Λ, and the property that A · P0(Λ) is a fundamental cell of Λ′;
see Section 2.4. It is easy to see that if U is uniform over P0(Λ), then AU is

uniform over P0(Λ
′) = A · P0(Λ). This implies that the auto-correlation matrix

of the transformed lattice quantizer is given by

R′
Q = E{(AU)(AU)t} = ARQA

t; (4.30)

i.e., the transformation A shapes the correlation structure of the quantization

noise. For example, it can whiten a non-white lattice quantizer. Yet, a delicate

point to note here is that even if P is the Voronoi partition of Λ, then the

transformed partition P ′ is not necessarily the Voronoi partition of Λ′ (see Sec-

tion 2.4).

We can now proceed to the proof of the theorem.

Proof of Theorem 4.3.1 Let RQ be the auto-correlation matrix of the dither of

an optimal quantizer Qopt
n = {Λ,P}. We show below that if RQ is not white,

then we can get a better quantizer, i.e., a lower NSM. But we assume that Qopt
n

is optimal. Thus RQ must be white.

Specifically, let R
−1/2
Q be any inverse root of RQ, i.e., a matrix satisfying

R
−1/2
Q RQ(R

−1/2
Q )t = I, and let us define the matrix

A = R
−1/2
Q . (4.31)

As can be seen by substituting A into (4.30), transforming Qopt
n by A results in a

white lattice quantizer Q′ = {Λ′,P ′}, whose auto-correlation matrix is R′
Q = I,

and whose volume is

V (Λ′) = V (AΛ) = | det(A)| · V (Λ) =
V (Λ)

√

det(RQ)
. (4.32)
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Thus,

G(Λ)
(a)

≥ det1/n(RQ)

V 2/n(Λ)

(b)
=

1

V 2/n(Λ′)

(c)
=

1
n trace(RQ′)

V 2/n(Λ′)
(d)

≥ G(Λ′), (4.33)

where (a) follows from Lemma 4.3.2 (with equality if and only if Qopt
n is

white); (b) follows from (4.32); (c) follows since RQ′ = I; and (d) follows from

Lemma 4.3.1 (with equality if and only if Q′ is a Voronoi partition). �

It follows from (4.33), that by iterating between whitening and Voronoi parti-

tioning, the normalized second moment decreases (i.e., improves) monotonically.

Thus, Theorem 4.3.1 may complement Lloyd’s necessary conditions for an opti-

mum quantizer; see the discussion in Section 5.7.

Any desired quantization noise spectrum, i.e., auto-correlation matrix RQ

(4.24), may be obtained by an appropriate linear transformation of a (non-

degenerate) lattice quantizer, as seen in (4.30). This is useful, for example, if

we want to modify an MSE-optimal quantizer to a weighted square error distor-

tion measure of the form (x̂− x)tW (x̂− x).

4.4 Wiener estimation

Before introducing the Wiener estimator, and its application to dithered quan-

tization, let us discuss some intuitive background.

A common approach to reducing measurement noise is to average a number k

of independent measurements. Typically, the MSE of the average decreases like

1/k. But what if this MSE is comparable with (or even larger than) the variance

of the desired signal? For example, suppose we have a single measurement Y =

X +N of a signal X ∼ N(a, 1), where the noise is N ∼ N(0, 10). Taking Y as

the estimate of X would give us an MSE ten times larger than the variance of the

source! The Wiener filter, or estimator, improves this undesirable situation by

taking into account the a priori information that X = a with a unit variance. The

estimator is given in this case by X̂ = a+ 1
11 (Y − a), i.e., it effectively weights

the a posteriori information, the measurement Y , by how reliable it is with

respect to the a priori information about X . The resulting MSE = E(X̂ −X)2

is given by

E
( 1

11
N − 10

11
(X − a)

)2

=
1

112
10 +

102

112
=

10

11
,
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i.e., slightly less than the source variance.

The Wiener filter is a general tool for linear minimum mean-squared error

estimation, when the joint second-order statistics of the desired signal and the

measurements are known. If the desired signal and measurements are scalar vari-

ables, then the Wiener filter becomes a simple scalar multiplier which depends

on their second moments (possibly with a bias, as in the example above). If these

signals are vectors or processes, then the Wiener filter takes the form of a matrix

multiplication or a linear time-invariant filter. However, we can constrain the

Wiener filter to be a scalar multiplier even in the vector and process cases, if we

use the average second moments of the signal and the measurements.

Let X and Y be two correlated n-dimensional random vectors, with average

second moments Rx = 1
nE‖X‖2 and Ry = 1

nE‖Y‖2, average cross-correlation

Rx,y = 1
nE{XtY}, and correlation coefficient

ρ =
Rx,y

√
Rx Ry

.

To simplify the exposition, we shall ignore the means of X and Y (or assume

that they are zero), and thus restrict our attention to pure multiplicative (non-

affine) linear estimation. The scalar linear estimator of X from Y is defined

as

X̂ = αY. (4.34)

This results in an estimation error of X̂−X = αY −X. The mean-squared error

per dimension is given by

MSE(α) =
1

n
E‖αY −X‖2 = α2Ry − 2αRx,y +Rx, (4.35)

which is a quadratic expression in α, having a unique minimum.

Proposition 4.4.1 (Wiener estimator) The scalar linear estimation MSE

(4.35) is minimized by the Wiener coefficient

α∗ =
Rx,y

Ry
= ρ

√

Rx

Ry
, (4.36)

and attains a minimum value of

MSE(α∗) = Rx − R2
x,y

Ry
= (1− ρ2)Rx, (4.37)

known as the linear minimum mean-squared error (LMMSE) solution.

An alternative way to obtain (4.36) is to use the orthogonality principle. This

principle says that the error vector of an optimal estimator, whether it is linear

or not, must be orthogonal to the measurements:

(X̂−X) ⊥ Y. (4.38)
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For linear scalar estimation (4.34), orthogonality amounts to E{(α∗Y −
X)tY} = 0, which implies (4.36).7

The restriction of the estimator (4.34) to be linear, however, does not come

for free. Its MSE (4.37) is, in general, larger than the minimum mean-squared

error (MMSE), or the conditional variance,

Var(X|Y) = min
g(·)

1

n
E‖g(Y)−X‖2. (4.39)

As is well known, this optimum estimation error is attained by the conditional

mean

g∗(y) = E{X|Y = y} (4.40)

which is, in general, a non-linear function of y. Nevertheless, in the jointly

Gaussian case the orthogonality principle (4.38) is also a sufficient condition

for optimality, hence the Wiener (linear) estimator is optimal. In particular, in

the memoryless case we have the following.

Proposition 4.4.2 (Gaussian MMSE) If X and Y are memoryless jointly

Gaussian vectors (i.e., (X1, Y1), . . . , (Xn, Yn) are i.i.d. pairs) with zero mean,

then the conditional mean (4.40) is equal to the (scalar) Wiener estimator:

E{X|Y = y} = α∗y. (4.41)

In this case, the LMMSE (4.37) is also the MMSE (4.39).

Proof See Problem 4.12. �

In the additive-noise channel case, whereY = X+ Z, the noise Z is orthogonal

to the input X (i.e., E{XtZ} = 0), so we have Ry = Rx +Rz, Rx,y = Rx and

ρ =

√

Rx

Rx +Rz
. (4.42)

The scalar linear estimation error is given by

X̂−X = αZ+ (α− 1)X, (4.43)

i.e., it is a mixture of the noise Z and the desired signal X. The Wiener coeffi-

cient (4.36) minimizes the second moment of this mixture, and makes it scalarly

orthogonal to Y, as illustrated in Figure 4.8.

Proposition 4.4.3 (Additive-noise channel) If the measurement is given

by Y = X+ Z, where Z is orthogonal to X, then the Wiener coefficient (4.36)

7 For general linear estimation X̂ = AY (where A is an n× n matrix), the orthogonality
principle (4.38) amounts to a matrix equation E{(A∗Y −X)Yt} = 0, that determines the
matrix A∗.
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0

XY

√Rx

√Rx̂

√Rz

√MSE

√Rx + Rz

X̂

Figure 4.8 Pythagorean relations implied by the orthogonality principle in an

additive-noise measurement channel: Ry = Rx +Rz and Rx = Rx̂ +MSE(α∗).

is given by

α∗ =
Rx

Rx +Rz
=

SNR

1 + SNR
, (4.44)

resulting in an MSE of

MSE(α∗) =
Rx Rz

Rx +Rz
=

Rz

1 + 1/SNR
, (4.45)

where

SNR
∆
=

Rx

Rz
(4.46)

is the signal to noise ratio.

Note that α∗ in (4.44) is between zero and one; it is zero when the SNR is

equal to zero, and it approaches one when the SNR is much larger than one. Thus

the error (4.43) is always a convex mixture of the noise and the desired signal.

Note also that the harmonic average in (4.45) is strictly smaller than each of

its arguments; thus the scaling by α∗ reduces the mean-squared error MSE(α)

below both the second moment of the signal (Rx) and the second moment of

the noise (Rz). Figure 4.9 shows the relative contributions of noise and signal to

MSE(α∗).

4.5 Filtered dithered quantization

The equivalent additive-noise channel of the dithered lattice quantizer in Fig-

ure 4.5 calls for putting an estimator at the output of the channel, to reduce the
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Figure 4.9 The proportion of signal and noise in the LMMSE of an additive-noise

channel (i.e., (4.43) with the Wiener coefficient α∗), as a function of the SNR.
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Figure 4.10 (A) Post-scaled dithered quantization, and (B) its equivalent channel (4.7).

overall MSE in reconstructing the source S. Consider the filtered reconstruction

in Figure 4.10(A), where the quantizer output is multiplied by a linear coefficient

β:

Ŝ = β[QΛ(S+U) −U] (4.47)
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where U is a uniform (or a generalized, i.e., modulo-uniform) dither. By the

equivalent channel model (Figure 4.10(B)), the joint distribution of Ŝ and S is

described by the relation (see (4.7)):

Ŝ
dist
= β[S+Ueq], (4.48)

where the equivalent dither Ueq is uniform over the reflected fundamental cell

(−P0) of the lattice quantizer and (by Theorem 4.1.1) statistically independent

of the source.

Assume for simplicity that the source S and the equivalent dither Ueq have

a zero mean, so their independence implies orthogonality, i.e., E{StUeq} = 0.8

The multiplication by β in (4.48) thus amounts to linear estimation of the source

after an additive-noise channel, where the noise Ueq is orthogonal to the source.

Applying Proposition 4.4.3, we have the following.

Proposition 4.5.1 (Filtered dithered quantizer) The optimum linear

(Wiener) coefficient in the reconstruction (4.47) for a zero-mean source S is

β∗ =
σ2
s

σ2
Q + σ2

s

, (4.49)

and the resulting minimum distortion is

D∗ =
σ2
Q · σ2

s

σ2
Q + σ2

s

, (4.50)

where σ2
Q and σ2

s are the second moments of the dither (4.25) and the source,

respectively.

For a Voronoi lattice quantizer, σ2
Q is equal to the lattice second moment

σ2(Λ). The scaling by β∗ thus reduces the distortion D∗ below the second

moment of the lattice (because the harmonic average in (4.50) is strictly smaller

than each of its arguments).

Example 4.5.1 (Wiener coefficient and distortion) Let the source vari-

ance and the lattice second moment be σ2
s = 1 and σ2(Λ) = 1

2 , respectively. Then

β∗ = 1
1+1/2 = 2

3 , and

D∗ =
1

n
E

∥
∥
∥
∥

2[QΛ(S+U)−U]

3
− S

∥
∥
∥
∥

2

=
1× 1

2

1 + 1
2

=
1

3
,

instead of D = σ2(Λ) = 1
2 which is achieved without post scaling (i.e., with β =

1).

8 If the mean of the source is not zero, then it is better to remove the mean before the
quantization and add it back after the scaling by β. Note that if the lattice quantizer cells
are Voronoi cells, then the equivalent dither has a zero mean.
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Is random dither really necessary? It is too early to address this question

fully, as we shall do later, in Section 5.8, but let us make a few insightful remarks

regarding the dither.

1. Memory If the dither is not white (Definition 4.3.2), or the source has mem-

ory, then a matrix form of the Wiener filter can obtain a smaller mean-squared

distortion.

2. Non-Gaussianity Since the dither is not Gaussian, an even better mean-

squared distortion can be attained by the (non-linear) conditional mean esti-

mator (4.40):

Ŝ = g∗(QΛ(S+U)−U)

where g∗(·) is calculated with respect to the equivalent additive-noise channel,

i.e., g∗(y) = E{S|S+Ueq = y}.
3. Mismatch The attenuated reconstruction βQΛ(s) of (4.47) (assuming zero

dither and some factor β < 1) means that the reconstruction codebook is the

finer lattice βΛ, rather than Λ. The minimum-distortion reconstruction, given

this finer codebook, is QβΛ(s). But by the scaling law (2.43),

QβΛ(s) = βQΛ (s/β) 6= βQΛ (s) ,

meaning that the encoder is mismatched to the decoder.

The next chapter will introduce another critical aspect of quantization: the

coding rate. We shall see how the equivalent additive-noise channel of dithered

quantization (Theorem 4.1.1) provides an analytic tool to compute the coding

rate. Furthermore, in spite of the possible deficiencies above, the filtered dithered

quantizer (4.47) provides a good – and even asymptotically optimal – trade-off

between the coding rate and distortion.

Summary of Chapter 4

Crypto lemma If U is uniform on P0, then [x+U] mod P0Λ is uniform

on P0.

Generalized dither The crypto lemma holds for any U which is modulo-

uniform, i.e., U mod P0Λ is uniform on P0.

Equivalent conditions for modulo-uniformity

1.
∑

λ∈Λ fU(x+ λ) is constant for all x;

2. φU(λ∗) = 0 for all non-zero dual lattice points λ∗ ∈ Λ∗.

Generalized dithers (cases of modulo-uniformity)

1. U ∼ Unif(P ′
0) for some other fundamental cell P ′

0;

2. U ∼ Unif(P0(Λc)), where Λc ⊂ Λ;
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3. U = Ũ+ ˜̃U, where Ũ is modulo-uniform, and ˜̃U is arbitrary.

White dither If G(Λ) = G∗
n (i.e., Λ minimizes the NSM over all lattices

in Rn), then a uniform distribution on the fundamental Voronoi cell has a

white covariance matrix.

Equivalent additive-noise channel for dithered quantization

QΛ(X+U)−U
dist
= X+Ueq,

where Ueq ∼ Unif(−P0) is independent of X.

Filtered dithered quantizer

E ‖β [QΛ(X+U)−U]−X‖2 is minimized by β∗ =
σ2
x

σ2
x + σ2

u

.

Problems

P.4.1 (Modulo-uniformity condition) Prove the condition for a generalized

dither (Lemma 4.2.1), based on the crypto lemma (Lemma 4.1.1) for dither

which is uniform over the fundamental cell.

P.4.2 (Uniform dither over a sublattice cell) Show that if Λc is a sublattice of Λ,

then periodic replication of P0(Λc) by Λ induces exactly |Λ/Λc| overlaps; hence
if fU ∼ Unif(P0(Λc)), then its periodic replication is constant.

P.4.3 (Generalized dither by spreading) (i) Show that the third case of gener-

alized dither in Example 4.2.1 (U = Ũ+X) holds also for Ũ which is modulo-

uniform. (ii) Give an example of generalized dither that is not a spreading of a

uniform dither.

P.4.4 (Dual lattice) Show that in two dimensions, taking the dual of a unit-

determinant lattice amounts to a rotation by 90 degrees.

P.4.5 (Replication as sampling in the frequency domain) Prove (4.21) in the

one-dimensional case using standard Fourier analysis.

P.4.6 (Nyquist condition for generalized dither) Prove Lemma 4.2.4 by trans-

forming the constant periodic-replication condition (4.17) to the frequency

domain, and using the replication/sampling relation (4.21).

P.4.7 (Spreading in the frequency domain) Prove the third case of generalized

dither in Example 4.2.1 using the fact that convolution in time (or space) amounts

to multiplication in frequency; thus the Fourier transform of U = Ũ+X can be
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expressed as the product F{fU} = F{fŨ} · F{fX}. Hence, F{fU} is zero on the

dual lattice points (for any fX) if F{fŨ} is.

P.4.8 (Flatness factor bound in frequency domain) Use the Fourier expansion

formula (or inverse Fourier transform) to prove that

F (Λ,X) ≤
∑

λ∗∈Λ∗,λ∗ 6=0

|φX(λ∗)| (4.51)

where φX = F{fX} is the characteristic function of X. Furthermore, show that

equality holds if φX is real and positive, in which case the maximum in Defini-

tion 4.2.4 is achieved for a lattice point in P0 (e.g., for x = 0, if P0 contains the

origin). Guidance: show that

fX mod Λ(x) =
1

V (Λ)
·



1 +
∑

λ∗∈Λ∗,λ∗ 6=0

φX(λ∗)ej2π〈λ
∗,x〉



 , (4.52)

where Λ∗ is the dual lattice, plug into the definition of F (Λ,X), and note that

|ej2π<λ∗,x>| ≤ 1.

P.4.9 (Gaussian flatness factor) Find the flatness factor of a white-Gaussian vec-

tor X ∼ f(x) = 1/
√
2πσ2ex

2/2σ2

. Guidance: show that φX satisfies the condition

for equality in Problem 4.8, and therefore the maximum in (4.23) is achieved by

x = 0; i.e., F (X,Λ) is given by summing f(x) over all x ∈ Λ, multiplying by V (Λ)

and subtracting one. Verify that you get the same result by summing φX(f) over

all f ∈ Λ∗ and subtracting one.

Remark This formula can be expressed in terms of the distance spectrum of

the lattice (see Section 13.5) or its theta series; see [167, 187].

P.4.10 (High-resolution quantization) Show that if X has a p.d.f., then limα→∞
F (Λ, αX) = 0. Hint: examine the bound (4.51) as α → ∞.

P.4.11 (Weighted-quadratic distortion measure) Show that dither auto-

correlation shaping is useful if we want to modify an MSE-optimal quantizer

to a weighted square error distortion measure of the form (x̂− x)tW (x̂− x).

In this case, we use in the quantizer scaling law (2.41) a matrix A satisfying

AAt = W−1. See more on non-quadratic distortion measures in Section 5.4.

P.4.12 (Proposition 4.4.2: Gaussian MMSE) Show that if X and Y are memo-

ryless jointly Gaussian vectors with zero mean, then the conditional mean (4.40)

is equal to the Wiener estimator. Guidance: show, via direct calculation, that

the conditional density f(x|y) of X given Y = y is Gaussian, whose mean and

variance coincide with the Wiener estimator (4.36) and its MSE (4.37), respec-

tively:

f(x|y) = 1
√

2π(1− ρ2)Rx

· e−
(x−α∗y)2

2(1−ρ2)Rx .
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Historical notes

The idea of dithered quantization was proposed in the 1960s by Roberts [228],

Schuchman [234] and Limb [160] for enhancing the perceptual effect of picture

coding, and applied later to speech by Jayant and Rabiner [131]. See the tuto-

rial papers by Lipshitz et al. [170], by Gray and Stockham [112] and by Gray

and Neuhoff [111], for a comprehensive treatment of subtractive as well as non-

subtractive dither. Lemma 4.2.4 in the one-dimensional case is known as Schuch-

man’s condition, which parallels the Nyquist condition for zero inter-symbol

interference [112, 170, 234]. Conway and Sloane [48] show how to generate a

uniform distribution over a Voronoi cell using closet point search.

The spectra of quantized signals was analyzed under the high-resolution

assumption by Bennett in 1948 [17], and extended to dithered quantization by

Gray [109]. Zamir and Feder [289] showed that the dither spectrum (and hence

also the subtractive-dither quantization error) of an optimal n-dimensional lat-

tice quantizer is white. Extension to dither signals under non-quadratic measures

was given by Gariby and Erez [98]. Non-uniform dithered quantization was pro-

posed by Akyol and Rose [7].

The flatness factor is based on the smoothing parameter of Micciancio and

Regev [187] in lattice complexity theory and cryptography. In the lattice coding

literature, Ling et al. [167] used the flatness factor to measure the information

leakage in lattice wiretap coding schemes; see [16, 168].

The incorporation of filtering into source coding goes back to the water-

pouring solution of the rate-distortion function of a colored-Gaussian source [18].

Classical literature on signal compression (e.g., the books by Jayant and Noll

[130] and Gersho and Gray [103]) provides tools for the analysis of (non-linear)

quantization schemes involving linear operations (for transformation, predic-

tion and estimation). But this analysis becomes inaccurate in the low-resolution

regime; see, for example, [35]. A simple analysis for randomized quantization

incorporating Wiener estimation, which is accurate at all resolution levels, was

given by Zamir and Feder [290]. This idea was extended to various source coding

problems; in particular, over-sampling [288], non-uniform sampling (Mashiach

and Zamir [182]), successive refinement (Lastras and Berger [152], Zhao et al.

[297]), predictive coding (Zamir et al. [291]), noise-shaped quantization and mul-

tiple descriptions (Chen et al. [39], Østergaard and Zamir [211] and Palgy et al.

[212]).

Wiener-estimated dithered quantization was also applied in shaping (Voronoi

coding with lattice decoding) and in dirty-paper channel coding [68, 71]; see

Chapters 9 and 10.



5 Entropy-coded quantization

The elements of dithering and estimation provide tools to control the distribu-

tion of the quantization error, and to compute the average distortion. Another

important parameter of source coding is the coding rate.

In this chapter we focus on the quantizer entropy as a measure for the coding

rate. Although the lattice is unbounded, entropy coding keeps its coding rate

finite. We examine the entropy-distortion trade-off for a general source and lat-

tice quantizer in Sections 5.2–5.4, and compare it to Shannon’s rate-distortion

function R(D) – the ultimate compression rate of any system achieving a distor-

tion level D – in Sections 5.5–5.6. As we shall see, the redundancy above R(D)

is small for all sources; even for a simple scalar lattice quantizer it is at most

≈3/4 bit, and only ≈1/4 bit at high-resolution quantization. Furthermore, if we

combine a Wiener filter at the quantizer output (as we did in Section 4.5), then

the redundancy of a scalar ECDQ for a Gaussian source is at most ≈1/4 bit at

any resolution.

5.1 The Shannon entropy

In fixed-rate lossless coding, all elements of the data are mapped into binary

codewords of identical length. Let A denote the data alphabet. Since there are

2l binary words of length l, the codeword length must be at least the base-2

logarithm of the size of A, rounded up to the nearest integer.

In contrast, variable-rate coding takes advantage of the non-uniformity of the

source probability distribution; highly probable elements are mapped to short

codewords, while rare elements are mapped to long codewords, so the average

code length is reduced. The Shannon–Fano code, for example, maps the ith letter

in the source alphabet to a codeword of length
⌈

log2

(
1

pi

)⌉

bits, i ∈ A, (5.1)

where pi is the letter probability, and ⌈·⌉ denotes rounding up to the nearest

integer. This length is on the one hand large enough to allow reversible mapping

(a result known as Kraft’s inequality [53]). On the other hand, if we ignore the
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Table 5.1 Various lossless source codes for a uniform (scalar lattice)

quantizer of a Gaussian source; the Huffman code almost achieves the

entropy H(Q(S)) ≈ 2.09 bit

Fixed length Shannon–Fano Huffman

Symbol pi code code code

−2∆ 0.0606 000 01010 1110

−∆ 0.2417 001 110 10

0 0.3829 010 00 0

∆ 0.2417 011 011 110

2∆ 0.0606 100 10101 11110

Overload 0.0125 101 1111111 11111

Average length 3 2.7475 2.1993

rounding up (which adds at most 1 bit), then the expected code length is equal

to the source entropy,

H
∆
=
∑

i∈A
pi log2

(
1

pi

)

. (5.2)

Information theory shows that the entropy (5.2) is the minimum number of bits

required to describe unambiguously a long outcome of a memoryless source.

The entropy function satisfies H ≤ log2 |A|, corresponding to rate saving with

respect to fixed-rate coding, with equality if and only if the source is uniformly

distributed over the alphabet A. The Shannon–Fano code, along with other

compression algorithms such as Huffman or arithmetic coding, are commonly

known under the name lossless (or “entropy”) coding. 1

5.2 Quantizer entropy

Quantization amounts to lossy source coding, i.e., encoding with distortion. Yet,

since the quantizer output Q(S) is not necessarily equiprobable, it can be fur-

ther losslessly encoded by a variable-length code, in order to approach its entropy

H(Q(S)); see Figure 5.1. For lattice quantization, such entropy coding is unavoid-

able, since the alphabet size – composed of all the lattice points – is infinite. 2 As

in the previous chapter, we shall enhance the robustness and analysis of lattice

quantization using dither.

1 See Appendix A.1 for an overview of information theoretic measures. For an extension of
(5.2) to a source with memory, see [53].

2 Unless the source has a finite compact support, so only a finite number of lattice points are
actually used in the quantization.
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Figure 5.1 Uniform quantization of a Gaussian source implies highly non-uniform cell

probabilities. Entropy coding reduces the rate of a 6-level quantizer (with thresholds

at ±5/2∆,±3/2∆ and ±∆/2) from ⌈log2 6⌉ = 3 bit to H(Q(S)) ≈ 2.09 bit; see

Table 5.1.

Entropy Decoder

Entropy EncoderLattice Quantizer

Dither

+

–
U

U

+
S Ŝ

Figure 5.2 Entropy-coded dithered quantization.

Definition 5.2.1 (ECDQ) An entropy-coded dithered quantizer is a dithered

lattice quantizer (4.3), with a uniform (or modulo-uniform) dither, followed by

lossless entropy coding of the quantizer output conditioned on the dither. See

Figure 5.2.

Let us explain the meaning of conditional entropy coding. Consider the

dithered lattice quantizer output QΛ(S+U). For each dither value U = u, the

variable-length code (5.1) is designed according to the probabilities

pλ(u) = Pr{S+ u ∈ Pλ}, for λ ∈ Λ, (5.3)
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i.e., the probabilities that the shifted source vector S+ u falls inside the lattice

cells {Pλ, λ ∈ Λ}. Thus, the expected code length – averaged with respect to

both the source and the dither distributions – is equal (up to at most 1 bit)

to the conditional entropy (A.3) of the quantizer output QΛ(S+U), given the

dither U:

H(QΛ(S+U)|U) =

∫

fU(u) ·H(QΛ(S+ u))du. (5.4)

For a uniform (non-generalized) dither U ∼ Unif(P0), we can write this condi-

tional entropy as (see (A.3))

H(QΛ(S+U)|U) =
1

V (Λ)

∫

P0

H(QΛ(S+ u))du

= − 1

V (Λ)

∫

P0

∑

λ

pλ(u) log pλ(u)du. (5.5)

Theorem 5.2.1 below implies that the same expression holds for a generalized

(modulo-uniform) dither. The ECDQ coding rate in bits per sample is given by

dividing the conditional entropy (5.5) by the lattice dimension n:

RECDQ =
1

n
H(QΛ(S+U)|U). (5.6)

Theorem 5.2.1 (ECDQ coding rate) The ECDQ average code length (5.4)

for a uniform (or modulo-uniform) dither is equal to the mutual information

(A.6) in the equivalent additive-noise channel of Figure 4.5:

H(QΛ(S+U)|U) = I(S;S+Ueq), (5.7)

where Ueq ∼ Unif(−P0) is the equivalent dither (4.8), and where P0 is the fun-

damental cell used by the lattice quantizer QΛ (4.1).

We see that the equivalent additive-noise channel of Figure 4.5 plays a dual

role: it characterizes both the statistics of the quantization error (Theorem 4.1.1),

and the average length of an ideal “entropy” code (Theorem 5.2.1).

Note that for a general n-dimensional lattice, the equivalent dither components

are dependent. Thus, even if the source S is memoryless, the mutual information

on the right-hand side cannot be broken into a sum of scalar mutual information

terms.

We provide two proofs for Theorem 5.2.1: the first is based on a direct calcu-

lation, while the second is shorter but requires information theoretic tools. Also,

the first proof assumes a uniform dither U ∼ Unif(P0), while the second proof

covers the general (modulo-uniform) dither case.

We shall use the following lemma.

Lemma 5.2.1 Given a source S and a region A in Rn, let us define the vector

X = S−V, where V is uniform over A and independent of S (i.e., fV(v) =
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1/Vol(A) for v ∈ A, and zero elsewhere). Then, for any vector t in Rn,

Pr{S ∈ A+ t} = Vol(A) · fX(t), (5.8)

where fX(·) is the density of X.

Proof See Problem 5.1. �

Proof A of Theorem 5.2.1 Assume U ∼ Unif(P0), and let X = S+Ueq = S−
U denote the output of the equivalent additive-noise channel of Figure 4.5. Since

U has a density, X must also have a density fX(·) (regardless of whether S has a

density or not). By Lemma 5.2.1, the probability that the dithered source S+ u

falls in some lattice quantizer cell Pλ = P0 + λ is given by

pλ(u) = Pr{S ∈ P0 + λ− u} = V (Λ) · fX(λ− u). (5.9)

Substituting (5.9) into (5.5), we can break the expression for the quantizer

entropy into two terms:

− 1

V (Λ)

∫

P0

∑

λ∈Λ

pλ(u) · log(V (Λ))du (5.10a)

and

−
∫

P0

∑

λ∈Λ

fX(λ − u) · log(fX(λ − u))du. (5.10b)

The first term (5.10a) is equal to − log(V (Λ)) (since
∑

λ∈Λ pλ(u) = 1 for all u).

As for the second term (5.10b), since −P0 is also a valid fundamental cell of Λ,

the summation over λ ∈ Λ and the integration over −P0 complement each other

to integration over the entire space Rn. The second term is thus equal to

−
∫

Rn

fX(x) · log(fX(x))dx = h(X), (5.11)

i.e., to the differential entropy of X (see (A.8) in the Appendix). Combining the

two terms in (5.5), we obtain

H(QΛ(S+U)|U) = h(X)− log(V (Λ)) (5.12)

= h(S+Ueq)− h(Ueq) (5.13)

= I(S;S+Ueq), (5.14)

where (5.13) follows since by (4.5) the dither is uniformly distributed over a

region of volume V (Λ) (the fundamental lattice cell P0), so its differential entropy

is equal to the logarithm of this volume; and (5.14) follows from the decompo-

sition of mutual information into a difference of entropies (see (A.11) in the

Appendix). �

Note again, that since U has a density, X = S−U also has a density, and

hence a differential entropy, regardless of the nature of the distribution of the

source S.
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An alternative proof, of a more “information theoretic flavor,” is given below.

It is shorter, though perhaps less intuitive.

Proof B of Theorem 5.2.1 Let us denote for short QΛ
∆
= QΛ(S+U). Using basic

properties of entropy and mutual information (see Appendix A.1) we write,

H(QΛ|U)
a
= H(QΛ|U)−H(QΛ|U,S)
b
= I(S;QΛ|U)
c
= I(S;QΛ −U|U)
d
= I(S;QΛ −U)
e
= I(S;S+Ueq), (5.15)

where (a) follows since QΛ(S+U) is a deterministic function of S and U, so

its conditional entropy given S and U is zero; (b) follows by decomposing the

mutual information into a difference of entropies (A.11); (c) follows since adding

or subtracting the condition does not change the mutual information; and (e)

follows from (4.7), the equivalent additive-noise channel of Figure 4.5. Step (d)

is justified by the following three steps:

I(S;QΛ −U|U)
d1
= I(S;QΛ −U) + I(S;U|QΛ −U)− I(S;U)
d2
= I(S;QΛ −U) + I(S;U|QΛ −U)
d3
= I(S;QΛ −U) (5.16)

where (d1) follows by using the chain rule (A.7) twice to decompose the joint

mutual information I(S;QΛ −U,U); (d2) follows since the dither U is indepen-

dent of the source S, so I(S;U) = 0; finally, a uniform dither U ∼ Unif(P0) is

a deterministic function of QΛ −U (because QΛ is a lattice point and U ∈ P0,

so U = −(QΛ −U) mod Λ), hence we also have I(S;U|QΛ −U) = 0, implying

(d3).

In the case of a generalized (modulo-uniform) dither, U is not a deterministic

function of QΛ −U, so step (d3) cannot be justified. This case is deferred to

Problem 5.4. �

Remarks

1. The source S does not have to posses a probability density function.

2. The support of the source distribution can be infinite (in which case the entire

infinite lattice must be mapped into codewords).

5.3 Joint and sequential entropy coding*

Theorem 5.2.1 can be extended to encoding of a sequence of vectors S1,S2, . . .,

where the dimension of each vector is the lattice dimension n. If the vectors are
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independent, then each vector can be encoded separately, so the coding rate per

vector is given by Theorem 5.2.1. To take advantage of the possible dependence

between the vectors, however, the entropy coding should be done jointly.

There are two options for drawing the dither along the sequence.

1. Constant dither, i.e., U1 = U2 = · · · = U, where U is uniform over P0.

2. Independent dithering, i.e., the dither vectors U1,U2, . . . are i.i.d., i.e., inde-

pendent and each one is uniformly distributed over P0.

The second option turns out to be simpler to analyze. 3

Let us assume quantizing k source vectors s1, . . . , sk of length n each, i.e., a

total of m = kn source samples. We denote the length-m “super” vector, gener-

ated by concatenating these n-length vectors, as sm = s1, . . . , sk. Observe that

independent application of a lattice quantizer QΛ to the consecutive vectors

s1, . . . , sk is equivalent to quantizing the vectors together using a single super

lattice quantizer (a Cartesian product lattice quantizer) QΛ,m:

QΛ(s1), . . . , QΛ(sk) = QΛ,m(sm), (5.17)

where the lattice and partition associated with QΛ,m are Cartesian products of

those of QΛ:

Λm = Λ× Λ× · · · × Λ and P0,m = P0 × P0 × · · · × P0. (5.18)

Observe also that an m-dimensional vector Um, which is uniform on the fun-

damental cell P0,m of the super lattice quantizer QΛ,m, is equivalent to a set

of independent dithers U1, . . . ,Uk, each uniform over P0. Thus, luckily, we can

use the ECDQ rate formula of Theorem 5.2.1 directly with respect to the joint

ECDQ of the source super vector Sm:

H(QΛ,1, . . . , QΛ,k|U1, . . . ,Uk) = H(QΛ,m(Sm + Um)|Um) (5.19)

= I(Sm;Sm + Um
eq), (5.20)

where Um
eq is a concatenation of k equivalent dithers, and for short we denote

QΛ(Si +Ui) = QΛ,i, i = 1, . . . , n.

5.3.1 Feedback coding

Dependence between the quantizer inputs can also be created due to feedback.

In the system shown in Figure 5.3, past quantizer outputs are processed and

combined with the current input. This situation is typical of predictive coding,

where the goal is to encode only the innovation part of the source. Feedback

3 Note that the concatenation of codewords must be uniquely decodable (UD), i.e., the decoder
must be able to parse the code sequence into separate codewords. A delicate point in
independent dithering is that the entropy code, which depends on the dither, must remain
UD over time. A simple solution for that is to use an instantaneous code, also called a prefix
code, where the decoder can identify the end of a codeword regardless of what comes next.
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Figure 5.3 Typical feedback coding schemes.

is also used in noise shaping, where the goal is to shape the spectrum of the

equivalent quantization noise.

In the presence of feedback, the current quantizer input depends on present

and past values of the source and dither, and on past values of the reconstruction:

S̃n = f(S1, . . . , Sn, U1, . . . , Un, Ŝ1, . . . , Ŝn−1). (5.21)

One implication of this sequential structure is that it works only for a scalar

quantizer, because Ŝn−1 must be available before Sn is quantized. 4

Another implication of (5.21) is that, although each new dither value is still

independent of the previous quantizer inputs, the dither sequence U1, . . . , Um

depends on the quantizer input sequence S̃1, . . . , S̃m; hence formula (5.20) for

the joint quantizer entropy is not valid (step (d2) in (5.16) cannot be justified).

Nevertheless, it is easy to show that

H(QΛ,1, . . . , QΛ,k| U1, . . . , Uk) = I(Sm; S̃m + Um
eq), (5.22)

where QΛ,i = QΛ(S̃i + Ui) =, i = 1, . . . , k, i.e. the equivalent channel input is the

source before it is combined with the feedback, while the output is, as before,

the sum of the quantizer input and the equivalent dither; see Problem 5.5. 5

4 See an extension to a block-sequential scheme in [291].
5 An alternative form for (5.22) uses a sequential version of the mutual information, known

as directed mutual information [183, 291].
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Figure 5.4 (A) Entropy-distortion curves for a Gaussian source S ∼ N(0, 1), and a

uniform step-∆ quantizer with a deterministic dither u. Each curve corresponds to

one step size value ∆ (for ∆ = 1, 2, 3 and 4), and a full “cycle” of dither values in the

range −∆/2 < u < ∆/2. We see that in each curve, some dither values imply better

entropy-distortion pairs than others. The dashed line shows the average performance

over U ∼ Unif(−∆/2,∆/2), which is the function RECDQ(D) of (5.6). Also shown for

comparison is the Shannon rate-distortion function R∗(D) = 0.5 log(1/D). (B) The

same curves for an exponential source distribution.

5.4 Entropy-distortion trade-off

For each value u of the random dither U, the lattice gets an offset u, and the

ECDQ achieves a certain rate-distortion pair. Specifically, the rate per source vec-

tor is H(QΛ(S+ u)). From (4.4), the quantization error is QΛ(S+ u)− u− S,

so the mean-squared distortion is E‖QΛ(S+ u)− u− S‖2, where the expecta-

tion is over the distribution of the source S; see the example of scalar-lattice

quantization of Gaussian and exponential sources in Figure 5.4. (Note that we

do not use the Wiener estimator of Section 4.5 to reduce the distortion until

Section 5.6.2.)

For a general lattice, the entropy and distortion for a specific value of the dither

are, in general, hard to evaluate. Nevertheless, by combining Theorems 4.1.1

and 5.2.1 we can easily calculate the expected ECDQ rate-distortion performance.

Recall that the formula (5.12) for the quantizer conditional entropy can be

written as (5.14):

I(S;S−U) = h(S−U)− log(V (Λ)). (5.23)
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Next, from (4.10), the mean-squared distortion per dimension under Voronoi

partition is equal to the lattice second moment:

D = σ2(Λ). (5.24)

By (3.21), this can be written as σ2(Λ) = G(Λ) · V 2/n(Λ), where G(Λ) is the

NSM of the lattice quantizer. 6 Thus, we can write the ECDQ coding rate (5.6)

versus MSE trade-off as

RECDQ(D) =
1

n
h(S−U)− 1

2
log

(
D

G(Λ)

)

. (5.25)

Example 5.4.1 The NSM of the scalar uniform quantizer Q∆ is G(Λ) = 1/12,

and the dither U is uniform over the interval [−
√
3D,+

√
3D) (see (4.11)). Thus,

if the source is a zero-mean Gaussian, S ∼ N(0, σ2
s), the density of the indepen-

dent sum S − U is given by the convolution of the densities of its components

fS−U (x) = fS(x) ∗ fU (x) =
1

2
√
3D

∫
√
3D

−
√
3D

1
√

2πσ2
s

et
2/2σ2

sdt, (5.26)

and

H(Q∆(S + U)|U) = −
∫

fS−U (x) log fS−U (x)dx − 1

2
log (12D) . (5.27)

5.4.1 ECDQ with high resolution

For a small distortion D, the convolution (5.26) does not change much the distri-

bution of the source S. In this case, we have h(S − U) ≈ h(S), which simplifies

(5.23) and the entropy-distortion trade-off of Example 5.4.1. This approximation

holds, in fact, under very general conditions on the source S, the lattice Λ, its

associated partition P , and the distortion measure d(s, ŝ).

Proposition 5.4.1 (Continuity of differential entropy [164]) If h(S)

exists, and U has a finite second moment (e.g., U is a uniform dither over

the fundamental lattice cell P0), then

lim
α→0

h(S+ αU) = h(S).

It follows that for small distortion, we can approximate h(S−U) in (5.25) as

h(S).

Proposition 5.4.2 (Entropy for a small distortion) For an NN lattice

quantizer under mean-squared error:

RECDQ(D) =
1

n
h(S)− 1

2
log

(
D

G(Λ)

)

+ o(1), (5.28)

where o(1) → 0 as D → 0.

6 For a general partition P the distortion-volume trade-off will of course be worse.
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The resulting rate-distortion trade-off is not only very simple to evaluate, but

it also has a striking resemblance to Shannon’s rate-distortion function, which

we introduce in the next section.

Difference distortion measures

A similar analysis applies for more general difference distortion measures,

i.e., distortion measures of the form

d(s, ŝ) = ρ(s− ŝ). (5.29)

The average distortion, as for MSE (4.10), is only a function of the distri-

bution of the dithered quantization error QΛ(s +U)−U− s (4.4). So by

Theorem 4.1.1 it is equal to E{ρ(U)}.
For example, the rth moment of a uniform distribution over the inter-

val (−∆/2,+∆/2) is given by ∆r/γ(r), for r > 0, where γ(r) = (r + 1)2r.

We can thus modify (5.27), and characterize the entropy-distortion trade-off

of the scalar ECDQ for a general rth power distortion measure, as (Prob-

lem 5.6)

H(Q∆(S + U)|U) = −
∫

fS−U (x) log fS−U (x)dx − 1

r
log (γ(r)D) . (5.30)

At high-resolution conditions, the first term becomes h(S), as in the squared-

error case (5.28).

5.5 Redundancy over Shannon

Now that the two main performance figures of the dithered quantizer – distortion

and coding rate – have been characterized, we turn to examine two important

aspects: its distance from optimality and its sensitivity to the source parameters.

Our reference for the first question will be the information theoretic bound on

lossy compression: Shannon’s rate-distortion function.

5.5.1 Shannon’s rate-distortion function

The Shannon rate-distortion function of a source vector S under a distortion

measure d, is defined as:

RS(D) =
1

n
inf

Ŝ: E{d(S,Ŝ)}≤D
I(S; Ŝ). (5.31)

The minimization of the mutual information in (5.31) is taken over all conditional

distributions p(ŝ|s) of Ŝ given S, called “test channels,” such that the distortion
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constraint E{d(S, Ŝ)} ≤ D is satisfied. As information theory shows, the rate-

distortion function characterizes the minimum achievable rate, by any scheme, in

coding a sequence of independent and identically distributed copies of the vector

source S under the distortion measure d. It can be simplified to a single-letter

quantity if the source is memoryless and the distortion measure is per letter, i.e.,

d(s, ŝ) =
1

n

n∑

i=1

d(si, ŝi). (5.32)

For example, the rate-distortion function of a zero-mean white-Gaussian

source S with variance σ2
s under the squared-error (per letter) distortion measure

d(s, ŝ) = 1
n

∑n
i=1(si − ŝi)

2, is given by

R∗(D) =
1

2
log

(
σ2
s

D

)

, for 0 < D ≤ σ2
s . (5.33)

We can realize the quadratic-Gaussian rate-distortion function R∗(D) = I(S; Ŝ)

using a linear AWGN test channel p(ŝ|s) of the form

Ŝ = β(αS + Z), (5.34)

where Z ∼ N(0, σ2
z), and where the linear coefficients α and β and the noise

variance σ2
z are any triplet satisfying

αβ = 1− D

σ2
s

and σ2
z =

α

β
D. (5.35)

Although, without loss of generality, we can set α = 1 or β = 1 (and get a two-

parameter representation), the “pre/post-scaling” form (5.34) proves to be useful

in the sequel. 7

5.5.2 The Shannon lower bound

For a general source, the quadratic rate-distortion function is greater than the

following bound due to Shannon.

Proposition 5.5.1 (SLB) For squared-error distortion measure, and a contin-

uous source S having differential entropy h(S),

RS(D) ≥ 1

n
h(S)− 1

2
log(2πeD). (5.36)

The SLB follows from the maximum entropy property of the Gaussian dis-

tribution (A.13). The differential entropy of an i.i.d. Gaussian distribution with

variance σ2
s is

h(S) =
n

2
log(2πeσ2

s); (5.37)

7 Another simple equivalent representation for the joint distribution in (5.34) has a backward

channel form: S = Ŝ + Z, where Z ∼ N(0, D) is independent of Ŝ.
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thus, in view of (5.33), the SLB is tight for a white-Gaussian source. 8 Fur-

thermore, by a continuity argument, the SLB is asymptotically tight for small

distortion levels.

Proposition 5.5.2 (Tightness of SLB) If h(S) exists, then

RS(D) =
1

n
h(S)− 1

2
log(2πeD) + o(1), (5.38)

where o(1) → 0 as D → 0. The optimum test channel which realizes (5.38)

asymptotically is an AWGN channel:

Ŝ = S+ Z∗, (5.39)

where Z∗ is AWGN with variance D.

Note that the existence of differential entropy implies that the source has a

probability density function, i.e., no discrete values have a positive probability. 9

Proof The channel S → Ŝ of (5.39) satisfies the constraint of the minimization

(5.31), and we have

I(S; Ŝ) = I(S;S+ Z∗)
a
= h(S+ Z∗)− h(Z∗)
b
= h(S+ Z∗)− n

2
log(2πeD)

c
= h(S)− n

2
log(2πeD) + n · o(1), (5.40)

where (a) follows as in (5.23); in (b) we substituted the Gaussian entropy; and

(c) follows from Proposition 5.4.1. Thus, by definition (5.31) the rate-distortion

function RS(D) is bounded from above by the right-hand side of (5.38). In view

of the SLB, this bound is, in fact, asymptotically tight. �

5.5.3 Redundancy at high resolution

We see that for small distortion, the optimum test channel for the quadratic rate-

distortion function takes the form of an AWGN channel (5.39). This is the same

as the equivalent ECDQ channel of Figure 4.5, except that the dither is uniform

and not Gaussian. Combining (5.28) and Proposition 5.5.2, we thus obtain the

following.

Theorem 5.5.1 (ECDQ at high resolution) For NN lattice quantization

of a continuous source S, with differential entropy h(S), under a squared-error

8 An alternative form for the SLB, which resembles the white-Gaussian rate-distortion func-
tion (5.33), is RS(D) ≥ 1

2
log(PE(S)/D), where PE(S) = 22h(S)/n/2πe is the entropy power

of S (A.15).
9 For a discrete source, the differential entropy and hence the SLB are equal to −∞, while

the rate-distortion function is of course non-negative for all D.
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distortion measure,

lim
D→0

[RECDQ(D)−R(D)] =
1

2
log(2πeG(Λ)). (5.41)

The beauty of Theorem 5.5.1 is that the redundancy term 1
2 log(2πeG(Λ)) is

independent of the source S, except for it being continuous.

Example 5.5.1 (Gap from Shannon) The NSM of a scalar uniform quan-

tizer is G(Λ) = G1 = 1
12 , so its asymptotic redundancy (5.41) is

1

2
log

(
2πe

12

)

≈ 0.254 bit. (5.42)

Indeed the gap between the curves RECDQ(D) and R∗(D) in Figure 5.4(A) is

about a quarter of a bit (or 1.5 dB in the distortion axis 10).

Entropy-constrained quantization theory

The asymptotic redundancy result of Theorem 5.5.1 has the form of the

redundancy of the optimum entropy-constrained vector quantizer (ECVQ) in

high-resolution quantization theory [102, 103]. Indeed, if Gersho’s conjecture

is true, and the best space-filling polytope is a lattice cell (see Section 3.2),

then the optimum n-dimensional ECVQ at the high-resolution regime takes

the form of a lattice. The dither – as we may conclude from this coincidence

– does not incur any loss or improvement in this regime.

Gaussian dither In Chapter 7 we shall relate the redundancy term
1
2 log(2πeG(Λ) with the distance of the dither from AWGN. We shall also observe

that for a sequence of “good” lattices

G(Λn) →
1

2πe
, (5.43)

and therefore the dither, in the sense of this distance measure, becomes AWGN.

The ECDQ thus amounts in this limit to an AWGN channel. Moreover, the

asymptotic redundancy theorem above implies that for such good lattices, the

ECDQ approaches Shannon’s rate-distortion function in the double limit of high

dimension and small distortion.

10 Since the squared distortion scales like D ∝ 2−2R (see the SLB (5.38)), each bit of infor-
mation amounts to reduction of D by a factor of 4, corresponding to a 10 log10(4) ≈ 6 dB
gap.
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5.6 Optimum test-channel simulation

So far, we have concentrated on the asymptotic optimality of the ECDQ in the

limit of high-resolution quantization. As we shall show in this section, a pre/post-

filtered ECDQ can “simulate” the test channel (5.34) that realizes the quadratic-

Gaussian rate-distortion function R∗(D). This implies that for a Gaussian source,

the ECDQ can, in fact, be optimal at any resolution.

5.6.1 Entropy bounds

We first develop some bounds on RECDQ(D) for a general resolution, by bound-

ing the entropy term h(S−U) in (5.25): an upper bound using the maximum-

entropy property of the Gaussian distribution, and a lower bound via the entropy

power inequality (EPI). See (A.13) and (A.16) in the Appendix.

Proposition 5.6.1 (Maximum-entropy bound) Let S be a source with an

average variance per dimension σ2
s = 1

nE‖S− E{S}‖2. Then, for NN lattice

quantization,

RECDQ ≤ 1

2
log

(

1 +
σ2
s

σ2
Q

)

+
1

2
log (2πeG(Λ)) , (5.44)

where σ2
Q = σ2(Λ).

Proof Since the source S and the dither U are independent, the average variance

per dimension of the vector S−U is equal to the sum of their variances: σ2
s +

σ2(Λ). By the maximum-entropy property of the Gaussian distribution (A.13),

the entropy of this vector is bounded from above by the entropy of a white-

Gaussian vector with the same variance, i.e.,

1

n
h(S−U) ≤ 1

2
log(2πe(σ2

s + σ2(Λ))). (5.45)

Substituting (5.45) in (5.25), we obtain the upper bound (5.44). �

Proposition 5.6.2 (EPI-based bound) If the source is white Gaussian, then

RECDQ ≥ 1

2
log

(

1 + 2πeG(Λ)
σ2
s

σ2(Λ)

)

. (5.46)

Proof By the EPI (A.16),

2
2
nh(S−U) ≥ 2

2
nh(S) + 2

2
nh(U).

Substituting h(U) = logV (Λ) = n
2 log(σ2(Λ)/G(Λ) and, for a white-Gaussian

source, h(S) = n
2 log(2πeσ2

s ), the lower bound (5.46) follows. �

Gaussian dither If G(Λn) → 1
2πe (as already mentioned in (5.43), the case

where the dither “becomes Gaussian”), then for a white-Gaussian source both
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Ŝ

Figure 5.5 Pre/post-scaled ECDQ.

bounds (5.44) and (5.46) coincide. Thus, for a white-Gaussian source and Gaus-

sian dither, setting σ2(Λ) = D, we obtain

RECDQ(D) =
1

2
log

(

1 +
σ2
s

D

)

. (5.47)

Comparing (5.47) with the Gaussian rate-distortion function (5.33), we see that

even in the ideal limit G(Λn) → 1
2πe there is an “extra one” inside the logarithm,

corresponding to some rate loss with respect to Shannon. We next show that this

loss can be removed by appropriate “pre/post-filtering” of the ECDQ.

5.6.2 Pre/post-scaled ECDQ

Consider the post-filtered dithered quantizer of Section 4.5 (Figure 4.10). It is

interesting to observe that the Wiener coefficient β∗ = σ2
s/(σ

2
Q + σ2

s ) (4.49), and

distortion D∗ = σ2
Q · σ2

s/(σ
2
Q + σ2

s ) (4.50), coincide with the parameters β and D

of the linear-additive (forward test-channel) realization (5.34) of the quadratic-

Gaussian rate-distortion function, for the case α = 1. Let us now add a pre-

scaling coefficient α and an entropy-coding stage, to obtain the pre/post-scaled

ECDQ shown in Figure 5.5. By Theorems 4.1.1 and 5.2.1, this scheme is equiva-

lent to the linear-additive test channel (5.34), except that the dither is uniform

and not Gaussian. The equivalence is in terms of both rate and distortion, and

it holds for all suitable pairs of pre/post-scaling coefficients α and β.

Lemma 5.6.1 (Pre/post-scaling invariance) The rate

R =
1

n
H(QΛ(αS +U)|U) (5.48)

and quadratic distortion

D =
1

n
E‖β · (QΛ(αS+U)−U)− S‖2 (5.49)

of a pre/post-scaled ECDQ are invariant to the choice of α and β, as long as

they satisfy the conditions (5.35) of the linear-additive realization of R∗(D) (with
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noise power σ2
z = σ2(Λ)): 11

αβ = 1− D

σ2
s

and σ2(Λ) =
α

β
D. (5.50)

Proof The result follows from the equivalent additive-noise channel of ECDQ,

linearity, and the invariance of the mutual information to scaling. �

Note that for α = 1, we get the standard Wiener coefficient β = β∗ and dis-

tortion (4.49)–(4.50). Alternatively, we can use a symmetric scaling:

α = β =
√

1−D/σ2
s and σ2(Λ) = D, (5.51)

i.e., attenuate the source (by α < 1) prior to the quantization, and get the same

rate and distortion.

To see the gain due to scaling more easily, let us assume the α = 1 case. It

follows from (5.50), that for a target distortion level D, we use a lattice with a

second moment

σ2(Λ) =
1

1/D− 1/σ2
s

. (5.52)

This lattice is coarser than the one used in the unscaled ECDQ, where σ2(Λ) =

D; see (5.24). Intuitively, a coarser lattice leads to a smaller coding rate; or in

terms of the equivalent additive-noise channel of Figure 4.5, a stronger dither

reduces the mutual information (5.7). The improvement is most dramatic in the

low-resolution regime, as can be seen in Figure 5.6. We thus conclude that the

reduction in distortion due to Wiener estimation translates into a rate saving for

the same distortion.

The improvement in the entropy-distortion performance is also reflected in

the upper bound (5.44). If we substitute the higher second moment (5.52) as σ2
Q

in (5.44), we obtain

R
pre/post
ECDQ (D) ≤ 1

2
log

(
σ2
s

D

)

+
1

2
log (2πeG(Λ)) . (5.53)

That is, we have got rid of the extra “1” inside the log term in (5.47). Comparing

with Shannon’s rate-distortion function R∗(D) of a white-Gaussian source (5.33),

we conclude the following.

Theorem 5.6.1 (Redundancy of pre/post-scaled ECDQ) For a white-

Gaussian source and quadratic distortion, encoded with the pre/post-scaling

parameters (5.50),

R
pre/post
ECDQ (D)−R∗(D) ≤ 1

2
log (2πeG(Λ)) , (5.54)

at all distortion levels D.

11 Note that in the sequel we assume an NN quantization rule (Voronoi partition), so σ2
Q =

σ2(Λ).
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Figure 5.6 Scalar ECDQ of a Gaussian source S ∼ N(0, 1). By varying the quantizer

step size ∆ we obtain the entire entropy-distortion curve as shown in curve (A).

Curve (B) shows the improvement in the entropy-distortion trade-off when the

reconstruction is scaled by the Wiener coefficient. (In particular, the curve hits the

zero-rate axis at D = σ2
s = 1, while in the unscaled ECDQ case the rate at this point

is R ≈ 3/4 bit.) For comparison, curve (C) shows the Shannon rate-distortion

function R∗(D) = 0.5 log(1/D).

For example, for a scalar ECDQ the redundancy in (5.54) is at most
1
2 log

(
2πe
12

)
≈ 0.254 bit over the entire range of distortions, as can be seen by

comparing curves (B) and (C) in Figure 5.6.

Gaussian dither If G(Λn) → 1
2πe (5.43), then the redundancy in (5.54) goes to

zero. In other words, in this case the pre/post-scaled ECDQ system approaches

the white-Gaussian source rate-distortion function. Indeed, not only are the

second-order parameters of this system (α, β and σ2(Λ)) the same as those of

the linear test-channel (5.35) realizing R∗(D), but in the limit G(Λn) → 1
2πe , the

system actually simulates this channel.

5.7 Comparison with Lloyd’s conditions

It is interesting to compare the structure of the dithered lattice quantizer, which

is independent of the source statistics, to that of the optimum vector quantizer

matched to the source statistics. The comparison is based on Lloyd’s (necessary)
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conditions, which provide a simple characterization for the optimum quantizer.

See [174] for the scalar case and its extension in [161] for the vector quantizer

case.

1. Code vectors The code vectors {ci} satisfy

ith code vector =

{
“centroid” of ith cell, for optimum quantization

ith lattice point, for dithered quantization,

where the “centroid” is the vector minimizing the conditional expected dis-

tortion in the ith cell (for MSE distortion, it is equal to the conditional expec-

tation).

2. Implication for MSE The quantization error Ŝ− S satisfies

Ŝ− S ∼
{
uncorrelated with Ŝ, for optimum quantization

uncorrelated with S, for dithered quantization.

3. Another implication for MSE:

E‖Ŝ‖2 =

{
σ2
s −D, for optimum quantization

σ2
s +D, for dithered quantization.

4. Partition For optimum fixed-rate quantization, the partition satisfies

Lloyd’s nearest-neighbor condition. For optimum variable-rate quantization,

the partition is relative to a weighted distortion-codelength criterion. For the

ECDQ, the partition much be a valid lattice partition.

5. Distortion distribution For optimum quantization, the distortion per cell

varies between the cells. For dithered quantization, the distortion is the same

for all cells.

6. High-resolution conditions In the limit as D → 0, the structure of the

optimum “entropy-constrained” quantizer converges to a lattice with Voronoi

partition, and its entropy coincides with the ECDQ entropy. Note that in

this limit, the entropy and distortion are invariant to the specific dither value

u ∈ V0.

5.8 Is random dither really necessary?

Let us return to the question raised in the end of Chapter 4, now with the addi-

tional perspective of the entropy-distortion trade-off. Observe from Figure 5.4

that any specific dither value and lattice resolution corresponds to a different

point in the rate-distortion plane. The average of these points gives the perfor-

mance curve RECDQ(D) of a (randomized) ECDQ. In contrast, the lower convex

envelope of these points gives us the best attainable rate-distortion performance

with non-randomized entropy-coded lattice quantization, which is strictly better

than RECDQ(D).
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We should remember, though, that choosing a specific dither value means los-

ing the uniform (source-independent) distortion property of randomized quanti-

zation, as promised by Theorem 4.1.1. Furthermore, the variation in distortion

becomes stronger if post-scaling (e.g., Wiener estimation) is used. To see that,

observe that the total quantization error can be written as (see (4.43) and (5.49))

ŝ− s = β · eq + (β − 1) · s,

where eq = −[s+ u] mod Λ, and β is the estimation coefficient. Note that eq
can take any value inside the lattice cell, by a suitable choice of the dither vector

u. Thus, for a given β and s, some values of u will increase the absolute error

‖ŝ− s‖, and some will decrease it.

Nevertheless, as can be seen in Figure 5.4, for small distortion the curves asso-

ciated with different dither values shrink to a point. Thus, in the high-resolution

regime all dither values (including zero) are equivalent. A similar phenomenon

occurs for a sequence of “good” lattice quantizers, in the limit asG(Λn) → 1/2πe.

In this case, assuming a Gaussian source and Wiener estimation at the decoder,

RECDQ(D) → R∗(D), as the lattice dimension n goes to infinity, i.e., the aver-

age performance of the randomized ECDQ is asymptotically optimal. Since no

coding scheme can beat R∗(D), it follows that almost all dither vectors must be

asymptotically equivalent, and good. This, however, does not necessarily include

a zero dither vector, so some non-zero translation of the lattice may be necessary

for optimum performance.

5.9 Universal quantization*

Optimum compression of a source requires knowledge of its statistics. For quan-

tization, this amounts to the joint design of the code vectors and the quanti-

zation cells. If entropy coding is allowed, then the source statistics is also used

to design the mapping of quantizer outputs into binary codewords, for example,

the Shannon–Fano code (5.1). In many real life scenarios, however, the source

statistics is not known a priori.

The lattice quantizer is universal in the sense that its structure is independent

of the source statistics. Theorem 4.1.1 showed us that dithered lattice quanti-

zation guarantees a target distortion level independent of the source statistics.

Furthermore, Theorem 5.5.1 above and Theorem 5.9.1 below show that the rate

redundancy of the ECDQ is bounded by universal constants. Can we achieve

these results without knowing the source statistics in advance?

Indeed, there exist universal lossless compression schemes, for example, the

Lempel–Ziv algorithm and others, which can sequentially approach the entropy

of any stationary and ergodic source. Such schemes, if conditioned on the known

(pseudo-) random dither sequence, can approach the conditional entropy of the

quantizer (5.5). Thus, ECDQ with universal entropy coding is a universal lossy
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compression scheme, though with a slightly weaker notion of universality: it

guarantees a fixed bound on the loss with respect to Shannon, universally for all

sources.

5.9.1 Ziv’s bound

The power of ECDQ, unlike high-resolution quantization theory, is that its

behavior follows the same simple rules (Theorems 4.1.1 and 5.2.1) for all dis-

tortion levels D. A particularly interesting outcome of this continuity is the

universal bound below on the redundancy of the ECDQ. This bound is slightly

weaker than that of Theorem 5.5.1, nevertheless it holds for any source (not

necessarily continuous) and for all distortion levels.

Definition 5.9.1 (Ziv’s universal constant) The capacity CZiv of the equiv-

alent additive-noise channel Y = X+Ueq of the ECDQ (4.7) at signal to dither

ratio equal to 1 is defined as:

CZiv(Λ) =
1

n
sup

X: 1nE‖X‖2≤σ2(Λ)

I(X;X+Ueq). (5.55)

Note that for NN quantization 1
nE‖U‖2 = σ2(Λ) by Theorem 4.1.1, so the

signal to noise ratio in the equivalent channel is indeed bounded by 1. Also, since

the mutual information is invariant to scaling of its arguments, Ziv’s constant

is, in fact, independent of the scaling of the lattice Λ.

Theorem 5.9.1 (Universal bound on redundancy) For any source S and

squared distortion level D,

RECDQ(D)−RS(D) ≤ CZiv(Λ). (5.56)

Furthermore, this bound is tight for some sources and distortion levels.

Before we prove Theorem 5.9.1 below, note that in the scalar case

CZiv(Λ) ≤
1

2
+

1

2
log(2πe/12) ≈ 0.754 bit,

while in the general lattice case

1

2
log(1 + 2πeG(Λ)) ≤ CZiv(Λ) ≤

1

2
+

1

2
log(2πeG(Λ)), (5.57)

where the bounds in (5.57) follow by substituting the special case σ2
s/σ

2(Λ) = 1

(i.e., signal to dither ratio equal to 1) in the maximum-entropy and entropy-

power bounds (Propositions 5.6.1 and 5.6.2) of Section 5.6.2. As can be seen

in the numerical evaluation in Figure 5.7, the upper bound is quite tight. Fur-

thermore, both upper and lower bounds converge to 1/2 bit if G(Λ) → 1/2πe.

Thus, Ziv’s constant is roughly 1/2 bit larger than the asymptotic redundancy

of Theorem 5.5.1.
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Figure 5.7 Bounds on Ziv’s constant in the range 1
2πe ≤ G(Λ) ≤ 1

12 .

Proof of Theorem 5.9.1 For any test channel S → Ŝ in the definition of the

rate-distortion function (5.31), and dither U such that 1
nE‖U‖2 = σ2(Λ) = D,

we have the following chain of inequalities:

I(S;S−U)− I(S; Ŝ)
a
= I(S;S−U|Ŝ)− I(S; Ŝ|S−U)
b
≤ I(S;S−U|Ŝ)
c
= I(S− Ŝ;S− Ŝ−U|Ŝ)
d
≤ I(S− Ŝ;S− Ŝ−U)
e
≤ n · CZiv(Λ), (5.58)

where (a) follows using the chain rule to decompose the mutual information

I(S;S−U, Ŝ) in two ways; (b) follows from the non-negativity of the mutual

information; (c) follows since subtracting the condition does not change the con-

ditional mutual information; (d) follows since (because the dither U is inde-

pendent of the source S and the output of the test channel Ŝ) the triple

Ŝ → (S− Ŝ) → (S− Ŝ−U) forms a Markov chain; finally (e) follows from the

definition of CZiv, since
1
nE‖S− Ŝ‖2 ≤ σ2(Λ). The upper bound now follows

from Theorem 5.2.1, and the definition of the rate-distortion function (5.31).

To see the condition for equality, consider a source S∗ which achieves the max-

imization of Ziv’s constant in (5.55). ECDQ encoding of this source at distortion

level D = σ2(Λ) gives a rate of R = RECDQ(D) = CZiv(Λ). On the other hand,

since, by (5.55), D is greater than or equal to the source’s second moment, the

rate-distortion function of S∗ at distortion level D is zero. (See the illustration

in Figure 5.8 for the scalar-ECDQ case.) �
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0

Figure 5.8 A case where ECDQ has maximum loss. The optimum quantizer contains a

single code point at the mean (thus achieving the optimum pair (R,D) = (0, σ2
s)),

while the scalar lattice code points are randomly shifted by the dither.

Like the SLB and the asymptotic redundancy of Theorem 5.5.1, Ziv’s bound

can be extended to general difference distortion measures.

Summary of Chapter 5

Rate RECDQ(D)
∆
= 1

nH(QΛ(X+U)|U) bit per source sample.

Equivalent channel (code-length formula) If U is a uniform or

modulo-uniform dither, then

H(QΛ(X+U)|U) = I(X;X+Ueq),

where Ueq is uniform over −P0(Λ).

Redundancy at high resolution

RECDQ(D)−R(D) → 1
2 log(2πeG(Λ)) as D → 0.

Filtered ECDQ For a Gaussian source and Wiener-estimated reconstruc-

tion,

RECDQ(D)−R(D) ≤ 1
2 log(2πeG(Λ)) for all D.

Deterministic dither If G(Λn) → 1/2πe, then almost any dither value

U = u is rate-distortion optimal.
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Problems

P.5.1 (Probability of a shifted region) Prove Lemma 5.2.1. Hint: assume that the

source S has a density, and use the convolution rule for the sum of independent

random variables X = S−V (where V is uniform over A), to show that

fX(x) =
1

Vol(A)
·
∫

A+x

fS(s)ds.

(If S does not have a density, then the derivation still holds replacing fS(s)ds by

dPS(s).)

P.5.2 (Sample-sum property) Show that the density fX(·) of (5.9) satisfies the
property that its sum over any coset of Λ is equal to 1/V (Λ).

P.5.3 (Dithered quantization output statistics) We can use the argument in

Proof A of Theorem 5.2.1 to calculate moments of the dithered quantizer output

(as an alternative to using the equivalent additive-noise channel (4.7)). Show

that the second moment is given by

E‖QΛ −U‖2 =

∫

Rn

‖x‖2fX(x)dx = E‖S−U‖2.

P.5.4 (Proof of Theorem 5.2.1 for a generalized dither) For a modulo-uniform

dither U, justify steps (d0′)–(e′) below, that replace steps (d1)–(d3) and (e) in

(5.16) and (5.15) in Proof B of Theorem 5.2.1:

I(S;QΛ −U|U)
d0′

= I(S;QΛ,e −Ue| Uq,Ue)

d1′
= I(S;QΛ,e −Ue) + I(S;Uq,Ue| QΛ,e −Ue)

−I(S;Uq,Ue)

d2′
= I(S;QΛ,e −Ue) + I(S;Uq,Ue| QΛ,e −Ue)

d3′
= I(S;QΛ,e −Ue) + I(S;Uq| QΛ,e,Ue)

d3′′
= I(S;QΛ,e −Ue)

e′

= I(S;S+Ueq) (5.59)

where Uq = QΛ(U) and Ue = U mod Λ (see (2.12)); and where QΛ = QΛ[S+

U] and QΛ,e = QΛ[S+Ue].

Hint: to justify step (d3′′), show that if X is independent of (Y, Z), then

X ↔ {Y, f(X,Y )} ↔ Z form a Markov chain.

Alternative proof: show that H(QΛ|U) = H(QΛ,e|Ue) for any U.

P.5.5 (Quantizer entropy in the presence of feedback) Prove formula (5.22), by

following the steps of Proof B of Theorem 5.2.1.

P.5.6 (ECDQ under difference distortion measures) Prove the entropy-

distortion formula (5.30) for a scalar ECDQ and rth power distortion measure.
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Evaluate the small-distortion redundancy with respect to the SLB. (See the

extension to a general lattice and norm-based distortion measure in [287].)

P.5.7 (Universal quantization) Extend Ziv’s bound for universal quantization

to this class of difference distortion measures.

P.5.8 (Colored-Gaussian source: pre/post-filtered ECDQ simulates the water-

pouring solution) The quadratic rate-distortion function R∗(D), of a discrete-

time stationary Gaussian source with a power spectrum S(ej2πf ), −1/2 < f ≤
1/2, has a parametric form known as reversed water-pouring [18, 53]:

R∗(θ) =

∫

f :S(ej2πf )>θ

1

2
log

(
S(ej2πf )

θ

)

df

D(θ) =

∫ 1/2

−1/2

min
{

θ, S(ej2πf )
}

df, (5.60)

where the “water level” parameter θ varies in the range 0 < θ ≤ maxf S(e
j2πf ).

Show that if we replace the scalars α and β in the pre/post-scaled ECDQ

(Figure 5.5) by complex-conjugate linear time-invariant filters H1(e
j2πf ) =

H∗
2 (e

j2πf ), satisfying

|H1(e
j2πf )|2 = |H2(e

j2πf )|2 =

{

1− θ
S(ej2πf ) , if S(e

j2πf ) > θ

0, otherwise,
(5.61)

and use a lattice with σ2(Λ) = D, then this pre/post-filtered ECDQ (with joint

entropy coding) achieves R∗(D), up to a quantization loss of 1
2 log(2πeG(Λ)) bit

per sample.

Historical notes

Entropy-coded (variable-rate) quantization (sometimes called entropy-

constrained quantization) was developed in parallel with fixed-rate quantization,

for example, Pinkston [218]. Gish and Pierce [106] used Bennett’s high-resolution

analysis [17] to prove that the optimum entropy-constrained scalar quantizer

asymptotically becomes a scalar lattice. The work of Zador [283] (previously an

unpublished Bell Laboratories memo [282] which was corrected and generalized

by Gray et al. [110]) considers high-resolution vector quantization. This

analysis, together with Gersho’s conjecture [102], imply that lattice quantizers

are entropy optimal for each dimension. Lookabaugh and Gray [176] examined

the vector-lattice quantizer advantage in the high-resolution regime.

Lloyd [174] gave necessary conditions for optimal fixed-rate scalar quantization

(at general resolution), and proposed an iterative algorithm for quantizer design.

Linde et al. [161] extended Lloyd’s algorithm to vector quantization, while Chou

et al. [40] proposed an efficient design for variable-rate (“entropy-constrained”)

vector quantization.
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The idea to use ECDQ for universal variable-rate quantization was introduced

by Ziv in 1985 [300]. This work was preceded by earlier work on universal fixed-

rate quantization by Ziv himself [299], and by Neuhoff et al. [199]. Ziv found in

[300] a universal bound on the excess rate of a randomized (one-time dithered)

entropy-coded lattice quantizer above the optimal entropy-constrained quantizer.

Several works followed this idea. Neuhoff [198] compared (universal) source cod-

ing strategies in terms of complexity, while Gutman [114] extended Ziv’s bound

to various distortion measures. The mutual-information formula for the rate of a

randomized (multiple-dithered) entropy-coded lattice quantizer (Theorem 5.2.1)

is due to Zamir and Feder [287]. They used this formulation of the ECDQ to

examine sampling and quantization trade-offs [289], and pre/post-filtered quan-

tization [290]. Linder and Zeger [165] examined ECDQ in the high-resolution

limit. Other applications of ECDQ include multi-terminal source coding [285],

noise shaping for non-uniform sampling [182], and multiple-description source

coding [39, 95, 181, 211].

Rate-distortion theory is due to Shannon; see Berger’s book [18]. The asymp-

totic tightness of the Shannon lower bound is due to Linkov [169], and Linder

and Zamir [164].



6 Infinite constellation for

modulation

Digital communication is the process of encoding an information source and

sending it digitally over a noisy channel. Chapter 5 dealt with the source coding

part: digitization of an analog signal using a lattice quantizer. In this chapter

we shall consider the channel coding part: translation of digital information into

an analog signal via lattice modulation, and detection of the information from a

noisy version of the signal with a small probability of error.

In lattice modulation, the lattice points form the signal constellation, or code-

book, where each lattice point carries a different message (Sections 1.1 and 3.3).

Popular examples are pulse-amplitude modulation (PAM) and quadrature-

amplitude modulation (QAM), which correspond to one-dimensional and two-

dimensional lattice-like constellations. A general approach to constructing multi-

dimensional lattice constellations is by shaping, i.e., by cutting a finite section

from a lattice. The most popular shapes are a cube (uncoded constellation),

a ball (spherical shaping) or the Voronoi cell of some coarse lattice (Voronoi

shaping), as we shall see in Chapter 9.

In this chapter we want to keep the lattice unbounded – just as for the dithered

lattice quantizer of Chapter 5. Thus we are faced with a problem: how do we

define the transmission power and the coding rate of an infinite constellation?

We shall develop two alternative definitions: rate per unit volume in Sec-

tions 6.1–6.4, and variable-rate modulation in Sections 6.5–6.6. While the former

amounts to avoiding shaping altogether, the latter amounts to a “probabilistic”

form of shaping. Both definitions highlight the role of the NVNR (3.37) as a

measure for the lattice-constellation goodness for an AWGN channel. Specifi-

cally, the capacity loss of a lattice constellation Λ, at a decoding error Pe, is

shown to be 1
2 log[µ(Λ, Pe)/2πe].

6.1 Rate per unit volume

The rate of an n-dimensional code C with M equally likely codewords c1, . . . , cM
is defined as

R =
1

n
logM bit per channel use. (6.1)
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Table 6.1 Comparison of quantities associated with finite and infinite

constellations

Finite constellation Infinite constellation

Dimension n n

Size/point density M γ

Rate R = 1
n log(M) R∞ = 1

n log(γ)

Capacity (maximal rate of C C∞
reliable communication)

The average power of the code C is

P (C) = 1

nM

∑

ci∈C
‖c‖2. (6.2)

Since the lattice is unbounded, the number of codewords M of the lattice code

is infinite, so the coding rate R = ∞. Also, since the squared norm of the lattice

points is unbounded, the power P (Λ) = ∞. How do we make these quantities

finite?

There are several ways to define coding rate and capacity per unit volume of

a general infinite constellation (IC), not necessarily a lattice. One simple way is

to count the number of codewords per unit volume within a “large” cube and

translate it into bits.

Definition 6.1.1 (Rate per unit volume) 1 The coding rate per unit volume

of an IC is defined as

R∞(IC) =
1

n
lim sup
a→∞

log
( |Ca|
an

)

, (6.3)

where

Ca = IC ∩ CUBE(a) (6.4)

is the intersection of the IC with the n-dimensional cube CUBE(a) =

[−a/2, a/2)n. 2

Note that as the logarithm of a ratio, R∞(IC) does not have the significance

of information bits, and may even be negative (if the number of codewords per

unit volume is less than 1). Table 6.1 compares various information measures

of infinite and finite constellations. In particular, while for a finite constellation

M = 2nR is the total number of points (6.1), for an IC 2nR∞(IC) is the point

density.

1 This quantity is sometimes called normalized logarithmic density.
2 For “regular” ICs, the value of the limit (6.3) does not change if the cube in (6.4) is replaced

by some other “simple body,” say, a ball of radius a. The denominator in (6.3) is then the
volume of this body.
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Suppose now that the IC is a lattice Λ. Since the diameter d of the cells is finite,

the number of codewords inside the cube is bounded between (a− d)n/V (Λ) and

(a+ d)n/V (Λ). Thus, M(Λa) ≈ an/V (Λ) for large a, so the rate per unit volume

of a lattice code is

R∞(Λ) =
1

n
log

(
1

V (Λ)

)

=
1

n
log γ(Λ), (6.5)

where γ(Λ) is the lattice point density (2.20).

6.2 ML decoding and error probability

Consider transmission over a general additive-noise channel

Y = X+ Z (6.6)

where the noise Z has some distribution pZ(·). The receiver may use either a

threshold or a comparative rule to decode the transmitted codeword ci from the

channel output Y. If all the codewords are equally likely, then the probability of

error is minimized by maximum likelihood (ML) decoding, i.e., by the codeword

ci that maximizes the conditional probability of Y given ci. For an additive-

noise channel (6.6), this conditional probability is equal to the probability that

Z = Y − ci:

ĉML = argmax
ci∈C

pZ(Y − ci). (6.7)

The probability of error, given that the codeword ci was transmitted, is then

Pe(ci) = Pr{ĉML 6= ci | ci was transmitted}, (6.8)

where the probability is calculated with respect to the randomness of the channel

(6.6).

Definition 6.2.1 (Average error probability) The average decoding error

probability of a finite constellation C with M codewords is defined as

Pe(C) =
1

M

∑

ci∈C
Pe(ci). (6.9)

Definition 6.2.2 (Error probability of an IC) The average decoding error

probability of an IC is defined as the upper limit of (6.9) with respect to the

truncated IC (6.4):

Pe(IC) = lim sup
a→∞

Pe(Ca). (6.10)

When the IC takes the form of a lattice Λ, the ML decoding rule (6.7) becomes

λ̂ML = argmax
λ∈Λ

pZ(Y − λ). (6.11)
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This amounts to a Voronoi (lattice) partition (Definition 2.2.1) of the space of

received signals with respect to the lattice Λ, using pZ(·) as a “distance mea-

sure.” 3

Definition 6.2.3 (Noise-matched decoder) A noise-matched decoder, for a

lattice Λ and noise Z, is a quantizer QΛ with partition {VZ
λ = λ+ VZ

0 }, where
the fundamental (non-Euclidean) Voronoi cell VZ

0 is defined as

VZ
0 (Λ) =

{

y : pZ(y) ≥ pZ(y − λ) for all λ ∈ Λ, λ 6= 0
}

(6.12)

and where ties are broken in a systematic manner (see Definition 2.2.1).

Due to the additivity of the channel (6.6), the probability of decoding error

(6.8) is independent of the transmitted codeword λ ∈ Λ, and it is given for all

λ ∈ Λ by

Pe = Pe(Z,Λ) = Pr{Z 6∈ VZ
0 }. (6.13)

Thus, this is also the average error probability (6.10) of the lattice code.

In the case of AWGN, the noise distribution pZ(z) is monotonic in the

Euclidean norm ‖z‖. Hence, the ML rule (6.11) becomes a nearest-neighbor rule,

i.e., λ̂ML becomes λ̂NN of (3.31); the fundamental cell VZ
0 of (6.12) becomes

a Euclidean Voronoi cell (2.11); and the probability of error (6.13) (assuming

AWGN with variance N) becomes Pe(Λ, N) of (3.32).

While the partition VZ is clearly unaffected by scaling of the noise Z by

a constant, the error probability (6.13) does change. Specifically, it is always

possible to scale the lattice Λ by a factor α, so that Pe(αΛ, N) is equal to some

desired probability of error 0 < Pe < 1. The resulting rate per unit volume is

given by the following proposition.

Proposition 6.2.1 (Rate versus error) If Pe(Λ, N) = Pe, then the rate per

unit volume of Λ in the presence of AWGN of variance N is denoted R∞(Λ, Pe),

and it is given by

R∞(Λ, Pe) =
1

2
log
( 1

N · µ(Λ, Pe)

)

, (6.14)

where µ(Λ, Pe) is the lattice NVNR (3.37).

Proof By the definition of the NVNR (which is a scale-invariant quantity of the

lattice), the lattice volume after the scaling is V (Λ) = [Nµ(Λ, Pe)]
n/2, and the

proposition follows by substituting in (6.5). �

3 We assume that pZ(z) satisfies some monotonicity condition, for example, with respect to
some norm ‖z‖ of the noise z, to guarantee that the boundary regions between cells have
measure zero, so ties in the decoding rule (6.11) can be arbitrarily broken.
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How good is a lattice constellation in terms of its rate per unit volume for a

general additive-noise channel? To answer that, we shall recall Shannon’s notion

of capacity.

6.3 Gap to capacity

The Shannon capacity of an additive-noise channel is given by the maximum

mutual information per dimension between the input X and the output Y =

X+ Z,

C =
1

n
max I(X;X+ Z), (6.15)

where the maximization is over all valid random channel inputs X. In the case of

a power-constrained channel, the maximization (6.15) is over all inputs satisfying

1

n
E{‖X‖2} ≤ P. (6.16)

As information theory shows, if the block length (the number of channel uses)

n is large and the noise Z is a vector from a stationary and ergodic process, then

C is the largest coding rate R (6.1) that allows reliable communication over the

channel (6.6), i.e., there exists a sequence of rate-R codes, of a growing dimension

n, such that the decoding error probability (6.9) goes to zero as n goes to infinity.

Under the power constraint (6.16), C is an upper bound on the reliable rate of

a code C satisfying P (C) ≤ P ; see (6.2).

As for the rate-distortion function (5.31), the capacity formula (6.15) can

be simplified in the case of a memoryless channel to a single-letter quantity –

corresponding to a memoryless channel input.

For example, if the noise Z is AWGN with variance N , then (6.15) simplifies

to

CAWGN = max
E{X2}≤P

I(X ;X + Z) =
1

2
log(1 + SNR), (6.17)

where SNR = P/N is the signal to noise ratio, and this capacity is achieved by

a Gaussian input X ∼ N(0, P ). Note that CAWGN is finite for any value of the

power constraint P , and it increases to infinity as P goes to infinity.

For a general additive-noise channel (6.6), the Shannon capacity satisfies the

following simple bound.

Proposition 6.3.1 (The Shannon upper bound (SUB)) For any additive

noise Z with a differential entropy h(Z), the power-constrained capacity of the

channel (3.28) is bounded by

C ≤ CSUB =
1

2
log
(P + σ2

Z

PE(Z)

)

, (6.18)
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where

σ2
Z = Var(Z) =

1

n
E{‖Z− E{Z}‖2} (6.19)

is the average variance of the noise Z, and

PE(Z) =
1

2πe
2

2
nh(Z) (6.20)

is its entropy power (A.15).

Like the SLB (5.40) for the rate-distortion function, the SUB follows from a

maximum entropy property. For an AWGN channel PE(Z) = σ2
Z, hence the SUB

is tight and coincides with (6.17). For a general noise, we have PE(Z) ≤ σ2
Z, with

equality if and only if Z is AWGN; hence the SUB is always larger than or equal

to the capacity of an AWGN channel with the same noise variance. Furthermore,

the SUB is asymptotically tight at a large signal to noise ratio.

Proposition 6.3.2 (Tightness of the SUB) If the differential entropy of the

noise h(Z) exists (equivalently, PE(Z) is positive and finite), then the SUB is

asymptotically tight in the limit of large power:

C =
1

2
log
( P

PE(Z)

)

+ o(1), (6.21)

where o(1) → 0 as P → ∞. Furthermore, C is asymptotically achieved by a white-

Gaussian input of variance P :

X ∼ N(0, P ) with i.i.d. components. (6.22)

In particular, for an AWGN channel in the limit of high SNR,

CAWGN =
1

2
log(SNR) + o(1), (6.23)

where o(1) → 0 as SNR = P/N → ∞.

The proof is similar to the proof of the tightness of the SLB (Proposition 5.5.2),

and will be omitted.

6.3.1 Capacity per unit volume

So far we have assumed power-constrained channels, hence the capacity was

finite. We now omit the power constraint (6.16), and turn to define the notion

of capacity per unit volume of an unconstrained channel – known also as the

Poltyrev capacity. The operational definition of this capacity is the largest rate

per unit volume R∞(IC) (6.3) of an IC that allows reliable communication (i.e., a

vanishing error probability) over a large block of channel uses. In view of the error

probability of an IC (6.10), the capacity per unit volume can be approximated

by that of a large finite constellation.
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The following theorem gives an information theoretic characterization for this

capacity.

Theorem 6.3.1 (Capacity per unit volume) The capacity per unit volume

of a general (unconstrained) additive-noise channel is given by

C∞ = − 1

n
h(Z) =

1

2
log
( 1

2πePE(Z)

)

, (6.24)

where h(Z) and PE(Z) are the differential entropy and the entropy power of the

noise (6.20). In the special case of AWGN with variance N , the capacity per unit

volume is

C∞ =
1

2
log
( 1

2πeN

)

. (6.25)

We see that like the high SNR capacity (6.21), the capacity per unit volume

C∞ is dictated by the noise entropy power.

Proof Let Ca denote the Shannon capacity when the channel input is restricted

to CUBE(a). Similarly to the proof of the tightness of the SUB, we have Ca =

log(a)− h(Z)/n+ o(1), where o(1) → 0 as a → ∞. Now, by Shannon’s theory,

Ca is the highest reliable rate of the code Ca (see (6.4)). Hence, the maximum

number of n-codewords |Ca| is 2nCa, which – by the asymptotic expression for Ca

above – is equal to an/2h(Z)−no(1) for large a. Substituting that in the definition

(6.3) of rate per unit volume R∞(IC), the desired result follows. �

6.3.2 Capacity loss and coding gain

We return to the question regarding the goodness of a lattice constellation Λ, and

examine its gap to the capacity per unit volume C∞. In view of Proposition 6.2.1

and Theorem 6.3.1, we have the following result.

Theorem 6.3.2 (Gap to capacity) Suppose that Pe is the error probability

(6.10) in ML decoding of a lattice constellation Λ in the presence of AWGN.

Then, the gap to capacity is given by

∆(Λ, C∞, Pe)
∆
= C∞ −R∞(Λ, Pe) =

1

2
log
(µ(Λ, Pe)

2πe

)

, (6.26)

where µ(Λ, Pe) is the lattice NVNR (3.37).

Note that for a small error probability, the NVNR is strictly greater than 2πe

(see (3.43)). Thus, the gap to Shannon’s capacity is positive, and it vanishes for

“good” lattices, for which µ(Λ, Pe) = 2πe for all Pe > 0; see (3.44).

Example 6.3.1 (Cubic and hexagonal lattices) In two dimensions, the

NVNR of the Z2 lattice is roughly 15, 31 and 48, for error probability Pe =

10−1, 10−2 and 10−3, respectively. See Figure 3.9. Hence, the corresponding gap

to capacity (6.26) is −0.08, 0.43 and 0.74 bit per channel use, respectively. Note
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that the first value is negative because the error probability is above the threshold;

see (3.43). For comparison, for the same error probabilities, the NVNR of the

hexagonal lattice A2, is roughly 17, 29 and 44 (i.e., worse at high Pe, but better

for small Pe). See Figure 3.10. The corresponding gap to capacity is ≈0, 0.38

and 0.68 bit per channel use, respectively.

Note that the coding gain (3.38) of a lattice Λ, when expressed in bits (i.e.,
1
2 log Γc(Λ, Pe)), is the increase in rate per unit volume (or reduction of gap to

capacity) when using Λ instead of a cubic lattice.

6.4 Non-AWGN and mismatch

It is possible to extend Theorem 6.3.2 above to a general additive noise Z by

extending the definitions of the VNR (3.30) and NVNR (3.37). In view of the

capacity per unit volume formula (6.24), it would be natural to let the noise

entropy power PE(Z) (6.20) play the role of variance in these extensions. The

generalized VNR – or volume to noise entropy power ratio (VNER) – of a lattice

Λ in the presence of a noise Z, is thus defined as:

µE(Λ,Z) =
V 2/n(Λ)

PE(Z)
. (6.27)

Assuming that the decoder is “matched” to the distribution of Z (i.e., uses

a maximum likelihood decoding rule (6.11)), the error probability is given by

Pr{Z 6∈ VZ
0 }; see (6.13). Based on that, we define the following.

Definition 6.4.1 (Noise-matched NVNR) The noise-matched NVNR of a

lattice constellation Λ, with respect to a general additive noise Z and probability

of error 0 < Pe < 1, is defined as

µmatched(Λ,Z, Pe)
∆
= µE(a · Λ,Z) = a2 · V

2/n(Λ)

PE(Z)
, (6.28)

where a = a(Pe) is chosen such that the scaled lattice aΛ meets the target decoding

error probability Pe with a noise-matched decoder (Definition 6.2.3).

The noise-matched NVNR (6.28) coincides with µ(Λ, Pe) when Z is AWGN.

Like µ(Λ, Pe), it is a dimensionless number invariant to scaling of the lattice. 4 It

is also invariant to transformation of both the lattice and the noise by the same

non-singular matrix; see Problem 6.1.

Example 6.4.1 (Colored-Gaussian noise) For Z ∼ N(0,Σ), with a non-

singular covariance matrix Σ, the noise-matched NVNR of the lattice constella-

tion Λ (matched to the colored-Gaussian noise Z) is equal to the NVNR with

4 Invariance to rotation holds only if the distribution of Z is circularly symmetric.
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respect to AWGN of a transformed lattice constellation Λ′:

µmatched(Λ,Z, Pe) = µ(Λ′, Pe), (6.29)

where Λ′ = Σ−1/2 · Λ; and Σ1/2 is any square root of Σ, i.e., a matrix satisfying

Σ1/2(Σ1/2)t = Σ.

The gap to capacity C∞ −R∞(Λ, Pe) for a general Z satisfies Theorem 6.3.2,

only with the “Gaussian” NVNR (3.37) replaced by the noise-matched NVNR

(6.28). Since the noise-matched NVNR is strictly greater than 2πe for small

enough error probability, the gap to capacity of the lattice constellation Λ is

positive. As we shall see in Chapter 7, for a noise sequence Zn satisfying a “gener-

alized AEP,” there exists a sequence of lattices Λn such that µmatched(Λn,Zn, Pe)

goes to 2πe, for all Pe > 0; hence these lattices approach the capacity per unit

volume C∞ of the channel Y = X+ Z.

6.4.1 Mismatched decoding

The decoder can use a general distance measure d = d(x,y), not necessarily

matched to the noise distribution. For a lattice constellation Λ, the distance d

induces a general (not necessarily Euclidean) Voronoi partition {Vλ} of Rn into

decision cells (2.11), i.e., the “mismatched” decoder picks the lattice point that

minimizes the distance d to the received vector:

λ̂d = argmin
λ∈Λ

d(Y, λ) (6.30)

(with ties broken in a systematic manner). The “mismatched decoding” error

probability is thus given by

P (d)
e = Pr{d(Z) > d(Z − λ), ∀λ ∈ Λ, λ 6= 0} (6.31)

which is clearly greater than or equal to the “matched” error probability (6.13),

by the definition of maximum likelihood lattice decoding (6.11).

From an information theoretic viewpoint, the mismatched capacity C(d)

denotes the maximum achievable rate with a mismatched decoder d, and simi-

larly C
(d)
∞ denotes the corresponding capacity per unit volume.

A specific important case of mismatched decoding is the nearest-neighbor

decoder (3.31), which uses the Euclidean norm as a distance measure, indepen-

dent of the noise statistics. Hence, (6.31) becomes in this case

P (NN)
e = Pr

{

Z 6∈ VNN
0

}

, (6.32)

where VNN
0 is the usual (Euclidean) fundamental Voronoi cell. We can think of

the NN decoder as matched to AWGN (even if the actual noise Z may have a

different distribution). It is therefore natural (and proves useful) to normalize

the corresponding VNR and NVNR by the second moment of the noise, rather

than by its entropy power.
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Definition 6.4.2 (Euclidean “mismatched” NVNR) The NVNR of a lat-

tice constellation Λ, for a general additive noise Z under a Euclidean nearest-

neighbor decoding rule (3.31), is defined as

µeuclid(Λ,Z, Pe) = µ(a · Λ,Z) = V 2/n(a · Λ)
1
nE‖Z‖2 , (6.33)

where the scaling factor a = a(Pe) is such that the NN (mismatched decoding)

error probability (6.32) is equal to Pe.

We shall usually use the Euclidean mismatched NVNR in cases where the

equivalent noise seen by the lattice decoder deviates only slightly from AWGN,

so NN decoding is nearly optimal; see Chapter 9.

The mismatched capacity C
(NN)
∞ , associated with a stationary and ergodic

noise Z, is lower bounded by

C(NN)
∞ ≥ 1

2
log

(
1

2πeVar(Z)

)

∆
= C(euclid-th)

∞ , (6.34)

where C(euclid-th)
∞ is the lower Euclidean-threshold capacity, corresponding to a

decoding rule of the form

ĉ =

{
c, if ‖Y − c‖ < rth for a unique c ∈ C,
?, otherwise.

(6.35)

We shall discuss the asymptotic performance of such a decoder in Sections 7.7.2

and 7.8, and the Euclidean-threshold capacity (6.34) in Section 9.8.

6.5 Non-equiprobable signaling

An alternative approach to bound the power of an infinite lattice code is to

assign non-uniform probabilities to the lattice points. Thus, although the power

of the codewords is unbounded, the expected power of the codebook is finite. As

we shall see, a desirable shape for the codeword distribution is white Gaussian.

Since each lattice point carries a message, the probability assignment amounts

to transmitting messages which are not equally likely. It is possible to achieve

that by letting each lattice point carry a variable amount of information bits; see

Figure 6.1. We shall use the ECDQ of Chapter 5 to describe the mapping from a

variable-length information bit string b = b1, . . . , bk to a (dithered) lattice point

λ−U. However, in contrast to Chapter 5, we use the ECDQ in “reverse,” i.e.,

switch the roles of the encoder and the decoder.

Recall that the ECDQ encoder f adds the dither vector u ∈ P0 to the source

vector s ∈ Rn. It then quantizes the sum s+ u by the lattice quantizerQΛ (under

the partition P), and encodes the resulting lattice point λ by a variable-length

code which depends on the value of u. Thus, f is a mapping from a pair of source
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Figure 6.1 Probabilistic shaping of a lattice. The probability of a constellation point is

equal to (1/2)ℓ, where ℓ is the length of the information string it represents.

vector s and dither vector u into a variable-length bit string b∗:

f : (Rn,P0) → {0, 1}∗, (6.36)

where the superscript ∗ means a variable-length string. For a sequence of source

vectors s1, s2, . . ., the encoder concatenates the bit strings to form a sequence

of code bits at a rate R = 1
n{0, 1}∗ bit per source sample (or dimension), where

{0, 1}∗ is the average length of the strings. If the mapping f is uniquely decodable,

then the decoder f−1 can reproduce the original strings (conditional on the dither

vectors), and map each pair of dither vector u and bit string b∗ back into the

lattice point λ = f−1(u,b∗). 5 The final source reconstruction ŝ is then given by

λ− u.

6.5.1 Variable-rate modulation

The ECDQ decoder f−1 can be used as a variable-length channel encoder. As

shown in Figure 6.2, the information to be transmitted over the channel is repre-

sented by a sequence of bits b1, b2, . . .. The function f−1 parses this information

sequence into variable-length strings, and maps each string b∗ ∈ {0, 1}∗ into a

5 This is possible if the variable-length code satisfies a prefix condition, for example, a Huff-
man code; see footnote 3 in Chapter 5.
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Figure 6.2 Variable-rate dithered modulation (VRDM) system (transmitter and
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lattice point λ. The average coding rate is thus given by R = 1
n{0, 1}∗ bit per

channel use (or dimension). If we denote the length of the string mapped to λ

(for a given dither u) by |b∗| = ℓ(u, λ), then R is the average of ℓ(u, λ) over both

λ and u. Finally, the encoder transmits the lattice point minus the dither vector,

x = λ− u = f−1(u,b∗)− u, (6.37)

paralleling the dithered quantization reconstruction formula (4.3).

For each dither value U = u, the mapping f−1 induces a non-uniform distri-

bution over the lattice points. If the information bit stream is completely random

(i.e., Bernoulli(1/2)), then the probability to transmit a lattice point λ, is given

by

pλ(u) =

(
1

2

)ℓ(u,λ)

. (6.38)

Hence, by varying the number of bits carried by each lattice point, we probabilis-

tically shape the encoder output.

Assume that the codeword lengths {ℓ(u, λ)}λ∈Λ are ideally matched to the

lattice point probabilities (5.3) after dithered quantization of a source S, i.e., to

the distribution of QΛ(S+ u). Thus, by (5.9),

pλ(u) = Pr{S+ u ∈ Pλ} = V (Λ) · fX(λ− u), (6.39)

where fX(·) is the density of S−U. We therefore call S the shaping source.



122 Infinite constellation for modulation

Example 6.5.1 For Λ = Zn, and a memoryless shaping source S, the lat-

tice point distribution (6.39) becomes a simple product pλ(u) = πn
i=1fX(λi − ui),

where fX(x) =
∫ x+1/2

x−1/2 fS(s)ds.

At high-resolution conditions the dither is negligible, hence X ≈ S. For a

white-Gaussian shaping source S ∼ N(0, σ2
s), the transmission probability (6.39)

thus becomes

pλ(u) ≈ pλ(0) ≈ V (Λ) · fS(λ) ∝ e−‖λ‖2/2σ2
s (6.40)

which is known as a Gibbs distribution.

This variable-rate dithered modulation (VRDM) system has three basic param-

eters which we want to examine: power, coding rate, and probability of error

under some decoding rule. Like the rate-distortion analysis of the ECDQ in

Chapter 5, the analysis is made simple by averaging over the randomness of the

dither U.

6.5.2 Power, rate and error probability

We begin by considering the power of the VRDM. It follows from the equiva-

lent channel of Theorem 4.1.1, that for a random (uniform or modulo-uniform)

dither vector U, the transmitter output X is distributed as the independent

sum of S and −U. In particular, for a Euclidean Voronoi partition EU = 0 and
1
nE‖U‖2 = σ2(Λ), so the transmission power is given by

PVRDM =
1

n
E‖S−U‖2 = σ2

S + σ2(Λ), (6.41)

where the cross term vanishes due to the independence ofU and S. Thus choosing

σ2
S = P − σ2(Λ) guarantees satisfying the power constraint P .

We next turn to the coding rate of the VRDM. As we saw in Chapter 5,

if we choose an optimum variable-length code, then the average length of the

strings {0, 1}∗, parsed by f−1, can approach the conditional entropy H(QΛ(S+

U)|U) of the quantizer given the dither. By Theorem 5.2.1, this conditional

entropy is equal to the mutual information between S and S+Ueq, where Ueq =

−[U mod Λ] ∼ Unif(−P0). For a uniform (non-generalized) dither, we can set

Ueq = −U; hence, the (ideal) coding rate of the VRDM is

RVRDM =
1

n
{0, 1}∗ =

1

n
I(S;S−U). (6.42)

By the analysis of the ECDQ (see (5.23)), this mutual information can be

decomposed as

I(S;S−U) = h(S−U) − logV (Λ). (6.43)

Thus, for a fixed lattice Λ, the rate RVRDM is maximized by maximizing the

entropy of the sum S−U (over the distribution of the shaping source S and the

partition P), under the power constraint PVRDM = σ2
S + σ2(Λ) ≤ P . For σ2(Λ)
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small compared to σ2
S , the maximum is achieved by taking a white-Gaussian

shaping source S ∼ N(0, P ).

Consider now the receiver, which knows the dither vector U = u, and receives

the vector Y = x+ Z = λ− u+ Z. A receiver with a “simple” structure ignores

the non-uniform distribution of the lattice points; it adds the dither vector u and

decodes to the most likely lattice point λ̂ using the ML rule (6.7). 6 In the case

where Z is AWGN, ML decoding becomes a nearest-neighbor (NN) rule (3.31):

λ̂ = argmin
λ∈Λ

‖Y + u− λ‖, (6.44)

with identical error probability Pe(Λ, N) per transmitted message; see (3.32). 7

6.5.3 The high SNR case

We are now in a position to examine the gap to capacity of the VRDM. We start

with the simpler high SNR case.

Theorem 6.5.1 (Gap to capacity at high SNR) Assume that the VRDM

decoder uses the simple NN rule (6.44), and that Pe(Λ, N) – the error probability

in the presence of an AWGN of power N – is Pe. Then, in the limit of high signal

to noise ratio SNR = P/N , the average coding rate RVRDM in (6.42) is maxi-

mized by a white-Gaussian shaping source S ∼ N(0, P ), and the corresponding

gap to the AWGN channel capacity is given by

lim
P→∞

[CAWGN −RVRDM] =
1

2
log
(µ(Λ, Pe)

2πe

)

, (6.45)

independent of the dither value u, where CAWGN = 1
2 log(1 + SNR) is the AWGN

channel capacity (6.17), and µ(Λ, Pe) is the NVNR (3.37).

Proof By (6.42)–(6.43), the average coding rate satisfies nRVRDM = h(S−U)−
logV (Λ). Now, by the definition of the NVNR, if the VRDM decoder satisfies

the target error probability Pe, then the cell volume V (Λ) must be (at least)

[Nµ(Λ, Pe)]
n/2. Also, if S has a density, then by Proposition 5.4.1, h(S−U) =

h(S) + o(1), where o(1) → 0 as P → ∞. (Otherwise the limit is −∞.) Finally,

by the maximum entropy property of a white-Gaussian distribution, (A.13),

h(S) ≤ n

2
log(2πeσ2

S) (6.46)

=
n

2
log(2πe(P − σ2(Λ)) (6.47)

=
n

2
log(2πeP ) + o(1), (6.48)

6 Note that the receiver decision cells, i.e., partition V , does not have to be the same as
the lattice partition P used by the encoding/decoding function f (6.36): while the former
matches the noise Z, the latter aims at maximizing the entropy h(S−U) (see (6.43)).

7 Although the error probability per information bit varies according to the length of the
string.
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where o(1) → 0 as P → ∞; equality in (6.46) holds if S is white Gaussian, and

the second equality follows from the power constraint (6.41). Combining the

above, we see that for a large signal to noise ratio, the average coding rate is

maximized by a white-Gaussian shaping source S, and it is given by

RVRDM =
1

2
log (SNR)− 1

2
log

(
µ(Λ, Pe)

2πe

)

+ o(1) (6.49)

where o(1) → 0 as SNR → ∞. The gap to capacity now follows by comparing

with the high SNR AWGN channel capacity (6.23). �

This theorem can be easily extended to a general additive noise Z with noise-

matched decoding, in which case the asymptotic (as P → ∞) capacity loss is
1
2 log(µmatched(Λ,Z, Pe)/2πe), where µmatched(Λ,Z, Pe) is the generalized NVNR

of the lattice (6.28). In this extension, the entropy power of the noise (6.20) will

replace the noise power N .

6.5.4 Separation of shaping and coding

To reduce the gap to capacity (6.45) of the VRDM (i.e., reduce the NVNR,

or equivalently increase the coding gain, at some target error probability), the

dimension of the lattice Λ must be large. In contrast, even a scalar lattice is

sufficient for the task of probabilistic shaping.

A simple way to enjoy the reduced complexity of scalar lattice shaping is to

separate the two aspects of the VRDM: shaping and coding. We can achieve this

separation using a “good” (low NVNR) modulo-q lattice, where we shape only

the “most significant bits,” i.e., the bits defining a point in the scalar lattice qZ.

To be more precise, let Λq be a modulo-q lattice, generated by some q-ary

code C ⊂ (Z/qZ)n (2.56). We can write every point λ in Λq as a sum of a coarse

point and a fine point:

λ = λc + λf , (6.50)

where λc ∈ qZn and λf ∈ C. As shown in Figure 6.3, the information bit stream

is split into two sub-streams: coded bits (C.R. branch) – which define the λf

component, and uncoded bits (V.R. branch) – which define the λc component.

(See a multi-level code interpretation in Problem 2.13.) The mapping of coded

bits to λf is done at a constant rate, while the mapping of uncoded bits to λc is

done at a variable rate.

We see that shaping is done at a coarse scale, over the scalar lattice qZ. Cod-

ing gain, on the other hand, is achieved at the finer scale of the n-dimensional

code C. This works well at high SNR conditions (and accordingly a large cod-

ing rate), where the coarse scale of qZ is still fine enough with respect to the

signal amplitude ∼
√
P , so it can approximate a Gaussian input distribution

X ∼ N(0, P ). Another benefit of the high SNR regime is that the effect of the

dither is negligible, so it can be ignored altogether.
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Figure 6.3 Splitting of shaping and coding in VRDM. The coding of the constant rate

(C.R.) bit stream is done by the FEC (forward error correction) block.

At non-high SNR conditions, when the rate is low, the dither becomes crucial

for smoothing out the discreteness of the coarse lattice qZ. In this regime, the

dependence of the distribution of QΛ(S+ u) on the dither u becomes more

significant; thus the variable-length code (in particular, the string length ℓ(u, λ))

must be conditioned on u. Figure 6.4 shows the performance gain due to shaping

and coding at a medium range of SNR.

6.5.5 The general SNR case

The asymptotic analysis in Section 6.5.3 does not apply to a general SNR. A

more careful examination reveals that the gap to capacity depends on how far the

distribution of the randomized transmitter output X is from a white-Gaussian

distribution.

Definition 6.5.1 (Divergence from white Gaussianity I) 8 The divergence

per sample of an n-dimensional random vector X from white Gaussianity, is

defined as

D̄(X;X∗) =
1

2
log

( 1
nE‖X‖2
PE(X)

)

, (6.51)

where PE(X) = 2
2
nh(X)/2πe is its entropy power (A.15).

8 See another version in Definition 7.2.3.
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Figure 6.4 Performance of VRDM based on a trellis code at SER = 0.1 [213].

Note that this distance measure is non-negative because (by the maximum

entropy property (A.13)) PE(X) ≤ 1
nE‖X‖2, with equality if and only if X is

(zero mean) white Gaussian.

Theorem 6.5.2 (Coding rate for a general SNR) Suppose as in The-

orem 6.5.1, that Pe(Λ, N) = Pe, and the VRDM decoder uses the simple NN

rule (6.44). Let the shaping source S and the quantizer partition P be arbitrary

(not necessarily Gaussian and Voronoi), so the average power for a uniform

(or modulo-uniform) dither is given by P = 1
nE‖S−U‖2, where U ∼ Unif(P0).

Then, for any SNR = P/N , the coding rate (6.42) is given by

RVRDM =
1

2
log (SNR)− 1

2
log

(
µ(Λ, Pe)

2πe

)

− D̄
(

S−U; (S−U)∗
)

. (6.52)

Furthermore, for a white-Gaussian shaping source S ∼ N(0, σ2
s), and QΛ with

Voronoi partition, the coding rate is lower bounded by

RVRDM ≥ 1

2
log (SNR)− 1

2
log
(

µ(Λ, Pe) ·G(Λ)
)

, (6.53)

where G(Λ) is the lattice NSM.

Note that RVRDM in (6.52) is non-negative for all SNR and Pe. See the scalar

lattice case illustrated in Figure 6.5. To understand better the trade-off between

these two parameters, recall that the rate loss term 1
2 log(µ(Λ, Pe)/2πe) in (6.52)

is positive, provided that Pe is below the threshold (3.43). If P < N (low SNR
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Figure 6.5 Performance of the scalar VRDM at Pe = 0.001 as a function of the SNR,

compared to CAWGN. Note that at high SNR the capacity loss is 1
2 log2[µ(Z, 0.001)/

2πe] ≈ 0.7 bit, in accordance with Theorem 6.5.1.

conditions), then Pe is high above the threshold because, by (6.41), σ2(Λ) < P <

N . Hence, this rate “loss” term becomes negative, and it balances the log(SNR)

term, to make the entire expression on the right-hand side of (6.52) non-negative.

Proof For the first part of the theorem, we follow the steps of the proof of

Theorem 6.5.1. Only instead of approximating h(S−U) as h(S) (which is only

valid at high SNR), we use (6.51) to write it as

h(S−U) =
n

2
log(2πePE(S−U)) =

n

2
log(2πeP )− nD̄(S−U; (S−U)∗)

where we also used the fact that P = 1
nE‖S−U‖2. As for the second part of

the theorem, it follows from the divergence data-processing inequality (A.19),

that for a white-Gaussian shaping source S, the divergence of S−U from white

Gaussianity is smaller than or equal to the divergence of U from Gaussianity:

D̄(S−U; (S−U)∗) ≤ D̄(U;U∗).

For a Voronoi partition, the dither U has zero mean and variance σ2(Λ). Com-

bining with the fact that its entropy is logV (Λ), we conclude that D̄(U;U∗) =
1
2 log(2πeσ

2(Λ))− 1
n logV (Λ) = 1

2 log(2πeG(Λ)), by the definition of the NSM.

�
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Comparing (6.52) with the AWGN channel capacity CAWGN = 1
2 log(1 + P/N)

(6.17), we identify three capacity loss terms.

1. The missing “1” in (6.17), corresponding to a capacity loss of 1
2 log(1 +N/P ),

for P ≥ N (this term becomes negligible at high SNR conditions).

2. The term 1
2 log (µ(Λ, Pe)/2πe), which also appeared in the high SNR case

(Theorem 6.5.1).

3. The divergence of the equivalent transmitter output X = S−U from white

Gaussianity. When the SNR is not high, the contribution of the dither U to

this distribution is not negligible; thus, the transmitter output is not quite

Gaussian, even for a Gaussian S.

The second part of Theorem 6.5.2 becomes interesting when the SNR is near

1. It indicates that in this case, the lattice should be good both for modulation

and for quantization.

If the two goodness measures – the NVNR and the NSM – go to their ideal

values of 2πe and 1/2πe, respectively (which as we shall see in Chapter 7 is

indeed possible for good high-dimensional lattices), then we are only left with

the first loss term above, i.e., the loss of “1” inside the log in the AWGN channel

capacity. This residual capacity loss is at most half a bit (at SNR = 1). It is not

an artifact of the lattice, but is due to the decoding mechanism. One way to gain

back this extra half a bit is to modify the NN decoding rule (6.44), to take into

account the non-uniform distribution of the lattice points. 9

6.6 Maximum a posteriori decoding*

A decoding rule can give priority to one message over another. That is, the

partition of the channel output space into decision cells can reduce Pe(c), the

probability of error given that the codeword c was transmitted (6.8), at the cost

of increasing it for some other codeword c′ (or codewords). This is useful when
the messages are not equally likely. 10

When each message c ∈ C is transmitted with probability p(c), the average

error probability (6.9) is given by the weighted sum:

Pe(C) =
∑

c∈C
p(c) · Pe(c), (6.54)

9 When the SNR is low, the Shannon capacity of the AWGN channel (6.17) enjoys the Gaus-
sianity of the noise, whose power adds up on top of the transmitter power, and makes the
effective codebook power P +N . However, an NN decoded unbounded lattice – even with
probabilistic shaping – cannot enjoy this “natural shaping” gain. See Section 9.4.

10 Note that in the VRDM, the probabilities of the messages are determined by the system
(the “f−1 mapping”), while the information bits are assumed to be completely random
(i.e., Bernoulli(1/2)).
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where Pe(c) is the probability of error given that the codeword c was transmit-

ted (6.8). The optimum decoding rule that minimizes Pe(C) in this case is the

maximum a posteriori (MAP) rule:

ĉMAP = argmax
c∈C

pX|Y(c|y) (6.55)

= argmax
c∈C

{

p(c) · pY|X(y|c)
}

. (6.56)

The optimality of the MAP rule (6.55) is due to the fact that for each received y,

the conditional average error probability givenY = y is minimized by picking the

codeword c that maximizes the a posteriori probability p(c|y). And the second

equality follows from the Bayes rule. For a continuous additive-noise channel

Y = X+ Z, (6.56) becomes

ĉMAP = argmax
c∈C

{p(c) · fZ(y − c)} (6.57)

where fZ(·) is the noise density. That is, the ML decoding rule (6.7) is modified

by weighting the “forward” channel transition probability p(y|c) by the message

probability p(c).

For VRDM, the MAP rule (6.57), given a dither value U = u, becomes

λ̂MAP = argmax
λ∈Λ

{pλ(u) · fZ(y + u− λ)} (6.58a)

= argmax
λ∈Λ

{fX(λ − u) · fZ(y + u− λ)}, (6.58b)

where pλ(u) is the probability of the lattice point λ given the dither (6.39); in the

second line we used the formula pλ(u) = V (Λ) · fX(λ− u), (5.9), where fX(·) is
the density of X = S−U (the output of the equivalent channel of Figure 4.5,

which is the VRDM codebook distribution).

In the case of an AWGN channel, where Z ∼ N(0, N), and if also X is white

Gaussian, i.e., X ∼ N(0, P ) (which is possible asymptotically in the limit of high

SNR, or when G(Λ) → 1
2πe), then (6.58b) can be simplified to the “weighted”

nearest-neighbor rule (compare with (6.44)):

λ̂MAP
∼= argmin

λ∈Λ

{‖y + u− λ‖2
N

+
‖λ− u‖2

P

}

, (6.59a)

= argmin
λ∈Λ

{
‖α∗y + u− λ‖2

}
, (6.59b)

where

α∗ =
SNR

1 + SNR

is the Wiener coefficient (4.44). Here, (6.59b) follows either by completing (6.59a)

to a single quadratic term, or directly from (6.55) and the Gaussian a posteriori

probability distribution pX|Y; see Problem 6.2. Figure 6.6 shows the induced

partition for a hexagonal lattice constellation at SNR = 7dB.
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Figure 6.6 The decision cells of the hexagonal lattice under MAP decoding, for an

AWGN channel at SNR = 7dB, i.e., a Wiener coefficient α∗ = 5/6, based on the

approximated rule of (6.59). The dashed line shows the ML partition for comparison.

Note that (6.59a) amounts to adding a new term, ‖λ− u‖2/SNR, to the NN

rule (6.44), which “penalizes” the more remote lattice points. When the signal

to noise ratio is high, this penalty term is negligible at the vicinity of the origin,

and we are back with the NN rule (6.44).

How much do we gain in error probability by the MAP rule? Recall that

Wiener (or Bayesian) estimation takes into account the input variance P (a

priori information), and thus reduces the estimation MSE from N (the noise

variance) to PN/(P +N); see (4.45). That is, Wiener estimation gains a factor

of P/(P +N) in MSE. It is believed that the same gain occurs in MAP decoding,

i.e., the probability of error in MAP decoding is the same as in ML decoding,

only with a noise power smaller by a factor of P/(P +N). If this conjecture is

correct then, by (6.53), the gap to capacity of VRDM with MAP decoding is

bounded by

CAWGN −RVRDM ≤ 1

2
log(µ(Λ, Pe) ·G(Λ)) (6.60)

at any SNR; thus, MAP decoding gains back the missing “1” inside the logarithm

in Theorem 6.5.2.
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Summary of Chapter 6

Noise-matched (ML) lattice decoding For an additive-noise channel

Y = x+ Z with noise distribution Z ∼ PZ(·), if x = λ ∈ Λ, then

λ̂ML = argmax
λ∈Λ

pZ(Y − λ).

Error probability

Pe = Pr{Z 6∈ VZ
0 (Λ)},

where VZ
0 (Λ) is the (non-Euclidean) Voronoi region matched to Z.

AWGN channel If Z is AWGN, then

λ̂ML = Q
(NN)
Λ (Y) = argmin

λ∈Λ
‖Y − λ‖,

and Pe = Pr{Z 6∈ V0(Λ)}.
Rate per unit volume For AWGN ∼ N(0, N),

R∞(Λ, Pe) =
1

2
log

(
1

N · µ(Λ, Pe)

)

.

Gap to the infinite constellation capacity

C∞ −R∞(Λ, Pe) =
1

2
log

(
µ(Λ, Pe)

2πe

)

.

If Z is a general additive noise, then µ(Λ, Pe) is replaced by µmatched(Λ,Z, Pe)

for noise-matched decoding, and by µeuclid(Λ,Z, Pe) for (mismatched)

Euclidean decoding.

Variable-rate dithered modulation (VRDM)

x(u, b∗) = λ− u = f−1(u, b∗)− u,

where b∗ = f(λ,u) is a variable-length code for λ ∈ Λ, conditioned on the

dither u.

Probabilistic shaping If f achieves the entropy H(QΛ[S+U]|U) for a

uniform dither U, then

1. the transmitter output X is distributed as S−U;

2. the coding rate is RVRDM = I(S;S−U)/n.

Rate at high SNR As SNR = E‖X‖2/nN goes to infinity,

RVRDM =
1

2
log (SNR)− 1

2
log

(
µ(Λ, Pe)

2πe

)

+ o(1),

where Pe is the probability in NN decoding.
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MAP decoding at general SNR If MAP decoding amounts to Wiener

estimation, then for all SNR

RVRDM ≥ 1

2
log (1 + SNR)− 1

2
log (µ(Λ, Pe)G(Λ)) .

Problems

P.6.1 (Noise-matched decoding for a colored noise) Prove that

VTZ
0 (T · Λ) = T · VZ

0 (Λ), (6.61)

where VZ
0 (Λ) is the (non-Euclidean) fundamental Voronoi cell associated with

the noise Z (6.12), and T is a non-singular matrix. Use that to prove that

µmatched(TΛ, TZ, Pe) = µmatched(Λ,Z, Pe). (6.62)

(Note that PE(TZ) = | det(T )|2/nPE(Z).) Find the decoding regions matched

to a colored-Gaussian noise ∼N(0,Σ) of a lattice Λ, based on the Euclidean

fundamental Voronoi cell of a transformed lattice.

P.6.2 (MAP via Wiener estimation) Verify the transition from (6.59a) to

(6.59b), in two ways: (i) by completion into a square; and (ii) using (6.55) and

the a posteriori probability pX|Y in the Gaussian case (with x = λ− u); see

Problem 4.12.

P.6.3 (Rate-distortion function per unit volume) Imagine a memoryless source

which is uniformly distributed over a large interval. The rate-distortion function

per unit volume, i.e., the minimum possible rate per unit volume of a large

constellation that quantizes this source with a mean-squared distortion D, is

given by R∞(D) = − 1
2 log(2πeD). Show that the rate redundancy of a lattice

quantizer QΛ, satisfying the same distortion D, is given by R∞(Λ)−R∞(D) =
1
2 log(2πeG(Λ)).

Historical notes

Poltyrev [221] proposed the setup of unconstrained channels. He defined the

quantities of rate and capacity per unit volume (normalized logarithmic density),

and derived the error exponent for random codes – as well as lattices – for the

unconstrained AWGN channel case. His work is based on the Shannon capacity

[240] and error probability analysis [244], on the Gallager error exponent [96, 97]

and on the Siegel version of the Minkowski–Hlawka theorem [113].
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The bounds on the capacity of general additive-noise channels are due to Shan-

non [240]; see the book by Cover and Thomas [53]. A comprehensive treatment

of mismatched decoding and capacity can be found in the articles by Lapidoth

et al. [148], and by Csiszár and Narayan [55].

Non-equiprobable signaling for the power-constrained AWGN channel by

means of variable-rate modulation of a low-dimensional constellation was

described by Forney et al. [91]. Kschischang and Pasupathy [145] combined

Gaussian-shaped signaling with coding, while Ungerboeck [260] examined specif-

ically Huffman shaping; see also Abrahams [1]. Palgy and Zamir [213] extended

these “probabilistic” shaping schemes to the non-high SNR regime, by using

reverse ECDQ (i.e., variable-rate dithered lattice modulation) and replacing the

ML decoder by a MAP decoder. Ling and Belfiore [166] established asymptotic

optimality, above some threshold SNR, for non-randomized high-dimensional

lattice constellations with probabilistic shaping and MMSE decoding.

Other forms of shaping, based on fixed-rate high-dimensional modulation

(shell mapping, trellis shaping and Voronoi modulation [30, 33, 133, 150]), will

be addressed in Chapter 9.



7 Asymptotic goodness

As the dimension increases, lattices can form richer arrangements of points in

space. Richness, though, comes at the cost of a higher complexity. Are high-

dimensional lattices better?

The advantage of going to higher dimensions is questionable if we are only

interested in sphere packing and covering. The one-dimensional lattice is already

perfect for both problems, whereas higher-dimensional lattices are not. To be

more specific, the best lattice packing efficiency ρpack gets worse (roughly mono-

tonically) as the dimension increases, and decreases from 1 to the Minkowski

bound of one-half. The best lattice-covering efficiency ρcov exhibits anomalous

behavior. First it increases (i.e., deteriorates) but then, by the Rogers bound, it

becomes asymptotically perfect again and approaches 1 as the dimension goes

to infinity. See more on that later in this chapter.

While mathematicians paid attention to these two hard problems, Shannon

and his followers were more interested in the “softer” questions of quantiza-

tion and modulation. Shannon’s theory demonstrates the advantage of high-

dimensional source and channel codes. The underlying principle is the law of

large numbers. Does this principle apply also to lattice codes?

Lattices indeed improve when it comes to the quantization and the modulation

problems. As we saw in Chapter 5, the rate redundancy of the ECDQ over

Shannon’s rate-distortion function under a squared-error distortion measure is

1

2
log2 (2πeG(Λ)) bit per source sample, (7.1)

where G(Λ) is the NSM defined in (3.21). Because at high-resolution quanti-

zation MSE scales like 2−2R, this is equivalent to a multiplicative MSE loss of

2πeG(Λ) with respect to the information theoretic optimum, or an additive MSE

loss of 10 log10 (2πeG(Λ)) dB (which is 20 log10 2 ≈ 6.02 times the value in (7.1)).

Indeed for the first three dimensions, G(Z) ≈ 0.083, G(A2) ≈ 0.080 (hexagonal

lattice), and G(A∗
3) = 0.078 (BCC lattice); so the corresponding ECDQ redun-

dancy – 0.255, 0.227 and 0.212 bit (or MSE loss of 1.53, 1.36 and 1.27 dB) –

decreases. Table 7.1 shows the quantization gain, corresponding to rate redun-

dancy and MSE loss, for higher-dimensional lattices. The rate redundancy and
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Table 7.1 The quantization “granular” gain with respect to the

cubic lattice (3.25), Γq(Λ) = 10 log10

(
1/12
G(Λ)

)

[dB], of some known

lattices in dimensions 1 to 24 (Λ∗ denotes the dual of Λ; see

Definition 4.2.3)

The sphere upper bound (right column) is calculated with

respect to the NSM of an n-dimensional sphere (G∗
n). Note that

the gain is upper bounded by that of an infinite-dimensional

sphere, Γ∗
q(n = ∞) = 10 log10

(
2πe
12

)
≈ 1.53 dB.

Dimension Lattice Γq [dB] Sphere bound

1 Z integer 0 0

2 A2 hexagonal 0.17 0.20

3 A3 FCC 0.24 0.34

A∗
3 BCC 0.26 0.34

4 D4 (Example 2.4.2) 0.36 0.45

5 D∗
5 0.42 0.54

6 E∗
6 0.50 0.61

7 E∗
7 0.57 0.67

8 E8 Gosset 0.65 0.72

12 K12 0.75 0.87

16 BW16 Barnes–Wall 0.86 0.97

24 Λ∗
24 Leech∗ 1.03 1.10

∞ ? ? 1.53 1.53

MSE loss would vanish completely if the NSM could reach the value of 1/2πe.

Can it get there?

For modulation, we saw in Chapter 6 that the rate loss in lattice modulation

with respect to the Shannon–Poltyrev capacity is

1

2
log2

(µ(Λ, Pe)

2πe

)

bit per channel use, (7.2)

where µ(Λ, Pe) is the NVNR at probability of error Pe defined in (3.37). Because

power scales at high SNR as 22R (6.23), this is equivalent to a multiplicative

power loss of µ(Λ, Pe)/2πe with respect to the information theoretic optimum,

or an additive power loss of 10 log10(µ(Λ, Pe)/2πe) dB. Like the NSM, the NVNR

tends to decrease if we look at some good lattices – scalar, hexagonal and

FCC – in the first three dimensions: µ(Z, 10−4) ≈ 60.5, µ(A2, 10
−4) ≈ 59.7, and

µ(A3, 10
−4) ≈ 58.8, corresponding to a capacity loss of approximately 0.91, 0.90

and 0.89 bit, or a power loss of 5.49, 5.43 and 5.37 dB, respectively. The decrease

is even stronger if we fix the symbol error rate (3.41), as can be seen in Table 7.2.

Can the NVNR reach the ideal value of 2πe?

Interestingly, the figures in the table indicate that a lattice which is good

in one sense need not necessarily be good in another (in three dimensions, the

FCC is a better modulation constellation while the BCC is a better quantizer).
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Table 7.2 The coding gain with respect to the cubic lattice, Γc(Λ) = 10 log10

(
µ(Zn,Pe)
µ(Λ,Pe)

)

[dB], of some

known lattices in dimensions 2 to 24; see (3.38)

For a fair comparison of different dimensions, the table uses the symbol error probability (SER)

rather than the block error probability Pe, which are related by 1− Pe = (1− SER)n; see (3.42).

The number in brackets is a sphere upper bound, calculated with respect to the NVNR of an

n-dimensional sphere (µ∗
n(Pe)). The last line shows the coding gain of an infinite-dimensional

sphere, Γ∗
c(n = ∞) = 10 log10

(
µ(Z,Pe)

2πe

)

[dB], which is equivalent to the power loss (7.2) (in dB) of a

scalar lattice constellation. More coding gains of high-dimensional lattice constellations

(n = 100÷ 1000) appear in [125].

SER

Dimension Lattice 10−1 10−2 10−3 10−4 10−5

1 Z
1 0 0 0 0 0

2 A2 0.14 (0.16) 0.27 (0.33) 0.33 (0.45) 0.42 (0.54) 0.46 (0.6)

3 A3 0.20 (0.27) 0.42 (0.56) 0.55 (0.78) 0.65 (0.93) 0.72 (1.05)

A∗
3 0.20 (0.27) 0.40 (0.56) 0.52 (0.78) 0.59 (0.93) 0.61 (1.05)

4 D4 0.29 (0.36) 0.60 (0.75) 0.82 (1.03) 0.95 (1.24) 1.00 (1.40)

8 E8 0.50 (0.56) 1.08 (1.2) 1.49 (1.68) 1.80 (2.04) 2.00 (2.30)

16 BW16 0.63 (0.75) 1.47 (1.63) 2.09 (2.32) 2.52 (2.83) 2.80 (3.22)

24 Λ24 0.75 (0.84) 1.76 (1.85) 2.51 (2.65) 3.08 (3.25) 3.50 (3.71)

∞ ? –2.0 1.9 4.0 5.5 6.6

Ball

Voronoi AWGN

2πe

Figure 7.1 The asymptotic ball–AWGN–Voronoi connection.

Nevertheless, there exists a sequence Λ∗
n of lattices of increasing dimension n

which are asymptotically simultaneously good for quantization and modulation –

i.e., G(Λ∗
n) → 1/2πe and µ(Λ∗

n, Pe) → 2πe – as well as for covering and packing

(in the sense of the Minkowski bound (3.15)). The existence of such good lat-

tices is proved by random coding arguments. Therefore, unfortunately, we cannot

construct them explicitly.

An NSM of 1/2πe amounts to the lattice Voronoi cell taking the shape of

a high-dimensional ball, or equivalently, the dither (i.e., a uniform distribution

over the cell) being a white-Gaussian noise. From a channel coding viewpoint,
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an NVNR of 2πe (with a small error probability) amounts to spherical Voronoi

cells at high dimensions. Although such ideal spherical Voronoi cells cannot

be achieved exactly by any lattice of dimension greater than one, good high-

dimensional lattices can arbitrarily approach them.

This chapter establishes the triangular relation shown in Figure 7.1. Section 7.1

considers the ball–Voronoi edge of the triangle, and develops the sphere lower

bounds on the NSM and NVNR used in Tables 7.1 and 7.2. Section 7.2 consid-

ers the ball–AWGN edge of the triangle (showing the asymptotic ball–AWGN

equivalence), while Section 7.3 considers the Voronoi–ball and Voronoi–AWGN

edges (showing the asymptotic Voronoi–ball/Voronoi–AWGN equivalence) for

good lattice quantizers. To support that, Section 7.5 introduces the concept of

a random ensemble of lattices, which is used in Sections 7.6–7.9 to prove that

good lattices indeed exist.

7.1 Sphere bounds

Suppose a host is sitting a group of people in a concert hall, and wishes to make

them happy about their location. A good strategy would be to fill in seats from

best to least good, thus maximizing the average person satisfaction. A similar

principle holds for answering the question: Among all bodies of a given volume

in Rn, which one minimizes the second moment? A spherical shell of a certain

radius corresponds to a seat class in the concert hall – all points have the same

square norm. Thus by “filling” shells from zero radius and up we minimize the

average second moment for a given volume. This, and other unique properties of

a sphere, are known as iso-perimetric inequalities.

In this section we use the iso-perimetric inequalities – and the properties of

a sphere – to bound the performance of a lattice code Λ for quantization and

modulation. As we shall see, G(Λ) and µ(Λ, pe) can be upper and lower bounded

using the NSM and the NVNR of a sphere.

Recall the definition (3.1) of an n-dimensional ball of radius r centered at the

origin:

Br = {x : ‖x‖ ≤ r}

where ‖ · ‖ is the Euclidean norm. 1 Recall also the ball volume formula (3.2),

Vol(Br) = Vn · rn, where Vn is the volume of the unit ball (3.3).

Given a general body S in Rn, let

V (S) =

∫

S

dx (7.3)

1 Most results also apply to more general norms; see Problem 7.5.
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denote its volume,

σ2(S) =
1

nV (S)

∫

S

‖x‖2dx (7.4)

denote its second moment (i.e., the second moment per dimension of a uniform

distribution over S),

diameter(S) = max
x1,x2∈S

‖x2 − x1‖ (7.5)

denote its diameter,

rpack(S) = max{r : Br ⊂ S} (7.6)

denote its packing (or inner) radius (with respect to a ball centered at the origin),

and

V (δS) = lim
ǫ→0

V (S + Bǫ)− V (S)

ǫ
(7.7)

denote its surface area, where S + Bǫ denotes the set-sum (or the Minkowski

sum) of S and an epsilon ball. Define also the Gaussian error probability of S

as the probability that a zero-mean white-Gaussian noise Z of variance σ2 goes

outside S:

Pe(S, σ
2) = Pr{Z 6∈ S} = 1− 1

(2πσ2)n/2

∫

S

e−
‖z‖2

2σ2 dz. (7.8)

Based on the second moment (7.4) and Gaussian error probability (7.8),

define also two dimensionless quantities: the NSM (or “second-moment to volume

ratio”) of S,

G(S) =
σ2(S)

V 2/n(S)
(7.9)

and the NVNR of S,

µ(S, Pe) =
V 2/n(S)

σ2(Pe)
, (7.10)

corresponding to earlier definitions for lattices in Sections 3.2 and 3.3, where

σ2(Pe) is the value of σ2 such that Pe(S, σ
2) = Pe; see (3.36).
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For the n-dimensional ball Br, the first five quantities above are given explicitly

by (see Problem 7.1):

σ2(Br) =
r2

n+ 2
(7.11a)

diameter(Br) = 2r (7.11b)

= 2rpack(Br) (7.11c)

Vol(δBr) = nVnr
n−1 (7.11d)

Pe(Br, σ
2) = Pr{‖Z‖ > r} (7.11e)

= 1− χ2
CDF

(
r2

σ2
; n

)

(7.11f)

where χ2
CDF(x;n), for x ≥ 0, is the cumulative chi-square distribution function

with n degrees of freedom.

The ball characteristics above provide lower bounds for any body with the

same volume, as stated by the following theorem.

Theorem 7.1.1 (Iso-perimetric inequalities) A ball minimizes the second

moment, diameter, surface area and error probability, and maximizes the packing

radius, over all bodies of a given volume. That is, if Vol(S) = Vol(Br), then

σ2(S) ≥ σ2(Br) (7.12a)

diameter(S) ≥ diameter(Br) (7.12b)

Vol(δS) ≥ Vol(δBr) (7.12c)

Pe(S, σ
2) ≥ Pe(Br, σ

2) (7.12d)

rpack(S) ≤ rpack(Br) (7.12e)

with equality if and only if S is a ball. The characteristics of a ball in the right-

hand side of (7.12) are given in (7.11a)–(7.11d).

Using the “shell filling” argument in the beginning of this section, but under

diameter and packing radius constraints, we obtain the following.

Proposition 7.1.1 (Reverse iso-perimetric inequalities) A ball maximizes

the second moment over all convex zero-symmetric bodies with a given diameter,

and maximizes the error probability over all convex bodies with a given packing

radius. That is, if S is convex and symmetric about the origin, then σ2(S) ≤
σ2(Bdiameter(S)/2), and Pe(S, σ

2) ≤ Pe(Brpack(S), σ
2), with equality if and only if

S is a ball.

In particular, letting S in (7.12a), (7.12d) and Proposition 7.1.1 be the fun-

damental Voronoi region V0 of the lattice Λ (which is convex and symmetric

about the origin, but it is not a ball for dimension greater than 1), we obtain

the following.



140 Asymptotic goodness

rcov

rσ2

reff

rPe

rpack

Figure 7.2 Equivalent radiuses of a rectangular cell. The figure shows rcov, rpack and

reff , as well as rσ2 (the radius of a ball with the same second moment) and rPe
(the

radius of a ball with the same error probability). We clearly have

rpack < rPe
< reff < rσ2 < rcov.

Corollary 7.1.1 The lattice second moment (3.20) and error probability (3.32)

are lower and upper bounded by

σ2(Brcov(Λ)) ≥ σ2(Λ) ≥ σ2(Breff (Λ)) (7.13)

and

Pe(Brpack(Λ), σ
2) ≥ Pe(Λ, σ

2) ≥ Pe(Breff (Λ), σ
2), (7.14)

and equality holds (only) for a scalar lattice.

Figure 7.2 reflects these bounds in terms of “equivalent radiuses.”

Corollary 7.1.1 implies that the NSM and NVNR of a lattice in Rn are bounded

from below by the NSM and NVNR of an n-dimensional ball. Using (7.9), we

denote the NSM of an n-dimensional ball as

G∗
n

∆
= G(Br) =

1

(n+ 2)V
2/n
n

, (7.15)

where Vn = πn/2/(n/2)! is the unit-ball volume (3.3), and the second equality

follows from (7.11a) and (3.2). See Figure 7.3. In particular, G∗
1 = 1/12 ≈ 0.0833,

G∗
2 = 1/(4π) ≈ 0.0802, and G∗

3 = 0.0779. Also, by a lower bound on n! we have

that

G∗
n >

1

2πe
for all n. (7.16)

See Table 7.1 and Problem 7.2.



7.1 Sphere bounds 141

5 10 15 20 25 30 35 40 45 50
15

20

25

30
NVNR of an n Dimensional Ball with Pe=0.01

n
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NSM of an n Dimensional Ball

n

Figure 7.3 The NSM G∗
n and the NVNR µ∗

n(Pe) (at Pe = 0.01) of an n-dimensional

ball, as a function of the dimension n. The dotted line shows µ∗
n for a fixed symbol

error rate SER = 0.01.

The NVNR of an n-dimensional ball, denoted µ∗
n(Pe), unfortunately does not

have a simple characterization. Using (7.10), we have

µ∗
n(Pe)

∆
= µ(Br, Pe) = V 2/n

n · χ2
ICDF (1− Pe; n) , (7.17)

where the second equality follows from (7.11) and (3.2), and where χ2
ICDF (p;n),

for 0 ≤ p ≤ 1, is the inverse cumulative chi-square distribution with n degrees of

freedom, i.e.,

χ2
ICDF (p;n) = x if χ2

CDF(x;n) = p. (7.18)

In particular, in the one-dimensional case χ2
CDF(x; 1) = 1− 2Q(

√
x) ≈ 1− e−x/2,

where Q(·) is the Q-function, and the approximation holds for x ≫ 1 [62, section

1; 272, p. 83]. Thus µ∗
1(Pe) = 4[Q−1(Pe/2)]

2 ≈ 8 ln(1/Pe). In two dimensions,

χ2
CDF(x; 2) = 1− e−x/2 for all x (in this case, it is the Rayleigh distribution),

so µ∗
2(Pe) = 2π ln(1/Pe). See Figure 7.3 and Problem 7.3. Furthermore, the ball

error probability (7.11e) can be lower bounded, for all dimensions n, by

Pe(Br, σ
2) > Q

(
r2 − nσ2

σ2
√
2n

)

− 2√
n
; (7.19)

see the application of the Berry–Esseen theorem (a refinement of the central limit

theorem) in [125, Lemma 8] and [222]. This implies, among others, the uniform
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2πe lower bound (3.43) on the ball NVNR:

µ∗
n(Pe) > 2πe for Pe < 0.03, for all n. (7.20)

See Table 7.2 and Problem 7.3.

Theorem 7.1.2 (Sphere bounds on NSM and NVNR) If Λ is an n-

dimensional lattice, n > 1, then

ρ2cov(Λ) ·G∗
n > G(Λ) > G∗

n (7.21)

1

ρ2pack(Λ)
· µ∗

n(Pe) > µ(Λ, Pe) > µ∗
n(Pe), (7.22)

where ρcov(Λ) = rcov(Λ)/reff(Λ), and ρpack(Λ) = rpack(Λ)/reff(Λ) are the cover-

ing and packing efficiencies of Λ, defined in (3.17) and (3.11), respectively.

Proof The bounds follow directly from the iso-perimetric inequalities of Corol-

lary 7.1.1. See Figure 3.3. �

Since the Voronoi cell of a multidimensional lattice is a polytope and not a ball,

all four inequalities in (7.21) and (7.22) are strict. Yet, Theorem 7.1.2 implies

that if a lattice is “good” for packing or covering, in the sense that its packing

or covering efficiencies are close to 1, then it is also “good” for quantization or

modulation, i.e., its NVNR and NSM are close to the sphere lower bounds.

7.2 Sphere-Gaussian equivalence

So far, out of the three main entities of this chapter – a Voronoi cell, a ball and

a white-Gaussian vector (all living in the n-dimensional space) – we have only

related the first pair. Our next objective is to show an asymptotic relationship

between the second pair, a ball and a Gaussian vector, as the dimension goes to

infinity.

The probability density function fW of a zero-mean white-Gaussian vector

W = (W1, . . . ,Wn),

fW (w) =
1

(2πσ2)n/2
e−

‖w‖2

2σ2 (7.23)

is isotropic in space. That is, it depends only on the Euclidean norm ‖w‖ of the

vector, hence it is constant over spherical shells around the origin. On the other

hand, the law of large numbers (LLN) implies that the normalized squared norm

of the vector, 1
n‖W‖2, goes in probability to its variance σ2, as the dimension n

goes to infinity. These two facts imply that a zero-mean white-Gaussian vector

tends to be uniformly distributed over a spherical shell of radius
√
nσ2. By (3.4),

this is equivalent asymptotically to a uniform distribution over a ball of the same

radius.
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This statement actually goes both ways. The per component marginal of a

uniform distribution over a ball converges to a Gaussian density. Moreover, the

joint distribution of any fixed subset of the components converges to a white-

Gaussian distribution.

7.2.1 Gaussian becomes a sphere

We follow classical definitions and results from information theory: the typical

set and the asymptotic equipartition property (AEP), see [53].

Definition 7.2.1 (Typical set) The weakly ǫ-typical set A
(n)
ǫ of a memoryless

random vector W ∼ fW is defined as the set of vectors w whose normalized

log-density is close to the entropy:

A(n)
ǫ =

{

w :

∣
∣
∣
∣
− 1

n
log(fW (w))− h(W )

∣
∣
∣
∣
< ǫ

}

, (7.24)

where h(W ) is the differential entropy of each component of W.

By substituting fW from (7.23), and h(W ) = 1
2 log(2πeσ

2), we obtain for a

white-Gaussian vector

A(n)
ǫ =

{

w : ‖w‖ ≈
√
nσ2

}

, (7.25)

where ≈ is in the sense that (1− ǫ′)
√
nσ2 < ‖w‖ < (1 + ǫ′)

√
nσ2, and where

ǫ′ = 2ǫ/log(e) = O(ǫ). Thus, the ǫ-typical set of a white-Gaussian vector is an

“ǫ′ spherical shell” of radius r =
√
nσ2.

The significance of the typical set comes from the AEP, whose Gaussian version

is stated below.

Theorem 7.2.1 (Gaussian AEP) For any ǫ > 0,

(i) All vectors w in the ǫ-typical set A
(n)
ǫ have roughly the same density

fW (w)
·
= 2−nh(W ) = (2πeσ2)−n/2.

(ii) The probability that W falls in A
(n)
ǫ is close to 1 for sufficiently large n.

(iii) The volume of A
(n)
ǫ is

·
= 2nh(W ) = (2πeσ2)n/2.

Here
·
= denotes “equality to the first order in the exponent,” i.e., an

·
= 2nE means

that

lim
n→∞

1

n
log(an) = E. (7.26)

Proof (i) follows directly from Definition 7.2.1; (ii) follows from the LLN, since,

as n → ∞,

1

n

n∑

i=1

W 2
i → E{W 2

1 } = σ2, in probability;

finally (iii) follows by combining (i) and (ii). �
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We see that a white-Gaussian distribution is asymptotically concentrated on

a spherical shell of radius ≈
√
nσ2.

Definition 7.2.2 (Typical AWGN radius) The typical radius of an n-

dimensional white-Gaussian vector with variance σ2, is defined as

rnoise =
√
nσ2. (7.27)

Interestingly, although the typical set A
(n)
ǫ in (7.25) is a spherical shell, part

(iii) of the AEP coincides with the asymptotic volume of a unit ball,

Vn =
πn/2

(n/2)!
∼
(
2πe

n

)n/2

(7.28)

which follows from the Stirling approximation formula,

n! ∼
√
2πn

(n

e

)n

. (7.29)

In the above, (n/2)! for odd n is defined through the gamma function contin-

uation of the factorial, i.e., (n/2)! = Γ(n/2 + 1) for all n. See (3.3). And the

approximation ∼ is in the sense that the ratio goes to 1. Thus, for a ball of

radius r =
√
nσ2, we get by (3.2)

Vol(B√
nσ2) ≈ (2πeσ2)n/2, (7.30)

which is the same as the volume of A
(n)
ǫ . This coincidence is not surprising

because, as we saw earlier in (3.4), a ball and a spherical shell of the same radius

are equivalent volume-wise for a large dimension n (provided the shell thickness

is at a fixed proportion of the radius).

Substituting (7.28) in the ball NSM formula (7.15), we conclude that the NSM

of a ball achieves its lower bound (7.16) as the dimension goes to infinity.

Corollary 7.2.1 (Asymptotic NSM of a ball)

G∗
n → 1

2πe
, as n → ∞ (7.31)

at a rate of

log(2πeG∗
n) = O

(
logn

n

)

. (7.32)

The rate of convergence follows from a refined Stirling approximation (Prob-

lem 7.6).

Part (ii) of the AEP (Theorem 7.2.1) amounts to the concentration of a white-

Gaussian vector of variance σ2 on a ball of radius
√
nσ2. This concentration

implies the following.

Corollary 7.2.2 (Asymptotic error probability of a ball) The Gaussian

error probability (7.11), of an n-dimensional ball Br of radius r =
√
nt, satisfies
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asymptotically, as n → ∞,

Pe(B√
nt, σ

2) →
{
1, t < σ2

0, t > σ2.
(7.33)

In terms of the cumulative chi-square distribution, Corollary 7.2.2 is equivalent

to a threshold effect for large n:

χ2
CDF(nt;n) ≈

{
1, t > 1

0, t < 1,
(7.34)

or, conversely, the inverse cumulative chi-square distribution (7.18) satisfies

χ2
ICDF (p;n) ≈ n for large n, for all 0 < p < 1. Combining this fact with (7.17)

and (7.28), we obtain the following.

Corollary 7.2.3 (Asymptotic NVNR of a ball) The NVNR (7.17) of an

n-dimensional ball satisfies asymptotically

µ∗
n(Pe) → 2πe, as n → ∞, for all 0 < Pe < 1. (7.35)

7.2.2 Sphere becomes Gaussian

We now address the reverse direction: tendency to Gaussianity of a uniform

distribution over a ball. Let U ∼ Unif(Br), where Br is an n-dimensional ball of

radius r centered at the origin. That is, the density of U is

f
(n)
U (u) =

{
(Vnr

n)−1, if u ∈ Br

0, if u 6∈ Br,
(7.36)

where Vn is the volume of the unit ball (3.3). We shall address two forms of con-

vergence of f
(n)
U : the distribution of a subset of components, and the normalized

divergence.

If u belongs to the ball Br, and we fix the first component u1, then the remain-

ing components belong to a ball cut, which is an (n− 1)-dimensional ball of

radius r′ =
√

r2 − u2
1. Similarly, if we fix the first k components (u1, . . . , uk),

then the remaining components belong to an (n− k)-dimensional ball of radius

r′ =
√

r2 − u2
1 − . . .− u2

k. See the illustration in Figure 7.4.

Theorem 7.2.2 (Ball projection) Let f
(n)
U be the uniform density (7.36). If

the ball radius r is growing as the square root of the dimension, i.e., r =
√
tn,

then, as n → ∞, the projection of f
(n)
U on the first coordinate converges point-

wise to a Gaussian distribution with variance t. And in general, the projection

of f
(n)
U on any fixed number of coordinates k, converges to a white-Gaussian

distribution:

lim
n→∞

∫

(uk+1,...,un)∈Br′

f
(n)
U (u1, . . . , un)duk+1 . . . dun = fW (u1, . . . , uk)
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Figure 7.4 The marginal distribution of a uniform distribution over a

(three-dimensional) ball.

where Br′ is the ball cut of radius r′ =
√

r2 − u2
1 − . . .− u2

k defined above, and

fW is the density of a white-Gaussian vector (7.23) with variance σ2 = t.

Proof See Problem 7.8. �

Another natural measure for the distance to a Gaussian distribution is the

information divergence, also known as “relative entropy” or “Kullback–Leibler

distance” (see Definition 6.5.1).

Definition 7.2.3 (Divergence from white Gaussianity II)

D(U;W) = D(fU||fW) =

∫

Rn

fU(x) log
fU(x)

fW(x)
dx, (7.37)

where W is a zero-mean white-Gaussian vector with the same average power as

U, i.e., σ2
W = U2 ∆

= 1
n

∑n
i=1 E{U2

i }.
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Proposition 7.2.1 (Divergence-entropy relation) The divergence from

white Gaussianity can be written as a difference between differential entropies:

D(U;W) = h(W)− h(U) =
n

2
log(2πeU2)− h(U). (7.38)

Proof The proof follows from the definition (7.37), and since the entropy of

W can written as h(W)
∆
= −

∫
fW log fW = −

∫
fU log fW. This is due to the

special form of the white-Gaussian density (7.23), i.e., log fW is an affine function

of ‖w‖2, and since U and W have the same average power. �

Lemma 7.2.1 (Divergence of uniform from white Gaussianity) If U is

uniform on a body S, then the normalized (per dimension) divergence of U from

white Gaussianity is given by

1

n
D(U;W) =

1

2
log(2πeG(S)),

where G(S) is the NSM (7.9) of the body S.

Proof The result follows by substituting h(U) = log(V ) in (7.38), and using the

definition of G(S). �

Combining with Corollary 7.2.1, we thus conclude that a high-dimensional

ball tends to Gaussianity also in the normalized divergence sense.

Theorem 7.2.3 (Divergence of a ball from white Gaussianity) The

divergence from white Gaussianity of a vector Un which is uniform over an

n-dimensional ball vanishes asymptotically:

1

n
D(Un;W) =

1

2
log(2πeG∗

n) → 0, (7.39)

as n goes to infinity, where G∗
n is the ball NSM given in (7.15), and the rate of

convergence is the same as in Corollary 7.2.1. 2

7.3 Good covering and quantization

So far we have revealed two out of the three links of the “2πe connection” in Fig-

ure 7.1, between a ball, AWGN and a lattice Voronoi cell. We developed relations

between sphere packing/covering and modulation/quantization (Section 7.1),

and showed the tendency of large-dimensional spheres to a white-Gaussian dis-

tribution (Section 7.2). We now wish to close the triangle, and show that the

cells of good lattices become ball-like, and hence their NSM and NVNR converge

to the ideal values of 1/2πe and 2πe. Somewhat surprisingly, however, the dual-

2 Since divergence can upper bound the ℓ1-distance between two distributions, Theorem 7.2.3
implies an average form of the ball projection theorem (Theorem 7.2.2).
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ity between the pairs packing-modulation and covering-quantization breaks. To

show the desired limits we shall have to take different paths.

We start by stating a fundamental theorem, due to Rogers [231], regarding the

existence of a sequence of lattices with sphere covering efficiency going to 1; this

same sequence of lattices has an asymptotic NSM of 1/2πe. Recall from (3.17)

that the covering efficiency of a lattice is defined as ρcov(Λ) = rcovΛ /reff(Λ).

Theorem 7.3.1 (Good covering) There exists a sequence of lattices Λn of

increasing dimension n such that

ρcov(Λn) → 1. (7.40)

The convergence rate is such that log ρcov(Λn) = O(log(n)/n).

The proof is outside the scope of this book, and can be found in [66, 231]. One

approach is to use the random ensemble of construction A lattices of Section 7.9.

Definition 7.3.1 (Rogers-good lattices) A sequence Λn of lattices satisfying

(7.40) is called “Rogers good,” or good for covering.

Theorem 7.3.1 implies that in a minimal sphere covering by a Rogers-good

lattice, the volume of the intersection between the spheres is negligible with

respect to the volume of the spheres themselves. 3 We may visualize this as if the

Voronoi cells of a Rogers-good lattice do not have sharp corners.

In view of the sphere bound of Theorem 7.1.2, these lattices also approach the

ideal value of the NSM.

Corollary 7.3.1 (Covering implies quantization) A sequence of Rogers-

good lattices Λn achieves the minimum ball NSM (7.16)

G(Λn) →
1

2πe
, (7.41)

as n → ∞. It follows that the sequence Gn of minimum possible NSMs (Defi-

nition 3.2.2) converges to 1/2πe as well. The convergence rate is as in Corol-

lary 7.2.1.

Definition 7.3.2 (Good lattice quantizers) A sequence Λn of lattices satis-

fying (7.41) is said to be good for quantization under the mean square distortion

measure.

Recall that 1
2 log(2πeG(Λ)) is the redundancy of ECDQ above Shannon’s rate-

distortion function at high-resolution conditions (Theorem 5.5.1), as well as at

any resolution for a white-Gaussian source with suitable post-scaling (Theo-

rem 5.6.1).

3 For example, if the radius increases with the dimension like ∼√
n, then the volume of the

sphere increases exponentially with n, while the volume of its intersection with other spheres
increases sub-exponentially with n.
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Corollary 7.3.2 ECDQ using the sequence Λn above approaches the rate-

distortion function as the dimension n goes to infinity, with redundancy on the

order of log(n)/n.

7.3.1 Tendency of dither to a ball and AWGN

As the dimension increases, the cell of a lattice which is good for quantization

becomes “ball-like,” in the sense that its second moment does not go much

beyond that of a ball with the same volume. Does this statement extend to other

forms of similarity to a ball?

Since the dither is uniform over the lattice cell, its closeness to a ball can also

be measured by the chance that it leaves a ball of about the same radius as the

lattice (effective) radius.

Theorem 7.3.2 (Chance of exceeding a ball) If Un ∼ Unif(V0(Λn)), and

G(Λn) → 1/2πe as n → ∞, then

Pr{Un 6∈ B(0, (1 + ǫ)reff(Λn))} → 0, for all ǫ > 0. (7.42)

The proof below shows that, up to a rare event, the dither of a good lattice

quantizer is uniform over a region that is contained in a ball with a slightly larger

effective radius.

Proof For any r > 0, let pr = Pr{U 6∈ B(0, r)} denote the probability that the

dither of a lattice Λ leaves a ball of radius r about the origin. We break the second

moment of the dither into two terms, corresponding to the event U 6∈ B(0, r)
(denoted “out”) and its complement (denoted “out”):

1

n
E‖U‖2 = (1− pr) ·

1

n
E
{
‖U‖2 | out

}
+ pr ·

1

n
E
{
‖U‖2 | out

}
(7.43)

≥ (1− pr) ·
[(1− pr)V (Λ)/Vn]

2/n

n+ 2
+ pr ·

r2

n
, (7.44)

where the lower bound for the first term follows from the iso-perimetric inequality

(7.12a), noting that the conditional distribution of U given that it falls inside

B(0, r) is uniform over a region with volume (1− pr)V (Λ). By the definition of

the NSM (3.21) and the effective radius (3.10), we thus have

G(Λ) ≥ (1− pr)
1+2/n

(n+ 2)V
2/n
n

+ pr
r2/r2eff(Λ)

nV
2/n
n

(7.45)

for all r > 0. Setting r = r(ǫ) = (1 + ǫ)reff(Λ), and noting that nV
2/n
n → 2πe as

n → ∞, the lower bound above becomes

G(Λ) ≥ 1 + ((1 + ǫ)2 − 1)pr(ǫ)

2πe
− o(1) (7.46)
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(where o(1) → 0 as n → ∞), which is strictly greater than 1/2πe for all ǫ > 0

for a sufficiently large n, unless pr(ǫ) = 0. Thus, G(Λn) → 1/2πe implies that

pr(ǫ)(Λn) goes to zero for all ǫ > 0. �

Another characterization for the goodness of a lattice quantizer is the diver-

gence of the dither from white Gaussianity. Lemma 7.2.1 showed earlier that the

NSM of a body determines its divergence from white Gaussianity. Theorem 7.2.3

then showed that the divergence from white Gaussianity of a ball vanishes asymp-

totically with the dimension. Here we state a parallel result with respect to the

Voronoi cells of a good lattice quantizer.

Theorem 7.3.3 (Divergence from white Gaussianity) If the dither U ∼
Unif(V0(Λ)) is uniform over the fundamental Voronoi cell of a lattice Λ, then its

divergence from white Gaussianity (Definition 7.2.3) is given by

1

n
D(U;W) =

1

2
log(2πeG(Λ)), (7.47)

where W is the corresponding white-Gaussian noise. If Λn is a sequence of good

lattice quantizers (Definition 7.3.2), then the divergence 1
nD(Un;W) vanishes

asymptotically as n goes to infinity. The rate of convergence is the same as in

Corollary 7.2.1.

In Section 4.3 we saw that in each dimension, the dither of a good lattice

quantizer must be white (though not Gaussian). We can thus interpret Theo-

rems 4.3.1, 7.3.2 and 7.3.3 that asymptotically for a large dimension:

the dither of good lattice quantizers converges to AWGN.

One interesting implication of this result is that the divergence from white

Gaussianity of the equivalent ECDQ noise (Theorems 4.1.1 and 5.2.1) is equal to
1
2 log(2πeG(Λ)); thus, for good lattice quantizers the ECDQ becomes equivalent

to an AWGN channel.

7.4 Does packing imply modulation?

One may expect that a parallel result will hold for packing and modulation: that

for some “good” sequence of lattices Λn the packing efficiency (3.11) goes to

1, thus implying by (7.22) that the NVNR goes to its ideal value of 2πe. This

wishful parallelism, however, does not hold; packing turns out to be harder than

covering.

Specifically, the best asymptotic value of (3.11) is known to be strictly worse

than 1, and is conjectured to be equal to one-half. It follows that the volume of

the packed balls occupies only (1/2)n of the space. In view of the sphere bound

of Theorem 7.1.2, this also implies an asymptotic NVNR of 4πe, i.e., twice the

ideal value. Can we expect to close this gap?
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Figure 7.5 Modulation code design by maximal soft packing with overlap of ǫ ≈ 10%.

Luckily, it turns out that modulation is easier than packing as it amounts to

“soft packing.” A small overlap between the noise balls (corresponding to a small

ambiguity at the decoder) allows good lattices to achieve an asymptotic packing

efficiency equal to 1, hence an NVNR of 2πe.

7.4.1 Soft packing

Consider filling a large cube with balls, allowing up to a fraction ǫ of the volume

of each ball to overlap previous balls, as illustrated in Figure 7.5. The filling

process continues until it is impossible to add a new ball. It can be shown by a

random translation argument that as long as the total volume occupied by balls

is less than a fraction ǫ of the cube, we can find a location for a new ball with at

most ǫ overlap. Thus, when the process stops, at least ǫ of the volume is packed

with balls. Although this fraction can be small, the packing efficiency (3.12) is

at least ǫ1/n, which approaches one, as n goes to infinity, for all ǫ > 0. 4

By the AEP (Theorem 7.2.1), an AWGN vector of large dimension concen-

trates on a ball. If the probability to exceed this ball can be tolerated by the

communication system, then the design of an unbounded constellation for the

AWGN channel amounts to “soft packing,” i.e., packing of “noise balls” with a

small overlap, and using the ball centers as codewords.

The maximal code construction above underlines Feinstein’s proof of the chan-

nel coding theorem [77]. It applies, in fact, to any shape, not necessarily a ball.

From an information theoretic viewpoint, this idea thus proves the achievability

of capacity per unit volume of general additive-noise channels.

The drawback of this construction, however, is that it does not impose any

structure on the positions of the centers of the packed shapes. Can a soft packing

4 In logarithmic terms, the “gap to capacity” is log2(1/ǫ) bit, which is just 1
n
log2(1/ǫ) bit

per dimension, i.e., negligible for large n.
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1 2 3

Figure 7.6 Lattices and a uniform random set of the same point density.

achieve the same efficiency if the centers must form a lattice? To show that indeed

it can, we introduce below the notion of a random ensemble of lattices.

7.5 The Minkowski–Hlawka theorem

It is insightful to think of a lattice Λ as a set with a “uniform” point density in

space, that is, a set with

γ =
1

V (Λ)

points per unit volume (see (2.20)). This cannot be quite so, however, for a

specific lattice. One reason for this is that the lattice density is not necessarily

the same in all directions; for example, in the rectangular grid of Figure 2.1

the vertical point density is twice that of the horizontal. Also, a uniform point

density would imply that the number of points inside a body S is exactly γ times

the volume of S; but this can only hold as an approximation for bodies which

are large compared to the scale of the lattice cells (see, e.g., the proof of the cell

volume formula in Proposition 2.2.1).

In statistical terms, it is possible to define a random set of points which is

uniform over a large portion of space. For example, draw γan independent points

uniformly over the n-cube [−a/2, a/2]n, and take a to infinity. We thus obtain

in the limit a random set whose expected number of points in any bounded body

S is equal exactly to γVol(S). 5 See Figure 7.6.

A more general property of such a random set is that it allows sampling to be

replaced by integration. That is, for any integrable function f(x), the expected

sum of the samples of f over the set is equal to γ
∫
f(x)dx. 6 If f is the indicator

5 The limiting random set can be modeled as a Poisson point process [9].
6 For a random point X uniform on CUBE = [−a/2, a/2]n,

E{f(X)} =
1

an

∫

CUBE
f(x)dx.
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function of the body S (i.e., f(x) is 1 inside S and 0 outside), then the sum of

the samples reduces to the number of points in S discussed earlier.

A remarkable result due to Minkowski, Hlawka and Siegel [36, 113] shows that

a set satisfying these properties does not have to be completely random; in fact,

it can be a random lattice. There are, however, two exceptions to the rule: the

dimension must be greater than one, and the zero lattice point λ0 = 0 must be

excluded. Indeed, the zero lattice point is fixed and cannot be randomized, while

a one-dimensional lattice is uniquely determined by its step size and cannot be

random.

To simplify the notation, we use NS(Λ) for the number of lattice points other

than zero that fall in a set S:

NS(Λ) = |S ∩ (Λ \ λ0)| (7.49)

=
∑

λ∈Λ,λ6=0

1{λ∈S} (7.50)

where 1{A} denotes the indicator of the event A (i.e., 1{A} is equal to 1 if A

occurs and 0 otherwise).

Theorem 7.5.1 (Minkowski–Hlawka–Siegel [113]) For each dimension n >

1, there exists a random ensemble L = {Λ} of lattices of unit determinant (i.e.,

V (Λ) = 1 for all Λ ∈ L), such that for any bounded measurable set S, the expected

number of non-zero lattice points in S is equal to the volume of S:

EL{NS(Λ)} = Vol(S), (7.51)

where EL denotes expectation with respect to the random ensemble. 7

By scaling the lattice ensemble by 1/ n
√
γ, we obtain an ensemble L where each

of its members has a point density γ and cell volume V (Λ) = 1/γ, so that

EL{NS(Λ)} = γ · Vol(S). (7.52)

Example 7.5.1 (Intersection with a ball) If S in (7.52) is an n-dimensional

ball of radius r, then,

EL{NBr(Λ)} = γVnr
n =

( r

reff

)n

, (7.53)

where reff = reff(L) =
n
√

1/γVn is the effective radius (3.10) of the ensemble L.

Thus for M random points

E
{

M
∑

i=1

f(Xi)
}

=
M

an

∫

f(x)dx = γ

∫

f(x)dx. (7.48)

7 A modification of the theorem deals with the intersection of a body with only primitive

lattice points (that is, counting a single lattice point in each direction) [36]. This allows us
to strengthen slightly some of the results in the sequel.
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A more general form of the theorem states that for any Riemann integrable

function f : Rn → R with a bounded support,

EL

{ ∑

λ∈Λ,λ6=0

f(λ)
}

= γ

∫

Rn

f(x)dx, (7.54)

paralleling (7.48). As discussed earlier, this form specializes to (7.52) if f is the

indicator function of the body S. And in fact, the two forms are equivalent; see

Problem 7.9.

Definition 7.5.1 (MHS ensemble) An ensemble of lattices L which satisfies

Theorem 7.5.1, is called an MHS ensemble.

There are several ways to construct an MHS ensemble and prove the

Minkowski–Hlawka–Siegel theorem. In Section 7.9 we shall describe one such

ensemble – a randomized version of the (generalized) construction A of Sec-

tion 2.5 – which provides some “engineering intuition.”

The MHS ensemble can be viewed as a random collection of points, which is

uniform over the entire space. As we shall see, this uniformity implies asymptot-

ically good sphere packing and modulation.

7.6 Good packing

Like in many problems in information theory, the existence of good lattice codes

is most easily established using random coding arguments: we build a random

ensemble of codes whose average performance is good. This implies that at least

one member in the ensemble is good (and usually, most members are good).

Although this technique is non-constructive (we cannot say which codes in the

ensemble are the good ones), it is very simple and intuitive.

We start with the minimum distance (3.8) and goodness for packing.

Theorem 7.6.1 (Minkowski) For dimension n > 1, and any measurable

bounded set S in Rn with volume less than V , there exists a lattice Λ, with

volume V (Λ) = V , that does not intersect S except possibly at the origin, i.e.,

NS(Λ) = 0. (7.55)

If S is symmetric about the origin, then (7.55) holds for some twice denser lattice,

i.e., with V (Λ) = V/2. 8

8 The stronger version of the Minkowski–Hlawka–Siegel theorem, discussed in footnote 7,
deals with star-shaped bodies which are symmetric about the origin (e.g., balls). For such
bodies, the lattice volume needs to satisfy the weaker condition

V (Λ) >
Vol(S)

2ζ(n)
, (7.56)

where ζ(n) =
∑∞

k=1
1
kn is the Reimann zeta function. Note that ζ(n) → 1 as n → ∞.
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Proof By (7.52), for any body S with volume less than 1/γ, the expected number

of non-zero points of a lattice in the MHS ensemble in S is less than 1:

EL{NS(Λ)} = γVol(S) < 1.

Thus by the definition of expectation, there must be at least one member Λ in L

with NS(Λ) strictly smaller than 1. Since NS(Λ) is an integer, it must be equal

to zero for that Λ.

If the body is symmetric about the origin, then NS(Λ) must be even (if λ ∈ S

then also −λ ∈ S); thus it is enough that Vol(S) < 2/γ (implying EL{NS(Λ)} <

2) to conclude that NS(Λ) = 0 for some Λ ∈ L. �

By specializing Theorem 7.6.1 to a ball, we conclude that in each dimension

there exists a unit-determinant lattice, whose all non-zero points are outside a

unit-volume ball centered at the origin. 9 This means that for this “good” lattice,

the shortest vector must be at least as long as the effective radius (3.10), i.e.,

dmin(Λ) ≥ reff(Λ). By (3.9), this is equivalent to a packing radius rpack(Λ) larger

than or equal to half the effective radius.

Recall that the packing efficiency of a lattice Λ (Definition 3.1.2) is defined as

ρpack(Λ) = rpack(Λ)/reff(Λ).

Corollary 7.6.1 (Packing efficiency of at least one-half) In each dimen-

sion n ≥ 1 there exists a lattice whose minimum distance dmin(Λ) is greater

than or equal to its effective radius reff(Λ); or equivalently, its packing efficiency

ρpack(Λ) is at least 1/2.

The lower bound of Corollary 7.6.1 holds in particular in the limit of large n.

Since the packing efficiency is the nth root of the volume ratio (i.e., of the packing

density ∆(Λ) (3.12)), the stronger version in (7.56) does not improve the bound

in the limit as n → ∞. In fact, it is believed that this bound is asymptotically

tight, i.e., that in large dimensions it is impossible to get packing efficiencies

better than one-half. 10

A packing efficiency of one-half means that parallel sides of a Voronoi cell are

not too close; if the lattice is also “Rogers good” (Definition 7.3.1), then they

are at least half the diameter apart.

But a packing efficiency of one-half also means that only a fraction (1/2)n

of space is occupied by balls. To achieve the Shannon capacity of the AWGN

channel, a denser packing of space with “noise balls” is needed. 11

9 This holds trivially also in dimension n = 1.
10 The best known asymptotic upper bound on the packing efficiency of any arrangement of

balls (not necessarily on a lattice) was found by Kabatiansky and Levenshtein [132] (see
[49]): for any sequence of lattices Λn of increasing dimension

lim sup
n→∞

ρpack(Λn) ≤ 0.6603.

11 A similar gap between hard and soft packing exists in the binary space; the Gilbert–

Varshamov bound on the maximum rate of a binary code which can correct ǫn errors in
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7.7 Good modulation

In the context of digital modulation in the presence of AWGN, a good con-

stellation in high dimensions is equivalent to a good “soft” packing of spheres

(Section 7.4). We shall see that, as for “hard” packing, the MHS ensemble can

demonstrate the existence of a sequence of lattices with a good soft-packing effi-

ciency. The NVNR (3.37) of these lattices goes to the ideal value of 2πe, the

NVNR of a high-dimensional ball, for any 0 < Pe < 1.

Theorem 7.7.1 (Asymptotically optimal NVNR) There exists a sequence

of lattices Λn of increasing dimension n, whose NVNR approaches 2πe for any

non-zero error probability:

lim
n→∞

µ(Λn, Pe) = 2πe for all 1 > Pe > 0 (7.57)

with a rate of convergence given by

log
(µ(Λn, Pe)

2πe

)

= O
( 1√

n

)

. (7.58)

The converse statement (i.e., that for any lattice sequence Λn of increas-

ing dimension n, lim infn→∞ µ(Λn, Pe) ≥ 2πe) is an obvious consequence of the

sphere lower bound (7.22) and the asymptotic NVNR of a ball (7.35). Thus,

Theorem 7.7.1 implies in particular that the sequence µn(Pe) of optimal NVNRs

(Section 3.3) converges to 2πe.

The proof of the direct part of Theorem 7.7.1, which is the main result of this

section, is given after discussing some implications and connections.

Definition 7.7.1 (Good lattice constellation) A sequence Λn of lattices

satisfying (7.57) is said to be “good for coding” over the AWGN channel.

Recall that the quantity 1
2 log(µ(Λ, Pe)/2πe) appeared in Chapter 6 as the gap

to capacity of an infinite constellation, in two different setups.

Corollary 7.7.1 (Closing the gap to capacity) A sequence Λn which is

good for AWGN channel coding (Definition 7.7.1) approaches the AWGN channel

capacity per unit volume (Theorem 6.3.2) as the dimension n goes to infinity.

Furthermore, a VRDM scheme based on Λn approaches the power-constrained

capacity of the AWGN channel in the limit of high SNR (Theorem 6.5.1). If Λn

also satisfies (7.58), then the gap to capacity in both cases is O(1/
√
n).

a block of n bits is 1−HB(2ǫ), while the Hamming bound on this rate (which meets the
Shannon capacity of a binary-symmetric channel with cross-over probability ǫ) is 1−HB(ǫ),
where HB(ǫ) = −ǫ log ǫ− (1− ǫ) log(1− ǫ) is the binary entropy.
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7.7.1 Typicality decoding of a random code

The proof of Theorem 7.7.1 is in the spirit of the proof of the channel coding

theorem in information theory. The idea is to combine “random coding” with

“typicality decoding.” Although this scheme is suboptimal (compared to optimal

coding with ML decoding), it asymptotically achieves the channel capacity, as

the code dimension goes to infinity. 12

Recall the information theoretic view of channel coding, discussed in Sec-

tion 1.2. For some input distribution p(x), generate M = 2nR independent code-

words X(1), . . . ,X(M) at random, with probability p(x), and reveal them to the

encoder and the decoder. Message 1 ≤ i ≤ M is encoded as X(i), and transmit-

ted over the channel p(y|x). The decoder receives the resulting channel output

Y, and searches for a unique codeword X(·), which is “jointly typical” with Y.

For an additive-noise channel, and a uniform input distribution p(x), typicality

amounts to the difference Y −X(i) being in the typical set of the noise, see

Definition 7.2.1. It follows that the decoder declares (or unknowingly makes) an

error if either (i) the noise is atypical, or (ii) some competing codeword “pre-

tends” to be jointly typical with Y. By the union bound, the average decoding

error probability P̄e (averaged over the M messages, the possible codes, and the

channel statistics), is thus bounded by

P̄e ≤ Pr(atypical noise) + (2nR − 1) · 2−n(I(X;Y )−ǫ)

︸ ︷︷ ︸

expected number of competing codewords

(7.59)

where ≈2−nI(X;Y ) is the probability that an (independent) competing codeword

X(j), for some j 6= i, pretends to be jointly typical with Y. 13 Since the first

term vanishes by the AEP (Theorem 7.2.1), it follows that P̄e vanishes for large

n, provided that R is smaller than the mutual information I(X ;Y ). 14 And for

p∗(x) (the maximizing input distribution), P̄e vanishes for all rates R smaller

than the capacity C. The punch line of the random coding argument is that

there must be at least one code in the ensemble whose error probability is not

larger than the ensemble average P̄e.

7.7.2 Threshold decoding of a random lattice

The idea of typicality decoding of a random code translates, in our framework, to

sphere (or threshold) decoding of a lattice from the MHS ensemble of Section 7.5.

This decoder searches for a unique codeword within a radius rth around the

12 The advantage of ML decoding over typicality decoding will be evident from the finer
analysis in Chapter 13 of the decay of the error probability as a function of the lattice
dimension.

13 See more on joint typicality in Section 9.4.3.
14 See the success-threshold exponent in Appendix A.2, for the asymptotic “0/1-behavior” of

the error around the point R = I(X;Y ).
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Figure 7.7 The gray area shows the decoding region Ω0 of the threshold decoder for a

hexagonal lattice, where the threshold rth is in the range rpack(Λ) < rth < rcov(Λ). If

the noise Z falls inside V0, then selecting rth = rcov(Λ) guarantees that the true

codeword λ0 is in the search range, but there may be an ambiguity; selecting

rth = rpack(Λ) guarantees that there is no ambiguity, but the search range may be

empty. If the noise Z falls outside V0, then there is an error for any choice of rth.

received vector Y = λ0 + Z:

λ̂ =

{
λ, if ‖Y − λ‖ < rth for a unique λ ∈ Λ,

?, otherwise.
(7.60)

As shown in Figure 7.7, the decoding region Ωλ associated with λ consists of

all y vectors that belong to the first case of (7.60). And an error λ̂ 6= λ0 occurs

either if the noise exceeds the search range, or if there is another (a competing)

codeword inside this range.

We first consider the error probability for a specific (non-random) lattice.

Lemma 7.7.1 (Threshold decoding of a specific lattice) The error prob-

ability of the sphere decoder (7.60) of a lattice code Λ, in the presence of noise

Z, is bounded, for any threshold rth > 0, by

Pr{λ̂ 6= λ0} ≤ Pr{‖Z‖ > rth}+ EZ{NB(Z,rth)(Λ)}, (7.61)

where NS(Λ) is defined in (7.49), B(Z, rth) is a ball of radius rth centered at Z,

and the expectation is over the noise Z.

Proof By the union bound, the decoding error probability Pr{λ̂ 6= λ0} in (7.61)

is upper bounded by

Pr{‖Z‖ > rth}+ Pr{B(Y, rth) contains lattice points other than λ0}.(7.62)
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Assuming (without loss of generality, due to the lattice symmetry) that the zero

codeword was transmitted (i.e., X = 0 and Y = Z), we thus have:

Pr{λ̂ 6= λ0} ≤ Pr{‖Z‖ > rth}+ Pr{NB(Z,rth)(Λ) ≥ 1}. (7.63)

Finally, since for any non-negative integer-valued random variable N

Pr{N ≥ 1} ≤
∑

n≥1

n · Pr{N = n} = E{N}, (7.64)

the second term in (7.63) is upper bounded by the expected value ofNB(Z,rth)(Λ).

�

The decision region of the sphere decoder (7.60) is a subset of the fundamental

Voronoi region V0.
15 Thus, for any noise distribution, the NN decoder (3.31) is

at least as good as the threshold decoder, hence its error probability is also upper

bounded by Lemma 7.7.1. In the special case of a white-Gaussian noise, the NN

decoding rule becomes ML, while the spherical search of (7.60) corresponds, by

the AEP (7.25), to typicality decoding (provided the search range is roughly equal

to the typical radius (7.27): rth ≈ rnoise =
√
nσ2).

We do not try to optimize the threshold rth for a specific lattice. Rather, we

turn to examine a random lattice in the MHS ensemble L. The ensemble average

of the error probability, under NN decoding, is defined as

Pe(L,Z)
∆
= EL{Pr(Z 6∈ V0(Λ))}, (7.65)

where EL{·} denotes expectation with respect to the ensemble.

Lemma 7.7.2 (Threshold decoding of the MHS ensemble) The average

error probability (7.65) of a lattice in the MHS ensemble L with a point density

γ, is bounded by

Pe(L,Z) ≤ Pr{‖Z‖ > rth}
︸ ︷︷ ︸

atypical noise

+
( rth
reff

)n

︸ ︷︷ ︸

competing codewords

(7.66)

for any rth > 0, where reff = n
√

1/γVn is the ensemble effective radius (7.53).

Observe that if Z is AWGN, and rth is (about) its typical radius (7.27), then

the two terms in the upper bound (7.66) correspond to the probability of an

atypical noise behavior, and the average number of competing codewords, respec-

tively. Thus, (7.66) resembles the bound (7.59) on the average error probability

of a random code with typicality decoding.

Proof Since the NN decoder is at least as good as the threshold decoder (7.60),

Lemma 7.7.1 implies that the average error probability (7.65) is bounded by

15 If ‖Y − λ‖ < rth for a unique λ ∈ Λ, then Y must be closer to λ than to any other lattice
point (but there is no rth for which the converse is true for all y). See Problem 7.11.
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Figure 7.8 The behavior of the two terms in (7.66) and of their sum, for a

two-dimensional MHS ensemble, as a function of the threshold radius rth.

(letting rth = r for convenience of notation)

Pe(L,Z) ≤ Pr{‖Z‖ > r} + ELEZ{NB(Z,r)(Λ)} (7.67)

= Pr{‖Z‖ > r} + EZEL{NB(Z,r)(Λ)} (7.68)

= Pr{‖Z‖ > r} + EL{NB(0,r)(Λ)}, (7.69)

where (7.69) follows since for the MHS ensemble L, the expected number of

non-zero lattice points in a ball depends only on the volume of the ball (see

Theorem 7.5.1), so the dependence on the ball center Z disappears. The lemma

now follows from (7.53). �

7.7.3 Discussion and proof of the main result

We still have a free parameter – the decoding threshold radius rth – that we

can optimize. As Figure 7.8 shows, for a small rth the probability of the noise

exceeding the threshold (the first term in (7.66)) is dominant, while for a large

rth the average number of competing codewords (the second term) is dominant.

For AWGN of variance σ2, we observe an asymptotic “0/1-behavior” as the

dimension n gets large, similar to that in random coding (7.59), around the

point where the ensemble effective radius reff is equal to the typical noise radius

rnoise =
√
nσ2 (7.27). Specifically, if we let rth grow as

√
n, then by the Gaussian
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AEP, the first term of (7.66) goes to

Pr{‖Z‖ > rth} →
{
1, if rth < rnoise
0, if rth > rnoise,

(7.70)

whereas the second term of (7.66) goes to

(rth/reff)
n →

{
0, if rth < reff
∞, if rth > reff .

(7.71)

It follows that for an n-dimensional MHS ensemble Ln, if we keep the effective

radius reff > rnoise, then for any threshold value in the range rnoise < rth < reff ,

both terms in (7.66) vanish, as n → ∞. Hence, if reffn =
√
nσ2(1 + δ), then the

ensemble average error probability (7.65) vanishes: 16

Pe(Ln,Z) → 0, as n → ∞ (7.72)

for any δ > 0.

Theorem 7.7.1 is a simple consequence of this fact.

Proof of Theorem 7.7.1 It follows from (7.72) that, for any target error probabil-

ity Pe > 0, and for reffn = (1 + δ)rnoise for some δ > 0, we have Pe(Ln,Z) < Pe

for sufficiently large n. Let Λn be a lattice in Ln satisfying this error probability

(there must be at least one such lattice, since Pe(Ln,Z) is the ensemble average).

The NVNR of this lattice is better than

µ(Λn, Pe) ≤
[Vnr

n
eff(Λn)]

2/n

σ2

= V 2/n
n n(1 + δ)2

→ 2πe(1 + δ)2. (7.73)

The first part of the theorem now follows because δ can be arbitrarily small.

The proof of the second part of the theorem (7.58) requires a finer character-

ization of the probability that ‖Z‖ > r (the first term in (7.66)), and shall be

omitted; see Ingber et al. [125]. �

7.8 Non-AWGN

For future analysis of dithered lattice coding schemes, we extend Theorem 7.7.1

to noise-matched decoding in the presence of a general additive noise Z. Under

some conditions on the noise distribution, we shall see that the generalized NVNR

µmatched(Λn,Z, Pe) goes to 2πe for some lattice sequence Λn of increasing dimen-

sion.

16 Note that reffn =
√
nσ2 implies that the volume of the lattice cells grows exponentially

with the dimension; see (7.30).



162 Asymptotic goodness

The extension requires modifying the spherical decoding regions in Lem-

mas 7.7.1 and 7.7.2. The spherical region fits well a circularly symmetric joint

p.d.f. as in the case of AWGN, but is inappropriate for a general additive noise.

We consider (again a suboptimal) decoder, which uses lattice shifts of some set

S as decision cells. Note that unlike a lattice partition, these shifts may overlap.

Per reception of the vector y, the decoder output is given by

λ̂S =

{
λ, if y belongs to λ+ S, for a unique λ ∈ Λ

?, otherwise.
(7.74)

The decoding rule (7.74) coincides with ML decoding if S is a noise-matched

Voronoi cell (6.12), and with threshold decoding (7.60) if S is a ball.

Per transmission of the zero lattice point λ = 0, decoding will be correct if and

only if the noise vector Z falls inside the set S and outside any other (non-zero)

lattice shift of the set S. Thus, an error occurs if either Z 6∈ S, or Z ∈ λ+ S
for some non-zero λ ∈ Λ. The second case amounts to λ ∈ Z− S, which can

be written as Nz−S(Λ) ≥ 1. By the symmetry of the lattice and the decoding

rule (7.74), the error probability is invariant of the actual transmitted lattice

point. Thus, a straightforward extension of Lemmas 7.7.1 and 7.7.2 implies the

following bound on the error probability of the S decoder above.

Lemma 7.8.1 (S-bound on error probability) For any measurable set S,
the ML decoding error probability of a lattice constellation Λ in the presence of

additive noise Z, is bounded from above by

Pr{λ̂S 6= λ} ≤ Pr{Z 6∈ S}+ EZ{NZ−S(Λ)}. (7.75)

Furthermore, for an MHS lattice ensemble L with a point density γ,

Pmatched
e (L,Z) ≤ Pr{Z 6∈ S}+ γ · Vol(S) (7.76)

where Pmatched
e (L,Z) denotes the ensemble average of the ML decoding error

probability. (As opposed to Pe(L,Z) in (7.65), which corresponds to NN decod-

ing.)

This lemma can be used to characterize the asymptotic generalized NVNR

(6.28) for a class of noise distributions.

Definition 7.8.1 (Generalized AEP) We say that a sequence of random vec-

tors Zn of growing dimension n (not necessarily coming from a fixed process)

satisfies a generalized AEP, if

(i) as n → ∞,

1

n
h(Zn) → h̄; (7.77)
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(ii) for every ǫ > 0, there exists a sequence of bounded sets S
(n)
ǫ ⊂ R

n, such that

for sufficiently large n,

Pr{Zn ∈ S(n)
ǫ } > 1− ǫ (7.78)

and
∣
∣
∣
∣

1

n
log
(

Vol(S(n)
ǫ )

)

− h̄

∣
∣
∣
∣
< ǫ. (7.79)

Definition 7.8.2 (Semi-spherical noise) If the sets in Definition 7.8.1 are

balls

S(n)
ǫ = B

(

0, (1 + ǫ)
√
nσ2

)

(7.80)

(in which case h̄ = 1
2 log(2πeσ

2)), then we say that the sequence Zn is semi-

spherical.

Intuitively, for a large dimension n, the vector Zn tends to be uniform over the

set S
(n)
0+ . For example, i.i.d. noise vectors satisfy the generalized AEP, in which

case S
(n)
ǫ is the weakly ǫ-typical set (7.24). Another example is a sequence of

sets Sn whose normalized log-volume 1
n log (Vol(Sn)) converges to a limit, and

where each noise vector Zn is exactly uniform over Sn.

An example of semi-spherical noise is the (uniform) dither of a good lat-

tice quantizer Λn (Definition 7.3.2). The ball (7.80) in this case is B(0, (1 +
ǫ)reff(Λn)), i.e., its normalized log-volume is slightly larger than that of the lat-

tice; see Theorem 7.3.2. Another example is the sum of the dither of a good

lattice quantizer and AWGN; see Problem 7.12. Note that, like the dither of

good lattice quantizers, semi-spherical noise tends to AWGN in the divergence

rate sense (Theorem 7.3.3).

Theorem 7.8.1 (Good noise-matched NVNR) For any sequence of noise

vectors of increasing dimension Z1,Z2, . . . satisfying the generalized AEP of Def-

inition 7.8.1, there exists a sequence of lattices Λn such that

lim
n→∞

µmatched(Λn,Zn, Pe) = 2πe for all Pe > 0, (7.81)

where µmatched(Λ,Z, Pe) is the noise-matched NVNR (6.28) of the lattice Λ with

respect to the noise Z.

The lattice sequence Λn in Theorem 7.8.1 depends, in general, on the noise

distribution. Nevertheless, for the class of semi-spherical noises, there exists a

universal lattice sequence Λ∗
n which is good (under NN decoding) for the entire

class.

Theorem 7.8.2 (Euclidean NVNR for semi-spherical noise) There exists

a sequence of lattices Λ∗
n, such that if the noise sequence Zn is semi-spherical,
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then

lim
n→∞

µeuclid(Λ
∗
n,Zn, Pe) = 2πe for all Pe > 0, (7.82)

where µeuclid(Λ,Z, Pe) is the Euclidean mismatched NVNR (6.33).

The proofs of Theorems 7.8.1 and 7.8.2 are simple extensions of the proof of

Theorem 7.7.1, based on Lemma 7.8.1; see Problems 7.13 and 7.14.

Definition 7.8.3 (Good lattice constellation: general noise) A sequence

of lattices satisfying Theorem 7.8.1 or Theorem 7.8.2 is said to be “good for

coding” over an additive-noise channel with general noise (under noise-matched

decoding), or semi-spherical noise (under NN decoding).

7.9 Simultaneous goodness

The Rogers construction shows the existence of lattices which are good for both

covering and quantization (Section 7.3). As we saw in Sections 7.6–7.7, the MHS

ensemble contains lattices which are good for both packing and modulation (in

the presence of AWGN or more general additive noises). Can the same lattice

be good under all four criteria?

The answer is yes, as stated by the next theorem.

Theorem 7.9.1 (Simultaneous goodness) There exists a sequence of lat-

tices of increasing dimension Λn, which satisfies ρcov(Λn) → 1, G(Λn) →
1/2πe, µ(Λn, Pe) → 2πe for all Pe > 0, and lim inf ρpack(Λn) ≥ 1/2, as n → ∞.

Moreover, the same lattice sequence satisfies µeuclid(Λn,Zn, Pe) → 2πe, for any

semi-spherical noise sequence Zn.

Proof The proof is based on the properties of a random ensemble of construc-

tion A lattices (Section 2.5). We show below how such an ensemble mimics the

uniformity property of the MHS ensemble (Theorem 7.5.1), implying goodness

in expectation for packing and modulation (by Theorems 7.6.1 and 7.7.1). More-

over, this ensemble allows for a finer analysis of the point density distribution,

that proves its goodness in expectation also for covering and quantization. (The

proof for covering is not included; see [66].) A random lattice in the ensemble is

good with high probability under each of these criteria, and hence, by the union

bound, under all four criteria. �

7.9.1 Why random construction A?

As we saw in the previous sections, a random lattice ensemble is a useful analyti-

cal tool. Its main characteristic is that the lattice points are uniformly distributed

in space. This is a key property for showing that the lattice ensemble will achieve,
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on the average, as the dimension goes to infinity, all the desired bounds on pack-

ing, covering, quantization (NSM) and modulation (NVNR) efficiencies.

Our derivation so far has been based on the existence of the MHS ensemble,

and its simple uniformity property (Theorem 7.5.1). Making a precise definition

and analysis of this ensemble, however, requires measure theoretic tools, which

are beyond the scope of this book; see [113].

In this section we present an alternative ensemble, which is closer to the way

common lattices are constructed in practice. The ensemble is based on a random-

ized construction A (Section 2.5). A lattice is constructed by lifting a linear q-ary

code into the Euclidean space, and replicating it modulo q. By randomizing the

linear code, the lifted points become uniform over a finite grid in space. Then,

by an appropriate scaling, this grid becomes finer and wider as the alphabet size

q increases. The resulting lattice thus tends to be uniform over the whole space.

The random construction A ensemble also allows an assessment of the sen-

sitivity of the results to the alphabet being discrete and finite (of size q). In

Section 7.9.5 we will see that a binary alphabet is nearly optimal for lattice

quantization. As for modulation, if one is interested in a finite cubic-shaped lat-

tice constellation – as in many digital modulations at low SNR – then a small

alphabet (e.g., q = 2) is sufficient as well. However, an infinite lattice constella-

tion, or a spherically shaped lattice constellation (for a general SNR), requires a

large alphabet. More on that in Chapters 8 and 9.

7.9.2 Random linear code

Consider a q-ary linear code C = {Gw : w ∈ Zk
q} as defined in (2.54), where G is

an n× k matrix, 1 ≤ k < n, with elements in the modulo-q group Zq, and where

the product is defined modulo q. Using the generator matrix representation of

C, we obtain a random ensemble of codes by drawing each element of the matrix

G at random, independently of the other elements and uniformly over Zq. The

resulting ensemble contains qnk equally likely members (not all of which are

distinct).

Unlike a truly random (non-linear) code, the codewords of a random linear

code are not statistically independent. In fact, the entire code is completely

determined by a set of k codewords. 17 In spite of that, if we limit the discussion

to a prime q = p, then the random linear code C has a few useful properties.

Lemma 7.9.1 (Properties for a prime alphabet) If the elements of G are

i.i.d. and uniform over Zp, then we have the following.

17 For q = 2, the codewords are pairwise independent, which is a weak notion of indepen-
dence. See Problem 7.15. For a prime q > 2, however, if c ∈ C is a non-zero codeword, then
2c, 3c, . . . , (q − 1)c are also non-zero codewords that are a function of c; thus they are not
independent in pairs.
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(i) Every codeword c = Gw, for w 6= 0, is uniformly distributed over Zn
p .

18

(ii) The chance of a non-full-rank generator matrix G is smaller than 1/pn−k.

Thus, with probability of at least 1− 1/pn−k the code C has |C| = pk distinct

codewords.

(iii) Let Sp be a set in Zn
p , and let NSp(C) denote the number of non-zero vectors

w, whose codeword c = Gw is in Sp.
19 Then,

E{NSp(C)} =
pk − 1

pn
|Sp|, (7.83)

where E{·} denotes expectation with respect to the random code, and |Sp|
is the size of the set Sp.

Proof By (2.54), any codeword c is a linear combination, modulo q, of the col-

umn vectors of G = [g1| . . . |gk] by the elements of the vector w = (w1, . . . , wk):

c = w1g1 ⊕ . . .⊕ wkgk. (7.84)

Since each element of the matrix G is drawn uniformly over Zp, each column gi

is a random vector which is uniform over Zn
p . This makes the linear combination

above uniform over Zn
p as well, provided at least one wi is non-zero. Property

(ii) follows since G is non-full-rank if and only if there exists a non-zero vector

w such that Gw is equal to zero; due to property (i) the probability of such

a G for a specific w is p−n, hence by the union bound the probability for any

non-zero w in Z
k
p is at most (pk − 1)p−n. Finally, property (iii) follows since by

the codeword uniformity (the first property), the probability (with respect to

the randomness of G) that a non-zero codeword c = Gw falls inside the set Sp

is given by

Pr{c ∈ Sp} =
|Sp|
pn

. (7.85)

Writing

NSp(C) =
∑

w 6=0

1{Gw∈Sp} (7.86)

and noting that the expectation of the event indicator 1{Gw∈Sp} is equal to the

probability (7.85), and that the number of non-zero w vectors is pk − 1, proves

(7.83). �

Note that (7.85) and (7.83) depend on the set Sp only through its cardinality,

similarly to the property (Theorem 7.5.1) of the MHS ensemble.

18 Note that the zero codeword c = 0 can result from a non-zero w only if G is a non-full-rank
matrix.

19 We count every codeword according to how many distinct w vectors generate it. If G has
full rank, then each codeword is generated by a unique w (the relation between w and
c = Gw is one-to-one); hence NSp(C) is the number of distinct non-zero codewords in Sp.
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7.9.3 Random ensemble of lattices

We turn to define an ensemble of construction A lattices, based on the random

linear code C above. Before that, we make the following definition associated

with construction A based lattices.

Definition 7.9.1 (Period and resolution) The period of a lattice Λ is the

smallest number L such that (λ mod L) ∈ Λ, for all λ ∈ Λ. (If L = ∞ then the

lattice is aperiodic.) The lattice resolution is the largest number δ such that Λ is

contained in the scaled cubic lattice δZn.

Clearly, a modulo-q integer lattice ΛC (2.56) has a period (at most) q, and a

resolution (at least) 1. If ΛC is scaled by a scalar a, then its period and resolution

are both scaled by a.

Definition 7.9.2 (The Ln,k,p,γ (Loeliger) ensemble [175]) For a prime p,

let ΛC be a modulo-p lattice (Definition 2.5.2) induced by the random (n, k, p)

linear code C described above. (That is, C is generated by an n× k matrix G,

where n ≥ 2 and 1 ≤ k < n, whose elements are statistically independent and

uniform over Zp.) Then, the Ln,k,p,γ ensemble is a scaled version of the random

lattice ΛC:

Ln,k,p,γ =
1

γ1/n
· 1

p1−k/n
· ΛC . (7.87)

The scaling in (7.87) guarantees that the point density of (almost) all lattices

in the ensemble is γ, independent of p, k and n. Specifically, every lattice Λ in

Ln,k,p,γ satisfies the following properties (see Problem 7.16):

L = period of Λ =
1

γ1/n
· pk/n. (7.88)

If G 6= 0 (which occurs with probability 1− 1/pnk), then

δ = resolution of Λ =
1

γ1/n
· 1

p1−k/n
. (7.89)

And if G has a full rank (an event that occurs with probability of at least

1− 1/pn−k), then the cell volume is

V (Λ) =
periodn

|C| =
1

γ
. (7.90)

In the limit of a large alphabet p (for fixed k, n and γ), the ensemble period

goes to infinity, while its resolution goes to zero. These properties lead us to a

uniform property of the Ln,k,p,γ ensemble, similar to that of the MHS ensemble.

To state this property, we make the following definition.

Definition 7.9.3 (Simple body) A bounded set S in R
n is a simple body, if

its volume can be arbitrarily approximated by the size of its intersection with a
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Ensemble parameters

n lattice dimension
p alphabet size (prime)
k information dimension of underlying code C
γ point density, 1/γ cell volume
L period
δ resolution

fine grid

Vol(S) = lim
δ→0

δ · |S ∩ δZn|. (7.91)

Note that any Jordan measurable set is simple [61]. In particular, any bounded

convex set is simple.

Lemma 7.9.2 (Uniformity of the Ln,k,p,γ ensemble) For every n ≥ 2, and

1 ≤ k < n, the expected number (over the ensemble Ln,k,p,γ) of non-zero lattice

points in a simple body S ∈ Rn satisfies:

ELn,k,p,γ
{NS(Λ)} → γ ·Vol(S), as p → ∞. (7.92)

Specifically, if S is an n-dimensional ball of radius r = t
√
n, then for every p

n

√

ELn,k,p,γ
{NS(Λ)}

γ · Vol(S) = 1± δ/t, (7.93)

where δ = 1/p(1−k/n) is the resolution (7.89).

Proof The first part of the lemma is a simple consequence of the properties of

a random linear code (Lemma 7.9.1), and the definition (7.91) of a simple body.

The second part hinges on more specific properties of a ball. See Problem 7.17.

�

We see that the ensemble Ln,k,p,γ approaches the basic uniformity property

of the MHS ensemble (Theorem 7.5.1), in the limit as the alphabet size p goes

to infinity. Thus, as p → ∞, it also satisfies the implied MHS properties of good

packing (for every n) and modulation (as n also goes to infinity); see Sections 7.6

and 7.7. The effect of limiting the size of the alphabet p is discussed at the end

of the next section.

7.9.4 Goodness for quantization

Proving goodness for quantization (Definition 7.3.2) requires a more refined anal-

ysis. Let U be uniform over a large region in space, and let NB(U,r)(Λ) denote
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the number of non-zero lattice points within a distance r from U. The condition

G(Λn) ≈ 1/2πe (for a large dimension n) means that (i) NB(U,r)(Λn) ≥ 1 with

a high probability for r close to reff(Λn); and (ii) the contribution of the (rare)

event NB(U,r)(Λn) = 0 to the mean-squared quantization error is negligible. The

ensemble uniformity property implies that (see (7.53))

E{NB(U,r)(Λ)} =

(
r

reff

)n

→
{
0, if r < reff
∞, if r > reff

(7.94)

as n → ∞, where the expectation is over bothU and the ensemble, and where reff
is the ensemble effective radius. But this property alone does not imply the two

conditions for quantization goodness; in particular, even if the expected number

of points for r > reff is large, we cannot conclude that the probability that this

number is equal to zero is small.

To prove that the Ln,k,p,γ ensemble is good for quantization, we shall need

stronger conditions than those in Lemma 7.9.2 on the growth of p and k as

a function of the lattice dimension n. As we shall see, the derivation is more

sensitive to the fact that, even for a random generating matrix G, the lattice

points are not statistically independent.

Let

G(Ln,k,p,γ)
∆
= γ2/n ELn,k,p,γ

{σ2(Λ)} (7.95)

denote the expected NSM of the Ln,k,p,γ ensemble (7.87).

Theorem 7.9.2 (Ensemble of good lattice quantizers) If as n → ∞
n

2k
[log(n) +O(1)] < log(p) < o(n), (7.96)

then the Ln,k,p,γ ensemble (7.87) is good for quantization in expectation, i.e.,

G(Ln,k,p,γ) →
1

2πe
. (7.97)

Although the ensemble point density γ is just a scaling parameter that does

not affect the NSM, it is convenient to keep the lattice second moment fixed,

say, σ2(Λ) = D, so γ ≈ [2πeD]−n/2 is exponential with the dimension n (like for

channel coding goodness; see footnote 16).

Condition (7.96) requires that p grows sub-exponentially with n, and that k

grows faster than log(n). For example, k =
√
n, implying p ∼ n

√
n; or k can be

linear, k = rn, in which case p is polynomial p = n1/2r. (Since p must be a prime

number, n grows along a suitable sub-sequence of the integer numbers.) Note

that these conditions are more restrictive than those for modulation goodness

(Lemma 7.9.2); for example, we cannot take p to infinity for a fixed dimension

n, and we cannot take k = 1.

This theorem follows from a sequence of lemmas, whose proof is deferred

to Problem 7.18. To guarantee a worst-case mean-squared quantization error

D, the covering radius rcov(Λ) should be
√
nD. But as we discussed earlier, a
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“softer” probabilistic requirement is sufficient for our purpose: the number of

lattice points N , inside a ball of radius
√
nD located anywhere in space, should

be with high probability greater (but not much greater) than one. For that, the

expected number E{N} should be slightly larger than one, while the standard

deviation
√

Var {N} should be small compared to E{N} (to make N “nearly

deterministic”).

The relations between the probability and standard deviation of N are made

clear by the following lemma.

Lemma 7.9.3 (Chebishev) For a non-negative variable N ,

Pr{N = 0} ≤ Var {N}
E2{N} . (7.98)

Secondly, the condition for a small variance to mean-square ratio will follow

from the following lemma.

Lemma 7.9.4 (Variance of intersection) If the body S satisfies

V (S mod L) = V (S), i.e., S is packed (without overlap) by the lattice LZn (in

particular, if S is contained in [0, L)n), then the expectation and variance (with

respect to the ensemble Ln,k,p,γ (7.87)) of the number of non-zero lattice points

in S, satisfies 20

Var {NS(Λ)} ≤ p ·E{NS(Λ)}. (7.99)

Thirdly, to ensure that the packing condition of Lemma 7.9.4 holds for a body

S which is equal to the “distortion ball” B(x,
√
nD), we require the following

condition for each p, k and n.

Lemma 7.9.5 (Ball in lattice period) If the lattice period L = pk/n/γ1/n is

greater than 2
√
nD, then the ball BD = B(x,

√
nD) is packed without overlap by

the lattice LZn, i.e., V (BD mod L) = V (BD).

Finally, the following property ensures that the cost in distortion does not

explode even in the rare event that the ball BD is empty.

Lemma 7.9.6 (Bounded quantization error) The covering radius of a

period-L construction A lattice Λ is bounded by rcov(Λ) ≤
√
nL/2. Thus for any

point x, the quantization squared error is bounded by 1
n‖x−QΛ(x)‖2 ≤ (L/2)2.

The combination of the four lemmas above proves Theorem 7.9.2; see Prob-

lem 7.18.

A slightly more refined analysis shows that with an appropriate growth of

p and k as a function of n, the ensemble Ln,k,p,γ also proves the existence of

lattices good for covering (Section 7.3) [66]. Since covering implies quantiza-

tion (Section 7.3), it is not surprising that the parameters (pn, kn) for covering

20 As usual, we do not count the zero lattice point and its associated coset LZn, whose location
is not randomized.
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goodness are a subset of those for quantization goodness (Theorem 7.9.2); and

luckily, both are subsets of those for packing and modulation (Lemma 7.9.2).

Hence, for this set of parameters, the ensemble Ln,k,p,γ (7.87) must contain lat-

tices which are simultaneously good under all four goodness criteria, thus proving

Theorem 7.9.1.

7.9.5 Modulo-2 lattices

The requirement that the alphabet size p must go to infinity complicates the

practical implementation of the lattice construction above. On the other hand,

keeping the alphabet size fixed means that the Voronoi cells become “skewed”

as the lattice dimension n grows. This skewness is due to the cubic-periodic

structure of construction A, where the distance to the nearest neighbor in the

Cartesian directions remains constant (at most p), while in the non-Cartesian

directions it typically grows as
√
n.

For modulation in the presence of AWGN ∼ N(0, σ2), a bounded minimum

distance implies that a lattice constellation with a finite alphabet suffers from

a “symbol error rate floor” of SERmin ≈ 2Q((p/2)/σ), implying that the block

error probability goes to 1 as the dimension goes to infinity. Hence, it cannot

approach capacity with an arbitrarily small error probability, as desired. See

Figure 7.9. We shall return to the channel coding goodness of a finite lattice

constellation in Chapter 8.

Yet from a quantization goodness viewpoint, too close neighbors are harmless.

In fact, near-optimum quantization performance can be achieved with a finite,

and even binary, alphabet, i.e., with a modulo-2 lattice. Specifically, suppose an

underlying (n, k) linear binary code C, with a rate R = k/n bit per dimension,

and average mean-squared distortion

D =
1

n

n∑

i=1

E(X̂i −Xi mod 2)2, (7.100)

where the reconstruction letters X̂i are in {0, 1}, and where the mod 2 cor-

responds to the fact that all shifts x̂+ 2Zn of a codeword x̂ are valid code-

words. Note that if the Xi are i.i.d. and uniform over (0, 2), then D is equal

to the lattice second moment σ2(ΛC); and since the lattice cell volume is

V (ΛC) = 2n/2k = 2n(1−R), the NSM is given by (3.21),

G(ΛC) =
1

4
D · 22R. (7.101)

The optimum (R,D) performance is given by the rate-distortion function

(5.31) of a source X ∼ Unif(0, 2), with a two-letter reconstruction alphabet

X̂ = {0, 1}, under the squared-modulo distortion measure (7.100); see, for exam-

ple, [18, 79, 232] for the computation of this rate-distortion function. Thus, the

NSM of a random binary code based quantizer, G(p = 2, R = k/n), is optimized
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1

a√n

Figure 7.9 Truncated balls in the cubic lattice 2Zn. The ball radius increases as
√
n,

while the cube edge stays constant equal to 2. The Voronoi cells of a modulo-2 lattice

have a similar (“skewed”) behavior. Therefore, they can be good for quantization but

not for modulation in the presence of AWGN.

by the (R,D) pair on the rate-distortion curve with the minimal product D · 22R.
Kudryashov and Yurkov [146] showed that a linear binary code based quantizer

(i.e., a modulo-2 lattice quantizer) can achieve the same performance. Further-

more, the optimum operation point is at R ≈ 0.41, and the resulting NSM (7.101)

is only slightly (≈0.1 dB) above the ideal value of 1/2πe.

Summary of Chapter 7

NSM and NVNR of an n-dimensional sphere, as n → ∞

G∗
n → 1

2πe
; µ∗

n(Pe) → 2πe, for 0 < Pe < 1.

Good n-dimensional lattice quantizers, as n → ∞

G(Λn) →
1

2πe
.

Divergence from white Gaussianity If Un ∼ Unif(V0(Λn)) for a good

lattice quantizer Λn, then

1

n
D(Un ; N(0, σ2(Λn))) → 0.
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Tendency to a ball For the Un above,

Pr(Un 6∈ B(0, rn)) → 0, where rn = (1 + ǫ)reff(Λn).

Good lattice constellations (for channel coding)

µ(Λn, Pe) → 2πe, for 0 < Pe < 1;

µeuclid(Λn,Zn, Pe) → 2πe, for semi-spherical noise Zn;

µmatched(Λn,Zn, Pe) → 2πe, for noise satisfying the generalized AEP.

Existence of (simultaneously) good lattices

(i) G(Λn) → 1/2πe for Λn in the Rogers ensemble;

(ii) µ(Λn, Pe) → 2πe for Λn in the Minkowski–Hlawka–Siegel ensemble;

(iii) both (i) and (ii) for a typical Λn in the Ln,k,p,γ ensemble (random

construction A).

Problems

P.7.1 (Ball characterization) Prove the formulas for the characteristics of the

ball (7.11).

P.7.2 (Ball NSM lower bound) Use the Stirling lower bound for n! to

show (7.16).

P.7.3 (Ball NVNR lower bound) Prove that µ∗
1(Pe) ≈ 8 ln(1/Pe) and µ∗

2(Pe) ≈
π ln(1/Pe), for small Pe, using approximations for the chi-square distribution. Use

the uniform lower bound (7.19) to show (7.20) numerically, i.e., µ∗
n(Pe) ≥ 2πe

for all n, for Pe smaller than some fixed threshold.

P.7.4 (Sphere bounds on NSM and NVNR) Elaborate the proof of Theo-

rem 7.1.2.

P.7.5 (Volume of rth norm ball) Let Vn,r denote the volume of a unit ball with

respect to the rth-power norm (i.e., the Euclidean ball corresponds to the case

r = 2). Find an asymptotic approximation for Vn,r for large n (paralleling Vn ≈
(2πe/n)n/2). Extend the volume-wise equivalence of a sphere and a Gaussian to

rth power: use the AEP to show that an i.i.d. distribution of the form Keβx
r

belongs asymptotically to a norm-r ball, and that the AEP volume formula 2nh

(where h is the differential entropy of this distribution) is exponentially the same

as the volume of this ball.
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P.7.6 (Convergence of NSM) Use (7.29) to prove the convergence rate in Corol-

lary 7.2.1.

P.7.7 (Divergence from Gaussianity) Show equivalence of Definitions 6.5.1

and 7.2.3. Show that the divergence from white Gaussianity is larger than the

divergence from a Gaussian distribution having the same first and second order

statistics.

P.7.8 (Projection of a sphere) Prove Theorem 7.2.2 using integration over a cut

of a sphere.

P.7.9 (Minkowski–Hlawka–Siegel ensemble property) Show that the simple form

(7.51) of Theorem 7.5.1 implies the stronger form (7.54). Guidance: use a “fine”

partition of Rn into “small” cells ∆i. Use this partition and the mean-value

theorem to express the function f as f(x) =
∑

i fi · Ii(x), where Ii(x) is the

indicator of the cell ∆i, and fi is some “representative” of the function in this

cell. Write the left-hand side of (7.54) in this form, apply (7.51), and use the

Riemann integral approximation.

P.7.10 Explain the random translation argument discussed in Section 7.4.1.

P.7.11 (Threshold versus NN decoding) Prove that the threshold decoding

bound (Lemma 7.7.1) applies also to NN decoding. That is, the decision region

Ω0 = {y : λ̂(y) = 0} is a subset of the fundamental Voronoi region.

P.7.12 (Semi-spherical noise) Prove that the sum of a semi-spherical noise and

AWGN is a semi-spherical noise.

P.7.13 (Goodness for non-AWGN with noise-matched decoding) Prove Theo-

rem 7.8.1 using the decoding rule (7.74), where the decoding region S is equal

to the generalized typical set S
(n)
ǫ of the noise Zn (Definition 7.8.1).

P.7.14 (Goodness for non-AWGN with Euclidean decoding) Prove Theo-

rem 7.8.2 by verifying that if a lattice has a good NVNR for AWGN (Theo-

rem 7.7.1), then this lattice is a good constellation for any semi-spherical noise

(i.e., the Euclidean mismatched NVNR is close to 2πe).

P.7.15 (Random binary linear code) For q = 2, show that the codewords are

pairwise independent. That is, if w′ 6= w, then Gw′ is statistically independent

of Gw, where G is a random generator matrix.

P.7.16 (Period, resolution and cell volume of the Ln,k,p,γ ensemble) Prove prop-

erties (7.88), (7.89) and (7.90) of the Ln,k,p,γ ensemble.

P.7.17 (Proof of Lemma 7.9.2: uniformity of the Ln,k,p,γ ensemble) Show that

E{NS(ΛC)} → Vol(S), as p → ∞, where E{·} denotes average over the Ln,k,p,γ

ensemble.
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P.7.18 (Goodness for quantization of the Ln,k,p,γ ensemble) Part I: prove Lem-

mas 7.9.3, 7.9.4, 7.9.5, and 7.9.6.

Guidance for Lemma 7.9.4 (variance of intersection). (A) Let Sp = 1/δ[(S ∩
δZn) mod L] denote the intersection of the scaled and folded body S with the

grid, where δ is the resolution (7.89). Show that NS(Λ) = NSp(C) defined in

Lemma 7.9.1. (B) Use Lemma 7.9.1 to calculate the expectation of NS(Λ) over

the ensemble. (C) For w ∈ Z
k
p , let ξw = 1{Gw∈Sp}, as in (7.86). Show that ξw and

ξw′ are independent, unless w = g ·w′ for some g ∈ Zp. (D) Conclude that for

a non-zero w, each indicator ξw depends on at most p− 1 indicators. (E) Now

use (7.86), and write the variance as a double sum over pairwise covariances, to

upper bound the variance in terms of E{NS(Λ)} and establish the lemma.

Part II: prove Theorem 7.9.2 (ensemble of good lattice quantizers).

Guidance: Restrict attention to a ball BD = B(x,
√
nD) for some arbitrary x.

(A) Use Lemma 7.9.6 to show that

E
{

1
n‖x−QΛ(x)‖2

}
≤ D + (L/2)2 · Pr{NBD(Λ) = 0}

for any point x, where both the expectation and the probability are measured

with respect to the ensemble Ln,k,p,γ . (B) Prove Lemma 7.9.5 i.e., find a condition

on L such that Lemma 7.9.4 can be applied with respect to BD. (C) Assuming

this condition holds, apply Lemmas 7.9.2, 7.9.3 and 7.9.4, to show that

Pr{NBD(Λ) = 0} ≤ p · 1

(1− δ√
D
)nγV (BD)

where probability is measured with respect to the ensemble. (D) Show that the

expected ensemble NSM G(Ln,k,p,γ) in (7.95) is upper bounded by γ2/n[D +

(L/2)2 · Pr{NBD(Λ) = 0}]. For that, let X be a generalized dither which is uni-

form over the lattice period [0, L)n (note that this is a sublattice of any lattice

in the ensemble; see Example 4.2.1); write the lattice second moment σ2(Λ) in

the definition of expected ensemble NSM (7.95) in terms of the expected quan-

tization error of this generalized dither; switch the order of expectations; and

apply the bounds above. (E) Let γ = (1 + ǫ)n/V (BD) for some small ǫ > 0. Use

the asymptotic behavior of the volume of an n-dimensional ball to show that

the second term of (D) vanishes if p grows sub-exponentially with n. Then show

that (B) is satisfied for this choice of γ under the condition in the left-hand side

of (7.96). Conclude that G(Ln,k,p,γ) must then go to 1/2πe.

Historical notes

The Minkowski–Hlawka theorem [36, 49, 113] plays an analogous role to Shan-

non’s random coding technique in the case of lattice codes: a non-constructive

tool for proving the existence of “good” lattice codes. Its first role was to show

that lattices can form dense sphere packings: the best packing density in each

dimension n is (1/2)n, i.e., a packing efficiency of at least one-half. As for cov-
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ering, Rogers [229, 230, 231] used a variation of the Minkowski–Hlawka theorem

to prove that there exist lattices for which the proportion of overlap between the

spheres can grow polynomially with the dimension, implying that their covering

efficiency approaches 1.

In the coding literature, averaging bounds were already used to show that

linear and convolutional codes can approach the capacity of a BSC (and more

general symmetric channels) through the 1950s and 1960s; see Elias [65], Gal-

lager’s book [97], and Forney et al. [92]. de Buda [57, 58] used the Minkowski–

Hlawka theorem to show a parallel result for lattices in the Euclidean space, i.e.,

that spherically shaped lattice codes can approach the power-constrained AWGN

channel capacity. (See Linder et al. [163] for a corrected proof of de Buda’s the-

orem.) Poltyrev [221] used the Siegel version of the Minkowski–Hlawka theorem

[36, 113] (called the “MHS ensemble” in this book) to show that high-dimensional

lattice codes can be “good for AWGN channel coding,” i.e., approach the capac-

ity per unit volume (maximum logarithmic density), C∞ = 1
2 log(1/2πeN), of an

unconstrained AWGN channel. Loeliger [175] made an important step towards

implementation, by showing that the same result holds for a random ensemble

of construction A (modulo-p) lattices. While Poltyrev and Loeliger arrived at

capacity through a more elaborate error exponent analysis, Forney et al. [92]

gave a direct existence proof, based on Shannon’s random coding and typicality

arguments, for what they called “sphere-bound achieving codes.” The proof in

this book combines the power of the MHS ensemble with the simplicity of Shan-

non’s typicality arguments. See also the dispersion analysis of Ingber et al. [125].

Spherical bounds for quantization appear in the seminal work of Zador [283];

see an extension to general norm-based distortion measures in Yamada et al.

[277]. The existence of good lattice quantizers can be deduced from Zador’s

high-resolution random-quantization analysis, combined with Gersho’s conjec-

ture [102] (specialized to lattices). Poltyrev pointed out in [289] that good cov-

ering implies good quantization; thus, the NSM of Rogers-good lattices can

approach 1/2πe. Zamir and Feder [289] showed that the dither of good lattice

quantizers converges to AWGN in the divergence rate sense and in the sliding

window ℓ1-distance sense, while Ordentlich and Erez [206] showed that such a

dither lies with high probability inside a ball of a similar volume.

The effect of a finite reconstruction alphabet on the rate-distortion perfor-

mance of continuous sources was analyzed by Finamore and Pearlman [79]; see

also Rose [232]. For lattice-based and trellis-based quantizers, this effect was

examined by Calderbanck, Fishburn and Rabinovich [31, 32], and by Eyuboglu

and Forney [76]. Kudryashov and Yurkov [146] gave a direct existence proof for

quantization goodness (based on Loeliger’s construction A ensemble), and ana-

lyzed the NSM loss of modulo-q lattice quantizers as a function of the alphabet

size q.
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The duality between transmission and quantization is central to Conway and

Sloane [45, 47]. Forney [88] considered this duality from the perspective of lattice

goodness. Erez et al. [66] combined all four goodness criteria above into a single

sequence of lattices that are “good for everything”: packing, covering, channel

coding and quantization. The proof of quantization goodness in Section 7.9 fol-

lows Kudryashov and Yurkov [146] and Ordentlich and Erez [206].



8 Nested lattices

The magic of lattices in modern communication and information theory is their

potential for coordinated operation. Many of the coding techniques which we

shall see from this point on, shaping, binning and alignment, are based on the

interplay between two (or more) lattices. These lattices generate a code for a

single communication link, or a system of codes for a distributed communication

setup.

This short chapter provides the necessary background on nested lattices. It will

be used in Chapter 9 for lattice-shaped modulation over the AWGN channel, and

extended in Chapters 10–12 to multi-terminal setups and joint source-channel

coding.

Imagine a ruler with a coarse scale and a finer scale, numbered on a binary

basis: the coarse scale is numbered by the most significant bits (MSBs), while the

least significant bits (LSBs) identify the fine markings in between; see Figure 8.1.

A set of fine markings between two coarse markings – which share the same MSBs

– can be thought of as a “finite codebook.” The union of all such finite codebooks

gives the whole ruler. An alternative partition of the ruler is into sets of markings

with the same LSBs. Each such coset is a shift of the coarse scale by a point in

the fine scale, and the union over all such cosets gives again the whole ruler.

A similar picture – only in multiple dimensions – is created by a pair of nested

lattices. Construction A (modulo-q lattice), for example, is a special case of nested

lattices, where the coarse lattice is cubic (qZn) (see Section 2.5). The coarse cell

of a general nested lattice pair can shape a codebook consisting of points from

the fine lattice. Or, as we shall see in Chapter 10, the cosets of the coarse lattice

(shifted by fine lattice points) generate a structured binning (“coloring”) scheme

for coding with side information.

The nested lattice structure plays also an important role in coding for a

multi-user system. In a distributed scenario, aligned lattice codes can coordi-

nate signaling and quantization at remote locations. Such a coordination allows

for interference mitigation, distributed compression, parallel relaying, and more.

This chapter brings together the basic definitions and properties of nested

lattices, which will be used in the chapters to come.
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Figure 8.1 A ruler with coarse and fine scales.

8.1 Definition and properties

A pair of n-dimensional lattices (Λ1,Λ2) is called nested if

Λ2 ⊂ Λ1 (8.1)

i.e., Λ2 is a sublattice of Λ1. It follows that each basis vector g2,i of Λ2 is an

integer combination

g2,i =
n∑

k=1

jk,ig1,k

of the basis vectors g1,1, . . . , g1,n of Λ1; hence the corresponding generator matri-

ces G1 and G2 satisfy

G2 = G1 · J, (8.2)

where the nesting matrix J = {jk,i} is an n× n integer matrix whose determinant

is greater than or equal to 1, with equality if and only if the two lattices are

identical (Proposition 2.1.1).1 We call Λ1 the fine lattice, and Λ2 the coarse

lattice. See two two-dimensional examples in Figure 8.2.

As in Chapter 2, we assume that both lattices are non-degenerate, so the

matrices G1, G2 and J are non-singular. By the cell volume formula (Proposi-

tion 2.2.1), the volumes of the cells of Λ1 and Λ2 satisfy

V (Λ2) = det(J) · V (Λ1). (8.3)

Hence, the determinant of the nesting matrix J is invariant of the choice of

generating matrices for Λ1 and Λ2.

Definition 8.1.1 (Nesting ratio) The nesting ratio Γ of Λ2 ⊂ Λ1 is defined

as

Γ(Λ1,Λ2)
∆
= n

√

V (Λ2)

V (Λ1)
= n
√

det(J). (8.4)

The nesting ratio is invariant to scaling of both lattices by the same factor,

Γ(αΛ1, αΛ2) = Γ(Λ1,Λ2) or, more generally, to a linear transformation by the

same (non-singular) matrix: Γ(TΛ1, TΛ2) = Γ(Λ1,Λ2).

1 Due to the symmetry of the lattices, we can always negate a basis vector to make the
determinant non-negative.
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Figure 8.2 Nested two-dimensional lattices. The nesting ratio is 3 in (A) and
√
2 in

(B).

Figure 8.3 Self-similar hexagonal lattices with J = 3 · I , where I is the 2× 2 identity

matrix, i.e., nesting ratio Γ = 3.

Many of the relations between nested lattices are due to their algebraic def-

inition (rather than to their geometry), and hence are similar to properties of

general sub-groups. This similarity is enhanced by the fact that the quotient

group Λ1/Λ2 (i.e., the set of shifts of the coarse lattice by points from the fine

lattice) is finite.

Figure 8.3 shows the special case of self-similar nested lattices, G2 = jG1,

with j being an integer (i.e., a nesting matrix J = jI, with I being the identity
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matrix), in which case2

Λ2 = j · Λ1. (8.5)

For general nested lattices, we can always find generator matrices such that

the nesting matrix is diagonal. This will greatly simplify codeword and coset

enumeration, as we shall see in the next section.

Proposition 8.1.1 (Diagonal nesting) Let Λ2 ⊂ Λ1 be a nested lattice pair.

There exist generator matrices G1 and G2 of Λ1 and Λ2, respectively, such that

G2 = G1 · diag(j1, . . . , jn), (8.6)

where the ji are positive integers. That is, each basis vector of Λ2 is an integer

multiple of a single basis vector of Λ1.

Proof Suppose that G1 and G2 = G1 · J are arbitrary generator matrices of the

lattices Λ1 and Λ2, respectively, where J is a general integer matrix. By the

Smith normal form, J can be decomposed as

J = T1 · diag(j1, . . . , jn) · T2, (8.7)

where T1, T2 are n× n unimodular (unit absolute determinant integer) matrices,

and the ji are positive integers [44, p. 311]. The unimodularity of T1 and T2

implies, by Proposition 2.1.1, that the matrices G′
1 = G1 · T1 and G′

2 = G2 · T−1
2

are also generator matrices of Λ1 and Λ2, respectively. By (8.7), these generator

matrices are related as G′
2 = G′

1 · diag(j1, . . . , jn), which is the desired diagonal

form (8.6). �

Note that the transformation by T1 and T−1
2 corresponds, by Proposition 2.1.1,

to a change of basis before and after the scaling by j1, . . . , jn.
3

8.2 Cosets and Voronoi codebooks

Recall the definition (2.7) of a lattice coset Λx. For λ in the fine lattice Λ1, we

call

Λ2,λ
∆
= λ+ Λ2 (8.8)

a coset of Λ2 relative to Λ1. Due to the nesting relation between the two lattices,

each relative coset Λ2,λ belongs to the fine lattice Λ1.

As in (2.33), the set of relative cosets is denoted by

Λ1/Λ2 = {Λ2,λ : λ ∈ Λ1}, (8.9)

2 The definition of self-similarity in the literature sometimes allows for rotation, i.e., the
coarse lattice is a rotated and scaled version of the fine lattice.

3 When the lattices are not self-similar, diagonal nesting may come at the cost of “bad” (i.e.,
long/far-from-orthogonal) bases; see the notion of basis goodness in Section 2.1.1.
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and is called a quotient group. The quotient group (8.9) relates to the fine lattice

Λ1 like the “continuous” quotient Rn/Λx relates to Rn: its union covers Λ1.

Proposition 8.2.1 (Number of relative cosets) The number of distinct rel-

ative cosets, i.e., the size of the quotient group Λ1/Λ2, is given by

|Λ1/Λ2| =
V (Λ2)

V (Λ1)
= det(J) = Γn, (8.10)

where J is the nesting matrix in (8.2), and Γ is the nesting ratio (8.4).

This result is very plausible, as the point density γ1 = 1/V (Λ1) of the fine

lattice is det(J) times larger than the point density γ2 = 1/V (Λ2) of the coarse

lattice. Yet, to prove Proposition 8.2.1 rigorously (see Corollary 8.2.1 below), we

need a notion paralleling that of a “fundamental cell” for nested lattices. As in

(2.8) and (2.33), we ask for a minimal set of coset representatives S ⊂ Λ1, such

that
⋃

λ∈S

Λ2,λ = Λ1. (8.11)

This question leads us to the notion of a lattice-shaped codebook, and the special

case of a Voronoi codebook.

Definition 8.2.1 (Lattice-shaped (Voronoi) codebook) For a pair of

nested lattices Λ1 ⊂ Λ2, a lattice-shaped codebook is the intersection of the fine

lattice with some fundamental cell P0 = P0(Λ2) of the coarse lattice:

CΛ1,P0 = Λ1 ∩ P0. (8.12)

The fundamental cell P0 is called the “shaping region.” If P0 is the fundamental

Voronoi cell V0(Λ2) of the coarse lattice, then (8.12) is called a Voronoi codebook.4

See Figure 8.4 and the following example.

Example 8.2.1 (Parallelepiped shaping and code enumeration) For the

diagonal form G2 = G1 · diag(j1, . . . , jn) of (8.6), if the shaping region P0 is

the fundamental parallelepiped induced by the coarse generating matrix G2 (see

(2.14)), then the codebook is given by

CΛ1,P0 = {G1 · [k1, . . . , kn]t : for 0 ≤ ki ≤ ji − 1}. (8.13)

The codebook size in this case is clearly

|CΛ1,P0 | = j1 · . . . · jn = det(J). (8.14)

4 Note that by the definition of a fundamental cell, the association of border points to the
codebook (i.e., points of Λ1 which fall on the boundary of P0,2) is such that the cosets
{Λ2,λ1

: λ1 ∈ (Λ1 mod Λ2)} are disjoint. In the case of a Voronoi fundamental cell, this is
guaranteed by systematic breaking of ties in the Voronoi partition; see (2.10).
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Figure 8.4 Lattice-shaped codebooks based on nested hexagonal lattices with two

possible shaping regions: parallelepiped and Voronoi.

Example 8.2.1 would prove Proposition 8.2.1, if we show that CΛ1,P0 is a

complete set of coset representatives for any P0(Λ2). Indeed, as we shall see

below, CΛ1,P0 plays the role of a fundamental cell for partitioning Λ1 with respect

to Λ2.

Proposition 8.2.2 (Partition by a lattice codebook) Each point λ in the

fine lattice Λ1 can be written as a unique sum

λ = λq + λe, λq ∈ Λ2 and λe ∈ CΛ1,P0 . (8.15)

Specifically, λq is the (unique) point in Λ2 such that λ ∈ λq + P0, while λe =

λ modP0 Λ2.

As in (2.12), we can think of λq as the quantization of λ and of λe as the

resulting error, where here the quantizer is QΛ2(·) = {Λ2,P0}. See (3.19) and

(4.2).

Proof Since P0 induces a partition Pλ, λ ∈ Λ2, of R
n, any point x can be written

uniquely as the sum QΛ2(x) + xe, where the quantization point QΛ2(x) is in Λ2,

and the error xe = x modP0 Λ2 is in P0. See (2.12). Thus, we only need to show

that if x is in Λ1, then the error xe must be in Λ1 as well, hence in the codebook

Λ1 ∩ P0. This fact follows from the nesting relation between the two lattices:

every point in Λ2 is also in Λ1, and therefore QΛ2(x) is in Λ1. Thus for x in Λ1,

the error xe is a difference between two vectors in Λ1, so it must be in Λ1 too. �
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Figure 8.5 Relative cosets for the nested hexagonal lattices of Figure 8.3 (there are

nine of these, each denoted by a different symbol). Any shaping region contains one

member from each coset.

It follows that on the one hand, Λ1 is covered without overlap by shifts of the

lattice codebook by the coarse lattice:

Λ1 =

·⋃

λ∈Λ2

(λ+ CΛ1,P0) (8.16)

where
·∪ denotes disjoint union. On the other hand, Λ1 can be decomposed into

relative cosets in Λ1/Λ2 with coset representatives in CΛ1,P0 :

Λ1 =

·⋃

λ∈CΛ1,P0

(λ+ Λ2). (8.17)

It follows from (8.17) that a lattice-shaped codebook is a complete set of coset

representatives for the quotient group Λ1/Λ2, as desired in (8.11); see Figure 8.5.

Therefore we have the following result.

Corollary 8.2.1 (Codebook size) The size of a lattice-shaped codebook is

equal to the number of relative cosets, |CΛ1,P0 | = |Λ1/Λ2|, independent of the

choice of the shaping region P0. Thus (by the parallelepiped-shaping case in

Example 8.2.1), for any shaping region P0,

|CΛ1,P0 | = |Λ1/Λ2| = det(J) = Γn, (8.18)

which proves Proposition 8.2.1.
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Since after a modulo (P0) operation every relative coset collapses into a single

point (which is its intersection with the fundamental cell P0), we also have (see

(2.31)) the following.

Corollary 8.2.2 (Alternative form) The lattice codebook (8.12) can also be

written as

CΛ1,P0 = Λ1 modP0 Λ2. (8.19)

The property that a codebook is a complete set of relative coset representa-

tives, and the definition of a coset leader (2.32), provide an alternative view of

a Voronoi codebook.

Corollary 8.2.3 (Least energy codebook) The Voronoi codebook consists of

the leaders of all relative cosets:

CΛ1,V0 = {Coset Leader (Λ2,λ) : λ ∈ Λ1}. (8.20)

Thus, V0 minimizes the codebook second moment over all possible shaping regions

in (8.12).

Choice of a shaping region What would be a good choice for the codebook

shaping region P0 in Definition 8.2.1, for a given nested lattice pair? Codeword

(and coset) enumeration is clearly easier for a parallelepiped codebook, as in

Example 8.2.1. Other aspects of the coding problem (power constraint, source

distribution), however, favor taking the shortest vector of each relative coset,

hence a Voronoi shaped cell. Luckily, we can enjoy the benefit of both. By the

modulo equivalence of fundamental cells (2.23b), we have

(x modP0 Λ2) modQ0 Λ2 = x modQ0 Λ2 (8.21)

for any fundamental cells P0 and Q0 of Λ2. Thus, it is possible to start with a

parallelepiped cell P0 (for simple codeword enumeration) and, later, determine

the final shape of the codebook by the Voronoi region Q0 = V0(Λ2).

8.3 Nested linear, lattice and trellis codes

Let us consider a few examples for constructing nested codes and nested lattices.

Consider first two binary linear codes C1 and C2 in {0, 1}n, where, as in (2.48),

each code Ci is determined by an (n− ki)× n parity-check matrixHi, for i = 1, 2.

Suppose that k2 < k1 < n, and that the parity-check matrices are related as

H2 =










(n−k1)×n
︷︸︸︷

H1

−−−
∆H
︸︷︷︸

(k1−k2)×n










, (8.22)
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where all the row vectors are linearly independent. Since each row vector of the

parity-check matrix corresponds to one constraint, it follows that each codeword

of C2 satisfies the n− k1 parity checks of C1 plus k1 − k2 additional checks defined

by the matrix ∆H . Hence, C2 must be a sub-code of C1, i.e,

C2 ⊂ C1. (8.23)

The quotient group C1/C2 contains 2k1−k2 different cosets of C2 relative to C1:

|C1/C2| = 2k1−k2 .

Each coset in C1/C2 can be represented by the relative syndrome

∆s = ∆H · c (8.24)

associated with any codeword c in the coset.

The codes C1 and C2 are also defined by their n× ki generator matrices Gi,

i = 1, 2 (2.54). The nesting relation (8.23) implies that these matrices are related

as

G1 = [ G2
︸︷︷︸

n×k2

| ∆G
︸︷︷︸

n×(k1−k2)

]. (8.25)

The nesting relation (8.23) can be extended to q-ary linear codes over the

alphabet Zq = {0, 1, . . . , q − 1}. We thus have C2 ⊂ C1 ⊂ Zn
q , where the rightmost

term is called an extended alphabet.

8.3.1 Nested construction A

By lifting the nested codes above to Rn, using construction A, we generate

nested construction A lattices Λ1 = {x ∈ Rn : x mod q ∈ C1} and Λ2 = {x ∈
Rn : x mod q ∈ C2} (Section 2.5).

Example 8.3.1 (Coded BPSK) Coded binary phase-shift keying (BPSK) con-

sists of binary codewords mapped to ±1 symbols. It amounts to a scaled and

shifted modulo-2 lattice with cubical shaping. Specifically, let

Λ1 = {2x : x mod 2 ∈ C1}

for some n-dimensional linear binary code C1, and Λ2 = 4Zn. Then, the dithered

codebook

C = (u+ Λ1) ∩ V0(Λ2),

with u = [−1, . . . ,−1], is a coded BPSK constellation.

Note that Λ2 in this example can be written as {2x : x mod 2 = 0}; so C2 in

this case is a degenerate code, containing just the all-zero codeword. For a more

general situation, consider the following example.
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Example 8.3.2 (Construction A for E8 ⊂ D8) D8 and E8 are two construc-

tion A lattices in R8. See Example 2.4.2 and Problem 2.12 (where D8 is con-

structed from C1 which is a single parity-check code in Z8
2), and Example 2.5.2

(where E8 is constructed from C2 which is the (8, 4, 4) Hamming code). Since all

vectors in C2 have an even number of 1s, we have C2 ⊂ C1, so E8 ⊂ D8.

Due to the nesting relation (8.23) between the underlying (q-ary) codes, the

fine and coarse lattices satisfy a chain of nesting relations:

qZn ⊂ Λ2 ⊂ Λ1 ⊂ Z
n. (8.26)

Similarly, the quotient sub-groups of relative cosets satisfy the chain

Z
n/Λ1/Λ2/qZ

n, (8.27)

corresponding to the relation Zn
q /C1/C2/0 of the generating linear codes. By

(2.57) and Proposition 8.2.1, for a prime alphabet size p the codebook size (num-

ber of relative cosets) is pk1/pk2 , so the nesting ratio (8.4) is given by

Γ = p(k1−k2)/n. (8.28)

8.3.2 Syndrome dilution scheme

In light of the four-lattice nesting chain (8.26), the fine grid Zn can be viewed as

a “simple” unbounded constellation, which is diluted by C1 (through the parity-

check matrix H1 and construction A) to obtain the fine lattice Λ1, and further

diluted by C2 (through the additional checks of ∆H) to obtain the coarse lattice

Λ2. This viewpoint leads to a simple practical implementation.

The idea is to represent each point z in Zn
q by its associated coarse lattice point

and a syndrome, and then to dilute the set of possible syndromes by an (outer)

linear code. Every syndrome thus corresponds to a coset of the coarse lattice

relative to Z
n; the zero syndrome (which is always included, by the linearity of

the outer code) corresponds to the coarse lattice Λ2 itself, while the union over

all possible (diluted) syndromes gives the fine lattice Λ1.

We explain the scheme for the binary alphabet (q = 2) case; the extension to

any q should be straightforward. We start with the coarse lattice Λ2 = {x ∈ Rn :

x mod 2 ∈ C2}, where C2 is defined by an n× k2 binary generator matrix G2.

Each integer vector z can be written as a sum of its even part 2 · ⌊z/2⌋ and a

reminder part, where the reminder part is defined by a pair of a k2 bit vector

(which together with the even part defines a coarse lattice point λ ∈ Λ2), and

an n− k2 bit syndrome vector s (representing the coset of z relative to Λ2).

To obtain the fine lattice Λ1 = {x ∈ Rn : x mod 2 ∈ C1}, the syndrome bits

are diluted by an outer code C′
1, which is an (n− k2, k1) linear binary code (where

n− k2 > k1). The fine lattice Λ1 thus corresponds to a subset of 2k1 syndromes

of C2; hence there are 2k1 cosets of Λ2 relative to Λ1 (out of the total of 2n−k2

integer points in a fundamental cell of Λ2). See Figure 8.6.
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Figure 8.6 Nested construction A by syndrome dilution.

8.3.3 Mixed nesting dimensions

In many applications of nested lattices, one of the component lattices should be

a good quantizer, while the other should be a good channel code. The target

levels of goodness (and complexity) may, however, differ. Usually, the equivalent

dimension of the channel coding component lattice needs to be much higher

than that of the quantizer component. (We encountered a similar situation in

separating shaping from coding in the VRDM system (Section 6.5.4)).

Consider, for example, the case where the fine lattice acts as a channel code,

while the coarse lattice acts as a quantizer. In this case, the coarse lattice Λ2,n

is a Cartesian product (3.40)

Λ2,n = Λ2,k × · · · × Λ2,k
︸ ︷︷ ︸

m times

(8.29)

of some component lattice Λ2,k, and it is a sublattice of a general (non-product)

n = mk dimensional fine lattice. (Cubical shaping amounts to the case k = 1.)

Thus, while the coding complexity is determined by the full fine lattice dimension

n as before, the shaping complexity (and gain) is determined by the (smaller)

dimension k of the component lattice Λ2,k.

Nesting of trellis codes The application of this idea to trellis codes is sim-

ple. As discussed in Section 2.5.2, an unbounded trellis code can be represented

either in a real-valued filter representation (2.62a), or in a discrete-alphabet rep-

resentation (2.62b). In the former, nesting can be obtained by letting the coarse

filter be an integer scaling of the fine filter. In the latter, nesting is generated by

picking two nested convolutional codes, similarly to nested linear codes (8.22)

and (8.25), and lifting them to Rn via construction A.

8.4 Dithered codebook

Dither has already proven to be useful in randomizing an unbounded lattice code.

Dither is also useful in the context of lattice shaping. In particular, randomizing

the relative position of the nested lattice pair (Λ1,Λ2) enhances the symme-
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U

Figure 8.7 Dithered constellation.

try of a lattice-shaped codebook, a symmetry that is broken by the arbitrary

association of border points (points of Λ1 which fall on the boundary of P0(Λ2)).

Definition 8.4.1 (Dithered codebook) For a given value of the dither vector

u in R
n, a dithered codebook consists of all shifted fine lattice points u+ λ1,

λ1 ∈ Λ1, inside some fundamental cell P0 of the coarse lattice Λ2, i.e.,

Cu,Λ1,P0

∆
= (u+ Λ1) ∩ P0 = (u+ Λ1) mod Λ2, (8.30)

where, as in the definition of a lattice-shaped (Voronoi) codebook (Defini-

tion 8.2.1), mod Λ2 is understood as mod P0.

For u = 0, this reduces to the earlier definition of a lattice codebook (Defini-

tion 8.2.1). See Figure 8.7.

Since a shifted fundamental cell P̃0 = P0 − u is a valid fundamental cell in

Definition 2.2.1 (and since intersecting with a shift is the same as first shifting

backward, then intersecting, then shifting forward), we can rewrite the dithered

codebook (8.30) as a shifted non-dithered codebook:

u+ (Λ1 mod P̃0). (8.31)

It follows that the previous properties of disjoint covering (8.16) and codebook

size (8.18) apply also to the dithered case, now with the fine lattice replaced by

its coset Λ1,u = u+ Λ1. As a corollary, we obtain the following.

Proposition 8.4.1 (Size invariant to dither) The size of the dithered code-

book (8.30) is invariant of the value of the dither vector u, and is given by

|Λ1/Λ2| = det(J) = Γn (8.18), where Γ is the nesting ratio (8.4). Hence, the

coding rate (6.1) is given by

R(Λ1/Λ2) =
1

n
log |codebook| = log Γ (8.32)

bit per dimension. By (6.5), this is the rate-per-unit-volume difference:

R(Λ1/Λ2) = R∞(Λ1)−R∞(Λ2). For construction A nesting, this is the differ-
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ence between the rates of the component linear codes R(Λ1/Λ2) = R(C1)−R(C2),
which is upper bounded by the logarithm of the alphabet size.

Dither distribution What should be the distribution of the dither vector u

in (8.30)? In view of the use of dither in Chapters 4 through 6, there are two

possible randomization schemes for nested lattices: the dither can be uniform

over a fundamental cell of the fine lattice, or uniform over a fundamental cell

of the coarse lattice.5 As we shall see in the next section, the actual choice

depends on which lattice determines the average cost: power in channel coding

or distortion in source coding.

Another interesting observation is that we can use a generalized dither, i.e., a

uniform distribution on any fundamental cell of the coarse lattice, not necessarily

on the shaping region P0 (Section 4.2). This follows from the nested partition

property discussed below.

8.4.1 Nested partition and generalized dither

Recall the parallelepiped codebook

CΛ1,P0 = {G1 · [k1, . . . , kn]t : for 0 ≤ ki ≤ ji − 1}

of Example 8.2.1, where the ji are the elements of the diagonal nesting matrix.

By dividing the ith edge of P0 into ji equal intervals, for i = 1, . . . , n, the paral-

lelepiped shaping region P0 is partitioned into
∏n

i=1 ji = det(J) shifted copies of

P0,1, the fine fundamental parallelepiped induced by the generator matrix G1.

As illustrated in Figure 8.8, this nice nested partition property holds, in fact,

for any fundamental cells – not necessarily parallelepipeds – provided that each

point is reduced modulo Λ2.

Proposition 8.4.2 (Nested partition) For any fundamental cells P0,1 =

P0(Λ1) and P0 = P0(Λ2) of the nested lattices Λ1 and Λ2, respectively,

P0 =
·⋃

λ∈CΛ1,P0

[(λ + P0,1) modP0 Λ2], (8.33)

where the union is disjoint.

Proof See Problem 8.1. �

The nesting of fundamental cells (Proposition 8.4.2) implies a simple way to

generate dither for the fine lattice.

Proposition 8.4.3 (Generalized dither) For nested lattices Λ1 and Λ2, if u

is uniform over a coarse fundamental cell P0, and P0,1 is a fine fundamental

5 When the nesting ratio is not too low, a discrete approximation of a continuous uniform
dither over the coarse lattice cell (see Section 4.1.1) can be achieved using a dither which
is uniform over the fine lattice points inside the codebook.
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Figure 8.8 Nested partitions: (A) parallelepiped cells based on a diagonal form; (B)

Voronoi cells.

cell, then

UmodP0,1Λ1 is uniform over P0,1; (8.34)

i.e., u is modulo-uniform with respect to Λ1. Hence, by Lemma 4.2.1, u is a

generalized dither for Λ1.

Proof It follows from (8.33) that every point x in P0,1 has exactly det(J) points

y in P0 which satisfy ymodP0,1Λ1 = x. This implies (8.34). �

Example 8.4.1 (Dither for nested construction A) Consider the nested

construction A

qZn/Λ2/Λ1/Z
n

described in Section 8.3. Since qZn is nested in both Λ2 and Λ1, it follows from

Proposition 8.4.3 that

u ∼ Unif(CUBE)

is a generalized dither for both Λ1 and Λ2, where CUBE = [0, q)n is the cubic

fundamental cell of the lattice qZn.

8.5 Good nested lattices

The shaping and side-information coding schemes in the following chapters

require good pairs of nested lattices, where one of the lattices (the fine one
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or the coarse one) is good for AWGN channel coding, while the other lattice is

good for quantization under mean-squared distortion. The key to proving the

existence of such lattices is to consider an appropriate ensemble of lattices.

Self-similar nested lattices (8.5), where the coarse lattice is an integer-scaled

version of the fine lattice, can provide arbitrarily good nested lattice pairs for

integer nesting ratios Γ = 2, 3, . . .; this follows from the existence of lattices which

are simultaneously good (Theorem 7.9.1). They cover the coding rates R = log(2),

log(3), log(4), log(5), . . . (see (8.32)), which are relatively dense for the high rates,

but sparse for the low rates (say, in the range 0 < R < 2 bit).

To see the difficulty of constructing good nested lattices at low rates, consider

a nesting ratio between one and two, say Γ ≈
√
2, i.e., a rate of R ≈ 1/2 bit

per dimension. In the diagonal form (8.6), about half of the basis vectors of

both lattices are the same, while half of the coarse basis vectors are twice the

corresponding fine basis vectors. Intuitively, if one of the Voronoi cells tends to

be “spherical,” then the other cell tends to be “ellipsoidal” (although the actual

shape depends also on the angles between the basis vectors).

In Chapter 7 we used the MHS ensemble as a “black box” to show that good

lattices exist. Construction of good nested lattices, however, requires a more

intimate knowledge of the ensemble structure. We develop two approaches below,

both based on a random construction A (Sections 2.5 and 7.9).

8.5.1 Transformed construction A

The first approach is to apply a linear transformation T to a construction A

lattice ΛC ; see Sections 2.4 and 2.5. A construction A lattice satisfies the nesting

relation qZn ⊂ ΛC (Proposition 2.5.1), with a nesting ratio Γ = qk/n, where q

and k are the alphabet size and the information dimension of the underlying

code C, respectively. Thus, the transformed lattice satisfies

qTZn ⊂ TΛC,

with the same nesting ratio, independent of T . Similarly to the Ln,k,p,γ (Loeliger)

ensemble of Section 7.9.3, if the alphabet size is a large prime p, and the underly-

ing code C is random, then, with an appropriate scaling a = a(p, k, n), the points

of aTΛC tend to be uniform over the parallelepiped aT [0, q)n. For a suitable

choice of the transformation T (for example, the generator matrix of a good

quantizer or channel code), we thus obtain a good nested lattice pair, though

with a large nesting ratio pk/n.

8.5.2 Random nested construction A

In the second approach, we extend the random construction A ensemble (Def-

inition 7.9.2), to an ensemble Ln,k1,p,Γ = {Λ2 ⊂ Λ1} of nested construction A
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lattices with an arbitrary fixed nesting ratio Γ; see Section 8.3. The Voronoi

codebooks generated by these nested pairs have a fixed coding rate R = log Γ.

Both fine and coarse components of each member in the ensemble are modulo-

p lattices, given by

Λi = a · ΛCi i = 1, 2, (8.35)

where C2 ⊂ C1 are nested p-ary linear codes. The linear codes C2 and C1 are

generated by n× k2 and n× k1 matrices G2 and G1, respectively, which are

related as G1 = [G2 | ∆G] (8.25). By (8.28), the nesting ratio Γ determines the

coarse code information dimension, as

k2 = k1 − n
log Γ

log p
(8.36)

which is assumed to be a positive integer.6 The scaling coefficient a in (8.35)

guarantees that the point density of the fine lattice is γ1,

a =
1

γ
1/n
1

· 1

p1−k1/n
; (8.37)

see (7.90); hence, the point density of the coarse lattice is γ2 = γ1/Γ
n.

Like in the random construction A (Definition 7.9.2), the elements of G1 are

drawn independently and uniformly over Zp. Thus, by Theorem 7.9.1, for a suit-

able growth of p and k1 with the dimension n (while keeping Γ fixed), both fine

and coarse components of a random nested lattice pair in the ensemble Ln,k1,p,Γ

are simultaneously good for quantization and modulation in the presence of

AWGN.7 By Theorem 7.8.2, this statement is also true for a semi-spherical noise.

We thus conclude the following.

Theorem 8.5.1 (Good nested lattices) For any desired nesting ratio Γ, there

exists a sequence of nested lattices (Λ
(n)
1 ,Λ

(n)
2 ) of increasing dimension n, such

that each component lattice is a good quantizer (Definition 7.3.2) and a good

constellation (Definition 7.7.1), i.e., G(Λ
(i)
n ) → 1/2πe, and µ(Λ

(i)
n , Pe) → 2πe for

all Pe > 0, as n → ∞, for i = 1, 2. Moreover, µeuclid(Λ
(i)
n ,Zn, Pe) → 2πe for any

semi-spherical noise sequence Zn, for i = 1, 2 (Definition 7.8.3).

8.5.3 Nesting with a fixed alphabet

In Section 7.9.5 we discussed the asymptotic near optimality of construction A

lattice quantizers with a fixed alphabet, that is, a lattice sequence where the

alphabet p is not growing with the dimension n. In particular, random modulo-2

6 For large p and n, a slight modification of Γ will round k2 to an integer.
7 Note that if k1 = rn is linear in n, hence log(p) is logarithmic in n (see (7.96) and the

discussion immediately after), then ∆k = k1 − k2 grows sub-linear with n, implying also
that k2 ≈ rn.
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lattice quantizers (i.e., p = 2) are nearly optimal, provided that the coding rate

R = k/n is in the neighborhood of R ≈ 0.4 [146].

As for goodness for modulation in the presence of AWGN, the error-floor phe-

nomenon of unbounded modulo-p lattices disappears in the case of bounded

(lattice-shaped) codebooks. The reason is that, as we shall see in the next

chapter, we do not count transitions inside the coarse cubic coset c+ pZn as

error events.8 Under this less restrictive decoding criterion, modulo-2 lattices

are asymptotically nearly optimal also as AWGN channel codes. Thus, for rates

up to about 0.4 bit per dimension, there exist asymptotically simultaneously

good nested modulo-2 lattice codes.

Summary of Chapter 8

Nested lattices Λ(G2) is a sublattice of Λ(G1) if

G2 = J ·G1,

for some integer matrix J .

Lattice-shaped codebook For a shaping region equal to a fundamental

cell P0(Λ2) of the coarse lattice,

CΛ1,P0(Λ2) = Λ1 ∩ P0(Λ2) = Λ1 mod P0Λ2.

Dithered lattice-shaped codebook

CΛ1,P0(Λ2),u = [u+ Λ1] ∩ P0(Λ2) = [u+ Λ1] mod P0Λ2.

Voronoi codebook The case where the shaping region is V0(Λ2).

Codebook size For any shaping region P0(Λ2) and dither u,

|CΛ1,P0(Λ2),u| = |Λ1/Λ2| = | det(J)|.

Coding rate

R(Λ1/Λ2) =
1

n
log2 |Λ1/Λ2| = log2(Γ) bit per dimension,

where Γ = |Λ1/Λ2|1/n is the nesting ratio.

Good nested lattices There exists a sequence of nested lattice pairs

{Λ(n)
2 ⊂ Λ

(n)
1 } of a fixed nesting ratio Γ, such that Λ

(n)
2 and Λ

(n)
1 are asymp-

totically good for both quantization and channel coding.

8 In Voronoi modulation, each message is represented by a whole coset. See Chapter 9.
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Problems

P.8.1 (Nested partition; proof of Proposition 8.4.2) Show that for any funda-

mental cells P0,1 and P0 of the nested lattices Λ1 and Λ2, respectively,

P0 =

·⋃

λ∈CΛ1,P0

[(λ+ P0,1) modP0 Λ2]

and that the union is disjoint. Guidance: the proof is based on two observations.

(1) Even without a modulo-Λ2 reduction, the union above is a valid fundamental

cell of Λ2. (2) Reducing one fundamental cell modulo another fundamental cell

is a one-to-one mapping.

P.8.2 (Nested Voronoi cells) Show that if Λ2 is a sublattice of Λ1, then their

Euclidean fundamental Voronoi cells V0,2 and V0,1 satisfy

V0,1 ⊂ V0,2

for some systematic association of border points. Conclude that for a nested

construction A with alphabet size q:

CUBE ⊂ V0,1 ⊂ V0,2 ⊂ qCUBE, (8.38)

where CUBE = [−1/2, 1/2)n is the fundamental Voronoi cell of Zn, and

qCUBE = [−q/2, q/2)n is the fundamental Voronoi cell of qZn.

P.8.3 (Properties of coset representatives set) Show that a lattice-shaped code-

book CΛ1,P0 is a minimal subset S of Λ1 satisfying (8.11), and a maximal subset

S of Λ1 such that for all λ1, λ
′
1 in S the difference vector λ1 − λ′

1 is not in Λ2.

Vice versa, any minimal/maximal subset of Λ1 satisfying these properties is a

lattice-shaped codebook with respect to some fundamental cell of Λ2. Guidance:

use the same reasoning as in Lemmas 2.3.2 and 2.3.3.

Historical notes

Quotient groups and chains of nested linear codes are very common in the coding

literature [23]. In coded modulation, Ungerboeck’s set-partition scheme [259]

generates a simple nesting of an uncoded (cubic) constellation in a coded one.

Multi-level codes extend this idea to higher levels of nesting in the Euclidean

space; see Imai and Hirakawa [123], Forney [83] and Calderbank [29]. In the

lattice framework, construction D generates a chain of nested lattices; see [49]

and [84].

Voronoi codes were introduced by Conway and Sloane [47]; they showed that

a lattice codebook can be shaped by the Voronoi region of an integer multiple

of the same lattice (i.e., a self-similar sublattice). Forney [85] extended this idea

to general nesting configurations, and analyzed the performance in the high rate
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(high SNR) regime; see also Forney and Wei [94]. Erez and Zamir [71] introduced

randomized (dithered) Voronoi codes for general rates and SNR.

The existence of good construction A lattices (cubic coarse, general fine) fol-

lows from Loeliger’s ensemble [175]. The existence of good pairs of nested lattice

codes (for the Wyner–Ziv problem) is addressed by Zamir and Shamai [292]; see

also Servetto [235]. Erez and Zamir [71] proposed the idea of generating good

nested lattices (for dirty-paper coding) by transforming a random construction

A; see also [66, 293], and Krithivasan and Pradhan [142]. In Section 8.5 we follow

Ordentlich and Erez [206], who gave a direct proof for the existence of good pairs

(under both goodness measures), based on first nesting linear codes over a prime

alphabet and then lifting them to the Euclidean space.
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As information theory shows, Gaussian sources and channels should be encoded

using “Gaussian codebooks.” A Gaussian variable maximizes the entropy for

a given second moment. For source coding, this implies that a Gaussian code-

book optimizes the volume-distortion and volume-overload trade-offs; for channel

coding, it optimizes the volume-error and volume-power trade-offs. A Gaussian

codebook has a Gaussian – or equivalently, spherical – shape, with roughly evenly

spaced points as codewords. Can a lattice code replace a Gaussian codebook?

In variable-rate (entropy-coded) quantization (Chapter 5) and in non-uniform

signaling (Chapter 6), the codebook is the whole (unbounded) lattice, and is

not truncated to fit the source variance or the transmission power constraint.

The lack of shaping is compensated for by variable-rate coding, which amounts

to probabilistic (“soft”) shaping: remote lattice points are rarely used so their

effect on the average coding rate and power is negligible. Fixed-rate (or pick-

amplitude constrained) coding, however, requires “hard” shaping, i.e., a bounded

codebook.

In this chapter we examine the performance of a codebook (or constellation)

whose codewords and shaping region both have a lattice structure, as described

in Chapter 8. We saw earlier in Chapter 7 that for a large lattice dimension, the

fundamental Voronoi region of a good lattice can approximate a ball; or equiva-

lently, a uniform distribution on this region can approximate a white-Gaussian

distribution. A Voronoi codebook can thus serve as a structured alternative to

the Gaussian codebooks of information theory.

Preview

Let us first describe informally how to design nested lattices for Voronoi quanti-

zation (source coding) and modulation (channel coding); see Figure 9.1.

Voronoi quantization As for an unbounded quantizer, the fine lattice has to

be a “good quantizer”; it should provide a good compromise between lattice

point density and average MSE, meaning a small NSM (3.21). To compress the

source at the lowest rate, the coarse lattice, on the other hand, should minimize

the cell volume V (Λ2) while keeping the overload probability (the probability a
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For Source Coding: low Volume per

overload probability = low NVNR

For Channel Coding: high Volume per 

power constraint = low NSM

For Source Coding: high Volume per

MSE constraint = low NSM

For Channel Coding: low Volume per 

error probability = low NVNR

{

{

Shaping Region

Fine Lattice

Figure 9.1 Voronoi codes for source and channel coding.

source vector falls outside the shaping region) low. The coarse lattice should thus

act like a “good channel code,” meaning a small NVNR (3.37). Translating cell

volumes into second moments, the resulting coding rate (8.32) can be written

roughly as

R(Λ1/Λ2) =
1

n
log

(
V (Λ2)

V (Λ1)

)

≈ 1

2
log

(
source variance

quadratic distortion

)

(9.1)

bit per sample, up to a loss term depending on the NSM of the fine lattice and

the NVNR of the coarse lattice.

Voronoi modulation In the channel coding counterpart, the roles of the two

lattices are reversed. The fine lattice now has to be a “good channel code,” i.e.,

dense yet noise resistant, as in the case of an infinite constellation. Whereas for

maximizing the coding rate, the coarse lattice should maximize the cell volume

V (Λ2) while keeping the average transmit power constraint. Thus, the coarse

lattice now acts as a “good quantizer,” and the resulting coding rate is roughly

R(Λ1/Λ2) =
1

n
log

(
V (Λ2)

V (Λ1)

)

≈ 1

2
log

(
transmit power

noise variance

)

(9.2)

bit per channel use, up to a loss term depending on the NVNR of the fine lattice

and the NSM of the coarse lattice.

This characterization is limited, however, because it relies on high SNR

approximations. It also does not tell us much about the advantage of the lattice

structure, and how it affects the decoding complexity. Sections 9.1–9.3 describe

lattice encoding and decoding in detail, and analyze the gap to capacity in the

high SNR regime.

In the low SNR regime, the noise plays a dominant role, and “Gaussian”

shaping is, in fact, not necessary to approach the optimum performance. The
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medium range of SNR is still interesting to explore, and we study the effect of

three elements.

r Dither, which symmetrizes the error probability, power and distortion, and

simplifies the analysis.
r Lattice encoding and decoding, which decouple coding and shaping, hence

reduce the complexity of quantization and demodulation.
r Wiener estimation, which enhances the system performance within the lat-

tice encoding and decoding framework.

Sections 9.4–9.6 reveal the role of these three elements in approaching Shan-

non’s capacity when the SNR is not necessarily high. Section 9.10 shows how,

with the same approach, Voronoi quantization can approach the quadratic-

Gaussian rate-distortion function for any resolution.

9.1 Voronoi modulation

Recall the AWGN channel Y = X+ Z, (6.6), under the power constraint
1
nE{‖X‖2} ≤ P, (6.16). A Voronoi modulation system is based on a pair of nested

lattices Λ2 ⊂ Λ1, where the coarse lattice Λ2 is used for shaping (under the power

constraint P ) while the fine lattice Λ1 is used for coding (against the noise Z).

9.1.1 Encoding

The encoding part of the system consists of a mapping from messages to repre-

sentation vectors, dithering, and shaping, as illustrated in Figure 9.2.

1. Message representation Each messagem = 1, . . . ,M amounts to a relative

coset in the quotient group (8.9) Λ1/Λ2. Message m is represented by its coset

representative vm in some (arbitrary) fundamental cell P0 of Λ2, i.e., in the

lattice codebook

CΛ1,P0 = Λ1 ∩ P0 = {v1, . . . ,vM} (9.3)

called the enumeration codebook. A good choice for P0 – which simplifies the

mapping – is a parallelepiped fundamental cell (Example 8.2.1). The coding

rate R is thus given by (8.32),

R =
1

n
logM =

1

n
log |Λ1/Λ2| = log Γ. (9.4)

2. Dithering The encoder then adds a vector u to the message representative

vector vm. We shall assume that u is a realization of a random dither U,

which is uniform over P0 (or a generalized dither as in Section 4.2 and Propo-

sition 8.4.3), independent of the transmitted message vm, and known to both

the transmitter (encoder) and receiver (decoder).
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Mapping

U

{1,...,M }
Vm Vm + U

XmodV0
 Λ2+

Figure 9.2 Voronoi modulation: mapping to coset representative, dithering, and

shaping.

3. Shaping Finally, the encoder reduces the sum vm + u modulo the coarse

fundamental (Euclidean) Voronoi cell V0 = V0(Λ2), so the channel input is

the least energy vector in the coarse coset vm + u+ Λ2:

x(vm,u) = (vm + u) modV0 Λ2 (9.5a)

= argmin
x∈vm+u+Λ2

‖x‖. (9.5b)

The set of possible output vectors x(v1,u), . . . ,x(vM ,u) is thus a dithered

Voronoi codebook (Definition 8.4.1). As discussed in Corollary 8.2.3, the

choice of V0 in (9.5a) minimizes the average second moment – the trans-

mitted power – of the dithered codebook over all possible shaping regions in

(9.5a).

For a random messageW , the encoder output X = x(vW ,u) becomes random.

The actual distribution of X, and in particular its power, depends on the chance

of selecting each message and on the value of the dither u. Nevertheless, for

a random dither U, the “crypto” lemma guarantees a strong property of the

encoder output (4.10): X is uniformly distributed over V0 for any message W =

m. In particular, the output power is equal to the second moment of the coarse

lattice.

Proposition 9.1.1 (Lattice codebook power) For a uniform (or modulo-

uniform) dither with respect to Λ2 (Lemma 4.2.1) and any message W = m, the

channel input power (averaged over the dither U) is equal to the second moment

of the coarse lattice:

E{‖x(vm,U)‖2} = σ2(Λ2). (9.6)

Thus, the average transmit power E‖X‖2 is P = σ2(Λ2), independent of the

distribution of the message W .

Another benefit of the uniform distribution of the dithered codeword, is that it

symmetrizes the mapping from messages to codewords. In particular, the decod-

ing error probability (averaged over the dither) is identical for all the messages.
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g(⋅)

x(u,v1),...,x(u,vM)

+

–U
Λ1

min ⋅2

min ⋅2
ML

LD

v̂LD

v̂ML

Y

mod Λ2

mod Λ2

Y
∼

X̂

Figure 9.3 Voronoi demodulation: estimation, undithering, fine-lattice decoding and

mapping to coset. The upper branch shows ML decoding, for comparison. The dashed

line shows the generation of the decision vector Ỹ see (9.11f ).

9.1.2 Decoding

We turn to the decoding of the message W = m from the received vector Y =

x(vm,u) + Z, given a (specific) dither vector U = u. We shall consider three

possible decoders: a maximum likelihood decoder, a lattice decoder (combined

with an estimator), and a coset decoder. Figure 9.3 shows a block diagram of

the first two decoders.

Maximum likelihood (ML) decoding
The ML decoder minimizes the average error probability

Pe =
1

M

M∑

m=1

Pr{v̂ 6= vm | message m was transmitted} (9.7)

by maximizing the probability of the noise PZ(Y − x) over all input vectors x

in (9.5a); see the discussion near (6.7). For AWGN, this amounts to the dithered

lattice point closest to y:

v̂ML = argmin
v1,...,vM

‖Y − x(vm,u)‖ . (9.8)
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LD1

LD2

Y

(A) (B)

ML

Y

Figure 9.4 ML decoding versus lattice decoding. The former projects received vectors

outside the shaping region into the codebook. The latter first quantizes the received

vector to the nearest fine lattice point (step LD1), and then reduces the result

modulo Λ2 (step LD2).

The ML decoder is optimal. Under ML decoding, the role of the (deter-

ministic) dither u is merely to minimize the average transmit power P (u) =

1/M
∑M

m=1 ‖x(vm,u)‖2, while its effect on the error probability is small. 1

ML decoding may, however, be complex. It suffers from the fact that the

minimization in (9.8) must take into account the shaping region V0 = V0(Λ2).

Thus, unless Λ2 is a simple cubic lattice (where the shaping constraints factor

across dimensions), ML decoding of a Voronoi constellation is complicated by

the joint structure of the two nested lattices.

Another weakness of ML decoding is that the error probability and the search

complexity (for a given dither value) vary among the codewords. Codewords near

the edge of the shaping region have fewer neighbors compared to the “inner”

codewords, hence their decoding error probability and search complexity are

usually smaller.

Estimation and lattice decoding
Lattice decoding is a simpler approach, which ignores the “complicated” shaping

region V0(Λ2). In this approach, after removing the dither, the output is quan-

tized to the fine lattice Λ1 (for AWGN the quantization is to the nearest lattice

1 For coded BPSK, for example, the ML decoding error probability is invariant of the dither
value u, while the power is minimized by u = [1, . . . , 1] (a symmetric constellation); see
Example 8.3.1.
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point) and the associated relative coset is identified. Figure 9.4 illustrates this

operation.

Since this is, in general, a suboptimal decoder, we can enhance its performance

by pre-processing the channel output – with an appropriate estimator – prior to

decoding.

Definition 9.1.1 (Euclidean lattice decoder) Estimation and Euclidean lat-

tice decoding of the message vm is defined by

v̂LD =
(

argmin
λ∈Λ1

‖X̂− u− λ‖
)

mod Λ2, (9.9a)

where the estimator

X̂ = g(Y) (9.9b)

is some function of the channel output Y, and where the modulo-Λ2 operation

maps the minimizing λ ∈ Λ1 to its coset representative in the enumeration code-

book (9.3). 2

In contrast to the ML decoder (9.8), the complexity of the lattice decoder (9.9a)

is identical for all messages, and is independent of the dither value. Furthermore,

the complexity of the entire system is now more balanced between the encoder

and the decoder: while the encoder performs an NN search with respect to the

coarse lattice (in the Voronoi shaping stage (9.5a)), the decoder performs an

NN search to find the nearest fine lattice point, but only a “simple” modulo-Λ2

operation to identify the relative coset.

We shall discuss later the choice of the estimator function g(·) and the role of

dither randomness at the decoder.

Coset decoding
The decoding rule (9.9a) maps all points v + λ′ in the relative coset v + Λ2 to

the same message v. It can thus be improved by searching for the most likely

relative coset, i.e., the coset λ+ Λ2 which maximizes the sum (over λ′ ∈ Λ2) of

the likelihoods of its points (λ+ λ′). For X̂ = Y, and AWGN of variance N , the

likelihood of a point is inverse proportional to the exponent of its square distance

from the received vector normalized by 2N . Hence, the coset decoder is defined

as

v̂CD =

(

argmax
λ∈CΛ1,P0

∑

λ′∈Λ2

exp

{

−‖X̂− u− λ− λ′‖2
2N

})

mod Λ2, (9.10)

2 The subtraction of u prior to quantizing to Λ1 amounts to decoding to the shifted lat-
tice constellation u+Λ1. The decoded fine lattice point λ may, however, be outside the
codebook (even if the enumeration and the shaping cells are identical), hence the mod Λ2

operation is necessary.
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where again the mod Λ2 operation is with respect to the enumeration codebook

CΛ1,P0 (9.3). Like the lattice decoder, this decoder ignores the “complicated”

shaping region V0.

The maximization in (9.10) is equivalent to ML decoding (6.11) of the fine

lattice Λ1, with respect to a folded (modulo-Λ2) AWGN distribution. Hence, it

can be rewritten as a noise-matched lattice decoder QΛ1(·).
The coset decoder (9.10) is better than the lattice decoder, and slightly more

complicated (due to the summation in (9.10)). Nevertheless, as we shall see, its

advantage is negligible for high SNR or a large lattice dimension.

9.1.3 Full system: pre-emphasis, decision vector and modulo loss

We can summarize the lattice encoding and decoding scheme (9.5), (9.9), for a

given message representative vm and dither vector u, by

Encoding x = (vm + u) modV0 Λ2 (9.11a)

Decoding X̂ = g(Y) (9.11b)

v̂ = QΛ1(X̂− u) mod Λ2, (9.11c)

where we make the following remarks.

1. Modulo operations The encoder modulo operation (9.11a) is taken with

respect to the (Euclidean) Voronoi cell V0(Λ2), while the decoder modulo

operation (9.11c) can be taken with respect to any “enumeration” cell P0(Λ2).

2. Lattice decoding cells The fine lattice quantizer QΛ1(·) may correspond

to a nearest-neighbor search as in (9.9a), a coset decoder as in (9.10), or a

noise-matched lattice decoder (6.11), matched to the true distribution of the

estimation error X̂−X modulo the coarse lattice.

3. Pre-emphasis The encoding stage can be modified to

x = f([vm + u] modV0 Λ2); (9.11d)

i.e., a non-linear mapping f(·) is applied before the transmission. The role of

such a pre-emphasis mapping is to match the input x to a non-additive-noise

channel; see Problem 9.4 and footnote 11.

4. Decision vector For future analysis, it is useful to rewrite the lattice decoder

(9.11c) in terms of a decision vector Ỹ (see Problem 9.1):

v̂ = QΛ1(Ỹ) mod Λ2, (9.11e)

where

Ỹ = [X̂− u] mod Λ2. (9.11f)

We see that in effect, both the lattice decoder (9.9a) and coset decoder (9.10)

amount to first “folding” the estimated vector into the coarse fundamental cell –

the mapping from Y to Ỹ – and only then making a decision. Since the mapping
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Figure 9.5 Voronoi modulation based on a nested construction A, with ML, lattice and

coset decoders. The k1 input bits carry the message W . The n− k2 redundant bits

define a syndrome of C2. Shaping amounts to finding k2 “control” bits, that select the

least-energy transmit vector λ+ u in the coset corresponding to the message

syndrome.

from Y to Ỹ is many-to-one, it incurs some loss of information. We shall discuss

this modulo loss of lattice decoding later.

9.2 Syndrome dilution scheme

The simplest Voronoi constellation has a cubic shape, for example, Λ2 = 4Zn for

coded BPSK (Example 8.3.1). In terms of construction A, this constellation can

be defined easily using an n× k generator matrix of some underlying linear code:

{x = Gw : w ∈ Zk
2}, see (2.54). To define more efficient (and complex) shaping

regions, however, we shall use the syndrome representation of some underlying

shaping linear code.

Recall the nesting of construction A lattices by syndrome dilution (Sec-

tion 8.3). Each integer point z in Zn is defined by three elements: its even part

⌊z/2⌋, and a k2 bit vector associated with a codeword in C2 (defining together

a coarse lattice point λ ∈ Λ2), and an n− k2 bit syndrome vector s (represent-

ing the coset of z relative to Λ2). The n− k2 syndrome bits are diluted by a

(n− k2, k1) linear code C′
1 (where n− k2 > k1), which defines the fine lattice Λ1,

so that 2Zn ⊂ Λ2 ⊂ Λ1 ⊂ Z
n.
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As illustrated in Figure 9.5, the Voronoi modulator sends information over

the k1 information bits of C′
1. These bits select a fine lattice point x′ = f(bk1),

inside some enumeration cell of Λ2. Shaping of the dithered vector x′ + u is done

by finding the leader (i.e., the least-energy vector) of the coset Λ2 + x′ + u; this

leader is represented by the k2 bits of the corresponding coarse codeword in C2.
The process above defines a set of 2k1 possible transmitted vectors x (depend-

ing on the dither u) that lies inside the fundamental Voronoi region of Λ2. An

ML decoder (9.8) runs over all elements in this constrained set, and finds the

nearest vector to the received Y. A lattice decoder (9.9a) runs over all pairs of

k2 bits (defining a coarse lattice point) and k1 bits (defining a valid syndrome

vector), and finds the nearest fine lattice point to Y. A coset decoder (9.10) runs

over all k1 bits, and for each associated syndrome it sums the likelihoods of its

coset (by running over all vectors of k2 bits).

In all cases, the information is decoded as the k1 information bits of the

selected point or coset.

Example 9.2.1 (Trellis shaping [87]) A well-known practical coding and

shaping technique, due to Forney, uses trellis codes in place of the two linear

codes C′
1 and C2. The encoder then uses a Viterbi search algorithm [82] to find

the least-energy sequence within the message coset.

Note that unlike lattice decoding, coset decoding can provide “soft informa-

tion,” which is essential for iterative decoding schemes; see [69]. Its advantage

becomes more transparent for a modulo-2 (or any finite alphabet) lattice, because

the distances between points in the cubic (sub-)cosets are small.

9.3 The high SNR case

The case of a trivial estimator in (9.9b)

X̂ = Y (9.12)

is simple to analyze. We shall see that under high SNR conditions, the cor-

responding decision vector (9.11f) is a sufficient statistic for optimal decoding

(Section 9.3.4). Moreover, for a sequence of good nested lattices, a trivial estima-

tor followed by a lattice decoder achieves the high SNR capacity of the AWGN

channel (Section 9.3.5), as well as of more general additive-noise channels (Sec-

tion 9.3.6).

9.3.1 Lattice decoding with no estimation

When X̂ = Y, the decision vector (9.11f) becomes

Ỹ = [Y − u] mod Λ2. (9.13)
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The mapping from the message representative vm to Ỹ then obeys the following

simple relation.

Lemma 9.3.1 (Equivalent mod Λ channel: non-estimation case) For an

additive-noise channel Y = x+ Z, the channel from the message vm ∈ CΛ1,P0

to the decision vector Ỹ in (9.13) is given by

Ỹ = [vm + Z] mod Λ2, (9.14)

where mod Λ2 is with respect to P0, as in (9.13).

Note that the equivalent channel (9.14) is independent of the dither vector u.

Proof By the distributive law of the modulo operation (2.22b) (see also (8.21)),

Ỹ = [(vm + u) mod Λ2 + Z− u] mod Λ2 (9.15)

= [vm + u+ Z− u] mod Λ2 (9.16)

= [vm + Z] mod Λ2. (9.17)

�

Since the relation between the message representative vm and the decision

vector Ỹ is independent of the dither vector, no further loss of information is

incurred (beyond that already incurred by the modulo operation in (9.13)) if the

decoder ignores the dither value when decoding vm from Ỹ.

The following theorem makes precise the relation in (9.2) between the coding

rate R(Λ1/Λ2) (equivalently, nesting ratio Γ) and SNR = P/N , by taking into

account the NSM and NVNR of the two lattices.

Theorem 9.3.1 (Minimum required SNR) Assume Voronoi modulation

with a uniform (or modulo-uniform) dither with respect to Λ2, and lattice decod-

ing with the trivial estimator (9.12), in the presence of AWGN of variance N .

Then, a lattice decoding error probability Pe = Pr{v̂ 6= vm} is achievable with a

signal to noise ratio

SNR = G(Λ2) · µ(Λ1, Pe) · Γ2 (9.18)

or higher, where G(Λ2) and µ(Λ1, Pe) are the NSM (3.21) and the NVNR (3.37)

of the coarse and fine lattices, respectively, and Γ = |Λ1/Λ2|1/n is their nesting

ratio (8.4). This condition becomes necessary in the limit of a large Γ (equiva-

lently, large SNR or small Pe).

The only role of random dither in this theorem is to ensure that the transmis-

sion power is P = σ2(Λ2). This effect becomes insignificant in the limit of high

SNR, in which case (9.18) holds for any value of the dither; see the discussion in

Section 9.9.

Proof In view of the equivalent mod Λ channel of Lemma 9.3.1, the lattice

decoder (9.11e) is correct whenever the noise vector Z falls in the Voronoi cell
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V0(Λ1) of the fine lattice, or in one of its shifts by the coarse lattice Λ2.
3 Ignoring

the latter cases, the lattice decoding error probability is thus upper bounded by

Pe = Pr{Z 6∈ V0(Λ1) mod Λ2} (9.19a)

≤ Pr{Z 6∈ V0(Λ1)} (9.19b)

= Pe(Λ1, N) (9.19c)

∆
= P̃e (9.19d)

(Definition 3.3.2), where the notation {a ∈ B mod Λ} is short for {[a mod Λ] ∈
[B mod Λ]}. By the definition of the NVNR, the cell volume of the fine lattice is

V (Λ1) = [µ(Λ1, P̃e) ·N ]n/2 (or larger). By the definition of the NSM, and using

the second-moment to power-constraint relation (9.6), the volume of the coarse

cell is V (Λ2) = [P/G(Λ2)]
n/2 (or smaller). Thus, at the optimal operation point

Γ2 =

(
V (Λ2)

V (Λ1)

)2/n

(9.19e)

=
P/G(Λ2)

µ(Λ1, P̃e) ·N
(9.19f)

≥ SNR

G(Λ2) · µ(Λ1, Pe)
, (9.19g)

where the last inequality follows by setting P/N = SNR, and because P̃e ≥ Pe

from (9.19) and µ(Λ1, Pe) is monotonically decreasing with Pe. Thus, the SNR in

the right-hand side of (9.18) is sufficient to achieve an error probability Pe. The

“only if” part under high SNR conditions is left as an exercise (Problem 9.2). �

Recall from (8.32) that the coding rate R(Λ1/Λ2) is equal to log Γ =
1
n log |Λ2/Λ1|. Substituting in (9.18), we see that at the optimum operation point,

the SNR, error probability Pe and coding rate R(Λ1/Λ2), are related as

R(Λ1/Λ2) ≥
1

2
log (SNR)− 1

2
log(G(Λ2) · µ(Λ1, Pe)), (9.20)

with equality in the limit of high SNR.

9.3.2 Gap to capacity

The analysis above holds for all SNR. In view of the high SNR AWGN channel

capacity (Proposition 6.3.2), from (9.20) we have the following.

Corollary 9.3.1 (Capacity loss at high SNR)

∆HSNR
∆
= lim

SNR→∞
[CAWGN −R(Λ1/Λ2)] =

1

2
log(G(Λ2) · µ(Λ1, Pe)), (9.21)

3 One can think of V0(Λ1) + Λ2 as the decoding region of the “zero relative coset” in Λ1/Λ2.
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where CAWGN is the AWGN channel capacity (6.17).

To minimize the capacity loss in (9.21), the fine lattice Λ1 should have a low

NVNR, i.e., be a good channel code, thus minimizing the cell volume per target

error probability. At the same time, the coarse lattice Λ2 should have a low

NSM, i.e., be a good quantizer, to maximize the codebook volume for a given

power constraint. It is therefore convenient to break (9.21) into two separate

contributions.

Definition 9.3.1 (Shaping and coding losses) The capacity loss of Voronoi

modulation with lattice decoding at high SNR is the sum of the

Shaping loss
∆
=

1

2
log(2πeG(Λ2)) (9.22)

of the coarse lattice, and the

Coding loss
∆
=

1

2
log

(
µ(Λ1, Pe)

2πe

)

(9.23)

of the fine lattice.

Note that the shaping loss is non-negative, and it can be interpreted as the

divergence of the dither from white Gaussianity (Theorem 7.3.3). The coding

loss is non-negative for a sufficiently small Pe (Section 3.3), and it coincides with

the capacity loss of an infinite constellation (Chapter 6).

Example 9.3.1 (Cubic shaping) Suppose a coded PAM or QAM system. This

scheme can be represented by a coarse lattice Λ2 = aZn, nested in some fine

lattice. Since G(Zn) = 1/12, the shaping loss is

Shaping loss =
1

2
log

(
2πe

12

)

≈ 0.254 bit, (9.24)

corresponding to a power loss of 10 log10(2πe/12) ≈ 1.5 dB.

We discuss below some implications and extensions of the high SNR analysis

of Voronoi modulation with (estimation-free) lattice decoding.

9.3.3 Shaping gain

In the context of Voronoi modulation, the NSM ratio

Γs(Λ)
∆
=

G(Z)

G(Λ)
=

1/12

G(Λ)
(9.25)

is known as the shaping gain relative to a cubic lattice. This quantity is the

same as the vector-quantizer gain of Definition 3.2.3. It can also be expressed in

logarithmic terms, as 1
2 log2(1/12/G(Λ)) [bits], or 10 log10(1/12/G(Λ)) [dB]. In

view of Example 9.3.1, the logarithmic shaping loss satisfies

Shaping loss(Λ) + Shaping gain(Λ) = Shaping loss(Zn). (9.26)
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The right-hand side, 0.254 bit or 1.5 dB, thus represents the maximal achievable

shaping gain in Voronoi modulation.

Spherical shaping Instead of shaping the codebook using the coarse Voronoi

cell, it can be shaped by intersecting the fine lattice with an n-dimensional ball.

Although by doing so we lose the elegant nesting structure, the resulting shaping

gain is slightly higher:

Γs(n-dimensional sphere) = 1/12G∗
n > Γs(n-dimensional lattice),

where G∗
n is the NSM of a sphere (7.15).

Mixed nesting dimensions As Tables 7.1 and 7.2 show, the potential shaping

gain (of either a lattice or a spherical shaping scheme) is at most ≈1.5 dB, while

the potential coding gain is larger (e.g., 6.6 dB at SER = 10−5). It is thus

practically more efficient to combine a low-dimensional shaping lattice with a

high-dimensional coding lattice, as described in Section 8.3.3. Such a mixed-

dimensional nesting is realized by a product coarse lattice: Λ2 = Λ′
2 × . . .× Λ′

2.

Since G(Λ2) = G(Λ′
2) (see (3.23)), the shaping loss (or gain) is determined by

the component lattice Λ′
2.

PAPR Another practical (negative) consequence of shaping is the increase in

the peak to average power ratio (PAPR). For lattice shaping, the PAPR is defined

as

PAPR =

(
maxx∈V0(Λ2) ‖x‖∞

)2

σ2(Λ2)
, (9.27)

where ‖x‖∞ ∆
= max{|x1|, . . . , |xn|} is the ℓ∞ norm of x = (x1, . . . , xn). For cubic

shaping PAPR = 3, while for spherical and good high-dimensional lattice shaping

it grows linearly with the dimension; see Problem 9.3.

9.3.4 Lattice versus ML decoding

We turn to inspect the coding loss term (9.23) of the Voronoi modulation scheme

with lattice decoding. Is this part of the modulo loss of the lattice decoder with

respect to the ML decoder? We shall see that at high SNR the answer is negative.

As discussed in Section 9.1, the advantage of ML decoding is due to code-

words near the surface of the shaping region, because their decision cell is larger

than a lattice Voronoi cell. In fact, a border decision cell is unbounded outward;

see Figure 9.4. Nevertheless, although in high dimensions most of the volume

concentrates on the outer shell (3.4), in the high SNR limit the fraction of cells
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which are exactly at the border becomes negligible:

non-border points

total points
≤ V ((

√
SNR− d) · V0(Λ2))

V (
√
SNR · V0(Λ2))

(9.28)

=

(√
SNR− d√
SNR

)n

(9.29)

→ 1, as SNR → ∞ , (9.30)

where d is the diameter of the fine lattice Voronoi cell. Thus, the average error

probability (9.7) in ML decoding is asymptotically dominated by the inner

(lattice-shaped) cells, and coincides with the lattice decoding error probability. 4

The diminishing advantage of ML decoding over lattice decoding can also

be measured in information theoretic terms. Let U represent the channel input,

which is uniform over the shaping region V0(Λ2). It can be shown that the residual

information contained in the non-modulo channel output Y = U+ Z, given the

modulo channel output [Y] mod Λ2, becomes negligible as the SNR increases:

I(U;Y | [Y] mod Λ2) → 0, as σ2
z → 0. (9.31)

Thus, [Y] mod Λ2 is asymptotically a sufficient statistic for the decoding of U;

see Problem 9.5.

9.3.5 Good nested lattices

As we learned in Chapter 7, the ultimate shaping and coding gains are achievable

by high-dimensional lattices.

Definition 9.3.2 (Good Voronoi modulation: high SNR) We say that a

sequence (Λ2,n ⊂ Λ1,n) of nested lattice pairs is “good for Voronoi modulation at

high SNR,” if G(Λ2,n) → 1/2πe, and µ(Λ1,n, Pe) → 2πe for all Pe > 0.

The existence of such good nested lattice pairs was proved in Section 8.5.

Combining this fact and Corollary 9.3.1, we conclude the following.

Corollary 9.3.2 (Achieving capacity) For a sequence (Λ1,n,Λ2,n) of nested

lattices which are good for Voronoi modulation, the high SNR capacity loss van-

ishes asymptotically:

∆HSNR =
1

2
log(G(Λ2,n) · µ(Λ1,n, Pe)) → 0, as n → ∞, (9.32)

for all Pe > 0.

4 This analysis hints that locating all codewords on the surface of a sphere may be advan-
tageous in terms of error probability. Nevertheless, as shown in Section 13.8, the error
exponent of Voronoi modulation with lattice decoding coincides at high rate and SNR con-
ditions with the Poltyrev sphere packing error exponent, which is an upper bound on the
performance of any coding and decoding scheme.
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Thus, the Voronoi modulation system, with the (suboptimal) lattice decoder

(9.9a), approaches the Shannon AWGN channel capacity in the limit of high

SNR. As we shall see, the same decoder can close the gap to Shannon also for a

finite SNR, using an appropriate estimator X̂ = g(Y) at the receiver front end.

9.3.6 Non-AWGN

Before moving to the non-high SNR case, let us consider how the system and

results above change if Z is a general (not necessarily white-Gaussian) additive

noise. In the general case, we can either keep the Euclidean lattice decoder (9.9a)

and suffer a mismatch decoding loss (Section 6.4.1), or replace it by a noise-

matched lattice quantizer QΛ1 (induced by the noise distribution PZ(·)), i.e.,
v̂LD = QΛ1(Y − u) mod Λ2 (Definition 6.2.3). The latter is correct whenever

the noise Z falls inside VZ
0 (Λ1), the generalized fundamental Voronoi cell (6.12)

of Λ1, or in one of its shifts by Λ2.

As we have seen before in (6.27), a general noise is characterized by its entropy

power PE(Z), rather than by its power. Thus, we define the signal to entropy

power ratio as

SENR
∆
=

P

PE(Z)
. (9.33)

In these terms, the threshold SNR result of Theorem 9.3.1 becomes

SENR ≥ G(Λ2) · µmatched(Λ1,Z, Pe) · Γ2, (9.34)

where µmatched(Λ1,Z, Pe) is the generalized NVNR (6.28). And the capacity loss

at high SNR conditions becomes

∆HSNR =
1

2
log(G(Λ2) · µmatched(Λ1,Z, Pe)); (9.35)

see (6.21). For noise satisfying the generalized AEP and a sequence of simulta-

neously good nested lattices, ∆HSNR vanishes asymptotically as the dimension

goes to infinity; see Section 8.5.

9.4 Shannon meets Wiener (at medium SNR)

Even if both component lattices are “good” (the shaping (9.22) and coding (9.23)

losses are small), still the Voronoi modulation system with lattice decoding above

does not meet the Shannon capacity limit for a finite SNR. In fact, for good

lattices the rate approaches (see (9.20))

R(Λ1/Λ2) =
1

2
log (SNR) , (9.36)
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provided the SNR = P/N is greater than or equal to 1, and 0 otherwise. 5 This

rate corresponds to a loss of “1” inside the log in the AWGN channel capacity

formula

CAWGN =
1

2
log (1 + SNR) . (9.37)

Although this “1” is negligible at high SNR conditions (because log(1 + x)−
log(x) → 0 as x → ∞), it becomes critical when the SNR is smaller than 1, in

which case the capacity is smaller than half a bit per channel use.

This capacity loss could be avoided if we used ML decoding (9.8). ML decoding

means, however, breaking away from the lattice partition structure of the decision

cells (Figure 9.4), hence increasing the decoding complexity.

We want to enjoy the benefit of both worlds: close the gap to capacity for all

SNR, while still preserve the lattice structure at both the encoding and decoding

stages. For that, we shall employ linear (Wiener) estimation before the lattice

decoding. This section provides the motivation – from Wiener’s and Shannon’s

viewpoints – while an explicit scheme will be presented in the next sections.

9.4.1 The interesting regime of SNR

When deviating from the high-rate/high-SNR regime, we need to re-examine

some of our basic assumptions. Is spherical (“Gaussian”) shaping still necessary?

Is lattice decoding still simpler than ML decoding?

Figure 9.6 shows the mutual information I(X ;X + Z) when the input X is

uniform over some one-dimensional constellations. 6 At high SNR, the mutual

information saturates, as expected, at the logarithm of the constellation size.

At low SNR, on the other hand, all curves (including BPSK) have the same

rate versus SNR slope, and converge to the optimum Shannon capacity curve.

Indeed, it can be shown that if X has power P but otherwise it is arbitrary, and

Z ∼ N(0, N), then

lim
N→∞

I(X ;X + Z)
1
2 log(1 + P/N)

= 1.

(The sum of X and a much stronger Gaussian is “almost” Gaussian [262].) Thus,

at low SNR the input does not have to be Gaussian, and cubic shaping (as in

Example 9.3.1) is optimal. We can interpret this phenomenon as if at low SNR

the modulator enjoys a “natural shaping” due to the Gaussian noise.

5 For small Pe and any pair of nested lattices, the minimum required SNR in (9.18) is greater
than 1. This is because the nesting ratio Γ is always greater than 1, while G(Λ2) > 1/2πe,
and µ(Λ1, Pe) > 2πe for sufficiently small Pe (Sections 3.3 and 7.1).

6 This mutual information corresponds to the maximum reliable rate achievable by “coding”
these input symbols, i.e., using a high-dimensional constellation whose alphabet consists of

these symbols.
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Figure 9.6 Capacity curves (in bits as a function of the SNR) for a discrete-symmetric

input AWGN channel, corresponding to coded unshaped digital modulation. Shown

also are the mutual information curve for a continuously uniform input, and the

power-constrained capacity curve, CAWGN = 1
2 log(1 + SNR), corresponding to the

mutual information for a Gaussian input. We see that BPSK saturates at 1 bit and

4-PAM at 2 bits, while a uniform input keeps an asymptotic constant gap of ≈0.254

bit (the cubic shaping loss) from the CAWGN curve.

Binary (BPSK) modulation, even if coded, lies on the corners of a [−1,+1]n

cube. Due to this strong symmetry, decoding of a binary codeword is simple, even

under an ML rule; see Example 8.3.1. Thus, in the low SNR regime, unshaped

coded binary modulation can achieve capacity at a relatively low complexity.

The low SNR regime is also optimal energy-wise: the capacity per unit cost

(i.e., the ratio of C(SNR) to the SNR) is maximum at low SNR, where we have

CAWGN ≈ SNR

2
log(e), (9.38)

and it decreases as we go to a higher SNR. Yet, getting a significant bit rate at

low SNR requires a large bandwidth, i.e., the spectral efficiency is low. 7

The practical compromise between these two conflicting effects – energy versus

spectral efficiency – is often to work in the medium SNR regime. In this regime,

shaping gives an advantage of up to 6% in capacity; see Figure 9.7.

7 In continuous-time AWGN channels we usually look at the inverse of the capacity per unit
cost, known as the energy per information bit Eb/N0, which is normalized by the noise
spectral level N0.
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Figure 9.7 The relative shaping gain [CAWGN − I(U ;U + Z)]/I(U ;U + Z) in percent,

as a function of the SNR.

9.4.2 Wiener: estimate and decode

Suppose that the output of the channel Y = X+ Z, with an input power P , is

multiplied by the Wiener coefficient (4.44)

α∗ =
P

P +N
=

SNR

1 + SNR
. (9.39)

This will effectively reduce the noise variance from N to (4.45)

MSE(α∗) = (α∗)2N + (α∗ − 1)2P =
PN

P +N
=

N

1 + 1/SNR
. (9.40)

Let us view the mapping

X → α∗ Y (9.41)

as a forward channel with noise variance MSE(α∗). Plugging this value as the

noise variance in the rate formula (9.36), gives

R(Λ1/Λ2) =
1

2
log

(
P

MSE(α∗)

)

=
1

2
log (1 + SNR) , (9.42)

which exactly meets the AWGN channel capacity.

This heuristic calculation ignores, however, the fact that for α∗ < 1, the equiv-

alent noise α∗Y −X = (α∗ − 1)X+ α∗Z in the channel (9.41) is a mixture of the

noise Z and input X; so the equivalent noise is orthogonal to the output α∗Y
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(by the orthogonality principle) but correlated with the input X. Thus, the rate

formula (9.37) (which assumes an additive noise) does not apply. 8

The trick – as we saw for filtered dithered quantization in Sections 4.4 and 5.6,

and as we shall see for Voronoi modulation in Section 9.5 below – is to use dither

as a means for decorrelation, this time between the transmitted message and

the channel input X. But before we do that, let us take a Shannon view of the

decoding problem.

9.4.3 Shannon: joint and reversed typicality

Information theoretic measures enhance the insight into communication in the

presence of noise. The mutual information I(X ;Y ) between the channel input

X and the channel output Y can be decomposed either in a forward channel

form, as h(Y )− h(Y |X), or in a backward (or reverse) channel form, as h(X)−
h(X |Y ), where h(Y |X) and h(X |Y ) are conditional entropies; see (A.6). The

former expression corresponds to a partition of an output space of size 2nh(Y )

to decision cells of size 2nh(Y |X) each. The latter expression corresponds to the

proportion of a codeword region of size 2nh(X|Y ) in an input space of size 2nh(X).

For an AWGN channel Y = X + Z with Gaussian input X ∼ N(0, σ2
x), these

decompositions become

I(X ;Y ) =
1

2
log(2πeσ2

y)−
1

2
log(2πeσ2

z) (9.43a)

=
1

2
log(2πeσ2

x)−
1

2
log(2πeσ2

x|y). (9.43b)

Recall that for jointly Gaussian zero-mean vectors (X,Y ), the conditional density

f(x|y) is Gaussian (see Proposition 4.4.2 and Problem 4.12):

f(x|y) = 1
√

2πσ2
x|y

· e
− (x−α∗y)2

2σ2
x|y , (9.44)

where α∗ = ρσx/σy is the Wiener coefficient (4.36), and σ2
x|y = (1 − ρ2)σ2

x is

the conditional variance (or in this case, the LMMSE (4.37)). Specifically, for

a power-constrained AWGN channel, we have σ2
x = P , σ2

z = N , σ2
y = P +N ,

ρ = σx/σy =
√

P/(P +N), so σ2
x|y = PN/(P +N); see (4.45). Thus,

h(X |Y ) =
1

2
log

(

2πe
PN

P +N

)

, (9.45)

8 This phenomenon is known in the communication literature as biased equalization. Analysis
that ignores the residual correlation leads to an “overoptimistic” capacity of 1

2
log(1 +

P/MSE(α∗)) = 1
2
log(2 + P/N); see [237].
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and (9.43) becomes 9

I(X ;Y ) =
1

2
log

(
P +N

N

)

(9.46a)

=
1

2
log

(

P
PN
P+N

)

(9.46b)

=
1

2
log

(

1 +
P

N

)

= CAWGN. (9.46c)

We see that the “1” inside the logarithm can be attributed either to output

power boost (P +N instead of P ) in the forward channel form (9.46a), or to

noise reduction (PN/(P +N) instead of N) in the reverse channel form (9.46b).

Does this information theoretic interpretation have any operational meaning?

Shannon’s joint-typicality decoding approach (which we encountered in proving

the existence of “good lattice constellations” in Section 7.7) links the reverse

channel form (9.46b) to Wiener’s estimate-and-decode paradigm. Recall from

the Gaussian AEP (Theorem 7.2.1) that the typical set of an n-dimensional

white-Gaussian vector of variance N is a sphere (or equivalently a ball (3.4)) of

variance
√
nN . A similar notion of joint typicality holds for a pair of correlated

vectors. Suppose X and Y are jointly Gaussian with zero mean and covariance

matrix

Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)

where ρ is the correlation coefficient. The joint p.d.f. of X and Y is given by

f(x, y) =
1

√

2π det(Σ)
· e− 1

2 (x,y)Σ
−1(x,y)t (9.47)

implying a joint differential entropy (A.5) of

h(X,Y ) =
1

2
log(2πe

√

det(Σ)) (9.48)

with marginal entropies h(X) = 1
2 log(2πeσ

2
x) and h(Y ) = 1

2 log(2πeσ
2
y).

We say that vectors x and y are (ǫ-) jointly typical with respect to a joint p.d.f.

f(x, y), if each vector is individually typical with respect to its own (marginal)

entropy (Definition 7.2.1), and as a pair they satisfy
∣
∣
∣
∣
− 1

n
log(f(x,y)) − h(X,Y )

∣
∣
∣
∣
< ǫ, (9.49)

where f(x,y) =
∏n

i=1 f(xi, yi). In the jointly Gaussian case, the marginal con-

ditions induce the usual spherical typical set (7.25) per vector, while condition

9 Note that the Pythagorean relation of Figure 4.8 implies that the power sum of the input
and equivalent noise in the reverse channel is equal to the input power of the forward
channel: Var(α∗Y) + PN/(P +N) = P .
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Figure 9.8 Geometry of reversed AEP.

(9.49) induces an ellipsoidal set in Rn × Rn. The joint AEP asserts that if X and

Y are generated by a sequence of n i.i.d. copies of the pair (X,Y ), then they are

jointly typical with high probability for any ǫ > 0 and sufficiently large n; see

[53]. This forms a basis for joint-typicality decoding: given an output vector Y,

search for a codeword X(i) such that the pair (X(i),Y) is jointly typical.

An alternative form of joint-typicality decoding is based on the reverse chan-

nel from Y to X. By the chain rule for the joint entropy (A.5), h(X,Y ) =

h(X) + h(Y |X) = h(Y ) + h(X |Y ). Since f(x, y) = f(y) · f(x|y), we can replace

condition (9.49) above by a constraint on the distance between 1
n log f(x|y) and

the conditional entropy h(X |Y ).

In the Gaussian case, we have h(X |Y ) = 1
2 log(2πeσ

2
x|y) (9.43b). Thus, in view

of (9.44) the “reversed” joint AEP takes the following form, which is illustrated

in Figure 9.8.

Proposition 9.4.1 (Reversed joint AEP) If the vector pair (X,Y) consists

of i.i.d. copies of a zero-mean jointly Gaussian pair (9.47), then for any ǫ > 0

and sufficiently large n we have with a large probability

Y ∈ B
(

0, (1 + ǫ)
√

nσ2
y

)

(9.50a)

and

X ∈ B
(

α∗Y, (1 + ǫ)
√

nσ2
x|y

)

. (9.50b)
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The reversed joint AEP in the Gaussian case implies a simple structure

for joint-typicality decoding of a randomly generated codebook. If the input

X(i) to an AWGN channel is a codeword from a white-Gaussian random code

{X(1), . . . ,X(M)}, and Y is the received output, then a joint-typicality decoder

will search for the transmitted codeword within a radius
√

nσ2
x|y around the point

α∗Y. This search procedure is in line with the structure of estimate-and-decode

discussed earlier in Section 9.4.2: multiply the channel output by the Wiener

coefficient α∗, and look for a unique codeword within the typical radius. 10

Achieving capacity with reversed joint-typicality decoding

It is easy to verify that this scheme achieves the full AWGN channel capacity.

Suppose that the M codewords are independent and uniformly distributed

over an n-ball of radius
√

nσ2
x. By the AEP, this is asymptotically the same

as a white-Gaussian codebook (Theorem 7.2.1); so for large n, the true

codeword falls with high probability inside the search ball (9.50b). On the

other hand, the probability pcompete that a competing (uniformly random)

codeword X(j) falls inside the search ball is equal to the proportion of the

intersection of a ball of radius
√

nσ2
x|y with a ball of radius

√

nσ2
x, which is

upper bounded by the ball volume ratio (σx|y/σx)
n. Hence, by the success-

threshold exponent (Lemma A.2.1), the probability of finding any of the

M − 1 wrong codewords in the search ball (9.50b) vanishes as n goes to

infinity, provided that the coding rate R = 1
n log(M) is smaller than

R <
1

n
log
( 1

pcompete

)

≤ log
( σx

σx|y

)

= CAWGN, (9.51)

where the last equality follows by setting σ2
x = P and σ2

x|y = PN/(P +N).

We know that direct NN decoding of X(i) from Y is optimal (for each dimen-

sion n). Does estimate-and-decode have any advantage?

We may visualize lattice decoding of a Voronoi constellation (Definition 9.1.1)

as a situation where the original codebook has 2nR1 random codewords with

average power P1, but the decoder knows that the true codeword has a much

smaller power P ≪ P1. If the number of power P codewords is close to the

maximum of ≈2nC = (1 + P/N)n/2, then an NN search over the entire codebook

is likely to fail, because Y will be closer to farther codewords of power P +N .

To avoid this competition, we can limit the NN search to codewords of power

P (corresponding to ML decoding). Or alternatively, first attenuate Y by the

10 This latter step corresponds to a threshold decoder (7.60). Alternatively, the decoder can
look for the codeword nearest to α∗Y.
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Figure 9.9 (A) Mapping from the modulator input vector v to the decision vector Ỹ;

and (B) the equivalent mod Λ channel.

Wiener coefficient α∗ = P/(P +N) and then perform unlimited NN search over

the entire codebook. The reversed AEP (Proposition 9.4.1) guarantees that the

latter procedure is correct with high probability for large n. See Problem 9.8.

9.5 The mod Λ channel

We return to analyze the Voronoi demodulator of Figure 9.3, now with a gen-

eral estimator X̂ = g(Y) at the receiver front end. We shall assess the potential

improvement due to the estimator g at general SNR conditions, by calculating

the Shannon capacity of the equivalent channel from the message representative

v to the decision vector Ỹ.

Figure 9.9 illustrates this channel and its equivalent form. Recall from (9.11)

that Ỹ = [g(Y)− u] mod Λ2, where Y is the output of the physical channel

in response to an input x = [v + u] modV0 Λ2 and where the former modulo

operation is with respect to any enumeration cell. Lemma 9.3.1 described the

properties of the channel from the message representative v to Ỹ for the no-

estimation case X̂ = g(Y) = Y. The case of a general estimator g is, however,

fundamentally different, as now a random dither plays a crucial role.

Lemma 9.5.1 (Equivalent mod Λ channel: general case) For a random

dither U which is uniform (or modulo-uniform) over a fundamental cell of Λ2,

and for any input v ∈ Rn (not necessarily in Λ1) and an estimator X̂ = g(Y),

the channel from v to Ỹ is equivalent in distribution to the modulo-additive-noise
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channel shown in Figure 9.9(B):

Ỹ = [v + Zeq] mod Λ2 (9.52a)

with equivalent noise

Zeq = [g(Y)−X] mod Λ2, (9.52b)

where X is uniform over V0(Λ2), Y is the corresponding channel output, and the

pair (X,Y) is independent of v.

Note that Lemma 9.5.1 holds for a general channel p(y|x) (not necessarily

an additive-noise channel), as well as for Voronoi modulation with pre-emphasis

f(·); see (9.11d). 11

As Lemma 9.5.1 shows, without conditioning on the random dither U, the

channel output Y is independent of the message v. The decision vector Ỹ takes

U into account, hence it does depend on v. And the resulting equivalent channel

(9.52a) is modulo additive.

Proof We add and subtract x in the argument of the modulo-Λ2 operation in

(9.11f), and write the first x explicitly as x = [v + u] modV0 Λ2 from (9.5a):

Ỹ =
[

[v + u] modV0 Λ2
︸ ︷︷ ︸

x

+X̂− u− x
]

mod Λ2. (9.53)

By the distributive law (2.22b) (see also (8.21)), we can omit the inner modulo

operation; hence the dither u cancels out, and we get

Ỹ = [v + [g(Y)− x]] mod Λ2, (9.54)

where g(Y) = X̂ is the input estimator. For a specific value u of the dither, the

channel input x (and hence g(Y)− x) still depends on v by (9.5a). 12 Neverthe-

less, for a random uniform dither U, the crypto lemma (Lemma 4.1.1) implies

that X = [v +U] modV0 Λ2 is uniform over V0, independent of v. Hence, also the

pair (X,Y) is independent of v (because v ↔ X ↔ Y form a Markov chain),

and the lemma follows. �

The argument of the modulo-Λ2 operation in (9.52b) is the estimation error

X̂−X, i.e., the error of g(Y) in estimating X. The modulo-Λ2 operation “folds”

the tails of the distribution of the estimation error into the enumeration funda-

mental cell P0.

Let us examine the information theoretic properties of the equivalent noise

and the mod Λ channel. We shall start with the case of general channel p(y|x)

11 In the latter case, the equivalent noise is Zeq = [g(Y) − X̃] mod Λ2, where now X̃ is uniform
over V0, and Y is the output of the composite channel f(X̃) → p(y|x) → Y. Note that g(Y)
can be viewed as an estimate for X̃ rather than X.

12 Unless for an additive-noise channel with g(Y) = Y, in which case g(Y) − x = Z is inde-
pendent of v.



222 Lattice shaping

and estimator g, and then move to an additive-noise channel Y = X+ Z with a

linear estimator g(y) = αy.

9.5.1 Properties of the equivalent noise

1. The (folded) distribution of the equivalent noise Zeq (9.52b) amounts to a

distribution over the cosets of Λ2, induced by the estimation error X̂−X;

hence it is invariant to the choice of the enumeration cell P0, up to shuffling

of pieces of its support (see Figure 9.10).

2. In particular, the entropy of the equivalent noise, h(Zeq), is equal to the coset

entropy h(X̂−X mod Λ2) of the estimation error with respect to Λ2 (A.23),

which is invariant of the choice of P0; see Appendix A.3.

3. Plugging in the fundamental Voronoi cell as P0, we obtain

h(Zeq) = h(X̂−X mod V0Λ2) (9.55a)

≤ n

2
log

(
2πe

n
E‖X̂−X modV0 Λ2‖2

)

(9.55b)

≤ n

2
log

(
2πe

n
E‖X̂−X‖2

)

, (9.55c)

where (9.55b) follows from the maximum entropy property (A.13) of the Gaus-

sian distribution; (9.55c) follows since the modulo-Voronoi operation does

not increase the second moment (though it may increase the variance; see

Problem 9.6). For an unbiased estimator (where E{X̂−X} = 0) the second

moment can be replaced by the variance.

4. Alternatively, by the properties of the coset entropy (Lemma A.3.2), h(X̂−
X mod Λ2) is smaller than or equal to the (unfolded) estimation-error entropy

h(X̂−X) (see Problem 9.7), which by the maximum entropy property implies

(9.55c).

9.5.2 Capacity of the mod Λ channel

1. The Shannon capacity (6.15) of the mod Λ channel, Ỹ = [V + Zeq] mod Λ2

(9.52a), is equal to 13

CmodΛ =
1

n
[log(V (Λ2))− h(Zeq)], (9.56)

and it is achieved by an input V which is uniform over a coarse fundamental

cell P0(Λ2) (A.14).

2. CmodΛ upper bounds the discrete input capacity, where the channel input V

is restricted to the fine lattice Λ1 (as in the Voronoi modulation system).

13 CmodΛ is the maximum mutual information over all possible inputs V; see (A.14).
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Figure 9.10 The effect of the choice of modulo cell on the folded distribution. Unlike

the “perfect” picture (modulo equivalence of cells) in Section 2.3, the folded

distribution may create overlaps or leave holes. But the total volume of holes or

overlaps is invariant to the choice of the modulo cell.

3. CmodΛ is maximized by an estimator g∗∗ that minimizes the equivalent noise

entropy.

4. An alternative (simpler) approach to optimizing the estimator is to relate the

capacity to the estimator’s MSE. Using the MSE bound on the equivalent

noise entropy (9.55),

CmodΛ ≥ 1

2
log

(

P
1
nE‖X̂−X‖2

)

− 1

2
log(2πeG(Λ2)), (9.57)

where we replaced the volume of the coarse lattice in (9.56) by its NSM and

the power constraint P .

5. This lower bound is maximized by the MMSE estimator g∗ ofX fromY (4.40),

which is, in general, non-linear, and it achieves 1
nE‖X̂−X‖2 = Var(X|Y).

So far the analysis holds for a general channel p(y|x) and estimator g. We shall

now restrict our attention to the AWGN channel, and see how a linear (scalar)

estimator is sufficient to approach capacity for a general SNR.

9.5.3 Additive noise and linear estimation

1. For an additive-noise channel Y = X+ Z and a linear estimator X̂ = αY,

the estimation error is distributed as

X̂−X
dist
= αZ+ (α− 1)U, (9.58)
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whereU ∼ Unif(V0). (On the right-hand side we useU instead ofX to empha-

size its uniformity.)

2. The equivalent noise (9.52b) is then given by

Zeq =
(

αZ
︸︷︷︸

channel-noise

+(α− 1)U
︸ ︷︷ ︸

self-noise

)

mod Λ2. (9.59)

3. As in Section 4.4, for 0 < α < 1, the estimation error (9.58) is a linear “mix-

ture” of two components: channel noise weighted by α, and dither weighted

by α− 1. We call it a mixture noise. The weighted dither component is called

self-noise, because it is a noise induced by the modulation system itself.

4. The mixture ratio is defined as the ratio between the variances of the channel

noise component and the dither component:

ξ
∆
=

noise

dither
=

α2N

(1 − α)2P
, (9.60)

where N is the variance of the noise Z (so far Z is not necessarily Gaussian).

5. The mean-squared estimation error 1
nE‖X̂−X‖2 becomes in this case

MSE(α) = α2N + (1 − α)2P. (9.61)

6. And the lower bound (9.57) on the mod Λ channel capacity becomes

CmodΛ ≥ 1

2
log

(
SNR

α2 + (α− 1)2 · SNR

)

(9.62a)

∆
= C(SNR, α), (9.62b)

up to the 1
2 log(2πeG(Λ2)) shaping loss.

7. The lower bound (9.62) is maximized by the Wiener coefficient α∗ =

SNR/(1 + SNR), so C(SNR, α) becomes the AWGN channel capacity CAWGN

(6.17).

Since for an AWGN channel, CmodΛ is always upper bounded by CAWGN (due

to the data-processing inequality (A.17)), we obtain the following.

Proposition 9.5.1 (Gap to CAWGN) For an AWGN channel with Wiener esti-

mation (α = α∗ = SNR/(1 + SNR)), the capacity (9.56) of the mod Λ channel

satisfies

CAWGN ≥ CmodΛ ≥ CAWGN − 1

2
log(2πeG(Λ2)), (9.63)

where CAWGN = 1
2 log(1 + SNR) (6.17).

9.5.4 High-dimensional shaping

The negative term on the right-hand side of (9.63) is the shaping loss of the coarse

lattice (9.22). This loss vanishes for a high-dimensional coarse lattice which is
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“good for quantization,” i.e., for G(Λ2) ≈ 1/2πe (Definition 7.3.2). Thus, the gap

to the AWGN channel capacity can be closed at all SNR.

Observe that this high-dimensional Wiener-estimated mod Λ channel bridges

between the Shannon and Wiener viewpoints discussed in Section 9.4. It converts

the reverse channel (stemming from the orthogonality principle and the joint

AEP) into a forward channel: in both these channels the output power is P and

the noise power is PN/(P +N).

The closing of the gap to the AWGN capacity happens in spite of several addi-

tional losses encountered in our analysis above: (i) using an MMSE criterion for

estimation (rather than minimum-noise entropy which maximizes the capacity

(9.56)); (ii) restriction to linear scalar estimation; and (iii) neglecting the noise

entropy reduction due to folding, i.e., aliasing (Section 9.5.1). 14 How can that

be?

Intuitively, for G(Λ2) ≈ 1/2πe the dither U becomes white Gaussian (The-

orem 7.2.3), thus the mixture (α− 1)U+ αZ of dither and AWGN in (9.59)

becomes white Gaussian as well. Since the channel input is also white Gaussian,

minimizing error entropy amounts to MMSE, which is achieved by a linear scalar

estimator.

As for the third loss, the divergence data-processing inequality (A.19) implies

that the entropy reduction due to folding is smaller for the noise than for the

channel output. Thus, both these potential entropy reductions become negligible

as the coarse lattice becomes a good quantizer.

9.5.5 Scalar shaping at low SNR

At low SNR conditions and small shaping dimensions, the lower bound (9.63)

on the mod Λ channel capacity may be loose. In fact, it may even be negative if

CAWGN is small. To assess the low-SNR/low-dimension behavior of the mod Λ

channel, consider its capacity (9.56) for a scalar shaping lattice Λ2 = ∆ · Z:

Cmod∆Z = log(∆)− h([αZ + (α− 1)U ] mod ∆), (9.64)

where U ∼ Unif(0,∆), and ∆ is the step size of the coarse lattice, so the trans-

mission power is P = ∆2/12. Note that unlike for the case of a good shaping

lattice, here the optimal value of the estimation coefficient α is not necessarily

the Wiener coefficient.

Figure 9.11(A) shows CmodZ as a function of the SNR, for several values of

α. These capacity curves are compared to the mutual information I(U ;U + Z),

corresponding to a non-modulo uniform-input AWGN channel, and to the AWGN

channel capacity CAWGN. As the figure shows, while I(U ;U + Z) coincides with

CAWGN at low SNR, CmodZ grows much slower than CAWGN for any value of

14 We do not require Λ2 to be a good AWGN channel code; thus, the probability that the mix-
ture noise leaves the fundamental cell of Λ2 (and possibly folds into itself) is not necessarily
small.
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Figure 9.11 (A) The capacity CmodZ(SNR, α) of the mod Z channel as a function of

the SNR for several values of α, compared to the Shannon capacity

CAWGN = 1
2 log(1 + SNR), and the uniform-input (non-modulo) capacity

I(U ;U + Z). (B) A zoom into the low SNR regime, showing the corresponding graphs

of capacity per unit cost, Cmod Z(SNR, α)/SNR. For very low SNR (SNR < 0.5), the

optimum linear coefficient α∗∗ is, somewhat surprisingly, slightly larger than the

Wiener coefficient α∗. Nevertheless, the best operation point in terms of energy per

bit is around SNR = 1, where α∗∗ ≈ α∗ = 1/2.

α. In particular, CmodZ(SNR) is convex downward (∪) near the origin. Thus, if

there is no strict amplitude constraint on the channel input, better performance

in this range can be obtained by time sharing between the zero-rate/zero-SNR

point, and some positive-rate/SNR point.

To see this behavior more clearly, Figure 9.11(B) shows the capacity per unit

cost CmodZ(SNR)/SNR of the mod Z channel. As we can see, the maximum value

(of ≈ 0.28 [bit/unit energy]) is attained around an SNR equal to 1, for α ≈ 1/2.

In view of the slope log2(e)/2 ≈ 0.72 [bit/unit energy] of CAWGN(SNR) at SNR

= 0 (see (9.38)), the mod Z channel loses about 10 log10(0.72/0.28) ≈ 4 dB in

energy per bit at the low SNR regime.

The gap between CmodZ and I(U ;U + Z) reflects the modulo loss, i.e., the

performance loss of lattice decoding compared to ML decoding for a uniform

input. In Section 9.3.4 we observed that this loss vanishes in the high SNR

regime. In contrast, as Figure 9.11 shows, lattice decoding is strictly inferior to

ML decoding in the low SNR regime. Intuitively, while ML decoding enjoys a

“natural shaping” at low SNR, lattice decoding does not (unless scalar shaping

is replaced by a good high-dimensional shaping lattice).
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Figure 9.12 Linear Voronoi demodulation: linear estimation, undithering, lattice

decoding and mapping to coset.

9.6 Achieving CAWGN for all SNR

The properties of the mod Λ channel indicate that from an information theo-

retic viewpoint, Voronoi modulation with good lattices can approach the AWGN

channel capacity at all SNR. However, this promise does not apply directly to

our system, because it ignores several factors.

1. Granularity The mod Λ channel capacity (9.56) ignores the restriction of

the input V to be a point in the fine lattice Λ1.

2. One-shot coding Achieving capacity requires, at least in theory, encoding

acrossmany channel inputs; for the mod Λ channel this means encoding across

a super block of sizeN = mn (n being the lattice dimension), wherem is large.

In contrast, the Voronoi modulator uses a single (n-dimensional) input vector

in each coding session. 15

3. Mismatched decoding Achieving capacity assumes, again in theory, that

the decoder is matched to the distribution of the equivalent noise Zeq.

Since the mixture αZ+ (α− 1)U is not quite Gaussian (for α < 1), the

decoder assumed by the capacity result is not the desired (simple) NN lattice

decoder. 16

Nevertheless, Theorem 9.6.1 below states that if the lattice dimension is large,

then the Voronoi modulation and demodulation system (9.11) can approach the

AWGN channel capacity in spite of the limitations above; i.e., using only points

of Λ1 as codewords, and with a Wiener-estimated NN lattice decoder:

Encoding x = (vm + u) modV0 Λ2 (9.65a)

Decoding v̂LD =
(

argmin
λ∈Λ1

‖αY − u− λ‖
)

mod Λ2 (9.65b)

where the vector vm represents the message 1 ≤ m ≤ M to be transmitted, and

u is the dither; see Figure 9.12. Note that for α equal to the Wiener coefficient,

this scheme mimics the Wiener–Shannon estimate and decode idea discussed in

Sections 9.4.2 and 9.4.3.

15 This is not an issue if Λ2 = (Λ′
2)

m is a product lattice, where m is large; see Sections 8.3.3
and 9.2.

16 A Euclidean coset decoder (9.10) is partially matched to Zeq; it takes into account the
folding into P0(Λ2), but not the uniform distribution of the self-noise (dither) component.
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Theorem 9.6.1 (Asymptotic optimality) The Voronoi modulation system

(9.65), with good nested lattices, uniform (or modulo-uniform) dither with respect

to Λ2, Wiener estimation and Euclidean lattice decoding, achieves the AWGN

channel capacity CAWGN, with an arbitrarily small error probability.

The precise definition of good nested lattices (Definition 9.6.2), as well as the

proof of the theorem, appear towards the end of this section. Before that, we

examine the decoding error probability and achievable rate for a general nested

lattice pair.

9.6.1 Error probability for a random dither

While for a specific dither value the decoding error probability depends on the

transmitted message, a random uniform dither symmetrizes the error probability

among the messages. Moreover, it greatly simplifies the analysis.

If the dither U is uniform (or modulo-uniform) over the coarse fundamen-

tal cell P0, then the statistical relation between the message representative vm

and the decision vector Ỹ = [αY − u] mod Λ2, is equivalent to the input/output

relation in the mod Λ channel of Figure 9.9. Thus, by Lemma 9.5.1, the proba-

bility of error in NN lattice decoding is given by

Pe = Pr{Zeq 6∈ V0(Λ1) mod Λ2} (9.66)

for any transmitted message vm, where the notation {a ∈ B mod Λ} is short for

{[a mod Λ] ∈ [B mod Λ]}. As in (9.19), this probability can be upper bounded

by omitting the modulo-lattice reduction, i.e.,

Pe ≤ Pr{αZ+ (α− 1)U 6∈ V0(Λ1)} ∆
= P̃e, (9.67)

where U ∼ Unif(V0(Λ2)). Note that the upper bound P̃e is the NN (mismatched-

decoding) error probability (6.32) of the fine lattice with respect to the mixture

noise (9.58).

To define the NVNR in the presence of mixture noise, observe that as the

noise variance N decreases from infinity to zero, the mixture error probability

(9.66) decreases from 1 to a minimum value

Pmin
∆
= Pr{(α− 1)U 6∈ V0(Λ1)}, (9.68)

which is the fraction of the scaled coarse Voronoi cell (α− 1)V0(Λ2) outside the

fine Voronoi cell V0(Λ1).

Definition 9.6.1 (NVNR with mixture noise) For Pe in the range Pmin <

Pe < 1, the equivalent mixture NVNR is defined as

µmix(Λ1, Pe; Λ2, α)
∆
= µeuclid(Λ1, αZ+ (α − 1)U, Pe), (9.69a)
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Figure 9.13 Distribution of the scalar mixture αZ + (α− 1)U , with σ2 = 1, U ∼
Unif(−1/2, 1/2), and α = 0.1, compared to that of a pure Gaussian with the same

variance. The tail of the mixture is clearly lighter.

where µeuclid is the Euclidean (“mismatched”) NVNR (6.33) of the fine lattice

with respect to the mixture noise (9.58), i.e.,

µeuclid(Λ1, αZ+ (α− 1)U, Pe) =
V 2/n(aΛ1)

1
nE‖αZ+ (α− 1)U‖2 , (9.69b)

where the scaling parameter a is such that Pr{αZ+ (α− 1)U 6∈ V0(aΛ1)} = Pe.

An alternative notation for the same quantity replaces the linear estimation coef-

ficient α by the equivalent Gaussian to dither mixture ratio ξ = α2N/(1− α)2P

(9.60):

µmix(Λ1, Pe; Λ2, ξ). (9.69c)

Note that this definition is oblivious to the coupling between the nested lat-

tices.

Comparison to a pure Gaussian noise
The distribution of the mixture αZ+ (α− 1)U is more concentrated than that

of a white-Gaussian distribution with the same variance σ2. Thus, the resulting

probability of error (9.67) tends to be larger than Pe(Λ1, σ
2) of Definition 3.3.2

for small VNR, and smaller than Pe(Λ1, σ
2) for large VNR; see Figure 9.13.

It is interesting to examine the implication of this behavior with respect to the

relation between the mixture noise NVNR and that of a pure Gaussian. Since

the mixture is more concentrated than a Gaussian distribution with the same
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Figure 9.14 The mixture error probability (9.67) for scalar lattices. In (A) the x-axis is

the VNR ∆2
1/Var(Zeq), where the equivalent noise Zeq is parameterized by the

Gaussian to dither ratio ξ (we do not restrict the coarse and fine lattice to be nested).

In (B) the x-axis is SNR = (∆2
2/12)/N , where the nesting ratio Γ = ∆2/∆1 = 2 is

held fixed, and the equivalent noise is parameterized by the estimation coefficient α.

In both figures we see that error-probability-wise, a Gaussian dominated mixture is

better at low VNR or SNR, while a dither dominated mixture is better at high VNR

or SNR.

variance, we have

µeuclid(Λ1, αZ + (α− 1)U, Pe) < µ(Λ1, Pe) (9.70)

for α > 0, provided that Pe is sufficiently small. See Appendix A.5. The condition

of a small Pe is meaningful, however, only if Pmin is close to zero, i.e., (α−
1)V0(Λ2) is mostly contained in V0(Λ1).

What would be the best choice for the estimation coefficient α? While the

mixture variance MSE(α) is always minimized by the Wiener coefficient α =

α∗ = P/(P +N), the tail of the mixture distribution is lighter for a smaller

value of α. The tail of the mixture is significant if the VNR of the fine lattice

with respect to the AWGN is large, i.e., V 2/n(Λ1) ≫ N , in which case Pe is

minimized by some α∗∗ < α∗; see Figure 9.14.

A mixture noise is more favorable than pure AWGN also in terms of the error

exponent of a random fine lattice. Section 13.8 shows that the decoding error

probability (9.66) decays exponentially with the fine lattice dimension n:

Pe ≈ e−nE(µ,α,SNR), (9.71)

where µ = V 2/n(Λ1)/N is the VNR of the fine lattice (which implicitly

depends on the gap to capacity CAWGN −R), and where the SNR is given by

Var(U)/Var(Z) = P/N . The optimum value α∗∗, that maximizes the error expo-
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nent E(µ, α, SNR), depends on both the VNR and SNR; for high SNR α∗∗ = 1 (a

pure Gaussian noise), while for low SNR α∗∗ vanishes (a dither dominated mix-

ture). 17 As it turns out, for a fixed VNR, E(µ, α∗∗, SNR) increases as the SNR

decreases, i.e., the error probability becomes smaller as the mixture becomes

“less Gaussian.”

Interestingly, this behavior holds even if Λ2 is a good shaping lattice, i.e., even

if U tends to be closer to Gaussian as n goes to infinity.

9.6.2 The gap to capacity: general lattices

Equipped with the definition of the mixture noise NVNR (Definition 9.6.1), we

turn to examine the gap to capacity of a given n-dimensional Voronoi modulation

system, as we did for the high SNR case in Section 9.3. We begin with a lemma

which characterizes the coding rate versus error probability of a general (not

necessarily linear) Voronoi modulation system.

Lemma 9.6.1 (Achievable rate in Voronoi modulation and demodu-

lation with a general estimator) The coding rate R(Λ1/Λ2) of the Voronoi

modulation and demodulation system (9.11), with a uniform (or modulo-uniform)

dither with respect to Λ2, a general estimator g(·) and NN lattice decoding, is

lower bounded by

1

2
log

(

P
1
nE‖Z̃‖2

)

− 1

2
log(G(Λ2) · µeuclid(Λ1, Z̃, Pe)), (9.72)

for any random variable Z̃ which is equal to Zeq modulo the coarse lattice, i.e.,

Z̃ mod Λ2 = Zeq, where Zeq is the equivalent noise in the mod Λ channel (9.52b).

Here, P is the transmission power, µeuclid is the Euclidean (“mismatched”)

NVNR (6.33), and Pe is the decoding error probability (9.66). In particular, the

lemma holds for Z̃ which is equal to the estimation error X̂−X = g(Y) −X, or

to the equivalent noise Zeq itself.

Like the equivalent mod Λ channel (Lemma 9.5.1), this lemma holds for a gen-

eral channel p(y|x) (not necessarily additive). Note that for Z̃ = X̂−X, (9.72)

is equal to the lower bound on the mod Λ channel capacity (9.57), up to a

coding-loss term of 1
2 log[µeuclid(Λ1, X̂−X, Pe)/2πe].

Proof By Lemma 9.5.1, the equivalent channel seen by the decoder is Ỹ =

[v + Zeq] mod Λ2. Following the line of the proof in the non-estimation case

17 In either case, α∗∗ tends to be smaller than the Wiener coefficient α∗ = SNR/(1 + SNR)
as µ grows.
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(Theorem 9.3.1 and (9.20)), we have

R(Λ1/Λ2) =
1

n
log

(
V (Λ2)

V (Λ1)

)

(9.73a)

=
1

2
log

(

P/G(Λ2)

µeuclid(Λ1, Z̃, P̃e) · 1
nE‖Z̃‖2

)

, (9.73b)

where in the denominator of (9.73b) we used the definition of the Euclidean

NVNR (6.33), and where P̃e
∆
= Pr{Z̃ 6∈ V0(Λ1)} is the (unfolded) error probabil-

ity of the fine lattice with respect to Z̃. The lemma follows from (9.73b) since

(i) the error probability Pe is equal to Pr{Z̃ 6∈ V0(Λ1) mod Λ2} for all Z̃ satis-

fying the condition, (ii) Pe ≤ P̃e, and (iii) the NVNR is monotonic in the error

probability. �

Using the relation (9.69) between the Euclidean NVNR and the mixture

NVNR in the linear estimation case, and substituting the linear estimation error

αZ+ (α− 1)Ueq (the mixture noise) as Z̃ in Lemma 9.6.1, we conclude the

following theorem.

Theorem 9.6.2 (Achievable rate with linear estimation) The Voronoi

modulation and demodulation system (9.65), with uniform (or modulo-uniform)

dither with respect to Λ2, linear estimation g(y) = αy and NN lattice decoding,

can achieve a coding rate of

R(Λ1/Λ2) ≥
1

2
log
( P

MSE(α)

)

− 1

2
log(G(Λ2) · µmix(Λ1, Pe; Λ2, α)), (9.74)

with a decoding error probability Pe (9.66), where P and MSE(α) are the trans-

mission power and the estimation mean-squared error (9.61), respectively, and

µmix is the mixture noise NVNR (Definition 9.6.1).

For a small error probability, µmix can be replaced by the Gaussian NVNR

µ(Λ1, Pe); see (9.70).

Theorem 9.6.2 holds for any linear coefficient α. For α = 1, it reduces to the

non-estimation case of Section 9.3.1 (where MSE = N , and the mixture NVNR

becomes the usual Gaussian NVNR). Nevertheless, having in mind the asymp-

totic (large-dimensional) case, we plug in the MSE minimizer α∗ (which achieves

MSE of PN/(P +N)), and conclude the following.

Corollary 9.6.1 (Gap to capacity with Wiener estimation) The gap to

the AWGN channel capacity for α = α∗ = P/P +N is upper bounded by

∆
∆
= CAWGN −R(Λ1/Λ2) ≤

1

2
log(G(Λ2) · µmix(Λ1, Pe; Λ2, α

∗)) (9.75)

for all SNR = P/N . For a small error probability Pe (see (9.70)),

∆ ≤ 1

2
log(G(Λ2) · µ(Λ1, Pe)), (9.76)
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i.e., the gap to capacity is at most the sum of shaping and coding losses of the

high SNR case (Definition 9.3.1).

To close the gap to capacity, we look for nested lattice pairs for which both

shaping and coding losses are small.

9.6.3 The gap to capacity: good lattices

We first observe that for a good shaping lattice, the mixture noise seen by the

coding lattice is roughly AWGN.

Proposition 9.6.1 (Good mixture noise is semi-spherical) If Λn is a

sequence of good lattice quantizers (Definition 7.3.2), then, for any 0 ≤ α ≤
1, the mixture Zn = αZ+ (α− 1)Un of AWGN and uniform dither Un ∼
Unif(V0(Λn)) is a semi-spherical noise (Definition 7.8.2), i.e.,

1

n
h(Zn) →

1

2
log(2πeMSE(α)) (9.77)

and

Pr
{

Zn ∈ B
(

0, (1 + ǫ)
√

nMSE(α)
)}

→ 1 (9.78)

as n → ∞ for any ǫ > 0, where MSE(α) = α2N + (α− 1)2P (9.61), and where

N and P are the second moments of the AWGN Z and the lattice Λn, respectively.

Proof The proof follows since the dither of good lattice quantizers is a semi-

spherical noise (see discussion after Definition 7.8.2), and since the sum of a

semi-spherical noise and AWGN is a semi-spherical noise (Problem 7.12). See

also Ordentlich and Erez [206]. �

Based on this fact, we extend Definition 9.3.2 of good Voronoi modulation

lattices, to the general SNR case.

Definition 9.6.2 (Good Voronoi modulation: general SNR) We say that

a sequence (Λ
(n)
1 ,Λ

(n)
2 ) of nested lattices of a growing dimension n is “good for

Voronoi modulation,” if

(i) the coarse lattice is a good quantizer, i.e., G(Λ
(n)
2 ) → 1/2πe (Defini-

tion 7.3.2); and

(ii) the fine lattice is a good channel code under NN decoding against the mixture

noise Zn = αZ + (α− 1)Un, where Un ∼ Unif(V0(Λ
(n)
2 )), i.e.,

µmix

(
Λ
(n)
1 , Pe; Λ

(n)
2 , α

)
→ 2πe (9.79)

as n → ∞, for all Pe > 0 and 0 < α ≤ 1 (Definition 7.8.3).

The existence of nested lattices good for Voronoi modulation follows from The-

orem 8.5.1, and the tendency of the mixture noise (for good shaping lattices) to
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Figure 9.15 A lattice inflation interpretation of lattice decoding after linear estimation

with α < 1, versus ML decoding. It is seen from the picture that the inflated decision

cells capture a higher portion of the output probability mass than the original

decision cells.

AWGN (Proposition 9.6.1). Using such lattices in Corollary 9.6.1 proves Theo-

rem 9.6.1.

9.7 Geometric interpretation

The linear estimation lattice decoder (9.65b) first attenuates the channel output,

and then decodes to the nearest codeword in the codebook (9.3). An equivalent

solution is to take the channel output as is (unattenuated), and then decode to

the nearest codeword in an inflated codebook. Other equivalent solutions can be

obtained by combining partial attenuation and inflation.

Specifically, the linear estimation lattice decoder (9.65b) is equivalent to

v̂LD = α
[(

argmin
λ′∈(Λ1/α)

∥
∥
∥Y − u

α
− λ′

∥
∥
∥

)

mod
Λ2

α

]

. (9.80)

That is, the decoded codeword λ′ belongs to an inflated codebook

CΛ1/α,P0/α =
Λ1

α
mod

Λ2

α
. (9.81)

See identities (2.43)–(2.44) and Figure 9.15.
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Figure 9.16 Attenuation divided between the encoder and decoder. It can be verified

that the decoder coefficient α2 is the optimal linear estimator of the “inflated signal”

X′.

This kind of mismatch (or bias) between the encoder and the decoder is not

common. In fact, biased estimation is suboptimal under NN decoding to the

shaped codebook. Nevertheless, interestingly, the optimality of the linear estima-

tion lattice decoder (9.65b) at high dimensions implies that, under the restriction

to lattice decoding, bias may be beneficial.

We can think of codebook inflation as if the attenuation is performed at the

encoder. That is, the encoder attenuates the codebook (by α) before the trans-

mission; the codebook power is initially P/α2, so the power constraint is satisfied

after the attenuation. The decoder then searches for the nearest point to Y in

the (unattenuated) codebook.

Figure 9.16 shows a generalization of this scheme, where the codebook is

attenuated by α1 before the transmission, while the channel output is attenuated

by α2 before the decoding, where α1α2 = α. In a symmetric system, both the

encoder and decoder attenuate by the same factor α1 = α2 =
√
α.

9.8 Noise-matched decoding

In Section 9.6 we restricted our attention to NN (Euclidean) decoding (9.65b).

Luckily, this was sufficient to achieve capacity, because the dither – and hence

the equivalent mixture noise Zeq – become closer to AWGN for a sequence of

good (high-dimensional) coarse lattices. In return, the error probability in NN

decoding of a good fine lattice tends to zero as the dimension goes to infinity.

Practical coding schemes, however, tend to separate shaping from coding, and

give up the shaping gain, i.e., use a simple cubic coarse lattice; see the discussion

on mixed-nesting dimensions in Section 9.3.3. In this case, the uniform dither U ,

and hence the mixture noise αZ + (α− 1)U , are not quite Gaussian (in particular

at low SNR; see Figure 4.9).

Another feature of practical coding schemes is that they are based on modulo-q

(construction A) lattices. This means that the fine lattice – due either to cubical

shaping or to construction A – contains a cubic sub-lattice. Hence, it cannot be
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“good for AWGN channel coding”; see Section 7.9.5. While this is not a real

problem for a bounded (Voronoi) lattice constellation (because all the points in

a cubic (sub-) coset carry the same message, so intra-coset transitions are not

counted as error events), the NN decoder fails to take advantage of this structure.

To resolve the two problems above, Gaussian mixture noise and cubic-coset

messages, the lattice decoder needs to match the noise true statistics, i.e., replace

the NN rule in (9.65b) by a fine lattice quantizer QΛ1(·) that performs ML

decoding with respect to the equivalent noise Zeq; see (6.11) and Section 9.1.3.

Such noise-matched lattice decoding means taking into account two factors:

1. the folding (mod Λ2) of the noise (which amounts to performing coset decoding

(9.10)); and

2. the uniformity (non-Gaussianity) of the dither component U.

Note that this still amounts to lattice decoding because QΛ1 ignores the shape

V0(Λ2) of the Voronoi codebook.

To see the improvement due to noise-matched decoding, we shall find a finer

characterization for the performance of Euclidean decoding over the mod Λ chan-

nel. For that, consider the following (tighter) lower bound on the mod Λ channel

capacity, due to (9.55b):

CmodΛ ≥ C
(euclid-th)
modΛ

∆
=

[
1

n
log[V (Λ2)]−

1

2
log
(
2πeσ2

eq

)
]+

, (9.82)

where

σ2
eq

∆
=

1

n
E‖[X̂−X] modV0 Λ2‖2 (9.83)

is the second moment per dimension of the equivalent noise under a Voronoi

modulo operation, and [x]+ = max{0, x}. A Euclidean-threshold decoder searches

for a unique codeword within a sphere (modulo Λ2) of radius rD around the

received vector, where rD is slightly larger than
√

nσ2
eq; see (6.35) and (7.74). The

right-hand side of (9.82) is a lower bound on the mismatched Euclidean-threshold

decoder capacity of the mod Λ channel, denoted C
(euclid-th)
modΛ ; see Section 6.4.1 and

Problems 9.9–9.10.

Figure 9.17 shows the capacities CmodZ and C
(euclid-th)
modZ

as a function of the

SNR, for a cubic shaping lattice. For the noise-matched capacity we use formula

(9.64), while for the Euclidean-threshold capacity we use

C
(euclid-th)
modZ

=
[

log(∆)− 1

2
log
(

2πeE ([αZ + (α− 1)U ] mod ∆)
2
)]+

, (9.84)

where mod ∆ here is to the interval (−∆/2,∆/2). As in Figure 9.11, at the low

SNR regime both curves are strictly below I(U,U + Z), the information rate of a

non-modulo AWGN channel; but C
(euclid-th)
modZ

is even lower, and it vanishes below

some positive value of SNR.
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Figure 9.17 Capacity curves for scalar Voronoi modulation with noise-matched lattice

decoding and Euclidean-threshold lattice decoding. For comparison, the non-modulo

capacity I(U,U + Z) is also shown.

Note that the capacity curves above do not reflect the coding loss, i.e., they

correspond to a good (high-dimensional) fine lattice. For a general fine lattice,

a coding loss term (12 log(µmatched/2πe) or 1
2 log(µeuclid/2πe)) should be sub-

tracted from the corresponding capacity; see the definitions of noise-matched

and Euclidean NVNR in Section 6.4.

The gap between the noise-matched capacity (9.64) and the lower Euclidean-

threshold capacity (9.84) (provided that the latter is positive) can be interpreted

as the divergence of the equivalent noise Zeq from Gaussianity (7.38):

Noise-matching gain = D(Zeq; Z
∗
eq). (9.85)

This gain is upper bounded by the divergence of the dither from Gaussian-

ity 1
2 log(2πe/12); and it vanishes at the high SNR regime, where Zeq becomes

Gaussian, so NN (or Euclidean-threshold) decoding achieves capacity.

9.9 Is the dither really necessary?

We return to the question we addressed in the context of quantization (the ECDQ

in Section 5.7), now in the context of Voronoi modulation with lattice decoding:

is the dither only an analytical tool, and does it have to be random?
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U

(A) (B)

Figure 9.18 Effect of scaling and dither on codewords and decision cells. (A)

undithered scaled case (α = 2/3); (B) dithered and scaled case.

The following example shows that for binary modulation, i.e., an un-shaped

(cubic) constellation, dithering is wasteful in terms of power, and is unnecessary

for ML decoding.

Example 9.9.1 (Randomized BPSK) Consider a dithered and coded binary

constellation, as described in Example 8.3.1, where the fine lattice is a (scaled)

modulo-2 lattice, and the coarse lattice is 4Z. The transmit power with a random

uniform dither U ∼ Unif(−2, 2) is P = σ2(4Z) = 42/12 ≈ 1.33. In contrast, for

a standard (non-randomized) BPSK constellation (which corresponds to a fixed

dither value u = −1) the power is only P = 1. For ML decoding, since the error

probability is invariant to the dither value, this 33% extra power of a randomized

constellation does not give us any benefit. The Shannon capacity of a standard

BPSK constellation at SNR = 1 (i.e., noise power of N = 1), for example, is

≈ CAWGN = 1/2 bit (see Figure 9.6), and randomization cannot increase it. In

contrast, the mod Λ channel capacity is Cmod4 = log(4)− h(Zeq) ≈ 0.38 bit for a

noise-matched decoder (9.56), and C
(euclid-th)
mod4 = log(4)− 1

2 log(2πe
4/3

4/3+1 ) ≈ 0.36

bit for a Euclidean-threshold decoder (9.84); see Figures 9.11 and 9.17. Thus, the

restriction to lattice decoding reduces the capacity, in spite of the ≈33% extra

power of the modulator.

Binary modulation, however, cannot achieve capacity (unless the SNR is low;

see Figure 9.6). Let us then turn to examine the role of the dither in a general

Voronoi-shaped modulation system. Since the coding rate R is invariant to the

dither (Proposition 8.4.1), we examine the effect of the dither on the two other

system parameters: error probability and power.

Dithering is insignificant at high-SNR/high-rate conditions. Since the con-

stellation points are very dense inside the Voronoi shaping region, the transmit

power is almost unaffected by shifting these points (modulo the shaping region).
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Also, for the no-estimation case (X̂ = Y or α = 1), which is optimal at high

SNR, the error probability in lattice decoding is invariant to the transmitted

message and the value of the dither (see Lemma 9.3.1).

In contrast, at non-high-SNR conditions, where the optimal estimation coef-

ficient α is smaller than 1, random dither plays a crucial role in equalizing the

power and error probability among the messages. Let us first examine the case

of a specific (non-random) dither vector u and transmitted message vm, as illus-

trated in Figure 9.18. In light of (9.65b), the error probability is the probability

that the attenuated output αY leaves the mth fine Voronoi cell, shifted by the

dither u:

Pe(vm,u) = Pr{αY 6∈ [u+ vm + V0(Λ1)] mod Λ2}. (9.86)

Using the same steps as in the analysis of the mod Λ channel (Lemma 9.5.1), we

rewrite (9.86) as

Pe(vm,u) = Pr{[αZ+ (α− 1)x] 6∈ V0(Λ1) mod Λ2} (9.87)

where x = x(vm,u) (9.65a); hence the “self-noise” component (α− 1)x here is

a deterministic (message dependent) bias.

Observe that if α 6= 1, then Pe(vm,u) in (9.87) depends on the transmitted

message vm. Figure 9.19 demonstrates this dependence by a numerical example.

To appreciate the variation, suppose that the dither exactly “matches” one of the

message representative vectors, i.e., u = −vj for some j, for example, assume a

zero dither u = 0 for the zero codeword v0. In this case, the self-noise component

(α− 1)x is zero if v0 is transmitted, and non-zero for all other messages (see

Figure 9.18), implying that the error probability is minimum if message v0 is

transmitted:

Pe(vm,u = 0) > Pe(v0,u = 0) = Pr{αZ 6∈ V0(Λ1) mod Λ2}. (9.88)

See Figure 9.19 and Problem 9.11. More generally, a dither vector u tends to

favor a message vm where u+ vm is close to the origin.

Figure 9.20 shows that even the average (power and error probability) over

the messages may still vary with the value of the dither. (Here the aver-

age power is P̄ (u) = 1
nM

∑

m ‖x(vm,u)‖2 and the average error probability is

P̄e(u) = 1/M
∑

m Pe(vm,u).) It follows that if one only cares about the message-

average performance (i.e., can tolerate power and error-probability variation

among the messages), then each desired operation point (i.e., a pair of aver-

age power and error probability) is optimized by some specific (non-random)

dither value.

What happens to this variation for good (high-dimensional) lattices? We know

from the discussion earlier in this chapter that Voronoi modulation with random

dither and Wiener-estimated lattice decoding asymptotically achieves the Shan-

non capacity, i.e., the best attainable performance. Thus, the variation (around

the uniform dither case) of the message-average power P̄ (u) and error probabil-
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Figure 9.19 Variation of Pe(vm,u) with respect to the messages m, for zero and

non-zero dither. (Hexagonal constellations with nesting ratios Γ = 2 and 3. The linear

coefficient is denoted by a.)

ity P̄e(u) must vanish as the dimension goes to infinity – otherwise we could find

a dither value for which the Shannon bound is exceeded.

Indeed, for a large lattice dimension, u is typically orthogonal to the message

vector vm, and ‖x(vm,u)‖ is typically ≈
√
nP . Hence, asymptotically, almost all

dither values (though not necessarily the zero dither) are good in terms of the

message-average power and error probability.

9.10 Voronoi quantization

The duality of source coding and channel coding (Chapter 2) suggests that the

encoder and decoder in quantization are the counterparts, in reversed order,

of the encoder and decoder in modulation. This is indeed a useful view in the

dithered Voronoi codebook setting, with some small modifications.

Consider the quantization problem of Chapter 4, where a vector source S

is encoded under some per letter difference distortion measure d(ŝ− s), and

reconstructed as Ŝ. Let Λ2 ⊂ Λ1 be a pair of n-dimensional nested lattices, with
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Figure 9.20 Variation of the message-average power P̄ (u) and error probability P̄e(u),

as a function of the dither value u, for scalar Voronoi modulation (PAM) at a rate

R = 1 bit. Each curve is for a different constellation amplitude ∆, where

Pave
∆
= ∆2/12 is the average power for a random dither.

relative cosets Λ1/Λ2; let P0 and V0 denote enumeration and shaping fundamen-

tal cells, respectively, of the coarse lattice Λ2; finally let CΛ1,P0 = {v1, . . . ,vM}
denote the corresponding codebook (Chapter 8 and Section 9.1).

Given a source vector S = s, the encoding and decoding operations are defined

as follows:

Encoding v = QΛ1(αs + u) mod Λ2 (9.89)

Decoding ŝ = β · [(v − u) mod V0Λ2], (9.90)

where u is the dither, and α and β are scalar “estimation” coefficients. The quan-

tizer QΛ1(·) is matched to the distortion measure d(·); in the squared-distortion

case, its output is given by the NN rule:

QΛ1(αs + u) = argmin
λ∈Λ1

‖αs+ u− λ‖. (9.91)

Correct decoding is the event where Ŝ = β[QΛ1(αs + u)− u], i.e., the modulo-

Λ2 operation is not effective. The error, or overload, probability (for random

source S and dither U), is defined as the probability of the complementary

event, Pe = Pr{Ŝ 6= β[QΛ1(αs+ u)− u]}.
This system is similar to Voronoi modulation (Figure 9.16), only the encoder

and decoder switch roles. At high-resolution quantization we set α = β = 1, so
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“correct decoding” amounts to the source S falling in the coarse Voronoi region

V0. The coding rate R(Λ1/Λ2) =
1
n log |Λ1/Λ2| becomes in this case

R(Λ1/Λ2) = R∗(Dcd) +
1

2
log(G(Λ1) · µ(Λ2, Pe)), (9.92)

where R∗(D) = 1
2 log(σ

2
s/D) is the quadratic-Gaussian rate-distortion function

(5.33), and Dcd = σ2(Λ1) is the “granular distortion,” i.e., the distortion condi-

tional on correct decoding.

The second term in (9.92) is the shaping and overload redundancy, paralleling

the shaping and coding loss in Voronoi modulation at high SNR (9.21), but with

the coarse and fine lattices switching roles. For a large lattice dimension and

“good” nested lattices, this redundancy term goes to zero.

Definition 9.10.1 (Good Voronoi quantization: high resolution) We say

that a sequence (Λ2,n ⊂ Λ1,n) of nested lattice pairs of increasing dimension n

is “good for Voronoi quantization at high resolution,” if G(Λ1,n) → 1/2πe, and

µ(Λ2,n, Pe) → 2πe for all Pe > 0.

Note that we can let Pe → 0, implying that Dcd → D, where D = E‖Ŝ−
S‖2/n is the total distortion, so the Voronoi quantizer approaches R∗(D). 18

For a general resolution, we observe that as Pe → 0, the system becomes a

filtered dithered quantizer ŝ = β · [QΛ1(αs + u)− u] (see Sections 4.5 and 5.6.2).

Hence, for a uniform (or modulo-uniform) dither with respect to Λ1, the optimal

coefficients α and β follow from Wiener estimation principles. However, we shall

not make a precise analysis of this case, for two reasons: (i) Voronoi quantization

(with a high-dimensional shaping lattice) is not common in practical point-to-

point coding systems; (ii) Voronoi quantization is a useful concept in source

coding with side information (the Wyner–Ziv problem), which we address in

Chapter 10.

Summary of Chapter 9

Voronoi modulation

x(vm,u) = [vm + u] mod V0Λ2,

where 1 ≤ m ≤ M = |Λ1/Λ2| is the message, vm is the message representa-

tive vector and u is a dither.

Coding rate R(Λ1/Λ2) =
1
n log2 |Λ1/Λ2| bit per channel use.

18 Since the overload distortion (i.e., the conditional distortion given incorrect decoding) is
bounded (by σ2(Λ2)), its contribution to the average distortion D becomes negligible as
Pe → 0.
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Transmit power If the dither U is modulo-uniform with respect to Λ2,

then

1

n
E‖X‖2 = σ2(Λ2), for all 1 ≤ m ≤ M.

Lattice decoding v̂ = QΛ1 [g(Y)− u] mod Λ2, where g(Y) estimates X.

Error probability For NN decoding (QΛ1 = Q
(NN)
Λ1

) and no estimation

(g(y) = y),

Pe ≤ Pr(Z 6∈ V0(Λ1)), for all 1 ≤ m ≤ M.

Gap to capacity at high SNR

CAWGN −R(Λ1/Λ2) =
1

2
log(2πeG(Λ2))

︸ ︷︷ ︸

Shaping loss

+
1

2
log
(µ(Λ1, Pe)

2πe

)

︸ ︷︷ ︸

Coding loss

.

Equivalent mod Λ channel

Ỹ = [v + Zeq] mod Λ2,

where Zeq is the estimation error g(Y)−X modulo Λ2.

Coding rate with noise-matched lattice decoding

R(Λ1/Λ2) ≥ CmodΛ − 1

2
log

(
µmatched(Λ1,Zeq, Pe)

2πe

)

︸ ︷︷ ︸

Coding loss

.

Error probability with linear estimation g(y) = αy

Pe = Pr(Zeq 6∈ V0(Λ1) mod Λ2), for all 1 ≤ m ≤ M,

where

Zeq = [αZ+ (α− 1)U] mod Λ2.

For noise-matched lattice decoding, V0(Λ1) is replaced by VZeq

0 (Λ1).

Gap to capacity with Wiener estimation (α∗ = P/P +N)

CAWGN −R(Λ1/Λ2) ≤ Shaping loss(Λ2) + Coding loss(Λ1).

Good lattices and deterministic dither If Λ1 and Λ2 are good for shap-

ing and coding, respectively, then R(Λ1/Λ2) approaches CAWGN for all SNR,

and for almost any dither value U = u.
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Problems

P.9.1 (Decision vector) Prove that the lattice decoder (9.11c) is equivalent to

(9.11e), i.e., calculate the decision vector Ỹ (undither and reduce modulo Λ2),

then quantize and reduce again modulo Λ2.

P.9.2 (High SNR performance) Prove the “only if” part of Theorem 9.3.1 in

the limit of small noise power. (Guidance: show that the probability of the event

that (9.19b) ignores is upper bounded by the probability that the noise exceeds

the shaping region.)

P.9.3 (PAPR) (a) Show that the PAPR (9.27) of cubical shaping Λ2 = Zn is

equal to three. (b) Show that for a general Λ2, the PAPR is upper bounded by

nρ2cov(Λ2)/2πeG(Λ2) < nρ2cov(Λ2). Conclude that for Rogers-good lattices, the

PAPR increases linearly with the dimension.

P.9.4 (Pre-emphasis) Consider the channel Y = (1 +X)(1 + Z), where Z ∼
N(0, N), and where the input X is non-negative and is subject to the constraint

E[log(1 +X)]2 ≤ P . (a) Prove that the high SNR capacity of this channel is

CHSNR = 1
2 log(P/N). (b) Find a suitable pre-emphasis X = f(X̃) (see (9.11d))

and an estimator X̂ = g(Y ) in (9.11), so that Voronoi modulation with lattice

decoding achieves CHSNR at high SNR. (Guidance: for both parts use the identity

h(log(X)) = h(X)− E{log(X)}.)

P.9.5 (Modulo loss at high SNR) Prove that the modulo loss vanishes at high

SNR (9.31). Hint: use the chain rule and the fact that U ↔ U+ Z ↔ [U+

Z] mod Λ2 form a Markov chain, to show that

I(U;U + Z | [U+ Z] mod Λ2) = I(U;U+ Z) − I(U; [U+ Z] mod Λ2);

(9.93)

see Appendix A.1. Then, show that [U+ Z] mod Λ2 converges to U+ Z in dis-

tribution as σ2
z → 0, and use the semi-continuity of the divergence [164, 219].

P.9.6 (Modulo-Voronoi) Show that a modulo-Voronoi operation does not

increase the second moment. (Hint: see Problem 2.7.) Give an example of a

non-zero-mean variable whose variance increases by a modulo-Voronoi opera-

tion.

P.9.7 (Lemma A.3.2: modulo reduces entropy)) For a random variable X with

a differential entropy h(X) and a lattice Λ, prove that:

h(X) ≥ h(X mod Λ)

with equality if and only ifX is contained with probability 1 in some fundamental

cell of Λ. (Hint: use the data-processing inequality: I(Q;X mod Λ) ≤ I(Q;X),

where Q = QΛ,P0(X) is the quantizer associated with the modulo operation.)
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P.9.8 (Random coding interpretation of lattice decoding [2]) Let C1 be a “large”

random Gaussian codebook of dimension n, power P1 and with 2nR1 codewords.

Let C be the truncation of C1 to a ball of power P (i.e., of radius
√
nP ), where

P < P1, and let 2nR be the number of codewords in C. The encoder uses the

“small” codebook C for transmission over an AWGN channel Y = X + Z with

noise power N . The decoder is a reverse-typicality decoder matched to the large

codebook, i.e., it uses the rule (9.50b), with X ∼ N(0, P1) and Y = X + Z. Let

SNR = P/N . Show that reliable decoding is possible for R smaller than the α-

capacity C(SNR, α), (9.62b), with α = P1/(P1 +N). Guidance: show that the

true codeword is within a distance
√

nN(α2 + (1− α)2SNR) from αY , and follow

the argument in (9.51).

P.9.9 (Mismatched-decoding capacity) Let Zd,a denote the family of random

variables Z in the interval [0, a) satisfying some d-moment constraint E{d(Z)} ≤
d, and let ZME = maxZ∈Zd

h(Z) denote the maximum-entropy variable in the

family. The d-threshold capacity is the maximum achievable rate with a decoder

of the form:

ĉ =

{
c, if d([Y − c] mod a) < dth for a unique c ∈ C,
?, otherwise,

see (6.35) for the case where d is the squared-Euclidean distance. Show that the

d-threshold capacity of a memoryless modulo-additive noise channel Y = X +

Z mod a, with noise Z ∈ Zd,a, is at least the regular capacity with Z = ZME,

i.e., Cd-th ≥ log(a)− h(ZME).

Guidance: use Lemma 7.8.1 with a decoding region equal to a d-ball, i.e.,

S = {x : d(x) ≤ d}. By the law of large numbers, argue that the probability

that Z ∈ S goes to 1 as the dimension goes to infinity. Finally, for a uniform

code ensemble, argue that the competing codeword term in the lemma vanishes

for all rates smaller than log(a)− h(ZME).

P.9.10 (Euclidean-threshold decoding) (1) Show that for any body S and ran-

dom variable Z, the probability Pr([Z ∈ S] mod Λ) is invariant of the funda-

mental cell P0 with respect to which the modulo-Λ operation is taken (where

{[Z ∈ S] mod Λ}means {[Z] mod Λ ∈ [S] mod Λ}). (2) For a ball S = Ball(0, r),

show that if r ≤ rpack(Λ), then this probability is equal to Pr([Z] mod V0Λ ∈ S),

where V0 is the fundamental Voronoi region. (3) Use these facts and Problem 9.9

to prove the formula (9.82) for the Euclidean-threshold capacity of the mod Λ

channel.

P.9.11 (Biased decoding) Prove that if a body S is convex and symmetric about

the origin (e.g., the Euclidean Voronoi cell of a lattice), Z is AWGN, and x is a

non-zero vector, then

Pr{Z 6∈ [t · x+ S]}
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is monotonically increasing with |t|. Conclude that the error probability in the

presence of AWGN is minimized when the Voronoi cells are unbiased.

Guidance: (i) show that the complementary probability p(x) = Pr{Z ∈ [x+

S]} is the convolution fW (x) ∗ 1S(x) of the AWGN density fW and the indi-

cator function 1S of the body S; (ii) show that each of these functions is sym-

metric about the origin and log-concave (see Appendix A.4 for the definition);

(iii) conclude that also p(x) is symmetric about the origin and log-concave (use

Lemma A.4.1); (iv) conclude that p(x) has a maximum at the origin, and is

monotonically non-increasing along rays from the origin; (v) show the desired

result.

Historical notes

Shannon [240] showed that the capacity-achieving input for a power-constrained

AWGN channel is Gaussian, and that – by the AEP – this input corresponds to a

spherically shaped codebook; see the book by Cover and Thomas [53]. Shannon

also gave the insightful illustration of duality between the forward and backward

(reverse) channels, which, in the Gaussian case, links between the information

and estimation viewpoints. For the role of spherical shaping in the context of

error exponents, see the book by Gallager [97].

Zamir and Erez [286] showed that a Gaussian input is robust, in the sense that

it loses at most half a bit in capacity for any (power-constrained) additive-noise

channel.

The connection to lattices was made in the work of de Buda [57, 58], who

showed that Shannon’s Gaussian codebook can be replaced by a high-dimensional

spherically shaped lattice codebook. Conway and Sloane [47] and Forney [85]

introduced the idea of a Voronoi-shaped codebook. Calderbank and Sloane [34]

proposed the coding gain as the total power advantage of a coded spherically

shaped constellation over a cubically shaped uncoded constellation. Forney [83]

proposed separating the shaping and coding gains (as done in Section 9.3). For-

ney and Wei [94] used “continuous approximation” to determine the “shaping

gain” of a Voronoi code in terms of the NSM of the shaping lattice.

Trellis shaping was introduced by Forney [87]. He combined Marcellin and

Fischer’s trellis-coded quantizer [178] (as a shaping scheme) with a convolutional

code (as a coding scheme). See also Eyuboglu and Forney [75].

A different approach to shaping follows the non-equiprobable signaling route

of Chapter 6, but at a fixed coding rate. Calderbank and Ozarow [33] proposed

the shell mapping technique, which was extended by Khandani and Kabal [133]

and Laroia et al. [150]; see the tutorial paper by Calderbank [30] and the book

by Tretter [256].

The theoretical performance limits of lattice codes over a power-constrained

AWGN channel were studied by several authors [57, 58, 163, 175, 261]. Urbanke

and Rimoldi [261] distinguished between a spherical shell and a solid shell shap-
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ing region, and between lattice decoding (which ignores the shaping region) and

maximum likelihood decoding. They showed that for both shaping regions, maxi-

mum likelihood decoding can approach the full Shannon capacity 1
2 log(1 + SNR)

of the AWGN channel. They left open the question (implied by de Buda’s original

work [57] and Loeliger [175]) whether the suboptimal lattice decoder is limited

by the smaller rate of 1
2 log(SNR). Erez and Zamir [71] closed this gap by show-

ing that with a Wiener estimation receiver, a dithered Voronoi codebook with

lattice decoding can achieve the full AWGN channel capacity. Interestingly, this

result was inspired by the solution for a side-information problem [68, 293]: a

lattice pre-coding scheme for Costa’s dirty-paper channel [50]. Forney [89, 90]

showed that this “Wiener–Shannon connection” has interesting implications on

coding, modulation and decoding for Gaussian channels (see also the paper by

Cioffi et al. [41]).

The modulo-lattice channel (continuous and nested versions) was proposed by

Forney et al. [92] to model successive decoding of a multi-level constellation. Erez,

Zamir and Shamai [68, 71] showed that a dithered Voronoi code with a general

estimator and a modulo receiver (termed a “modulo-lattice transformation”) is

equivalent to a modulo-lattice channel; see also [72] and Philosof, Erez, Khisti

and Zamir [214, 217].

Forney [89] argued that almost all dither values must be asymptotically opti-

mal (as the dimension goes to infinity) for the Wiener estimated modulo-lattice

channel. Yona and Haim [280] observed that for α < 1, a zero dither favors the

zero codeword, and hence cannot be optimal. Ling and Belfiore [166] showed that

an undithered lattice constellation (with probabilistic shaping) can approach the

AWGN channel capacity above some minimum SNR value.
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Classical information theory deals with point-to-point communication, where a

single source is transmitted over a channel to a single destination. In a distributed

scenario, there may be more than one source or more than one channel and des-

tination. The simplest setup, which captures much of the essence of the problem,

is that of sources and channels with side information. The idea of coding with

side information appeared for the first time in the seminal work of Slepian and

Wolf from 1973 [247]. Let us illustrate this idea with a couple of examples.

Predictive coding of temperature

Suppose I wish to communicate tomorrow’s temperature to my friend, after

hearing the weather forecast. If the relevant range is 21–28 ◦C, then I need three

bits of information to tell her my number. But suppose that in this season of the

year the temperature changes daily by exactly one degree. If today’s temperature

is known to both of us, then clearly one bit of information is sufficient: “0” means

−1 ◦C and “1” means +1 ◦C. But what if today’s temperature is known only to

my friend?

In the general case, X and Y are two correlated memoryless sources, where

X is known to the encoder and Y is known to the decoder. By the principles

of lossless compression, communicating X requires a coding rate of about the

entropy of X in the absence of the side information Y ; and about the condi-

tional entropy of X given Y , if Y is available at both encoder and decoder. The

surprising result of Slepian and Wolf is that the latter (smaller) rate is sufficient

even if Y is available only at the decoder.

Returning to our temperature story, if the number X is even (my friend knows

that, since her number Y is odd), then telling whether X/2 is even or odd

(i.e., if X divides by four or not) requires just one bit, and it provides enough

information to know whether X is Y − 1 or Y + 1. And in general, the parity of

⌊X/2⌋ provides enough information to decode X given Y .

The idea is thus to divide the source elements into sets, and encode an element

by saying to which set it belongs. In the temperature story, the sets are the even

and odd numbers.
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This protocol is known as a binning or a coloring scheme. In the general case

of encoding n-dimensional source vectors {X}, we use 2nR colors. The source

vectors are divided into 2nR bins, and each bin is given a different color. Our

goal is to form the bins such that for a typical (X,Y) pair, the combination of

side information (which is an n-dimensional vector Y) and a color will uniquely

identify the source vector X; see Figure 10.1(A). Not very surprisingly, asymp-

totically (as n goes to infinity) we can form these bins at random. And the price

we pay is small: the probability of a reconstruction error (where the identification

is not unique or wrong) goes to zero as n goes to infinity. 1

The Slepian–Wolf source coding problem has a channel coding dual, known as

the Gelfand–Pinsker problem, where this time the side information is available

only at the encoder.

Embedding a hidden message

Suppose I wish to hide a message in a sequence of integer numbers given to my

friend; to keep the message unnoticeable, I am allowed either to leave a number

unchanged or to increase it by 1. If my friend knew the original (unaltered)

sequence, then each integer number could carry one bit of information: unchanged

means “0,” and increased by 1 means “1.” But what if she does not know the

original sequence?

In the literature, this problem bears the picturesque name writing on a dirty

paper, or in different contexts digital watermarking and writing to a memory

with defects. From the temperature example above, it is easy to guess what the

protocol should be: let an even number mean “0” and odd number mean “1,”

and alter the integer sequence accordingly.

The underlying principle is again to divide signals into sets (call it coloring or

binning), and identify a message with a choice of set. The goal here is to con-

struct the sets of possible transmitted signals, such that every set will contain

at least one element X which meets the channel state S and the constraint; see

Figure 10.1(B). In the hidden message story, the sets are the even and odd num-

bers, the channel state S is the original sequence of integers, and the constraint

is the altering rule.

A general Gelfand–Pinsker setup consists of a (possibly constrained) channel

from (X,S) to Y , where the encoder knows S and controls X . As in the Slepian–

Wolf problem, a random binning solution is asymptotically optimal in the limit of

a large coding block length (where reliable encoding and decoding is guaranteed

with a high probability). The similarity is even stronger in the deterministic

(noiseless) channel case, where Y = f(X,S): the capacity with side information

S at the encoder is equal to the conditional entropy H(Y |S) (maximized over

1 Note that for a general source and side information pair, a small probability of error is
usually unavoidable (just like in coding for a noisy channel); see [8, 141, 296].
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Figure 10.1 Random binning schemes: (A) the Slepian–Wolf problem; (B) the

Gelfand–Pinsker problem. For the former, throw each x vector into one of 2nR bins,

with a uniform probability. If R > H(X|Y ), then with a high probability, X will be

the only vector in its bin which is jointly typical with the side information Y.

all possible inputs X depending on S), which is the same as the capacity when

the state S is available at both the encoder and decoder.

In this chapter we are interested in “noisy” extensions of the two problems

above: lossy source coding with side information at the decoder, and noisy chan-

nel coding with side information at the encoder. The former is known as the

Wyner–Ziv problem, while the latter is known as (a general form of) the writ-

ing on a dirty paper problem. We shall mainly be interested in the quadratic-

Gaussian versions of the two problems.

As of today, unfortunately, most practical communication systems do not uti-

lize side information; the main references for these setups are thus (still) the

information theoretic non-constructive random coding solutions. Our goal is to

show that with just a slight modification, the Voronoi modulation and quan-

tization schemes of Chapter 9 efficiently solve the dirty-paper channel and the

Wyner–Ziv source coding problems. Thus, these simple lattice coding schemes

give us, almost “for free,” the benefit of structure in the basic side-information

setups.

We shall first motivate the use of structured side-information codes in Sec-

tion 10.1, by solving binary-symmetric versions of the Slepian–Wolf and the

Gelfand–Pinsker problems, using the syndromes of a linear code. In Section 10.2,

we shall extend the discussion to Gaussian multi-terminal settings, where side

information plays a major role. Sections 10.3 and 10.4 define the rate-distortion

function with side information, and show how to approach it with a nested lat-
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Figure 10.2 Binary Slepian–Wolf problem: source coding with side information for a

doubly symmetric binary source.

tice coding scheme. Finally, Sections 10.5 and 10.6 do the same for capacity with

side information and the dirty-paper channel.

10.1 Syndrome coding

Consider a memoryless doubly symmetric binary source (DSBS)

(X1, Y1), (X2, Y2), . . .. Each Xi or Yi is symmetric (i.e., Pr(Xi = 1) = Pr(Yi =

1) = 1/2), and the pair (Xi, Yi) is connected via a BSC with a crossover

probability p < 1/2:

Yi = Xi ⊕ Zi, (10.1)

where ⊕ is modulo-2 addition, i.e., Pr(Xi 6= Yi) = Pr(Zi = 1) = p.

In the setup shown in Figure 10.2, the X-component is the “source,” while

the Y-component is the “side information.” The encoder maps the vector X =

(X1, . . . , Xn), into a message W = f(X), where W ∈ {1, . . . , 2nR}. The decoder

receives W , and the correlated vector Y = (Y1, . . . , Yn), and reconstructs the

source as X̂ = g(W,Y). In the lossless coding case, the goal is to make the

(block) error probability Pr(X̂ 6= X) small.

Clearly, without access to the side information Y, the source X is “un-

compressible”; hence, the coding rate R must be 1 bit per source sample. On

the other hand, if both the encoder and decoder know the correlated source Y,

then they can reduce the coding rate to the conditional entropy R = H(X |Y ) =

HB(p), whereHB(p) = −p log(p)− (1 − p) log(1− p) is the binary entropy of the

crossover probability p. (Recall that HB(p) ≤ 1 bit, with equality if and only if

p = 1/2.)

As discussed earlier, the Slepian–Wolf theory guarantees that a random bin-

ning scheme can achieve the conditional entropy H(X |Y ) = HB(p), even if only
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the decoder has access to Y. Here we shall show that the same rate is achievable

by a linear coding scheme. The solution is based on a “good” linear binary (n, k)

code, paralleling the notion of “good lattice codes” in Chapter 7.

10.1.1 Good linear codes

Recall from Section 2.5, that a linear binary (n, k) code C is defined by an

(n− k)× n parity-check matrix H , or an n× k generator matrix G. Letting

s = Hx denote the syndrome of a vector x, the code C is the set of all zero-

syndrome vectors in {0, 1}n ∆
= Zn

2 , which is also the column space of the matrix

G. More generally, the binary space can be partitioned into 2n−k distinct cosets

Cs, where Cs = {x : Hx = s} is the set of all n-vectors with a fixed syndrome s.

Each coset is a shift of the code, Cs = C ⊕ vs, where vs can be any member of

Cs. Thus, Cs can be written as the set of n-vectors x of the form Gw ⊕ vs, where

w runs over all k-vectors.

A set of coset representatives contains a unique member v from every coset.

Let us restrict attention to the set of coset leaders, i.e., minimum Hamming-

weight representatives, paralleling the shortest representative (2.32) in the case

of a lattice. Define a leader function Z
n−k
2 → Zn

2 , which maps a syndrome s to

the leader of its coset:

leader(s) = argmin
x∈Cs

wH(x) (10.2)

(where ties are broken arbitrarily). Using this function, define the modulo code

operation on a vector x ∈ Zn
2 with respect to the linear code C, as the leader of

the coset of x:

x mod C ∆
= leader(Hx) (10.3a)

∆
= error(x, C). (10.3b)

The definition (10.3a) parallels the modulo-lattice operation (2.21): it satisfies

the distributive law (2.22b), and it amounts to the error vector to the closest

codeword in the code C (where again ties are broken arbitrarily), as evident

from the second notation (10.3b). More generally, the error vector to the closest

codeword in a coset Cs, is given by

error(x, Cs) = leader(Hx⊕ s) (10.4a)

= [x⊕ leader(s)] mod C (10.4b)

which coincides with (10.3) for s = 0. See Problems 10.1, 10.2 and 10.3.

ML decoding over a BSC (10.1) with a crossover probability <1/2, amounts

to finding the codeword c with the minimum Hamming distance to the received

vectorY, i.e., the c ∈ C that achieves error(Y, C). In light of (10.3), this amounts
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Figure 10.3 Cosets of a linear code, and ML decoding over a BSC.

to

ĉ = Y ⊕ Ẑ, where Ẑ = error(Y, C), (10.5)

as illustrated in Figure 10.3.

An error event ĉ 6= c in the procedure above amounts to Ẑ 6= Z. Since Hc = 0,

hence HY = H(c+ Z) = HZ, an error event amounts to

Z mod C 6= Z. (10.6)

A linear code is good for coding over a BSC with parameter p, if it achieves a

small error probability Pe = Pr{ĉ 6= c} < ǫ, at a rate R = k/n close to the BSC

capacity C = 1−HB(p), for some ǫ > 0. Thus for such a code, the syndrome

length |s| = n− k and the error probability Pe satisfy

n− k ≈ nHB(p), and Pr{Z mod C 6= Z} < ǫ (10.7)

respectively.

Another notion of goodness is for source coding under Hamming distortion.

Following (10.5)–(10.7), the minimum Hamming distance between a source vec-

tor x and a codeword c ∈ C, is given by wH(error(x, C)). The rate-distortion

function (5.31) of a Bernoulli(1/2) source X, under an average Hamming distor-

tion D, is given by R(D) = 1−HB(D). A linear (n, k) code is good for source

coding with parameter D, if at a rate R = k/n close to R(D) it achieves an



254 Side-information problems

mod C

X

Encoder Decoder

Z

y

y

V

y

X̂Ẑ
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Figure 10.4 A linear code solution for the binary Slepian–Wolf problem, which

demonstrates the derivation in (10.11b). The picture of the hexagonal codebook is a

heuristic interpretation for the modulo-code operation.

average Hamming distortion D:

n− k ≈ nHB(D), and E{wH(error(X, C))} = nD. (10.8)

It follows from the maximum-entropy principle (A.13), that the quantization

error vector error(X, C) is nearly (divergence-wise) a Bernoulli(D) process.

We see that the number of cosets of a good code with a parameter θ (where θ

is either the crossover probability for channel coding, or the distortion for source

coding), is roughly

2n−k ≈ 2nHB(θ).

10.1.2 Source with side information

We return to the linear code solution for the binary Slepian–Wolf problem in

Figure 10.2. The syndrome encoder identifies the coset of the sourceX by sending

its syndrome, i.e., a linear function Zn
2 → Z

n−k
2 of X. Hence, the message W

contains |s| = n− k bits, and the coding rate is

R = 1− k/n (10.9)

bit per source sample. The decoder estimates the noise Z as the error between

the side information Y and the coset Cs, (10.4), and adds it to Y. The encoding

and decoding operations are thus summarized by:

Encoding s = HX (10.10a)

Decoding Ẑ = error(Y, Cs) (10.10b)

X̂ = Y ⊕ Ẑ. (10.10c)
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Since Y = X⊕ Z, and error(Y, Cs) = leader(HY ⊕ s), where s = HX, it fol-

lows from linearity that

Ẑ = leader(HY ⊕HX)

= leader(H(Y ⊕X))

= leader(HZ). (10.11a)

An equivalent representation of the system, shown in Figure 10.4, represents

the message by the leader vector v = leader(s) = leader(HX) = X mod C; see
(10.3). Hence, we have from (10.4)

Ẑ = [Y ⊕ v] mod C
= [Y ⊕ (X mod C)] mod C
= [Y ⊕X] mod C
= Z mod C, (10.11b)

where the one before last equality follows from the distributive law of the modulo

operation.

If the code C is a good BSC code in the sense of (10.7), then the result in

(10.11) is equal to Z, and hence the reconstruction X̂ (10.10c) is correct, with

probability of at least 1− ǫ. And from (10.9), the coding rate is R ≈ HB(p),

which is the desired conditional entropy H(X |Y ).

Observe that in the linear coding scheme above, the random bins of Figure 10.1

are replaced by the cosets {Cs} of the linear code C. This structure is, in fact,

common to all the linear (and later, lattice) side-information coding schemes in

this chapter.

10.1.3 Channel with known noise

Let us consider now a binary version of the Gelfand–Pinsker problem, paralleling

the information embedding problem at the beginning of this chapter. Suppose a

BSC Y = X ⊕ Z, where the input X is subject to an average Hamming-weight

constraint, i.e., every vector X of n channel inputs must satisfy wH(X) ≤ qn, for

some 0 < q < 1/2. In the context of information embedding, the random variable

Z is viewed as a source signal, in which we want to embed a “watermark” W ,

such that the Hamming distortion between the watermarked signal Y and the

source Z is at most q.

Similarly to the additive-noise channel capacity formula (6.15), it is easy to

show that the capacity of this channel is given by C = HB(q ⊗ p)−HB(p), where

p is the BSC crossover probability, and q ⊗ p = q(1− p) + (1− q)p is the binary

convolution. In contrast, if the noise Z is known at the decoder, and hence can

be XOR-ed with Y and canceled, then the larger capacity of C = HB(q) can be

achieved, independent of the crossover probability p.
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ŴW

Figure 10.5 BSC coding subject to an input constraint with side information (channel

noise) at the encoder.

The more interesting case, shown in Figure 10.5, is when Z is known only to

the encoder. 2 Unlike the decoder, the encoder cannot simply cancel the noise,

i.e., XOR the desired information with Z, because this would imply a cost in

Hamming weight, and may even violate the input constraint. Nevertheless, the

Gelfand–Pinsker theory implies that if the noise Z is available at the encoder

non-causally (i.e., the whole noise vector Z = Z1, . . . , Zn is known prior to the

selection of the input vector X = X1, . . . , Xn), then the full capacity of HB(q)

can be achieved. 3 See Figure 10.6. We show below a linear coding solution that

achieves this capacity.

This time, the scheme is based on a code C which is good for source coding

under an average Hamming distortion q (10.8). Each message W contains n− k

bits, and is represented by a syndrome s. By (10.8), the rate R = (n− k)/n

is ≈ HB(q) bit per channel use, as desired. Given the side information Z, the

encoding and decoding operations are:

Encoding X = error(Z, Cs) (10.12a)

Decoding ŝ = H ·Y, (10.12b)

where error(Z, Cs) is the error (10.4) between Z and the coset Cs. 4
Assuming that Z is Bernoulli(1/2) (a “worst case” noise) then, by (10.8), the

error (10.12a) satisfies an average input constraint

E{wH(X)} = qn (10.13)

2 In the context of copyright protection, this setup is known as public or blind watermarking,
where only the encoder has access to the original source.

3 In the causal side-information setup, due to Shannon [243], the input Xi at time instance
i depends only on the past and present noise values Z1, . . . , Zi. The capacity obviously can
only be smaller than the non-causal capacity, as is the case here. See Problem 10.5.

4 Contrast that with the conventional representation (2.54) of a k-bit information message w

by the n-bit vector x = Gw, in channel coding with no side information.
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Figure 10.6 Capacity curves for a BSC channel with a Hamming input constraint:

noise known at the receiver or at the transmitter, and unknown noise.

as desired. (Otherwise X can be symmetrized by dithering.) We are left to show

that the estimate ŝ in (10.12b) is indeed correct. By the linearity of the channel,

HY = HX⊕HZ. Now, from (10.4), X = leader(s⊕HZ); hence HX = s ⊕HZ

(by the definition of a coset and the leader function (10.2)), so

ŝ = (s ⊕HZ)⊕HZ = s (10.14)

since the two HZ terms cancel out.

An equivalent (and more insightful) analysis represents the message s by its

leader vector v, and uses modulo-C operations (Figure 10.7). We rewrite the

encoding (10.12a) and decoding (10.12b) as

X = (v ⊕ Z) mod C, where v = leader(s) (10.15a)

v̂ = Y mod C. (10.15b)

By the distributive law of the modulo operation, we then have

v̂ = [(v ⊕ Z mod C)⊕ Z] mod C = v (10.16)

since the two noise terms cancel each other, and v mod C = v.

10.1.4 Other settings and extensions

Writing to a memory with defects
The original motivation for channel coding with side information came from

writing to a memory with defective cells. In this problem, k out of n cells are

stuck at some fixed unchangeable values. The channel states (S1, . . . , Sn) indicate
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Figure 10.7 Coset-based scheme for channel coding with perfect side information.

the “stuck-at” values of these cells, as well as the location of the n− k writable

cells. These states are known to the encoder before writing, but are unknown to

the decoder. The idea of the coding protocol is to associate with each message a

distinct set of length-n codewords {(X1, . . . , Xn)}; the set should be sufficiently

large that for any vector of channel states (S1, . . . , Sn), i.e., a pattern of k (or

less) defective cells, there exists at least one codeword in the set that coincides

with that pattern, and hence can be written to the memory. It can be shown

that a scheme based on a linear erasure-correction code achieves asymptotically

a capacity of n− k out of n cells, which is the same as the capacity if the side

information was available also at the decoder.

Multi-terminal settings
The side-information problems above can be used as building blocks for more

general “multi-terminal” setups.

Distributed compression The general form of the Slepian–Wolf setup consists

of two separate encoders. Each encoder encodes one of two correlated sources X

and Y , which are to be reconstructed by a joint decoder. The Slepian–Wolf rate

region defines the set of coding rates R1 and R2, which allow X and Y to be

reconstructed losslessly (with an arbitrarily small probability of error):

R1 ≥ H(X |Y ) (10.17a)

R2 ≥ H(Y |X) (10.17b)

R1 +R2 ≥ H(X,Y ). (10.17c)

Note that by the chain rule H(Y ) +H(X |Y ) = H(X,Y ) (which is the rate

when the sources are encoded jointly). It follows that the rate pair {R1 =

H(X |Y ), R2 = H(Y )} is a “corner point” of the pentagon rate region above.

Furthermore, we can achieve this point via coding with side information: the Y -

encoder compresses Y to its entropy H(Y ) (so the joint decoder can reproduce

Y independent of the message sent by the X-encoder), while the X-encoder uses
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binning to compress X at a rate of H(X |Y ), given the side information Y at the

joint decoder.

Problem 10.6 shows a linear coding implementation of this idea, in the case

where (X,Y ) is a DSBS.

Deterministic broadcast The channel counterpart of this setup is a two-user

deterministic broadcast channel. This channel has two inputs X1 and X2, con-

trolled by a joint encoder, and two outputs Y1 and Y2, received by two sepa-

rate decoders, where each output is a (deterministic) function of the two inputs:

Yi = fi(X1, X2), i = 1, 2. The sum capacity of this broadcast problem is the same

as the capacity of a point-to-point setup (i.e., with joint decoding from (Y1, Y2)).

It is the maximum of the output joint entropy H(Y1, Y2), over all possible (con-

strained) random input pairs (X1, X2) [220].

Assume that there exists a transformation of the pair (X1, X2) to a pair

(X̃1, X̃2), such that Y1 = X̃1 and Y2 = f̃(X̃1, X̃2). The joint encoder can then

use the following simple protocol: transmit to decoder 1 at a rate H(Y1) using

the input X̃1, and to decoder 2 at a rate H(Y2|Y1) using the input X̃2 and

knowledge (at the encoder alone) of the side information Y1. The sum rate is

then H(Y1, Y2), as desired.

Problem 10.7 shows a linear coding implementation of this idea, for a binary

symmetric broadcast channel under a Hamming input constraint.

Nested syndrome coding
The source and channel coding problems we discussed so far can be considered

as “noiseless.” In the Slepian–Wolf DSBS setup (Figure 10.2), the target was a

lossless reconstruction of the source, while in the binary Gelfand–Pinsker setup

(Figure 10.1), the channel was effectively noiseless.

The noisy versions of these two problems are more challenging, and closer in

spirit to the lattice coding framework. In lossy Slepian–Wolf coding (lossy source

coding with side information), the source must be quantized prior to binning,

hence its correlation with the side-information signal is slightly weakened. In

noisy Gelfand–Pinsker problems, i.e., setups where only part of the noise is known

to the encoder, the bins must be slightly diluted, to allow their decoding in the

presence of the residual noise.

The linear coding solutions of these problems are based on nested binary codes

C1(n, k1) and C2(n, k2), where C2 ⊂ C1, and on their relative syndromes (Sec-

tion 8.3). These nested binary side-information codes are studied in [293]. Our

focus below shifts back to the continuous world and to lattices.

10.2 Gaussian multi-terminal problems

Communication with continuous signals provides “real world” examples for cod-

ing with side information, as a part of a multi-terminal communication system.
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We describe below two such examples, one for source coding, the other for chan-

nel coding. These examples motivate the setups and lattice coding schemes in

the next sections.

10.2.1 Distributed video compression

Imagine two digital video cameras observing the same scene from different loca-

tions, as illustrated in Figure 10.8. Each camera compresses its video stream and

transmits it to a data fusion center. This distributed compression setup reminds

us of the two-terminal Slepian–Wolf problem in Section 10.1.4, but with a lossy

encoding.

A fundamental principle in standard video compression algorithms is motion

compensation. The encoder predicts (or interpolates) consecutive video frames

based on the temporal correlation in the scene, hence it can reduce the coding rate

for the same reconstruction quality. 5 Can distributed encoders take advantage of

the spatial correlation between their video streams? Indeed, the Slepian–Wolf and

Wyner–Ziv theories promise (nearly) optimal compression performance, even in

the absence of encoder cooperation, provided that decoding is done jointly. More

precisely, due to the spatial correlation, the joint decoder can use the encoding of

one video stream as side information for the decoding of the other video stream.

Motion compensation at the decoder

An interesting variation on distributed video compression, in a point-to-point

setup, is called “Wyner–Ziv video coding.” The idea is to encode each frame

5 For example, MPEG or V264 reduces the bit rate of a raw video stream from about 1
gigabit per second to 5–10 megabit per second, with almost no significant reduction in
video quality.
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separately, but at the (low) rate of joint encoding. The motivation is to

reduce the complexity of the video encoder (say, in a “light” device such

as a cellular phone), and move the complexity to the decoder. The encoder

bins (or “hashes”) each video frame separately, and avoids the (hard) motion

compensation step. The decoder incorporates this binning information, and

possibly some individually encoded “I” frames, into the video correlation

model, and reconstructs the video stream.

We can model these distributed video coding scenarios quite well within

the quadratic-Gaussian framework, i.e., jointly Gaussian sources in time and in

space, under a squared-error fidelity criterion. Theoretically, under the quadratic-

Gaussian model there is no loss in rate-distortion performance for having the

side information only at the decoder. (See more on the loss in general models

later.) As we shall see in the following sections, a coding (“binning”) scheme

based on nested lattices Λ2 ⊂ Λ1 approaches the quadratic-Gaussian Wyner–Ziv

rate-distortion function, in the limit of a large lattice dimension. For a finite

dimension, the rate loss at high-resolution conditions is the same as that of

Voronoi quantization (Section 9.10): 1
2 log[G(Λ1)µ(Λ2, Pe)] bit per sample, where

Pe is the equivalent overload probability. Furthermore, this scheme with prob-

abilistic decoding works quite well even under more general continuous (non-

quadratic/non-Gaussian) models.

10.2.2 MIMO broadcast

The quadratic-Gaussian model also describes well some applications of the

Gelfand–Pinsker theory, and again motivates the use of nested lattice codes.

Imagine a cellular base station with two antennas, transmitting to two mobile

users, with a single antenna each. This “down-link” channel is characterized by

a 2× 2 channel matrix H (describing the path gains from antennas X1 and

X2 at the base station to the receiver antennas of users A and B), followed by

independent AWGN at each receiver. Since the receivers do not cooperate, this

setup is a noisy version of the deterministic broadcast channel of Section 10.1.4.

One simple broadcast strategy is time-sharing, where the base station trans-

mits (with both antennas and full power) to one user at a time. A more efficient

strategy, though, is to transmit simultaneously to both users in a coordinated

manner. As it turns out, this MIMO broadcast strategy almost doubles the capac-

ity of each user at high SNR conditions. 6

6 The time-sharing strategy corresponds to time-division multiple access (TDMA), or equiv-
alently, to frequency-division multiple access (FDMA). At high SNR, the time-sharing
capacity in a K-user setup is ≈ W

K
C(K SNRi) bit per second per Hz for user i, where

C(x)
∆
= log2(1 + x), and SNRi = ‖hi‖2P/WN0, where P is the power of each transmit
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Figure 10.9 Dirty-paper coding for the MIMO broadcast channel. The interfering

signal hX1 is viewed as side information known at the transmitter.

The idea of MIMO broadcast is similar to deterministic broadcast (Sec-

tion 10.1.4). Figure 10.9 illustrates a simplified setup, where the matrix H is

triangular, i.e., the first base station antenna sees both users A and B, while the

second antenna only sees user B: 7

H =

(
1 0

h 1

)

⇒
A = X1

B = hX1
︸︷︷︸

I

+X2. (10.18)

The base station uses its first antenna (X1) to transmit information to user

A. Since both users see the first antenna, user B will get an undesired replica

(I = hX1) of this signal. Nevertheless, the base station knows this interference

(assuming it knows the matrix H); hence, by the Gelfand–Pinsker theory, it can

take it into account while transmitting to user B (channel coding with side infor-

mation at the encoder). Specifically, the base station uses its second antenna (X2)

to transmit a signal that cancels the interference I = hX1 from the first antenna,

and at the same time carries the information intended to user B. This method,

where the effect of a known interference I is eliminated at the transmitter with

no cost in power, is known as pre-coding or dirty-paper coding.

antenna, W is the channel bandwidth, N0 is the AWGN spectral density, and ‖hi‖2 is the
norm of the row of H corresponding to user i. In contrast, the MIMO broadcast (also called
space-division multiple access (SDMA)) capacity of user i is ≈ W C(SNRi) bit per second
per Hz. Since at high SNR conditions the capacity is logarithmic in P , the latter is roughly
K times larger.

7 QR-factorization is a method to triangularize a general matrix H by a unitary “pre-coding”
matrix, at no cost in the total transmission power; see [27, 105].
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Figure 10.10 Case of a source with side information.

Table 10.1 Cases of source coding with side information

Note that encoder-only side information is useless, unless the distortion measure

depends on the side information, i.e., d = d(x, x̂, y); see [179].

Switch position

A B Encoding Decoding R, D functions

no SI open open m = f(x) x̂ = g(m) Rx(D)

SI at both close close m = f(x,y) x̂ = g(m,y) Rx|y(D)

SI at decoder open close m = f(x) x̂ = g(m,y) RWZ(D)

SI at encoder close open m = f(x,y) x̂ = g(m) Rx(D)

Section 10.6 describes a lattice dirty-paper coding scheme, based on nested

lattices (Λ2 ⊂ Λ1), which is similar to the Voronoi modulator of Chapter 9. Under

AWGN (i.e., a channel of the form Y = X + I + Z, where Z is AWGN and I is

interference), this scheme achieves the zero-interference capacity C = 1
2 log(1 +

SNR), up to the “usual” loss of 1
2 log[G(Λ2)µ(Λ1, Pe)] bit per channel use, where

Pe is the decoding error probability.

10.3 Rate distortion with side information

We now turn our attention to noisy side-information problems, keeping in mind

their application to the multi-terminal setups we saw above.

Consider the lossy extension of the configuration in Figure 10.2, of encod-

ing a source X with side information Y, subject to some distortion constraint

E{d(X, X̂)} ≤ D. Unlike in the lossless coding case (where D = 0), the theo-

retical performance for a general source and side-information pair (X,Y) and

distortion measure d(x, x̂) depends on whether the side information Y is avail-

able at both the encoder and decoder, or only at the decoder. See Figure 10.10

and Table 10.1.
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In the case where Y is available at both, optimal performance for memoryless

source and side information is given by the conditional rate-distortion function:

Rx|y(D) = inf
X̂: d(X,X̂)≤D

I(X ; X̂|Y ) (10.19)

which is the natural extension of the “no-SI” rate-distortion function (5.31). Note

that here the conditional output distribution p(x̂|x, y) can take a general form,

which amounts to the fact that the encoder completely determines X̂.

When Y is available only at the decoder, the encoder sends some information

about X, which the decoder combines with Y to obtain X̂. (Note that the unin-

formed encoder does not completely determine X̂.) The optimal performance is

given in this case by the Wyner–Ziv function:

RWZ(D) = inf
U

I(X ;U |Y ), (10.20a)

where the infimum is taken over all auxiliary random variables U , such that

r U ↔ X ↔ Y form a Markov chain;
r there exists a function g(u, y), such that E{d(X, X̂)} ≤ D for X̂ = g(U, Y ).

Due to the Markov chain condition in (10.20a), the minimization argument can

also be written as

H(U |Y )−H(U |X) = I(U ;X)− I(U ;Y ). (10.20b)

The Wyner–Ziv formula is a non-explicit single-letter characterization. Like

the rate-distortion function (5.31), it has a closed-form expression only in a few

special cases. 8

Clearly, not having the side information y at the encoder can only make per-

formance worse. And indeed, the Markov chain constraint on the minimization

(10.20a) implies that RWZ(D) ≥ Rx|y(D). This inequality is, in fact, strict in

the DSBS/Hamming case: the conditional rate-distortion function is given by

Rx|y(D) = HB(p)−HB(D), 0 ≤ D ≤ p, while the Wyner–Ziv function is given

by

RWZ(D) = ℓ.c.e.
{
HB(p⊗D)−HB(D) , (p, 0)

}
, 0 ≤ D ≤ p, (10.21)

where ⊗ denotes binary convolution, and ℓ.c.e. stands for lower convex envelop

(see Figure 10.11).

Fortunately, the two rate-distortion functions coincide under the widely used

quadratic-Gaussian model:

RWZ(D) = Rx|y(D) =
1

2
log

(
σ2
x|y
D

)

, 0 ≤ D ≤ σ2
x|y, (10.22)

8 The Blahut–Arimoto algorithm [10, 22, 53] is an iterative method to compute the rate-
distortion function, which was extended to the Wyner–Ziv function by Willems [266].
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Figure 10.11 The conditional versus Wyner–Ziv rate-distortion functions in the

binary-Hamming case.

where σ2
x|y is the conditional variance of X given Y . We can realize Rx|y(D) and

RWZ(D) in this case using pre/post-scaled AWGN “test channels,” similar to the

channel realizing the unconditional rate-distortion function (5.33). Assuming for

simplicity EX = EY = 0, these test channels are given by

X̂ = a∗Y + β[α(X − a∗Y ) +N ] (10.23a)

in the conditional case, and

U = αX +N (10.23b)

g(u, y) = a∗y + β[u− αa∗y] (10.23c)

in the Wyner–Ziv case, where a∗ = ρσx/σy is the Wiener coefficient for estimat-

ing X from Y (4.36), and N ∼ N(0, σ2
n) is independent of (X,Y ), and where the

scaling coefficients α and β and the noise variance σ2
n satisfy

αβ = 1− D

σ2
x|y

and σ2
n =

α

β
D, (10.23d)
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for an arbitrary positive scalar α. The conditional distributions of U induced by

(10.23b) and (10.23d), are

U |X ∼ N(αX, σ2
n) and U |Y ∼ N(αa∗Y, α2σ2

x|y + σ2
n) (10.23e)

respectively.

Note the similarity between (10.23) and the (unconditional) test channel

(5.35); here the estimation error X − a∗Y plays the role of a source, with the

estimation mean-squared error E(X − a∗Y )2 = σ2
x|y being the source variance,

and β plays the role of a Wiener estimator against the noise N . Clearly, all three

cases – unconditional, conditional and Wyner–Ziv – coincide when X and Y are

uncorrelated (a∗ = ρ = 0).

Achieving RWZ(D) via random binning [53]

In the quadratic-Gaussian case, the random coding scheme has a simple

geometric interpretation, as illustrated in Figure 10.12. For simplicity of

the exposition, let α = 1, and β = 1−D/σ2
x|y; thus, U = X +N , where

σ2
n = D/β, and σ2

u = σ2
x + σ2

n. To generate the code, draw 2nR1 independent

codewords u, where each codeword is uniform on a ball of radius slightly

larger than ru =
√

nσ2
u about the origin; then assign the codewords at ran-

dom to 2nR bins. The encoder quantizes the source vector X to the closest

codeword u, and sends the identity m ∈ {1, . . . , 2nR} of the bin containing

u to the decoder. If

R1 > I(X ;U) = 1
2 log(1 + σ2

x/σ
2
n),

then (for a large n, by the Gaussian joint AEP, see Section 9.4.3) u is

typically inside a ball of radius rn =
√

nσ2
n around X. The decoder looks

for the codeword û in bin m which is closest to the source estimate a∗Y,

and reconstructs the source as X̂ = a∗Y + β[û− a∗Y]. If the decoder is

correct, i.e., û = u, then by (10.23) this reconstruction satisfies the desired

distortion constraint D. To find a condition on R for correct decoding, note

that by (10.23e) u is typically within a distance r∗ =
√

n(σ2
x|y + σ2

n) from

the estimator a∗Y. The probability that any other u in bin i is closer to

a∗Y is upper bounded by 2nR1 · (r∗/ru)n/2nR (because the probability to

fall within a radius r∗ is (r∗/ru)n, while the probability to fall in bin i is

2−nR); thus, the product probability goes to zero as n → ∞ if

R1 < I(U ;Y ) +R

(because I(U ;Y ) = log(ru/r
∗)). We see that both requirements for typical

encoding and correct decoding are satisfied if R is larger than I(X ;U)−
I(U ;Y ) = RWZ(D).
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Figure 10.12 Random binning in the quadratic-Gaussian Wyner–Ziv problem:

quantization spheres (rn) and the detection sphere (r∗) inside the source sphere (ru).

Although for general sources the functions RWZ(D) and Rx|y(D) are different,

they coincide asD → 0, corresponding to the zero rate loss in the discrete lossless

Slepian–Wolf problem discussed earlier. 9 Moreover, the gap between the two

functions is bounded by a universal constant.

Lemma 10.3.1 (Wyner–Ziv rate loss [284]) Under a quadratic distortion

measure,

RWZ(D)−RX|Y (D) ≤ 1/2 bit (10.24)

for any joint distribution of X and Y .

This bound and the proof technique are similar to the universal bound on the

ECDQ redundancy in Section 5.9.

The Berger–Tung rate region
The following set of achievable rates (R1, R2) extends the Wyner–Ziv formula

to two-terminal lossy source coding (Section 10.2), paralleling the Slepian–Wolf

rate region (10.17) in the lossless case:

R1 ≥ I(X ;U |Y ) (10.25a)

R2 ≥ I(Y ;V |X) (10.25b)

R1 +R2 ≥ I(X,Y ;U, V ) (10.25c)

9 RWZ(D)− Rx|y(D) → 0 as D → 0, for smooth sources under difference distortion measures
[284].
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for some auxiliary random variables U and V forming a “long” Markov chain

U ↔ X ↔ Y ↔ V , and satisfying the distortion constraints as in the Wyner–

Ziv case (10.20). As we shall see in Section 12.1, the Berger–Tung rate region

(10.25) does not necessarily characterize the best achievable rates (R1, R2) (even

for the best U and V ). In fact, multi-terminal lossy source coding is still an open

problem in network information theory; see the book by El Gamal and Kim [64].

One important exception is the quadratic-Gaussian case. The Berger–Tung

rate region (10.25) (with additive-Gaussian U and V ) is tight for correlated

Gaussian sources under a squared-error distortion [264].

Another aspect of lossy multi-terminal source coding is that, unlike the loss-

less coding case (Section 10.1.4), it suffers a rate loss with respect to the joint-

encoding case. Nevertheless, as in the Wyner–Ziv problem (Lemma 10.3.1), this

rate loss is universally upper bounded. For quadratic distortion and any joint

distribution of X and Y , the redundancy of the Berger–Tung sum rate (10.25c)

above the joint-encoding rate-distortion function is upper bounded by 1 bit:

inf{R1 +R2} −Rcoordinate(D1, D2) ≤ 1 bit, (10.26)

where Rcoordinate(D1, D2) = inf I(X,Y ; X̂, Ŷ ), and where the infimum in (10.26)

is over all (R1, R2) and (U, V ) in (10.25). This half-a-bit per source bound extends

to any number of sources. It implies that the Berger–Tung rate region is nearly

optimal, provided that the rates can be freely allocated among the encoders; see

[285].

10.4 Lattice Wyner–Ziv coding

We turn to show how to achieve the Wyner–Ziv function RWZ(D) in the

quadratic-Gaussian case using a nested lattice coding scheme.

It is convenient to assume that X and Y are related as

X = Y + Z, (10.27)

where Z, called the innovation (or unknown) source component, is a zero-mean

Gaussian with variance σ2
z , independent of the value of Y , and Y is an arbitrary

(not necessarily Gaussian) random variable. 10 In this case, the Wiener coefficient

for estimating X from Y = X + Z is a∗ = 1, and the conditional variance of X

given Y is σ2
x|y = σ2

z ; hence the Wyner–Ziv rate-distortion function (10.22) is

RWZ(D) = 1
2 log(σ

2
z/D).

The task of the Wyner–Ziv encoder is to encode X in a way that conveys

the innovation component Z, without wasting bits on the Y component which is

10 By the orthogonality principle (4.38), any jointly Gaussian pair (X, Ỹ ) can be described
in the form X = a∗Ỹ + Z, where a∗ is the Wiener coefficient (4.36), and Z ∼ N(0, σ2

x|y
) is

independent of Ỹ . The relation (10.27) corresponds to Y = aỸ and σ2
z = σ2

x|y
.
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y

Side Information 

+ +mod Λ2 mod Λ2QΛ1
 (⋅)

Figure 10.13 Lattice Wyner–Ziv encoding.

known to the decoder. It is insightful to assume that the Y component is much

stronger than the innovation Z, so “naive” encoding of X is very wasteful.

The idea of the coding scheme is similar to syndrome coding in the binary

Slepian–Wolf problem (Section 10.1.2). The encoder quantizes the source vector

x to a point λ in the fine lattice Λ1, and sends its relative coset λ/Λ2 to the

decoder. This message contains log |Λ2/Λ1| bits. The decoder knows that λ is

in the vicinity of the side-information vector y, at a distance determined by the

fine lattice resolution and the strength of the innovation Z. Hence, if the coarse

lattice Λ2 is sparse enough, then λ would be the only member in its coset within

this distance from y, so the decoder can uniquely decode λ.

Note that no statistical assumptions are made about the side-information vec-

tor y. If the quantization resolution is high, i.e., D ≈ σ2(Λ1) ≪ σ2
z , then, to guar-

antee the coset sparseness condition, the number of relative cosets |Λ2/Λ1| must

be at least ≈ (σz/
√
D)n. This corresponds to a coding rate of R ≈ 1

2 log(σ
2
z/D),

as desired.

The qualitative description above implicitly assumes “good” (high-

dimensional) lattices. The lattice Wyner–Ziv coding scheme below uses general

nested lattices, and incorporates dither (to randomize the quantization error)

and Wiener estimation (to optimize the rate-distortion trade-off). Using these

elements, we can characterize the gap to the quadratic-Gaussian Wyner–Ziv

rate-distortion function at any quantization resolution, and show that this gap

vanishes for good nested lattices.

10.4.1 Nested lattice binning scheme

The scheme, shown in Figure 10.13, slightly modifies the Voronoi quantizer of

Section 9.10. It is based on a nested lattice pair Λ2 ⊂ Λ1, which generates a

lattice-shaped codebook CΛ1,P0 = {v1, . . . ,vM}. Given a source vector x = y +

z, and a dither vector u, the encoding and decoding operations are as follows:

Encoding v = QΛ1(αx + u) mod Λ2 (10.28a)

Decoding ẑ = β [(v − u− αy) mod V0Λ2] (10.28b)

x̂ = y + ẑ, (10.28c)
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Table 10.2 Resemblance between lattice Wyner–Ziv coding and the random

binning solution (box in Section 10.3)

The resemblance becomes more apparent in the limit where the known

part of the source is strong (σ2
y → ∞ for a fixed σ2

z), so R1 → ∞. Note

that here the Wiener coefficient a∗ is 1, because X = Y + Z.

Random binning scheme Lattice coding scheme

rate R1 codebook fine lattice Λ1

2nR bins |Λ1/Λ2| relative cosets

R1 > I(X;U) (successful encoding) Λ1 is a good quantizer

R1 < I(U ;Y ) +R (reliable decoding) Λ2 is good for channel coding

where the scalar coefficients α and β are defined later.

Observe the following features of the lattice Wyner–Ziv coding system.

1. Voronoi quantization The only difference with respect to Voronoi quanti-

zation without side information (Section 9.10) is the subtraction and addition

of the (scaled) side-information vector y, before and after the modulo opera-

tion at the decoder.

2. Lattice binning Each message v represents an entire relative coset {λ ∈
Λ1 : λ mod Λ2 = v} in Λ1/Λ2. Hence, the scheme mimics the random cod-

ing solution for the quadratic-Gaussian Wyner–Ziv problem, with dithered

relative cosets playing the role of “bins”; see Table 10.2 and Figure 10.14.

3. Scaling coefficients The role of the “pre-scaling” coefficient α is to match

the source to the fine lattice resolution, and is equivalent to scaling the lattice

by 1/α; see (2.43). At high-resolution quantization (D ≪ σ2
z), the role of the

“post-scaling” coefficient β is simply to undo the pre-scaling, i.e., β = 1/α. For

a general resolution, β plays the role of a Wiener coefficient, that estimates

the innovation from its dithered-quantized version, as in the random coding

solution (10.23). 11

4. Symmetric complexity The modulo-Λ2 operation at the encoder can be

taken with respect to a simple enumeration cell of the coarse lattice. In con-

trast, the modulo-Λ2 operation at the decoder – that extracts the (quantized)

Gaussian innovation – must be taken with respect to a (Euclidean) Voronoi

shaping cell, in order to minimize the error probability. Thus, the complex

NN search is evenly divided between the encoder (the quantization step QΛ1)

and the decoder (the shaping step mod V0Λ2).

11 The multiplication by β at the decoder can be done before the modulo-Λ2 operation, pro-
vided that Λ2 is scaled by β.
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Figure 10.14 Lattice binning in the quadratic-Gaussian case.

10.4.2 System performance

It would be convenient to characterize performance by the distortion when the

system operates “properly” (as it should for a typical innovation vector Z), and

the probability of “improper” system operation. For that, let us define an “ideal”

reconstruction vector x̃, corresponding to an unbounded fine lattice quantizer

(i.e., with the modulo-Λ2 operations in (10.28) eliminated):

x̃ = y + β [QΛ1(αx+ u)− u− αy]. (10.29)

The event E where X̂ 6= X̃, is called a decoding error (or “overload”), and its

probability is denoted

Pe = Pr{E} = Pr{X̂ 6= X̃}. (10.30)

Based on this event, the total distortion between X and X̂ can be broken into

the sum of two terms:

Dt
∆
=

1

n
E‖X̂−X‖2 = Dcd +Do, (10.31)

where the correct-decoding distortion is defined as

Dcd =
1

n
E{‖X̂−X‖2 · 1Ē} (10.32)

while the overload distortion is defined as

Do =
1

n
E{‖X̂−X‖2 · 1E}, (10.33)
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where

1E =

{

1, if X̂ 6= X̃

0, if X̂ = X̃
(10.34)

denotes the error indicator, and 1Ē = 1− 1E denotes the correct-decoding indi-

cator. 12

It should not surprise us that for good nested lattices Λ2 ⊂ Λ1, optimum per-

formance can be achieved using the parameters of the “test channel” realization

of the Wyner–Ziv function (10.23):

αβ = 1− D

σ2
z

and σ2(Λ1) =
α

β
D; (10.35)

for example, the symmetric pre/post-scaling solution (5.51) is α = β =
√

1−D/σ2
z and σ2(Λ1) = D.

Theorem 10.4.1 (Performance characterization) For the lattice Wyner–

Ziv coding scheme (10.28), with uniform (or modulo-uniform) dither U with

respect to Λ1, and scaling parameters as specified in (10.35), the correct-decoding

distortion (10.32) satisfies

Dcd ≤ D, (10.36a)

the coding rate R(Λ1/Λ2) =
1
n log |Λ1/Λ2| satisfies:

R(Λ1/Λ2) = RWZ(D) +
1

2
log(G(Λ1) · µmix(Λ2, Pe; Λ1, ξ)) (10.36b)

at Gaussian to dither mixture ratio (9.60)

ξ = σ2
z/D − 1, (10.36c)

and the decoding error probability (10.30) is equal to

Pe = Pr{αZ+Ueq 6∈ V0(Λ2)}, (10.36d)

where RWZ(D) = 1
2 log(σ

2
z/D) is the Wyner–Ziv function (10.22), G(Λ1) is the

NSM of the fine lattice, µmix(Λ2, Pe; Λ1, ξ) is the mixture NVNR (9.69) of the

coarse lattice, and Ueq is the equivalent dither (4.8), which is uniform over

V0(Λ1) and independent of the innovation Z.

The proof is given in Section 10.4.3 below. We make a few remarks regarding

Theorem 10.4.1.

12 An equivalent writing of (10.32) is

(1− Pe) ·
1

n
E{‖X̂−X‖2| Ē}

where E{·| Ē} denotes conditional expectation given correct decoding, and similarly for
(10.33).
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1. Side information The system performance is independent of the statistics

(or even the value) of the side information Y. Specifically, the redundancy

term in (10.36b) is the same as in Voronoi quantization with no side informa-

tion (Section 9.10).

2. Equivalent mixture source As evident from (10.36d), the equivalent

source seen by the coarse (shaping) lattice is the sum

αZ+Ueq
∆
= Zeq (10.37)

composed of a Gaussian component αZ and a dither component Ueq. Substi-

tuting the system parameters (10.35), the variances of the equivalent source

and the dither are given by

Var(αZ +Ueq) =
α

β
σ2
z , and Var(Ueq) =

α

β
D (10.38)

respectively, thus the Gaussian to dither mixture ratio (9.60) is indeed given

by (10.36c).

3. Redundancy for a small error probability By (9.70), the mixture NVNR

is upper bounded by the Gaussian NVNR for a small Pe; the redundancy term

in (10.36b) is thus upper bounded by

1

2
log(G(Λ1) µ(Λ2, Pe)), (10.39)

i.e., by the sum of the quantization loss of the fine lattice and the coding loss

of the coarse lattice.

4. High-resolution quantization When D ≪ σ2
z , hence ξ ≫ 1, the equivalent

(mixture) source is dominated by the Gaussian component Z. Thus, the error

probability approaches Pe(Λ2, σ
2
z), the mixture NVNR approaches µ(Λ2, Pe),

and the redundancy term in (10.36b) becomes (10.39) (for all Pe). We con-

clude that in both this and the previous cases, Λ1 plays the role of a (good)

quantizer, while Λ2 plays the role of a (good) channel code for an AWGN

channel.

The system designer may care about the total distortion Dt = Dcd +Do

(10.31), rather than the correct-decoding distortion Dcd treated in Theo-

rem 10.4.1.

Theorem 10.4.2 (Vanishing overload) For a sequence (Λ
(m)
1 ,Λ

(m)
2 ) of

nested lattices, possibly with a varying dimension n(m), let Pe(m) and Do(m)

denote the decoding error probability and overload distortion, respectively, of the

corresponding Wyner–Ziv coding system. If Pe(m) and Pe(m) r2cov(Λ
(m)
2 )/n(m)

go to zero as m goes to infinity (where rcov denotes the lattice-covering radius),

then Do(m) also goes to zero.

The proof is given in Section 10.4.3 below.

To make Pe and Pe r
2
cov(Λ2)/n small for a fixed dimension n, the coarse lattice

should be sparse (i.e., with a large VNR) with respect to the equivalent source
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(10.37); see Lemma 10.4.1 below. But this comes at the cost of a large redun-

dancy (10.39) above RWZ(D). Alternatively, both the redundancy and overload

distortion Do can be arbitrarily small for a sequence of good nested lattices. The

following notion of goodness extends Definition 9.10.1.

Definition 10.4.1 (Good Voronoi quantization: general resolution) We

say that a sequence (Λ
(n)
1 ,Λ

(n)
2 ) of nested lattices of a growing dimension n is

“good for Voronoi quantization,” if (i) the fine lattice is a good quantizer (Defi-

nition 7.3.2), i.e., G(Λ
(n)
1 ) → 1/2πe, (ii) the coarse lattice is a good channel code

under NN decoding against a “noise” being the equivalent source (10.37), i.e.,

µeuclid(Λ
(n)
2 ,Zeq n, Pe) → 2πe for all Pe > 0 (10.40)

(Theorem 7.8.1(B)), and (iii) the coarse lattice has a non-vanishing covering

efficiency ρcov(Λ
(n)
2 ) ≥ δ, for some δ > 0, for all n.

The existence of nested lattices which are good for Voronoi quantization fol-

lows from Theorem 8.5.1, since the equivalent source is semi-spherical; see Propo-

sition 9.6.1.

Corollary 10.4.1 (Optimality for good nested lattices) For a sequence of

nested lattices good for Voronoi quantization (Definition 10.4.1), the lattice cod-

ing scheme (10.28) achieves the quadratic-Gaussian Wyner–Ziv rate-distortion

function RWZ(Dt) with respect to the total distortion (10.31).

Specifically, for symmetric pre/post-scaling (α = β =
√

1−D/σ2
z in (10.35)),

this coding scheme satisfies σ2(Λ
(n)
1 ) = D for all n, and then σ2(Λ

(n)
2 ) → σ2

z ,

Pe(n) → 0, Do(n) → 0, Dt(n) → D, and R → RWZ(D), as n → ∞.

10.4.3 Proof of Theorem 10.4.1 and Theorem 10.4.2

A: Proof of (10.36d) Let eq denote the error (4.4) in dithered quantization of

αx by the fine lattice:

eq = QΛ1(αx + u)− (αx+ u). (10.41)

Observing that the argument of the modulo-Λ2 operation at the encoder (10.28a)

is αx+ u+ eq, we rewrite the final reconstruction as

x̂ = y + β [((αx + u+ eq) mod Λ2 − u− αy) mod V0Λ2] (10.42a)

= y + β [(αz + eq) mod V0Λ2] (10.42b)

c.d.
= y + β [αz+ eq] (10.42c)

= x̃, (10.42d)

where
c.d.
= denotes equality conditional on correct decoding Ē , and x̃ is the ideal

reconstruction (10.29). Here, (10.42b) follows from the distributive law of the
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Figure 10.15 (A) Equivalent channel for the Wyner–Ziv lattice coding scheme of

Figure 10.13. (B) Equivalent channel under the correct-decoding assumption.

modulo operation (8.21), and since y + z = x; while (10.42c)–(10.42d) follow

from the definition of x̃. See Figure 10.15. We conclude that the decoding error

probability (10.30) is given by

Pe = Pr{(αZ+Eq) 6∈ V0(Λ2)}. (10.43)

This proves (10.36d), since by the crypto lemma (Lemma 4.1.1 and Theo-

rem 4.1.1), (Z,Eq) are distributed as (Z,Ueq).

B: Proof of (10.36b) Now, using the definition of the mixture NVNR (9.69),

the formula (10.36d) for the decoding error probability, and the variance of the

equivalent source (10.38), and similarly, by the definition of the NSM, and the

system parameters (10.35), the volumes of the coarse and fine lattices satisfy

V 2/n(Λ2) = µmix(Λ2, Pe; Λ1, ξ) ·
α

β
σ2
z (10.44a)

V 2/n(Λ1) =
1

G(Λ1)
· α
β
D. (10.44b)

Hence, the coding rate R(Λ1/Λ2) =
1
n log |Λ1/Λ2| = 1

n log(V (Λ2)/V (Λ1)) satis-

fies (10.36b).

C: Proof of (10.36a) From (10.42c)–(10.42d), conditional on correct decoding

Ē = {x̃ = x̂}, the equivalent error vector is

x̂− x = x̃− x = βeq − (1− αβ)z. (10.45)
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Thus, the correct-decoding distortion (10.32) of X̂ satisfies:

nDcd = E{‖X̂−X‖2 · 1Ē} (10.46a)

= E{‖X̃−X‖2 · 1Ē} (10.46b)

≤ E{‖X̃−X‖2} (10.46c)

= E‖βEq − (1− αβ)Z‖2 (10.46d)

= E‖βUeq‖2 + E‖(1− αβ)Z‖2 (10.46e)

= β2σ2(Λ1) + (1− αβ)2σ2
z (10.46f)

= nD (10.46g)

for any y, where in (10.46e) we used the crypto lemma, and in (10.46g) we

substituted the system parameters (10.35). This completes the proof of Theo-

rem 10.4.1. �

D: Proof of Theorem 10.4.2 We first derive a bound on the error norm ‖x̂− x‖
which holds under either correct or incorrect decoding. For any source vector

x = y + z, we have x− x̂ = z− ẑ from (10.28), and therefore

‖x− x̂‖2 = ‖z− ẑ‖2 (10.47a)

≤ 2‖z‖2 + 2‖ẑ‖2 (10.47b)

≤ 2‖z‖2 + 2r2cov(βΛ2), (10.47c)

where (10.47b) follows from the triangle inequality, and (10.47c) follows since,

by (10.28b), ẑ always falls inside V0(βΛ2), the coarse lattice cell scaled by β. It

follows that the overload distortion (10.33) can be upper bounded by

Do ≤ 2

n
E{‖Z‖2 · 1E}+ Pe

2

n
β2 r2cov(Λ2). (10.48)

Since 1
nE‖Z‖2 = σ2

z is finite, the first term in (10.48) vanishes if Pe = Pr{1E}
goes to zero. And the second term vanishes if Pe r

2
cov(Λ2)/n goes to zero. �

E: Sparse coarse lattice A sparse coarse lattice amounts to a large VNR, the

“noise” being the equivalent source (10.37):

µ =
V 2/n(Λ2)

Var(αZ +Ueq)
≫ 1. (10.49)

Lemma 10.4.1 below shows that we can make Do (as well as Pe) as small as

desired by taking a sufficiently sparse coarse lattice, hence Dt ≈ Dcd. This will

come, however, at the cost of increasing the redundancy (10.39).

For a fixed dimension n and a fine lattice Λ1, let Λ
(1)
2 ,Λ

(2)
2 , . . ., be a sequence

of lattices which are nested in Λ1, and

V0(Λ
(m)
2 ) ⊃ km · V0(Λ2), where km → ∞ as m → ∞. (10.50)

That is, the coarse Voronoi cell grows without bound, at least linearly with km. It

follows that the VNR µ of Λ2 grows as k
2
m, hence the redundancy above RWZ(D)
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grows as log(km). On the good side, both the decoding error probability (10.30)

and the overload distortion (10.33) vanish.

Lemma 10.4.1 (Sparse coarse lattice) For the sequence Λ
(m)
2 ⊂ Λ1 defined

above, we have Pe(m) → 0 and Pe(m) r2cov(Λ
(m)
2 ) → 0, hence (by Theorem 10.4.2)

Do(m) → 0, as m → ∞.

Proof Since the Voronoi cell of the coarse lattice Λ
(m)
2 grows without bound,

r2cov(Λ
(m)
2 ) ∼ k2m, and Pe(m) = Pr(E) = E{1E} goes to zero. Furthermore, due to

the “Gaussian tail” of the equivalent source αZ+Ueq in (10.36d), the error prob-

ability decays as Pe(m) ∼ e−k2
m . Hence, Pe(m) · r2cov(Λ(m)

2 ) ∼ k2m e−k2
m , which

goes to zero as m (and hence km) go to infinity; so the second term vanishes too.

�

10.4.4 Source-matched decoding

At low-resolution scalar quantization, i.e., when D is close to σ2
z , and Λ1 = aZn,

we observe a phenomenon similar to scalar shaping at low SNR (Section 9.8).

Since the uniform dither component U in the equivalent source (10.37) is not neg-

ligible, the equivalent source αZ + U is not quite Gaussian. Hence, a Euclidean

Voronoi cell (i.e., an NN rule) in the decoder modulo operation (10.28b) is not

optimal, because it does not minimize the error probability (10.36d). 13

As discussed in Section 9.8, we can improve the system performance in this

case by matching the decoder to the equivalent source. That is, we keep the same

coarse lattice Λ2, but use in the modulo-Λ2 operation in (10.28b) an ML rule

with respect to the equivalent source αZ + U ; see (6.12), where the equivalent

source is viewed as “noise.”

The characterization of the system performance becomes simple when the

coarse lattice is a good (high-dimensional) channel code, while the fine lattice is

arbitrary; see the discussion about mixed nesting dimensions in Section 8.3.3.

To simplify the exposition, we shall restrict our attention to scalar quantization,

i.e., a cubic fine lattice.

Lemma 10.4.2 (Source-matched decoding) Assume a cubic fine lattice

Λ1,n = ∆1 · Zn, and system parameters satisfying a distortion D in (10.35);

i.e., αβ = 1−D/σ2
z and ∆2

1/12 = αD/β. Let the coarse lattice Λ2,n belong to

a sequence of lattices of a growing dimension n, such that: (a) Λ2,n is nested in

Λ2,n for all n; and (b) Λ2,n is a good channel code for the noise αZ + U (see

Theorem 7.8.1); i.e., the noise-matched NVNR µmatched(Λ2,n, αZ + U, Pe) goes

to 2πe as n goes to infinity, where U ∼ Unif(−∆1/2,∆1/2) is the dither. Then,

13 The loss is evident from the positive redundancy of the system at the maximum-distortion
point D = σ2

z . (Note that the log NSM-NVNR term in (10.36b) is constant with respect to
D.) This loss can be easily avoided using a simple decoder, which reconstructs X̂ = Y, and
thus achieves a distortion D = σ2

z with a zero rate.
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Figure 10.16 Rate-distortion performance in lattice Wyner–Ziv coding: (A) a cubic

fine lattice and a good coarse lattice with source-matched decoding (Theorem 10.4.2);

(B) the same lattices with Euclidean decoding; (C) doubly scalar system (where both

coarse and fine lattices are scalar) with several values of the coarse step size ∆2; and

(D) the Wyner–Ziv function. Note that the rate in (C) is given by R = log(∆2/∆1),

and the distortion is approximated by D ∼= (1− Pe)[1/σ
2
z + 12/∆2

1]
−1 +Do.

as n → ∞,

R(Λ1,n/Λ2,n) → I(Z;αZ + U). (10.51)

Proof The asymptotic channel coding goodness of the coarse lattice implies

that 1
n log(V (Λ2,n)) → h(αZ + U); see the definition of noise-matched NVNR

(6.28) and entropy power (A.15). Since 1
n log(V (Λ1,n)) = log(∆1) = h(U), we

obtain R(Λ1/Λ2) =
1
n logV (Λ2,n)/V (Λ1,n) = h(αZ + U)− h(U), which can be

rewritten as the mutual information formula (10.51). �

Note that the rate formula (10.51) coincides with that of (pre/post-filtered)

ECDQ of the innovation source Z (Section 5.6.2). It holds also for a non-white-

Gaussian Z, provided the asymptotic channel coding goodness condition of the

coarse lattice holds.

As Figure 10.16 shows, scalar lattice Wyner–Ziv coding features a phenomenon

similar to Figure 9.17 (scalar Voronoi modulation with noise-matched decoding):

at high distortion (D close to σ2
z), the systems’s rate-distortion curve has a

reversed convexity (∩ instead of ∪). Thus, better performance can be obtained
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in this range by time sharing between the zero-rate/maximum-distortion point,

and some positive rate point.

If Λ2 is not a good (high-dimensional) coding lattice, then we cannot neglect

the effect of overload on the total distortion (10.31). (In particular, if Λ2 is a

construction A lattice with a fixed alphabet, then the symbol error rate cannot

vanish with the dimension; see Section 7.9.5.) To keep the overload distortion

small, we must use a sparser coarse lattice (see Lemma 10.4.1), implying a cost

in rate. Another implication of the overload distortion is that it increases the

equivalent variance of the source. As Figure 10.16(C) shows, we can compensate

for that by using an estimation coefficient β that is slightly smaller than the

Wiener solution β∗ = α2σ2
zσ

2(Λ1)/[α
2σ2

z + σ2(Λ1)].

10.4.5 Universal lattice coding

We saw that the operation and performance of the lattice Wyner–Ziv coding

scheme is independent of the statistics of the side information Y . As for the

innovation source Z, the scheme rate loss is bounded by a universal constant,

provided that the coarse lattice is “good,” and the decoder is matched to the

innovation statistics. 14

Non-white-Gaussian innovation As in Lemma 10.3.1, we can compare the

coding rate R(Λ1/Λ2) with the conditional rate-distortion function RX|Y (D).

In the case of an additive-innovation model Y = X+ Z, RX|Y (D) is equal to

the rate-distortion function RZ(D) of the innovation Z, while R(Λ1/Λ2) =

I(Z;Z + U) by Lemma 10.4.2 (where for simplicity we set α = 1). Observe

that the rate loss I(Z;Z + U)−RZ(D) is the same as in ECDQ of the inno-

vation Z (Chapter 5); thus, by Theorems 5.5.1 and 5.9.1, this loss is universally

upper bounded by Ziv’s constant CZiv(Λ1) (5.55) for all D, and it approaches
1
2 log(2πeG(Λ1)) as D goes to zero. In particular, for a scalar fine lattice, the

loss is at most ≈0.754 bit, and it is ≈0.254 bit at high-resolution quantization.

For a good fine lattice, these numbers are replaced by 1/2 bit and zero, respec-

tively. Thus, for an additive-innovation, lattice Wyner–Ziv coding achieves the

universal half-a-bit bound of Lemma 10.3.1.

Multi-terminal lattice coding The universal property of lattice Wyner–Ziv

coding extends to the multi-terminal case. Recall the discussion in Section 10.2,

on how to achieve a corner point of the multi-terminal rate region by succes-

sive application of Wyner–Ziv coding. Indeed, the sum rate of a multi-terminal

dithered lattice coding scheme (with good coarse lattices and source-matched

decoding) is given by the mutual information in a doubly additive-noise channel

I(X,Y ;X + U1, Y + U2), where U1 and U2 are the equivalent dithers. This sum

14 Note that a random ensemble of lattices can be universally good for a family of noise
distributions; see Section 7.9.
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S

A B

Channel

p(y|x, s)

X Y

Figure 10.17 A channel with side information.

Table 10.3 Cases of channel coding with side information

m denotes the transmitted message, x, y and s are the channel input, output and state,

respectively, while m̂ is the decoded message.

Switch position

A B Encoding Decoding Capacity functions

no SI open open x = f(m) m̂ = g(y) Cnosi = C(p(y|x))
SI at both closed closed x = f(m, s) m̂ = g(y, s) Csi both = C(p(ys|xs))
SI at decoder open close x = f(m) m̂ = g(y, s) Csi dec = C(p(ys|x))
SI at encoder closed open x = f(m, s) m̂ = g(y) Csi enc = CGP

rate is at most ≈0.754 bit per terminal above the joint-coding rate for scalar

fine lattices, and 1/2 bit per terminal for good fine lattices. Thus, this scheme

achieves (asymptotically) the same universal 1/2 bit bound as the Berger–Tung

solution; see (10.26).

See Problem 10.13 regarding achieving a non-corner rate point of the Berger–

Tung region.

10.5 Channels with side information

A state-dependent noisy memoryless channel consists of an input X , an output

Y and a state S. The input X is controlled by the encoder, the state S is drawn

by nature (according to some distribution p(s)), and the output Y is governed by

some conditional distribution p(y|x, s), depending on both the input and state.

The channel state S plays the role of “side information.” As in the Wyner–

Ziv setting, performance depends on whether S is available at the encoder, the

decoder or at both.

Figure 10.17 and Table 10.3 illustrate the four possible cases of side-

information availability. A delicate issue in the fourth case (side information at

the encoder) is whether the encoder knows the state sequence s1, . . . , sn causally
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or non-causally. In the causal case, studied by Shannon [243], the current channel

input xt depends only on states up to this time, i.e., xt = ft(m, s1, . . . , st), for

t = 1, . . . , n. Table 10.3 shows the non-causal case: the Gelfand–Pinsker setting,

where each component of the transmission vector x = (x1, . . . , xn) may depend

on the entire state vector s = (s1, . . . , sn). Although at first sight the causal case

seems more natural, many interesting practical applications are, in fact, non-

causal, for example, MIMO broadcast, memory with defective cells and digital

watermarking.

As mentioned in the beginning of this chapter, in the noiseless (or determin-

istic) Gelfand–Pinsker problem, capacity does not increase if the side informa-

tion is also available at the decoder. Specifically, CGP is equal to Csi both, and

both capacities are equal to the conditional entropy H(Y |S), maximized over

all conditional input distributions p(x|s). In contrast, in the noisy channel case,

the situation is similar to rate distortion with side information (Section 10.3):

CGP is generally smaller than Csi both, with equality in the important quadratic-

Gaussian case. 15

Formulas for capacity with side information

In the complete side-information case, the capacity is a straightforward

extension of (6.15):

Csi both = max I(X ;Y |S), (10.53)

where the maximization is over all valid conditional inputs p(x|s). The

encoder-only side-information capacity is given by

CGP = max[I(U ;Y )− I(U ;S)] (10.54a)

= max[H(U |S)−H(U |Y )], (10.54b)

where the maximization is over all auxiliary random variables U , and inputs

X which are a function X = g(U, S) (possibly under some input-cost con-

straint), such that U ↔ (X,S) ↔ Y form a Markov chain. Note the resem-

blance between (10.53)–(10.54) and the side-information rate-distortion

15 As an example of a case where CGP < Csi both, consider the binary channel case, where
the known interference S is a binary symmetric source, the unknown noise Z is an inde-
pendent Bernoulli-p source, and the channel input satisfies an input Hamming constraint
1
n
EwH(X) ≤ δ. The capacity with side information at the transmitter is given in this case

by

CGP = C(δ) = u.c.e.{H(δ) −H(p), (0, 0)} 0 ≤ δ ≤ 0.5, (10.52)

where u.c.e.{·} denotes upper convex envelope as a function of δ. Thus, we lose in capacity
for not knowing S at the receiver, because with an informed receiver we could achieve a
capacity C = H(δ ∗ p)−H(p), which is larger for any 0 < δ < 1/2.
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Figure 10.18 Dirty-paper coding viewed as digital watermarking.

functions (10.19)–(10.20). See [64] for more details on side-information

capacities.

Our main focus in this section will be the dirty-paper channel:

Y = X + S + Z, (10.55)

where Z is an unknown additive noise, and S is an interference signal known

to the transmitter but not to the receiver. 16 We shall assume that the channel

input must satisfy an average power constraint 1
n E ‖ X ‖2≤ P (6.16).

This setting extends the configuration of channel coding with perfect side

information discussed in Section 10.1.3. Here, there is an additional noise com-

ponent (Z) which is unknown to both the transmitter and receiver. We can also

view this setup as the digital watermarking problem illustrated in Figure 10.18:

a watermark W is embedded into a source S, while keeping the mean-squared

distortion between S and the watermarked signal S +X below P . In this point

of view, the noise Z represents a possible “attack” attempting to “remove” the

watermark.

Costa [50], adhering to the Gelfand–Pinsker setting, showed that if S and Z

are statistically independent Gaussian variables, then the maximization in the

Gelfand–Pinsker formula (10.54) is achieved (for any distribution of S) by

U = αS +X, where X ∼ N(0, P ) is independent of S, (10.56a)

where α = α∗ = P/(P +N) is the Wiener coefficient, and N is the variance of

Z. For this choice, the conditional distribution of U given S, and the conditional

distribution of U given Y , are given by 17

U |S ∼ N(αS, P ) and U |Y ∼ N(αY, PN/(P +N)) (10.56b)

16 Note that any channel Y = X + Z with side information S, where Z and S are jointly
Gaussian, can be reduced to the form (10.55).

17 The Wiener estimation error of U from Y is (α − 1)X + αZ, which is orthogonal to Y , just
as in the zero interference case (Proposition 4.4.3).
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respectively. The Gelfand–Pinsker capacity (10.54) then becomes

CGP = CAWGN =
1

2
log
(

1 +
P

N

)

. (10.57)

We see that the effect of the interference S is canceled out completely, as if it

were zero or were available also at the receiver. The proof is based on the general

random binning solution for channels with side information [100].

Achieving the Costa capacity via random binning

The random coding scheme that approaches the Costa capacity (10.57) has

a simple geometric interpretation, dual to the quadratic-Gaussian Wyner–

Ziv random coding scheme. For simplicity we shall assume a Gaussian S ∼
N(0, σ2

s), so U is Gaussian N(0, σ2
u), with σ2

u = α2σ2
s + P by (10.56a). The

code is generated by drawing 2nR1 independent codewords u, where each

codeword is uniform over a ball of radius slightly larger than ru =
√

nσ2
u

about the origin, and then assigning the codewords at random to 2nR bins.

Each bin represents a possible messagem = 1, . . . , 2nR. The encoder looks in

binm for the closest codeword u to the scaled interference αS, and transmits

the difference vectorX = u− αS. The decoder multiplies the channel output

Y by α, quantizes it to the closest codeword û, and decodes the messagem as

the bin of û. By (10.56b) u is typically within a radius r∗ =
√

nPN/(P +N)

around αY; hence the decoder is correct with high probability provided that

R1 < I(U ;Y )

(recall the reversed AEP of Proposition 9.4.1). As for the encoder, if

R1 > I(U ;S) +R,

then with high probability there will be in bin m at least one (random)

codeword u which is jointly typical with S (the chance of typicality is ≈
2−nI = (rx/ru)

n, and the chance of falling in bin m is 2−nR, see the success-

exponent threshold (Lemma A.2.1)). By (10.56b), such a typical u is within a

radius rx =
√
nP around αS; so the “error” vectorX to this u (and certainly

to the closest u) satisfies the power constraint P . Both requirements for

typical encoding and correct decoding above can be satisfied, as long as R

is smaller than I(U ;Y )− I(U ;S) = CGP of (10.54).

10.6 Lattice dirty-paper coding

The main problem we face in coding for the dirty-paper channel Y = X + S + Z

(10.55) is how to subtract the interference S without increasing the power of the
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Figure 10.19 Lattice dirty-paper coding.

transmitted signal X . In fact, it would be insightful to think about S as a signal

with an infinite power: a simple subtraction of such a signal is impossible.

The trick is to subtract the interference vector modulo a coarse Voronoi cell

tuned to meet the power constraint P . This is similar to the idea of “hiding a

secret message in an integer sequence” (the problem described in the beginning

of this chapter), or to canceling the known noise in a Hamming-constrained BSC

(Section 10.1.3). Each message 1 ≤ m ≤ M is represented by a (relative) coset of

the coarse lattice; being aware of the interference vector s, the encoder looks for

a vector x in the coarse Voronoi cell V0(Λ2), such that x+ s (the known part of

the channel output) is a point in the desired coset. Indeed, for any representative

member λ of the mth coset, taking x to be (λ− s) mod Λ2 implies that x+ s

is a point λ′ in the mth coset. And with an appropriate dithering, x meets – on

the average – the desired transmit power constraint P . From the receiver side,

if the fine lattice is sparse enough with respect to the (unknown) noise Z, then

the decoder will be able to decode λ′ from the noisy channel output Y = λ′ + Z,

and identify the transmitted coset, which represents the message m.

Figure 10.19 shows the full lattice dirty-paper coding scheme, which also

includes multiplication by a linear estimation coefficient α, in a way that mimics

Costa’s random binning solution of Section 10.5 (see Table 10.4):

Encoding x = (vm + u− αs) modV0 Λ2 (10.58a)

Decoding v̂ =
(

argmin
λ∈Λ1

‖αY − u− λ‖
)

mod Λ2, (10.58b)

where as usual vm ∈ CΛ1,P0 is the message (coset) representative, for 1 ≤ m ≤ M ,

v̂ is the decoded message representative, and u is the dither.

Observe that the lattice dirty-paper coding scheme (10.58) is just a simple

variation on the linear Voronoi modulation scheme (9.65) of Chapter 9: the only

difference is the subtraction of the (scaled) interference αs at the encoder. In

particular, for a uniform (or modulo-uniform) dither U with respect to Λ2, the

average transmit power satisfies Proposition 9.1.1, i.e., P = σ2(Λ2) independent

of the message and interference. At high SNR conditions (P ≫ N), we can set

α = 1, so the encoder and decoder simplify to the description given in the begin-
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Table 10.4 Resemblance between lattice dirty-paper coding and Costa’s random binning

The resemblance is enhanced in the limit of a strong interference (σ2
s → ∞), where

R1 → ∞.

Costa’s random binning scheme Lattice dirty-paper coding

rate R1 codebook fine lattice Λ1

2nR bins |Λ1/Λ2| relative cosets

R1 < I(U ;Y ) (reliable decoding) Λ1 is good for channel coding

R1 > I(U ;S) +R (successful encoding) Λ2 is a good quantizer

(distortion equal to the power constraint P )

ning of the section. For a general α and SNR conditions, this scheme has the

same equivalent mod Λ channel as in the zero interference case.

Lemma 10.6.1 (Equivalent mod Λ channel) Assume lattice dirty-paper cod-

ing (10.58) in the channel Y = X+ S+ Z (10.55), with a uniform (or modulo-

uniform) dither U with respect to Λ2, and an estimation coefficient α. For any

value S = s of the interference vector, the relation between the input v and the

decision vector Ỹ = (αY −U) mod Λ2 is equivalent to the (zero interference)

mod Λ channel of Lemma 9.5.1:

Ỹ = [v + Zeq] mod Λ2, (10.59)

where the equivalent noise Zeq = (αZ + (α− 1)U) mod Λ2 (see (9.59)) is inde-

pendent of v.

Proof We follow the proof of Lemma 9.5.1, noting that for any input x and

dither u,

Ỹ =
[

[v + u− αs] modV0 Λ2
︸ ︷︷ ︸

x

+α(x+ s+ Z)
︸ ︷︷ ︸

αY

−u− x
]

mod Λ2 (10.60a)

= [v + (α− 1)x+ αZ] mod Λ2 (10.60b)

where (10.60b) follows by the distributive law of the modulo-lattice operation

(2.22b). The rest of the proof is the same as that of Lemma 9.5.1: for a uniform

dither U, the crypto lemma (Lemma 4.1.1) implies that the randomized input

X is uniform over V0(Λ2) independent of v, which proves (10.59). �

This lemma implies that the performance of the lattice dirty-paper coding

scheme is independent of the interference s. Hence, the coding rate and capac-

ity loss are the same as in the zero interference case (Section 9.6). In particu-

lar, the scheme can achieve the capacity CAWGN for a sequence of good (high-

dimensional) nested lattice pairs (Theorem 9.6.1). And noise-matched lattice

decoding (Section 9.8) (possibly with non-Wiener estimation) can enhance the

system performance for low dimensions and low SNR, or for construction A

lattices.
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The main conclusion is summarized in the following theorem.

Theorem 10.6.1 (System performance) The coding rate R(Λ1/Λ2) =
1
n log |Λ1/Λ2| of the lattice coding scheme (10.58), with a random dither and

Wiener estimation coefficient α∗ = P/(P +N), over the dirty-paper channel

(10.55), satisfies

R(Λ1/Λ2) ≥ CAWGN − 1

2
log(G(Λ2) · µmix(Λ1, Pe; Λ2, α

∗)), (10.61)

where CAWGN = 1
2 log(1 + P/N) is the zero interference AWGN channel capac-

ity, and Pe is the decoding error probability. Thus, the scheme achieves CAWGN

asymptotically for nested lattice pairs that are good for Voronoi modulation over

an AWGN channel (Definition 9.6.2).

10.6.1 Sufficient statistics for strong interference

In spite of the strong resemblance between their lattice coding solutions, the

dirty-paper and zero interference cases differ in a few aspects. One such aspect

is the efficiency of lattice decoding compared to ML decoding. For the AWGN

channel, lattice decoding reduces complexity at the price of a performance loss,

called modulo loss (unless the SNR is high or the nested lattices are high dimen-

sional and good, in which case lattice decoding is optimal; see the discussion in

Sections 9.1.2, 9.3.4, 9.5.5 and 9.8). In contrast, in the case of the dirty-paper

channel, the advantage of ML decoding over lattice decoding is smaller, and it

vanishes completely when the interference S is “strong” compared to the trans-

mitter power P .

To see why, consider a hypothetical situation, where the addition operation

in the dirty-paper channel (10.55) is modulo some multiple of the coarse lattice

cell, and the interference S is uniform over that extended cell; say, for simplicity,

the coarse lattice is a step-∆ scalar lattice, the addition in (10.55) is modulo

N∆ for some integer N > 1, and S ∼ Unif(0, N∆). In this case, the conditional

channel-output distribution p(y|message = m, dither = u) is cyclic-periodic with

a period ∆, i.e., p(y ⊕∆|m,u) = p(y|m,u), for all m and u, where ⊕ denotes

addition modulo N∆. It follows that Yq = Q∆(Y ) is uniformly distributed over

{0, . . . , N − 1}, independent of (Ye,m, u), where Ye = Y mod ∆ = Y − Yq:

p(y = yq + ye|m,u) =
1

N
p(ye|m,u),

for all yq in {0, . . . , N − 1}. Thus, Ye (which is equivalent to the decision vector

Ỹ = [Ye − u] mod ∆) is a sufficient statistic for decoding m from (Y, u), and the

modulo loss is zero.

For a general interference S and regular addition in (10.55), however, the out-

put distribution is not quite periodic in ∆, hence Yq depends on (m,u), and

ignoring it may result in loss of performance; see Figure 10.20. For example, in

the zero interference (S = 0) case, Yq identifies the larger ML Voronoi cell of a
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Figure 10.20 Interference concentration. Channel output distribution for scalar lattice

DPC, for a specific message v in the presence of a strong Gaussian interference

(σs ≫ ∆ ≫ σz). The figure assumes u = 0, so the coset shift is equal to v.

border codeword, and hence can reduce its decoding error probability; see Fig-

ure 9.4. Yet, the additional ambiguity induced by the interference S weakens the

dependence of Yq on the message m, and eliminates it completely as S becomes

“strong.”

The situation is similar to high-resolution quantization (Section 4.1.1), where

the source tends to be uniform in the quantization cells, and the quantizer output

tends to an “impulse train.” To make a rigorous statement of this property, we

shall use the mutual information as a measure for dependence.

Theorem 10.6.2 (Modulo output is a sufficient statistic) For a lat-

tice dirty-paper encoder (10.58a) and a Gaussian interference S ∼ N(0, σ2
s), the

mutual information between the message representative vector V and the channel

output Y = [V + u− αS] mod Λ2 + S+ Z satisfies

lim
σ2
s→∞

I(V;Y|U = u) = I(V; Ỹ) (10.62)

for all u, or, equivalently, I(V;Y|Ỹ,U = u) → 0, where Ỹ = [αY − u] mod Λ2

is the decision vector.

It follows that for a strong interference, V and QΛ2(Y) are conditionally

independent given Ỹ. Thus, Ỹ becomes a sufficient statistic for decoding the

message from Y and u, i.e., ML decoding is no better than lattice decoding.
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Proof For simplicity, assume α = 1, so X = [V + u− S] mod Λ2 and Ỹ = [Y −
u] mod Λ2. See an extension to a general estimation coefficient 0 < α < 1 in

Problem 10.12. Noting that for any vector a,

[a− S] mod Λ2 + S = [a− S]−QΛ2 [a− S] + S (10.63)

= a+QΛ2 [S− a], (10.64)

we have

I(V;Y|U = u) = I(V;V + u+ Z+QΛ2 [S−V − u]) (10.65)

→ I(V; [V + u+ Z] mod Λ2) (10.66)

= I(V; [Y] mod Λ2), (10.67)

where the limit (10.66) follows from Lemma A.6.1 (Appendix A.6), which implies

that a strong additive lattice-distributed noise is information-wise equivalent to

a modulo-lattice reduction, and (10.67) follows from the distributive law of the

modulo operation. The equivalent statement I(V;Y|Ỹ) → 0 follows from the

chain rule for mutual information (A.7). �

Note that this theorem holds for any SNR and lattice dimension. A nega-

tive implication is that the “natural shaping” – enjoyed by ML decoding in the

interference-free AWGN channel at the low SNR regime (Section 9.4.1) – disap-

pears in the presence of a strong interference. Apparently, good high-dimensional

shaping is a necessary feature of a dirty-paper coding scheme that approaches

capacity, even at low SNR.

10.6.2 Causal side information

When the shaping lattice is cubical (Λ2 = aZn, while Λ1 ⊃ Λ2 is arbitrary),

the modulo-Λ2 operation at the dirty-paper encoder (10.58a) is scalar, i.e.,

the encoder cancels the interference S = (S1, . . . , Sn) component-by-component.

This fits the definition of a channel with a causal side information, discussed in

Section 10.5.

Example 10.6.1 (Tomlinson–Harashima pre-coding) In the context of

channels with inter-symbol interference (ISI), the causal dirty-paper coding tech-

nique is known as Tomlinson–Harashima pre-coding (THP) [117, 254]. The THP

combines coded modulation with ISI cancelation at the encoder. Assuming a

monic-filter channel of the form Yt = Xt +
∑∞

i=1 hiXt−i + Zt, the THP encoder

outputs

Xt = [Vt −
∞∑

i=1

hiXt−i

︸ ︷︷ ︸

interference

] mod ∆2,



Summary 289

+ +

–
Vt

Precoder

H(z)-1

mod Λ2 mod Λ2

H(z)-1

It

It

YtXt

Zt

+

–dither

Slicer
V̂t

Channel

dither

Figure 10.21 Lattice ISI pre-coding (high SNR version). H(z) is the Z-transform of the

channel filter.

where V1, . . . , Vn is a coded PAM or QAM vector, bounded in the range

(−∆2/2,∆2/2). The decoder reduces the channel output modulo ∆2, to obtain

the decision variable Ỹt = [Vt + Zt] mod Λ2, from which it decodes the symbol

Vt. See Figure 10.21.

Erez et al. [67] showed that when the interference is strong and the SNR is

high, dirty-paper coding is equivalent to entropy-constrained quantization with

high resolution; see Section 5.5.3. It follows from high-resolution quantization

theory [106] that lattice-based interference cancelation is optimal over all causal

dirty-paper coding schemes, hence the shaping loss of 1
2 log(2πe/12) ≈ 0.254 bit

is, in fact, unavoidable. 18 Is the higher loss (of ≈4 dB) of a scalar shaping lattice

at the low SNR regime (see Sections 9.5.5 and 9.8) also unavoidable in causal

dirty-paper coding with a strong interference?

The answer to the above question depends on which one is lower: the SNR

or the SIR (signal to interference ratio). Liu and Viswanath [172] proposed an

opportunistic non-causal dirty-paper coding scheme, which operates in the limit of

low SNR, and achieves the full AWGN capacity per unit cost independent of the

level of the interference; see Section 9.4.1. Borade and Zheng [24] showed a similar

result in the causal side-information case, using a scheme that transmits energy

in a message-dependent interval (as in pulse-position modulation), whenever the

interference S exceeds a certain threshold that depends on the SNR and SIR.

It follows that the order of limits matters: while shaping (i.e., non-causal dirty-

paper coding) seems to be necessary to achieve capacity for any SNR in the

limit of a strong interference, causal dirty-paper coding is sufficient to achieve

capacity for any (fixed) interference level, in the limit of low SNR.

18 It is tempting to extend this result to dirty-paper coding with block anticipation, i.e., the
encoder sees the interference sequence in blocks of size n (at time instantmn+ 1 ≤ t ≤ (m +
1)n the encoder sees Smn+1, . . . , S(m+1)n). If Gersho’s conjecture is true (see Section 3.2),
then a lattice dirty-paper coding scheme (with the best n-dimensional lattice) is optimal,
hence the shaping loss of 1

2
log(2πeGn) is unavoidable.
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Summary of Chapter 10

Syndrome source coding To encode a binary source X = Y ⊕ Z with

side information Y at the decoder, send the syndrome

s = H ·X,

and reconstruct X as

X̂ = error(Y, Cs)⊕Y,

where the code C (with a parity-check matrix H) is good for a BSC with

noise Z.

Syndrome channel coding To send an information vector s over a BSC

Y = X ⊕ Z with a Hamming constraint q, and where the noise Z is known

at the encoder, transmit

X = error(Z, Cs),
and decode s as

ŝ = H ·Y,

where the code C is a good quantizer with a Hamming distortion q.

Lattice Wyner–Ziv coding To quantize a source X = Y + Z with side

information Y at the decoder, send the relative coset

v = QΛ1(X+U) mod Λ2

in Λ1/Λ2, and reconstruct X as

X̂ = Y + β∗ · [(v −U−Y) mod V0Λ2],

where the fine lattice Λ1 is a good quantizer (matched to the target distor-

tion), the coarse lattice Λ2 is a good channel code for the noise Z, U is the

dither, and β∗ is the Wiener coefficient for estimating Z from Z+U.

Gap from the Wyner–Ziv function

R(Λ1/Λ2)−RWZ(D) ≤ Quantization loss(Λ1) + Coding loss(Λ2),

for a sufficiently small overload probability Pe.

Lattice dirty-paper coding To send coset information vm (for 1 ≤ m ≤
|Λ1/Λ2|) over the channel Y = X + S + Z, where the interference S is avail-

able at the encoder, transmit the vector

X = (vm +U− α∗S) modV0 Λ2,

and decode vm as

v̂ = QΛ1(α
∗Y −U) mod Λ2,
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where the fine lattice Λ1 is a good channel code for the noise Z, the coarse

lattice Λ2 is a good quantizer (matched to the target transmit power), U is

the dither, and α∗ is the Wiener coefficient for estimating X from X + Z.

Equivalence to an interference-free channel The channel from vm to

(α∗Y −U) mod Λ2 is independent of the statistics of S.

Sufficient statistics for a strong interference For S ∼ N(0, σ2
s) and

σ2
s → ∞, the decision vector (α∗Y −U) mod Λ2 becomes a sufficient statis-

tic for decoding vm from Y.

Gap to the Gelfand–Pinsker capacity

CGP −R(Λ1/Λ2) ≤ Shaping loss(Λ2) + Coding loss(Λ1),

for a sufficiently small decoding-error probability Pe.

Problems

P.10.1 (Modulo code operation) Prove that x mod C as defined in (10.3) is the

error vector to the closest codeword in the code C. Hint: use (10.2).

P.10.2 (Error to coset) Prove (10.4). Guidance: observe that the error between

a vector x and a coset Cs is the minimum Hamming-weight vector in the shifted

coset x⊕ Cs which, by linearity, is the coset representative of the syndrome

s′ = Hx⊕ s.

P.10.3 (Distributive law of the modulo-C operation) Prove that (x mod C)⊕
y mod C = (x⊕ y) mod C.

P.10.4 (BSC with a Hamming input constraint) Show that the capacity of the

channel in Figure 10.5 without side information is given by C = HB(q ⊗ p)−
HB(p), where q is the Hamming input constraint, p is the BSC crossover prob-

ability, and q ⊗ p = q(1 − p) + (1− q)p is the binary convolution. Show that if

the noise Z is known at the decoder, then the larger capacity of C = HB(q) can

be achieved, independent of the crossover probability p.

P.10.5 (Causal noise cancelation via “naive” pre-coding) For the Hamming-

constrained BSC above, show that if the noise is known at the encoder, then

“naive” noise cancelation can achieve a rate of R = HB(p
′
x), where p′x is the

solution of q = p′x ⊗ p, provided that q > p. Draw the graph of R(q) versus q for

0 ≤ q ≤ 1/2. Time share it with the zero-rate/zero-cost point (0, 0), to increase

the rate at some range of input constraints 0 ≤ q ≤ q∗. Find q∗.
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P.10.6 (Linear distributed compression for DSBS) Let (X,Y ) be a DSBS (10.1).

Show how to achieve the corner point RX = HB(p), RY = 1 bit, in the plane of

rate pairs (RX , RY ), using syndrome coding for the X source.

P.10.7 (Linear deterministic broadcast) Show how to implement the scheme

of Section 10.1.3 in the case where X1, X2, Y1, Y2 are all binary, Y1 = X1 = X̃1,

Y2 = X̃1 ⊕ X̃2, and where X̃2 needs to satisfy an average Hamming constraint

q2.

P.10.8 (Rate loss in Wyner–Ziv and the orthogonality principle) Show that for

any auxiliary random variable U in the Wyner–Ziv formula (10.20), the rate loss

with respect to the conditional mutual information I(X ; X̂|Y ) (corresponding

to side information everywhere) is given by I(X ;U |X̂, Y ). (Hint: use the chain

rule for mutual information.) Show that for the optimal U in the Gaussian case

(10.23b), the reconstruction error X̂ −X is orthogonal to (U, Y, X̂). Conclude

that in this case I(X ;U |X̂, Y ) = 0.

P.10.9 (Capacity loss in Gelfand–Pinsker and the orthogonality principle) Show

that for any auxiliary random variable U in the Gelfand–Pinsker formula (10.54),

the capacity loss with respect to the conditional mutual information I(X ;Y |S)
(corresponding to side information everywhere) is given by I(U ;S|Y ). (Hint: use

the chain rule for mutual information.) Show that for the optimal U in the power-

constrained Gaussian case (10.56a), the estimation error U − αY is independent

of (S, Y ). Conclude that in this case I(U ;S|Y ) = 0.

P.10.10 (Broadcast with “onion peeling” at the transmitter) The two-user

Gaussian broadcast channel is defined by Y1 = X + Z1 and Y2 = X + Z2, where

Zi ∼ N(0, Ni), and N2 > N1, i.e., receiver 2 is worse than receiver 1. The stan-

dard solution is by superposition coding: X = X1 +X2, where X1 with power

αP carries private information to the good receiver at rate R1 = c(αP/N1), and

X2 with power (1− α)P carries common information for both receivers at rate

R2 = c((1− α)P/(αP +N2)), where c(x)
∆
= 1

2 log(1 + x). Decoding at the bad

receiver treats the interference from X1 as noise, while decoding at the good

receiver is by “onion peeling”: first X2 is decoded and subtracted, and then X1

is decoded interference free. Show that the “onion peeling” step can be replaced

by lattice dirty-paper coding at the transmitter.

Guidance: for simplicity, assume first high SNR conditions. Consider trans-

mission of the form X = (X1 −X2) mod Λ2 +X2, and find suitable receivers.

Secondly, add dither and suitable Wiener estimation for the general SNR case.

P.10.11 (Differential pulse-code modulation (DPCM) with decoder-only pre-

diction) Let X1, X2, . . . denote a stationary-Gaussian source, to be encoded

under the MSE criterion D = E(X̂ −X)2. DPCM is a sequential coding scheme,

which at time instance n encodes the prediction error Zn = X̃n −Xn, where

X̃n = f(X̂n−1, X̂n−2, . . .) is a predictor of Xn given the past reconstructions. At
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the decoder, the source is reconstructed by adding the encoded prediction error

Ẑn to the prediction X̃n. Show that the prediction step at the encoder can be

avoided, and replaced by lattice Wyner–Ziv coding.

Guidance: for simplicity, assume high-resolution quantization and scalar lat-

tices. Consider an encoder of the form v = QΛ1(X) mod Λ2, and find suitable

lattice parameters and a decoder system. Analyze the system rate-distortion per-

formance. (For extension to general resolution with multi-dimensional lattices,

see [291].)

P.10.12 (Lattice decoding is optimal for dirty-paper coding with strong inter-

ference) Extend the proof of Theorem 10.6.2 to a general estimation coefficient

0 ≤ α ≤ 1. Hint: show that I(V;αY − u) is equal to I(V; [V − u] mod Λ2 +

Zmix +QΛ2 [αS]), argue why QΛ2 [αS] is asymptotically independent of Zmix in

the limit of strong interference (even for a specific u), and use Lemma A.6.1.

P.10.13 (Non-corner rate point in multi-terminal source coding [Pradhan-

Ramchandran 2005]) (1) Show how to achieve a general rate point (R1, R2),

where R1 +R2 = 1 +HB(p), in distributed coding of a DSBS (i.e., the Slepian–

Wolf problem of Section 10.1.2) using a linear code. Guidance: assume encoding

of the form (Hx, G1x) and (Hy, G2y), for some binary matrices H,G1 and G2

with dimensions k0 × n, k1 × n and k2 × n, respectively; and decoding of the

form ẑ = leader (Hx⊕Hy) and ŷ = x̂⊕ ẑ, where x̂ = inverse (Hx, G1x, G2x̃),

and where G2x̃ = G2y ⊕G2ẑ. Find conditions on the matrices that guarantee

correct decoding with high probability for a large n.

(2) Propose a nested lattice extension of this scheme to lossy multi-terminal

source coding (i.e., the quadratic-Gaussian Berger–Tung problem described in

Section 10.3).

Historical notes

The main breakthroughs in network information theory happened in the 1970s

and early 1980s; see the books by Cover and Thomas [53] and El Gamal and

Kim [64].

Multi-terminal lossless source coding was introduced by Slepian and Wolf

[247] in 1973, where they showed that the sum rate is not worse than in the

coordinated encoding case. Cover [51] simplified their proof (and extended it to

ergodic sources) by introducing the random binning technique. A special case

of the Slepian–Wolf setup is lossless source coding with (uncompressed) side

information at the decoder. A linear-code interpretation for coding with side

information (the syndrome code of Section 10.1) was described by Wyner [274].

The rate-distortion function with side information was found in 1976 by Wyner

and Ziv [276] and Wyner [275]. Berger and Tung [20] proposed an achievable

rate region for multi-terminal source coding with distortion (the lossy Slepian–
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Wolf problem), and Wagner et al. [264] showed that this region is tight for the

quadratic-Gaussian case.

Although channels with side information were already treated (for the causal

side-information case) by Shannon in 1958 [243], it took some time until a setup

paralleling the Wyner–Ziv problem was identified. In the mid-1970s, Kuznetsov

and Tsybakov [147] found codes for writing to computer memories with defective-

cell information. In 1980, Gelfand and Pinsker [100] gave a complete information

theoretic solution for the capacity of channels with non-causal side information

at the encoder. Their formula had several interesting consequences. In 1983,

Heegard and El Gamal [120] re-examined the problem of memories with side

information, and found the capacity for noiseless and noisy setups. Costa [50]

used the Gelfand–Pinsker formula to confirm a conjecture of Cover about the

capacity of Gaussian channels with side information, a setup which they called

“writing on a dirty paper.” Costa showed that a transmitter can eliminate the

effect of a known interference without a power penalty.

Channel coding with side information was implicit already in research from

the late 1970s on non-degraded broadcast channels. Marton’s inner bound [180]

builds upon viewing the transmission to one user as a side information for the

transmission to another user; see the discussion in Section 10.2. From a different

angle, the deterministic (noiseless) broadcast channel, introduced and solved by

Pinsker [220], strongly resembles the Slepian–Wolf distributed lossless source

coding setup. More than two decades later, Caire and Shamai [27] showed that

Costa’s dirty-paper coding can be used to achieve the optimum sum rate over

the Gaussian MIMO broadcast channel.

An early version of nested linear codes as a structured binning scheme appears

in Heegard’s paper from 1983 on partitioned linear block codes for memories with

noise and defects [119]. For lossy source coding with side information, Shamai et

al. [238, 239] introduced in 1996 a nested linear code that achieves the binary-

Hamming Wyner–Ziv rate-distortion function. An extension to the quadratic-

Gaussian setup using nested lattice codes was proposed by Zamir and Shamai

[292], with an optimality proof for the high-resolution regime. Erez et al. [68, 293]

proposed a lattice-based approach to dirty-paper channel coding. They showed

that a scalar lattice is asymptotically optimal for causal dirty-paper coding in

the high SNR regime (pointing out the relation to Willems’ scalar dirty-paper

coding scheme [267, 268]), and that a good (high-dimensional) lattice quantizer

can achieve the Costa capacity at all SNR. In [293], they unified the nested lattice

binning approach, and showed its optimality for general multi-terminal problems,

including – beyond the classical side-information setups – lossy distributed source

coding, noisy memories, ISI pre-coding and broadcast channels.

An interesting observation made in [68, 293] is the relation between lattice

dirty-paper coding and pre-coding for inter-symbol interference channels, as pro-

posed in the early 1970s by Tomlinson [254] and Harashima and Miyakawa [117].

This viewpoint implies that a large body of literature on combining coding, pre-
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coding (equalization at the transmitter) and shaping applies to the dirty-paper

channel, see, for example, the work by Eyuboglu and Forney [75] and Laroia et

al. [149, 150, 151]. Trellis and turbo-coded versions of dirty-paper coding with

dither and MMSE estimation were studied by Philosof et al. [214], Erez and

ten Brink [69] and Fischer [80]. In the parallel area of linear MIMO channels,

Ginis and Cioffi [105] developed pre-coding schemes for channel equalization at

the transmitter; see the generalized decision-feedback equalizer (GDFE) inter-

pretation of Cioffi and Forney [42], and the trellis pre-coder of Yu and Cioffi

[281].

Another closely related setup is digital watermarking, where the encoder

embeds a digital message in an analog signal under some distortion constraint.

An information theoretic relation to the Gelfand–Pinsker problem was found

by Moulin et al. [191]. The capacity as a game between a watermark embedder

and attacker was established by Cohen and Lapidoth [43], and further studied

by Somech-Baruch and Merhav [249]. Lattice-based schemes were proposed by

Chen and Wornell [38] and by Eggers et al. [63].

In the source coding area, practical trellis and lattice-based schemes for side

information and multi-terminal coding setups were proposed by Pradhan and

Ramchandran [224], Servetto [235] and Liu et al. [173]. Another large body of

work focused on “Wyner–Ziv video coding,” as discussed in Section 10.2; see the

work of Puri et al. [226] and Shemer [246], which was preceded by a patent of

Witsenhausen and Wyner [271].

A central theme in this chapter is the duality between source coding and

channel coding, with and without side information; see, for example, Cover and

Chiang [52] and Barron et al. [15].



11 Modulo-lattice modulation

Co-written with Yuval Kochman

So far we have discussed source and channel coding problems separately. In this

chapter we address the combination of the two, known as joint source-channel

coding (JSCC). In a JSCC scheme, the encoder maps a source sequence into

a channel input block, while the decoder produces a source estimate from the

corresponding channel outputs. This mapping can be constructed using a con-

catenation of source and channel codes, in which case it is known as a separation-

based scheme. While Shannon’s separation principle states that this approach

yields asymptotically the smallest possible average distortion, other schemes may

have significant advantages as we will see in the following. For example, analog

transmission (symbol-by-symbol mapping) has very desirable properties of low

complexity and high robustness. However, except for some very special source-

channel pairs, it is inferior to the digital (separation-based) approach in terms

of average distortion. Therefore, finding schemes which are neither fully digital

nor fully analog is of great interest.

In this context, lattices play a natural role: since they are defined directly in

the Euclidean space, they do not require mapping of the source sequence into

a digital representation and back, as done in a separation-based scheme. We

shall present a “semi-analog” JSCC technique, based on lattice codes, called

“modulo-lattice modulation” (MLM). This technique uses lattices only for the

purpose of shaping, while not using any data-bearing code (that is, the “fine

lattice” of nested lattice schemes is replaced by uncoded transmission). The

MLM technique enjoys the best of both analog and digital worlds. It yields

the optimal expected distortion for a large class of Gaussian-quadratic JSCC

problems, while being robust to channel uncertainty and saving complexity with

respect to the separation-based scheme.

After a formal presentation of the JSCC problem in Section 11.1, we shall

define new lattice figures of merit for JSCC in Section 11.2. In Section 11.3

we shall introduce an analog version of the lattice side-information schemes of

Chapter 10, which forms the basis for a robust joint source-channel lattice mod-

ulation. Finally, in Section 11.4 we shall use this scheme for analog bandwidth

conversion.
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11.1 Separation versus JSCC

We first extend the basic source and channel coding framework, introduced in

Chapter 1, to include the joint source-channel setting. The source is a vector,

S = S1, . . . , Sn, that is reconstructed at the destination as Ŝ = Ŝ1, . . . , Ŝn. The

goal of the scheme is to achieve a low distortionD. For that, the encoder produces

a channel input vector X = X1, . . . , Xm, and the corresponding output Y =

Y1, . . . , Ym is given to the decoder.

Information theory tells us that any scheme must satisfy

n · R(D) ≤ m · C, (11.1)

where D is the average distortion, and R(·) and C are the source rate-distortion

function and channel capacity, respectively. Note that, although the last two

quantities are measured in bits, the scheme is not required to contain any digital

element. Rather, the rates appear just as a convenient way to lower bound the

distortion. Remarkably, information theory also tells us that the bound (11.1)

is asymptotically achievable in the limit of a large block length. More precisely,

we take the source block n and channel block m to infinity together, where the

bandwidth expansion ratio

ρ =
channel dimension

source dimension
=

m

n
(11.2)

is held fixed. 1 Then, Shannon’s celebrated separation theorem states that the

optimal asymptotic average distortion D∗ is given by

R(D∗) = ρ · C. (11.3)

As the name suggests, the optimal asymptotic performance is indeed achieved

by separating the tasks of source and channel coding. In fact, the structure of

a separation-based encoder was already demonstrated in Figure 1.4. The source

vector S is first mapped into a bit sequence b1, . . . , bk, which represents some

quantized value S̃. We know that there exist good quantizers of rate k/n → R(D),

if D is the distortion between S and S̃. Then the bits are sent over the channel

using a good channel code with rate k/m → C. The decoder will work in reverse

order: first it will recover, with high probability, the bit sequence, and then it

will map it to a reconstruction Ŝ = S̃. If a channel decoder error occurs, then

we do not know much about Ŝ. Still one can show that the effect of such errors

becomes negligible, and the overall expected distortion approaches D.

Source-channel separation is very important, conceptually and practically. It

can be seen as providing a theoretical justification for the reality of designing

compression and communication schemes: these two tasks are usually performed

by different people, who use distinctive tools and expertise. The engineer who

1 Of course, for an integer n, the resulting m may not be an integer. This can be solved by
using m = ⌊ρ · n⌋, but we shall ignore the rounding effect as it is insignificant asymptotically.
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designs a modem does not need to know whether the bits sent come from text

or video; likewise, for quantizer design, one does not care whether the index

will be sent over a wired or wireless medium. Yet, other JSCC schemes may be

advantageous in terms of complexity and robustness, as the following shows.

Example 11.1.1 (Gaussian source and channel) A Gaussian source with

variance σ2
s is sent over an AWGN channel with power constraint P and noise

variance N . The optimal distortion is given by (11.3). For MSE distortion, after

substituting R(D) = R∗(D) (5.33) and C = CAWGN, we have:

D∗ =
σ2
s

(1 + P/N)
ρ . (11.4)

Now we turn to the scalar case, i.e., m = n = 1. Consider the simple analog

scheme

X =

√

P

σ2
s

· S (11.5)

Ŝ =

√

σ2
s

P
· α∗Y (11.6)

where α∗ = P/(P +N) is the MMSE coefficient of the channel (4.44). It is easy

to verify that the resulting MSE distortion is given by

D =
σ2
s

1 + P/N
. (11.7)

Remarkably, this is just (11.4) with ρ = 1.

This example shows that for some special cases, the optimal asymptotic perfor-

mance is achieved already by a scalar analog scheme. While the separation-based

scheme has the same average distortion as the scalar scheme, we can point out

three major advantages of the latter.

1. Delay While the separation-based scheme requires joint processing of many

samples, the analog scheme operates sample-by-sample.

2. Complexity In a separation-based scheme, the complexity grows with block-

length. The analog scheme only performs two multiplications per sample.

3. Robustness The separation-based scheme requires knowledge of the noise

power n at the decoder (in order to set the code rates). In contrast, (11.5) is

independent of N .

What can be done in the Gaussian setting with MSE distortion, when ρ 6= 1?

Unfortunately, it is not possible to achieve optimal performance using short

blocklengths. Still, one may wish to use such a scheme for the advantages listed

above. At the end of the chapter, we will show how this is achieved using MLM.

We first define the relevant lattice figures of merit. Then we consider the case

where ρ = 1 but side information is present, and finally leverage the results to

get back to the case ρ 6= 1.
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11.2 Figures of merit for JSCC

In Chapter 3 we saw how the goodness of a lattice for source and channel coding

can be characterized in terms of the ratio between a corresponding square-radius

and the volume. The volume plays a major role, since it corresponds to the den-

sity of lattice points, hence the rate. As demonstrated above, in a JSCC scheme

digital data may be replaced by analog signals. How should we characterize the

performance of a lattice with respect to such signals?

It turns out that the question of interest is the following. Let Z be a random

vector and Λ a given lattice. We would like to have

Pr{Z /∈ V0(Λ)} = Pe (11.8)

for some error probability 0 < Pe < 1. Define

L(Λ, Pe) =
σ2(Λ)

σ2
Z

(11.9)

to be the lattice Gaussian second-moment to noise ratio (SMNR), that is, the

ratio between the lattice second moment σ2(Λ) and the noise per element vari-

ance σ2
Z . As it turns out, we can characterize this quantity in terms of the NSM

and NVNR defined in Chapter 3.

First, assume that Z is Gaussian i.i.d. On one hand (3.21)

V 2/n(Λ) =
σ2(Λ)

G(Λ)
, (11.10)

and on the other (3.37)

V 2/n(Λ) = µ(Λ, Pe) · σ2
Z . (11.11)

It follows that for an error probability Pe, the Gaussian SMNR is given by

L(Λ, Pe) = µ(Λ, Pe) ·G(Λ). (11.12)

Since G(Λ) > 1/(2πe) (3.26) and for small enough Pe, µ(Λ, Pe) > 2πe (3.43), we

have that for such Pe

L(Λ, Pe) > 1. (11.13)

Luckily, the existence of lattices which are simultaneously good for source and

channel coding (Theorem 7.9.1) implies that for any Pe > 0 there exists a

sequence of lattices of increasing dimension Λn, such that

lim
n→∞

L(Λn, Pe) = 1. (11.14)

That is, in the infinite-dimensional limit, a white-Gaussian vector with any vari-

ance smaller than the second moment of the lattice, falls with high probability

inside the basic cell.

As in the case of lattice decoding in the digital channel setting (Section 9.6),

it turns out that outside the high SNR limit, the case of interest is when the



300 Modulo-lattice modulation

Gaussian noise Z is replaced by a mixture of Gaussian and “self” noises. Let

T = Z+U, where Z is i.i.d. Gaussian and U is uniformly distributed over a

scaled version of the basic cell V0(Λ). As in (9.60), we define ξ to be the ratio

between the variances of the Gaussian and self-noise components. Denoting by

Pe the probability that T leaves V0(Λ), we replace (11.11) by the Euclidean

NVNR expression (9.69c):

V 2/n(Λ) = µmix(Λ, Pe; Λ, ξ) · σ2
T . (11.15)

Consequently,

σ2(Λ)

σ2
T

= Lmix(Λ, Pe; ξ), (11.16)

where

Lmix(Λ, Pe; ξ) = µmix(Λ, Pe; Λ, ξ) ·G(Λ) (11.17)

is the mixture SMNR. Notice that, unlike in Chapters 9 and 10, here the lattice

that generates the self-noise component is the very same lattice for which the

error event is defined. As for the case of Gaussian noise, Lmix(Λ, Pe; ξ) > 1 for a

sufficiently small Pe, for any lattice Λ and mixture ratio ξ; moreover, there exists

a sequence of good lattices such that this quantity approaches 1. Furthermore,

it is plausible that the mixture SMNR is close to the Gaussian SMNR, and for

small enough Pe, µ(Λ, Pe) ≥ µmix(Λ, Pe; Λ, ξ) for all ξ; see Section 9.6.1. Thus,

the Gaussian L(Λ, Pe) provides achievable performance.

11.3 Joint Wyner–Ziv/dirty-paper coding

Suppose that the source with side information, discussed in Section 10.4, needs to

be transmitted over the power-constrained interference channel of Section 10.6,

as demonstrated in Figure 11.1. We denote the source as S = Q+ J, where Q

is Gaussian with element variance σ2
Q and J is an arbitrary signal, known at

the decoder. The channel is given by Y = X+ Z+ I, where the input power is

constrained to P , Z is AWGN of power N and I is an arbitrary signal, known at

the encoder. We restrict our attention to the case where the bandwidth expansion

factor is ρ = 1 (thus all of the vectors are n-dimensional), and we are interested

in the MSE distortion D.

It is not trivial that the separation principle should hold in the presence of

side information. To see why it does hold in the problem of interest, recall that

by (10.57), CGP = CAWGN, while by (10.22), RWZ(D) = RS|J(D). Denoting the

performance of the separation-based scheme by D∗, it follows that CAWGN =

RS|J(D
∗), thus

D∗ =
σ2
Q

1 + P/N
. (11.18)
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Z
Source

ENCODER

Channel
side information

Source side information

Σ Σ

CHANNEL

DECODER
Reconstruction

Figure 11.1 The joint Wyner–Ziv/dirty-paper coding problem.
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Figure 11.2 Analog Wyner–Ziv/dirty-paper coding scheme.

Comparing with (11.7), we see that the separation-based scheme was able to

cancel completely the signals I and J; that is, it achieves the optimal performance

of sending the source innovations Q through an interference-free AWGN channel

with noise Z. Clearly, we could not expect lower distortion.2 Still, we seek a

JSCC scheme that will have the same performance, while preserving some of the

advantages of an analog scheme.

The MLM scheme which does that is closely related to the modulo-lattice side-

information schemes of Sections 10.4 and 10.6. Directly combining the schemes

using separation would result in two nested lattice pairs. The MLM scheme,

depicted in Figure 11.2, however, drops the fine lattices altogether, replacing

the quantization lattice of the WZ system, and the lattice codebook of the DPC

system, by linear mapping of the source vector. Further, it merges the two coarse

lattices into one – which is used to handle both the side-information signals I

and J:

Encoding X = (βS− αCI+U) mod Λ (11.19a)

Decoding M = [αCY − βJ−U] mod Λ (11.19b)

Ŝ =
αS

β
M+ J, (11.19c)

where U is uniform (or modulo-uniform) dither.

The analysis of the MLM scheme closely follows that of the separate source

and channel side information schemes. First we can combine the source, channel,

encoder and decoder equations, to arrive at a modulo-lattice equivalent channel,

2 In fact, the separation principle holds in the general (non-Gaussian) combined Wyner–
Ziv/dirty-paper setting, see [185].
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similar to that of Figure 10.15. We define the equivalent noise:

Zeq = αCZ− (1− αC)X (11.20a)

and the signal

T = βQ+ Zeq. (11.20b)

In terms of these, we have the following.

Lemma 11.3.1 (Equivalent modulo-Λ channel) The decoder modulo output

signal M of (11.19b) satisfies:

M = T mod Λ.

The proof is similar to that of Theorem 10.4.1, using the distributive law of

the modulo operation (8.21), and is left as an exercise.

What is the resulting performance? As in Section 10.4.2, we define a decoding

error event, this time with respect to the signal T, and a corresponding error

probability:

Pe = Pr{E} = Pr{M 6= T} = Pr{T /∈ V0(Λ)}. (11.21)

Just as in (10.31)–(10.34) we write the total distortion as the sum of correct

decoding and overload distortion, using the indicator function of E .
We note that for correct decoding, the reconstruction satisfies, for any element

1 ≤ i ≤ n,

Ŝi =
αS

β
· Ti + Ji (11.22a)

= αS ·
(

Qi +
Zi,eq

β

)

+ Ji. (11.22b)

We see that without errors, the source innovations pass through an equivalent

linear channel, where β scales down the additive noise. From this point of view,

we would like the scaling factor β to be as large as possible. However, the error

probability Pe grows with β. Notice that the signal T is a combination noise,

composed of a Gaussian part

TG = βQ+ αCZ (11.23a)

and self-noise

TU = −(1− αC)X. (11.23b)

Thus, for a given Pe, the statistics of T must satisfy (11.16), dictating the value

of β.

Recalling Proposition 9.1.1 the channel power constraint can be satisfied by

a lattice with second moment σ2(Λ) = P . For any such given lattice Λ of block-

length n we can characterize the trade-off between the error-free distortion and
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error probability using the SMNR. We make the following choice of parameters.

The channel MMSE coefficient is

αC =
P

P +N
. (11.24a)

The encoder scaling coefficient β and the resulting Gaussian to uniform ratio ξ

are given by the solution of:

β2 =

[
1

Lmix(Λ, Pe; ξ)
− N

P +N

]+

· P

σ2
Q

(11.24b)

ξ =
β2σ2

Q(P +N)2 + P 2N

N2P
, (11.24c)

where [a]+ = max(a, 0), and the source MMSE coefficient is

αS =
β2σ2

Q(P +N)

β2σ2
Q(P +N) + PN

. (11.24d)

Theorem 11.3.1 (Performance characterization) For the MLM coding

scheme (11.19) using a lattice Λ with second moment P , any 0 < Pe < 1, and

choice of parameters (and resulting mixture ratio) (11.24), the correct decoding

distortion satisfies:

Dcd ≤ Lmix(Λ, Pe; ξ) ·D∗, (11.25)

and the error probability is Pe. Here, D∗ is the optimal performance (11.18),

and Lmix(Λ, Pe; ξ) is the mixture SMNR (11.17) of the lattice. Furthermore, for

small enough Pe,

Dcd ≤ L(Λ, Pe) ·D∗.

Before proving the theorem, we make some comments.

1. High-dimensional limit We can take the lattice Λ from a sequence Λn of

JSCC-good lattices, such that Lmix(Λn, Pe; ξ) → 1, thus Dcd approaches the

optimum D∗. Indeed, in the limit, we have:

β2 =
P

P +N
· P

σ2
Q

, β2
0 (11.26a)

αS =
P

P +N
= αC , (11.26b)

thus the linear channel (11.22) for the source innovations Qi becomes identical

to the channel that the optimal analog scheme of Example 11.1.1 yields for

the source without side information.

But what about the overload distortion? Recall that Theorem 10.4.2 showed

that the effect is vanishing. Looking at the proof, it is evident that the spe-

cific nature of the signal played no part, and it holds for correct decoding



304 Modulo-lattice modulation

with respect to T: as long as we take Pe(n) and Pe(n)r
2
cov (Λn) /n to zero

simultaneously, we will have D(n) → Dcd(n) → D∗.
2. High SNR limit When P ≫ N , the MMSE factors αC and αS approach

one, and the noise Zeq becomes Gaussian. Thus, under correct decoding,

Ŝi = Si +
Zi

β
, (11.27a)

where

β2 =
1

L(Λ, Pe)
· P

σ2
Q

. (11.27b)

3. Non-trivial distortion Whenever β2 > 0, the distortion is strictly lower

than the source variance. However, when

1

Lmix(Λ, Pe; ξ)
≤ N

P +N
(11.28)

we have β2 = 0, thus also αS = 0, and the scheme output is zero, yielding

D = σ2
S . This happens since in that case, the error probability we are seeking

is too low with respect to the lattice quality, and T cannot be guaranteed to

stay inside the basic cell of the lattice even if we take β2 = 0 such that the

signal component is zero!

4. Optimal choice of parameters The factor αC chosen is the channel MMSE

factor, which minimizes the variance of Zeq, thus also the variance of T. How-

ever, it does not necessarily minimize the probability that correct decoding

holds, i.e., T ∈ P0(Λ). This is because the choice of αC also affects the mixture

ratio ξ.

Proof of Theorem 11.3.1 In the case (11.28) the scheme output is zero, and the

theorem is trivial. We assume, then, that β2 > 0. Recall the definitions of Zeq

and T (11.20). Using the MMSE αC , the per element variance of Zeq is

σ2
eff =

PN

P +N
. (11.29a)

By the additivity of the channel and the crypto lemma, Zeq is independent of

Q, thus T has per element variance

σ2
T = β2σ2

Q + σ2
eff . (11.29b)

Furthermore, following the partition into Gaussian and uniform parts (11.23),

the mixture ratio of T is given by ξ (11.24c). Combining (11.29) with (11.17) for

second moment σ2(Λ) = P , we get (11.24b). Since we assumed that (11.28) does

not occur, there exists some β such that (11.24b) and (11.24c) are satisfied. Now

assuming correct decoding, we have (11.22). Since αS is the MMSE factor for

the channel with input Q and additive noise Zeq/β, we have that the resulting
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distortion is:

D = αS
σ2
eff

β2
(11.30a)

=
σ2
QPN

β2σ2
Q(P +N) + PN

(11.30b)

= Lmix(Λ, Pe; ξ) ·
σ2
QN

P +N
(11.30c)

as required.

11.3.1 Robustness to unknown noise variance

Recall that without SI, the simple analog scheme of Example 11.1.1 achieves

perfect robustness to unknown noise variance N . We now show that the MLM

scheme allows us to maintain some of this robustness even in the presence of SI.

We consider the same Gaussian-quadratic setting of Figure 11.1, except that

now the noise variance N is unknown to the encoder. We denote by D(N) and

D∗(N) the distortion achieved by a scheme and the optimum distortion (11.18),

respectively, when the actual noise variance is N . Since we do not seek perfect

robustness, we assume that this variance belongs to some set, and specifically

that N ≤ N0 for some fixed N0 > 0. Now suppose that we designed the scheme

with some parameters αC , αS , β
2 such that correct decoding holds whenN = N0.

It is easy to verify that it will also hold with high probability for any N ≤ N0.

We are interested in the high SNR regime, i.e., in the limit where the maximal

noise variance N0 is small. Thus, we consider a scheme with αC = αS = 1. Under

these conditions, the maximal value of β2 which allows correct decoding is given

by

β2 =
P −N0

σ2
Q

.

The distortion is then simply given by:

D(N) =
N

β2
=

N

P −N0
σ2
Q.

Comparing to D∗(N), we have the following.

Theorem 11.3.2 (Asymptotic robustness) For the joint Wyner–Ziv/dirty-

paper problem, for any ǫ > 0 there exists a scheme which is independent of the

noise variance N , such that in the high-dimensional limit,

D(N) ≤ (1 + ǫ)D∗(N) (11.31)

for all sufficiently small N . That is, (11.31) holds for all N ≤ N0(ǫ), where N0(ǫ)

is positive for all ǫ > 0.
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11.4 Bandwidth conversion

We now abandon the SI scenario, and return to the basic quadratic-Gaussian

source-channel problem as in Example 11.1.1, except that the number of channel

usesm is different from the number of source samples n. We first describe a simple

scheme for the scalar case n = 1, and then show how the MLM scheme provides

an asymptotically optimal extension.

11.4.1 Iterative saw-tooth mapping

We start with the case n = 1, m = 2, i.e., each source sample S is translated

into a pair of channel inputs X1, X2, and assume for simplicity that the source is

uniform in the interval [0, 1]. Shannon has suggested using a “continuous constel-

lation” that is a curve in the two-dimensional channel input space, parametrized

by the source value: (X1(S), X2(S)). The choice of curve yields an inherent trade-

off between small-scale and large-scale errors. This can be easily demonstrated

using the following simple curve:

X1(S) = S (11.32a)

X2(S) = [βS] mod Z, (11.32b)

where β is an integer. Suppose that we use a simple decoder, which maps the

channel output Y1, Y2 into the closest point on the curve, and then sets Ŝ to

be the unique S corresponding to that point according to (11.32). Note that

the source interval from 0 to 1/β is mapped into the channel branch from (0,

0) to (1/β, 1). Thus, each source interval is stretched by a factor
√

β2 + 1. We

now distinguish between two kinds of reconstruction errors, similar to correct

decoding and overload distortion in quantization (recall Section 10.4.2).

1. Small errors Suppose that

QZ(βS) = QZ(βŜ), (11.33)

that is, the channel noise is small enough such that Ŝ and S belong to the

same branch of the curve. Then, thanks to the stretching, the noise is scaled

down when the decoder maps back to Ŝ. Thus, the distortion satisfies:

D ∼= N

β2 + 1
. (11.34)

2. Large errors If the noise is high enough such that the closest point to

(Y1, Y2) is on a wrong branch, then the error is of the order of magnitude

of the source variance. As β grows the branches become closer, thus the prob-

ability of such an event increases.

This low-delay, low-complexity scheme, while being suboptimal, does offer some

robustness to unknown signal to noise ratio. Suppose that we are in the regime
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Figure 11.3 Saw-tooth mapping for bandwidth expansion factor ρ = 3, with stretching

factor β = 2: (A) first transmission, (B) second transmission, (C) third transmission.

where the effect of large errors is already negligible, and then we keep decreas-

ing the noise variance: the distortion will decrease in proportion. If we increase

the noise variance, however, at some point large errors will dominate and per-

formance will deteriorate rapidly. This is known as the “threshold effect” of

non-linear systems.

The scheme can be extended to larger integer values of ρ by using the iterative

map:

Xi+1 = [βXi] mod Z, i = 1, . . . , ρ− 1. (11.35)

See Figure 11.3 for an illustration of the resulting transmission. The trade-off

between small and large errors can be somewhat improved by replacing this

“saw-tooth map” with the continuous “tent map” of [37]. However, in order to
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approach zero large-error probability and optimal performance, even at a known

noise variance N , we must replace Z with a high-dimensional lattice.

11.4.2 Optimal MLM-based scheme

We now present the asymptotically optimal MLM scheme for bandwidth expan-

sion. That is, we take the source dimension n to infinity, while keeping a fixed

bandwidth expansion factor ρ (11.2). Throughout this section we assume the

high-dimensional limit, i.e., (11.26) applies, D = D∗ and Pe is arbitrarily small.

Of course, finite-dimensional effects can be taken into account in order to find

the achievable performance for a given lattice.

We treat the case of integer ρ, and start with ρ = 2. We use the first n channel

inputs for analog transmission of the source, just like in the optimal scheme for

ρ = 1. After this stage, the decoder has an estimate Ŝ(1) of the source, which

satisfies

S = Ŝ(1) +Q(1), (11.36)

where Q(1) is the estimation error of the analog stage, independent of the esti-

mate Ŝ(1) by the orthogonality principle. This error has per element variance

σ2
Q = D(1) =

N

P +N
σ2
S . (11.37)

Now, we have n more channel uses. For these, we can view Ŝ(1) as source

side information, available at the decoder. We have, then, a special case of the

joint Wyner–Ziv/dirty-paper problem, with source innovations Q(1), and with-

out channel interference. For this stage we can now employ the MLM scheme,

with resulting distortion:

D(2) =
N

P +N
D(1) (11.38a)

=

(
N

P +N

)2

σ2
S , (11.38b)

which is indeed the optimal distortion. For larger integer ρ we can repeat the

process, viewing the source estimation as side information. By induction, after

m = ρn channel uses we will have

D(ρ) =
N

P +N
D(ρ−1) (11.39a)

=

(
N

P +N

)ρ

σ2
S . (11.39b)

In the exercises we present an MLM scheme for the dual case of bandwidth

reduction, i.e., 1/ρ is an integer. For a rational ρ, one may combine the two;

alternatively, for any ρ, and for the more general case of colored sources and
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Figure 11.4 Robustness to unknown noise variance with ρ = 2. The solid curve is the

ideal performance for known variance (11.4). Dashed curves represent the performance

given by Lemma 11.4.1 for some values of N0. For P/N0 = 10, the performance of a

separation-based scheme is also demonstrated using a dash-dotted curve.

channels, the MLM approach can be combined with time-domain processing to

create the analog matching scheme; the interested reader is referred to [137].

11.4.3 Robustness to unknown noise variance

It is now natural to ask what can be achieved for bandwidth conversion when

the noise variance is not known a priori at the encoder. For the case ρ = 2, we

have the following.

Lemma 11.4.1 (Robustness for ρ = 2) For the quadratic-Gaussian JSCC

problem with bandwidth expansion factor ρ = 2, let N0 > 0 be some noise vari-

ance, Then, in the infinite blocklength limit, the distortion

D(N) =
N

P +N
· N0

P +N0
· σ2

S

is achievable for any noise variance N ≤ N0 using the same encoder.
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The proof is given as an exercise. Comparing to the optimum performance, we

see that the distortion is the geometric mean between the distortion achieved by

an optimal schemes with noise variances N0 and N . One can give the following

interpretation: the price of robustness is that the improvement with noise vari-

ance is only according to the source bandwidth. Yet, there is substantial gain

compared to a separation-based scheme, where performance does not improve at

all if N < N0; see Figure 11.4.

Summary of Chapter 11

Gaussian second-moment to noise ratio

L(Λ, Pe) = µ(Λ, Pe) ·G(Λ)

where µ is the Gaussian NVNR and G is the NSM.

Modulo-lattice modulation To send a source S = Q+ J, where Q is

Gaussian with variance σ2
Q and J is known at the decoder, over the channel

Y = X+ Z+ I, where Z is Gaussian with variance N and I is known at the

encoder, transmit

X = (βS− αCI+U) mod Λ

where U is dither, and reconstruct as

Ŝ = J+ αS

β · ([αCY − βJ −U] mod Λ).

In the high-dimensional limit, MLM achieves the optimum:

D =
σ2
Q

1 + P
N

.

Gaussian joint source-channel coding with BW mismatch The opti-

mum

D =
σ2
S

(
1 + P

N

)ρ

is achievable for integer ρ or integer 1/ρ by translation into an analogWyner–

Ziv or an analog dirty-paper problem, respectively.

Problems

P.11.1 (Equivalent modulo-lattice channel) Prove Lemma 11.3.1.

P.11.2 (MLM for BW reduction) In this exercise we prove the optimality of

MLM for bandwidth reduction by an integer factor, i.e., 1/ρ is an integer. We
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start with the case ρ = 1/2. We see the source vector as the concatenation of

two independent vectors S(1) and S(2), each of length m. We now allocate some

channel power to each. S(1) is sent using analog transmission of power P (1).

Since this signal is known to the encoder, we can view the transmission of S(2)

as a special case of joint source-channel coding with side information, this time

without Wyner–Ziv SI. Let X(2) be the encoder output of an MLM scheme for

that problem, then the total transmission is:

X =

√

P (1)

σ2
S

S(1) +X(2).

1. What is P (2), the power of X(2), such that the total transmitted power is P?

2. Show that S(1) can be estimated with distortion

D(1) =
P (2) +N

P +N
σ2
S .

3. Show that S(2) can be estimated with distortion

D(2) =
N

P (2) +N
σ2
S .

4. Show that there exists a choice of power allocation such that D(1) = D(2) =

D∗.
5. Extend the results to any integer 1/ρ.

P.11.3 (Robustness of MLM for BW expansion) In this exercise we prove

Lemma 11.4.1. We note that (11.37) holds even when the encoder does not know

the noise power N , thus we concentrate on the second stage of transmission.

1. Show that with

β2 =
P 2

σ2
SN0

,

correct decoding holds with high probability for any N ≤ N0.

2. Argue that, when there is no channel interference, the encoder and decoder

only need to agree upon β (and not upon αC).

3. Find the optimal decoder parameters αC and αS , and derive the performance.

4. Extend the result: what is D(ρ)(N) achieved by the MLM scheme for larger

integer ρ for N ≤ N0, if we insist that D(ρ)(N0) is optimal?

Historical notes

The joint source-channel coding problem dates back to Shannon [241], where the

optimal performance for a white-Gaussian source-channel pair is derived (as a

function of the bandwidth expansion factor), and a geometrical representation of

source-channel maps (the “snake” diagram) is presented. Further study of “signal

curves” was carried out by Kotel’nikov [140]. Several works have analyzed the
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performance of various modulation techniques to the optimum; these include a

paper by Goblick [107] where it is shown that analog transmission is optimal in

the white-Gaussian bandwidth-matched case; sufficient and necessary conditions

for such matching between source-channel pairs were derived by Gastpar et al.

[99]. In an important theoretical work, Ziv [298] showed that for the bandwidth-

mismatched case, no single transmitter can be simultaneously optimal for two

SNRs.

Various joint source-channel schemes have been proposed, some of them from

a geometrical point of view, proposing low-dimensional source-channel maps that

exhibit good robustness properties. An alternative is presented by hybrid digital-

analog (HDA) methods, where the channel resources are split between a digital

code and a simple linear analog component. Such schemes date back at least to

the late 1960s, see, for example, [184]. Some later works took a more theoretical

point of view, letting the digital element be a high-dimensional optimal code. Of

these many works we mention Shamai et al. [239] and Mittal and Phamdo [189].

The former makes the connection between the bandwidth mismatch problem and

a side-information problem.

A connection between the bandwidth expansion problem and analog Wyner–

Ziv coding first appeared in Reznic et al. [227], and a modulo-lattice solution

was proposed. Kochman and Zamir generalized the view to the joint Wyner–

Ziv/dirty-paper problem [136], and combined the modulo-lattice schemes with

filtering to propose an optimal scheme for any colored source and channel [137]

(including bandwidth mismatch as a special case). In parallel, Wilson et al. [269]

proposed a similar scheme that uses random codebooks rather than lattices. It

is worth mentioning that the general (non-Gaussian) joint Wyner–Ziv/Gelfand–

Pinsker problem was considered by Merhav and Shamai [185], who showed that

the separation principle holds for a wide class of source-channel pairs.

The modulo-lattice modulation approach has been used in network informa-

tion problems, such as computation over the multiple-access channel [193] and

parallel relaying [135].



12 Gaussian networks

Co-written with Bobak Nazer

There are many ways in which we can use side-information paradigms as building

blocks in general multi-terminal networks. Two such cases were discussed in

Chapter 10: the broadcast channel (Section 10.1.4) and distributed compression

of correlated sources (Section 10.2).

In these simple settings, the side information is concentrated in the “relevant”

terminal in the network. In the broadcast channel, for example, the joint encoder

may view the transmission to one terminal as side information for the transmis-

sion to another terminal. In multi-terminal source coding, the joint decoder may

view the reconstruction of one source as side information for the reconstruction

of another source. Lattice coding schemes, such as the lattice dirty-paper and

Wyner–Ziv coding schemes of Chapter 10, can reduce the complexity (and per-

haps offer some intuition) compared to random coding solutions. But they do

not give us any performance advantage over the random i.i.d. coding solutions,

which are known to be optimal for these settings.

A more interesting situation, however, occurs when side information is dis-

tributed among more than one terminal. Surprisingly, it turns out that in some

distributed linear network topologies, structured solutions outperform random

coding solutions. Moreover, in some cases they are, in fact, asymptotically opti-

mal.

A common theme in the settings we discuss in this chapter is the distributed

computation of a many-to-one function. The arguments of this function are infor-

mation or side-information signals. The function reduces the effective dimension

or entropy of these signals; it represents either some feature that we want to

extract or utilize, or an intermediate decoding stage that will be completed at

the final destination. Eventually we shall restrict our attention to linear func-

tions.

We consider the following problems.

1. The two-help-one (Körner–Marton) problem Two encoders separately

compress the sources X and Y so that the decoder can reconstruct the func-

tion f(X,Y ), either losslessly or subject to some distortion constraint. (The

sources X and Y can be viewed as side information for the desired function

f(X,Y ).)
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2. Multiple-access channel (MAC) with distributed state information

Communicate over a two-user MAC whose state S is a function S = f(S1, S2)

of side information S1 which is available at transmitter 1 only, and side infor-

mation S2 which is available at transmitter 2 only.

3. Computation over a MAC Given the output Y of a two-user MAC whose

inputsX1 andX2 represent messages V1 and V2, decode a function f(V1, V2) of

the two messages. (The messages V1 and V2 can be viewed as side information

for the function f(V1, V2).) This setup is the basis for the compute-and-forward

technique for relay networks: each relay decodes a different function of the

messages, so that the final destination can recover all the messages.

4. Interference alignment Three or more transmitter-receiver pairs inter-

fere with each other on a shared channel. Each receiver treats its chan-

nel observation Yk as the output of an effective two-user MAC, com-

prising its desired signal Xk and a function of the interfering signals

f(X1, . . . , Xk−1, Xk+1, . . . , XK).

The settings above are part of the landscape of open problems in network

information theory. Ideally, we would like to enjoy the benefit of coordination,

in spite of the distributive nature of encoding and/or decoding in the network.

In the two-help-one problem, for example, we would like to reduce the overall

coding rate to the entropy of the function f(X,Y ), rather than the entropy of its

arguments X and Y . The difficulty is, however, that the structure of a general

function f (e.g., in terms of its distributivity or associativity properties) does

not necessarily match the statistical structure of the sources and channels in the

network.

We shall focus in this chapter on the (important) special case where both the

desired function f and the channels between users in the network are linear.

Interestingly, linear and lattice codes have a clear advantage in this case over

the more unstructured random coding approach usually taken in network infor-

mation theory. We demonstrate this advantage through canonical binary and

Gaussian networks, featuring the four problems mentioned above.

12.1 The two-help-one problem

It is not hard to detect the few differences between the two faces in Figure 12.1.

Once detected, it is also not too hard to describe them with just a few words. But

would a few words be sufficient if the observers of the two faces were separated?

An information theoretic analog of this question is the two-help-one problem

of Figure 12.2. This problem was proposed in a seminal paper from the late 1970s

by Körner and Marton [139]. They showed that if one wishes to reconstruct the

modulo-2 sum of two correlated binary sources from their independent encodings,

then a sum rate of only twice that of joint encoding is sufficient. Interestingly, the
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Figure 12.1 Find (and communicate) the differences.

X1 Enc. 1

Enc. 2

Enc. 3

R1

X2

R2

T = X1⊕ X2

R3 = 0

Dec. T̂

Figure 12.2 Körner–Marton problem: distributed source coding of the modulo sum

T = X1 ⊕X2 of two dependent binary sources X1 and X2.

only known scheme that can approach this performance is based on (random)

linear coding, as opposed to random i.i.d. coding.

12.1.1 The Körner–Marton problem

Specifically, the Körner–Marton problem consists of a doubly symmetric binary

source (X1, X2), as in the binary Slepian–Wolf problem (Section 10.1), and a

“parity” variable T = X1 ⊕X2 indicating when X1 and X2 are different, i.e.,

Pr(T = 1) = Pr(X1 6= X2) = θ. The decoder needs only to reconstruct losslessly

the parity source T . While direct compression of T requires a rate equal to the

entropy H(T ) = HB(θ), the goal of the X1 and X2 encoders is to help reduce the

rate of the T encoder further. The most interesting case is when the rate of the T

encoder is zero, so coding is done entirely by the two helpers. See Figure 12.2 for

a block diagram. If coordination between the X1 and X2 encoders were allowed,

then they could compute the XOR sequence T1, . . . , Tn and encode it at a rate

of HB(θ). Körner and Marton used a “genie-aided” argument to show that in
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the uncoordinated case, the optimal rate region is no better than

R1 ≥ HB(θ) R2 ≥ HB(θ). (12.1)

Specifically, if the receiver was given X2 (or X1) as genie-aided side information,

it would still require HB(θ) bits to compress X1 (or X2).

Furthermore, this rate region can be achieved by the linear code solution of

the binary Slepian–Wolf problem (Section 10.1.2): each encoder transmits the

syndrome of its observed source relative to a good linear binary code C for a

BSC with crossover probability θ.

Let H denote the parity-check matrix of C. The encoding and decoding oper-

ations are:

Encoder 1 s1 = Hx1 (12.2a)

Encoder 2 s2 = Hx2 (12.2b)

Decoding t̂ = leader(s1 ⊕ s2). (12.2c)

By linearity, it follows that

t̂ = leader(H(x1 ⊕ x2)) (12.3)

= leader(Ht). (12.4)

Following the derivation in Section 10.1.2, since C is a good code for Bernoulli(θ)

noise, we can recover t with probability at least 1− ǫ if the rate per user exceeds

HB(θ). Comparing this achievable region with the outer bound in (12.1), we see

that this is the optimal rate region.

An alternative approach to the two-help-one problem is to use a random i.i.d.

code induced by some single-letter formula. A natural choice for such a solution

is the Berger–Tung rate region (10.25) for distributed compression of X1 and

X2, with a single reconstruction T̂ , and a modified distortion measure, 1

d(x1, x2, t̂) =

{
0, if t̂ = x1 ⊕ x2

1, otherwise.
(12.5)

The resulting rate region is

R1 ≥ HB(θ) R2 ≥ HB(θ) R1 +R2 ≥ 1 +HB(θ). (12.6)

This rate region corresponds to lossless compression of X1 and X2, i.e., two-

terminal Slepian–Wolf encoding (10.17). As Figure 12.3 shows, it is strictly con-

tained in (12.1) since H(X1, X2) = 1 +HB(θ) in (12.6) is greater than 2HB(θ)

for θ 6= 1
2 . Thus, the random i.i.d. binning solution for the two-help-one problem

is suboptimal, and inferior to (random) structured coding.

Does this mean that any random coding scheme (i.e., single-letter solution)

would be suboptimal for the two-help-one problem? We shall return to this ques-

1 The distortion measure can also be written as d(X1,X2, T̂ ) = X1 ⊕X2 ⊕ T̂ .
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R2

R1

B-T

K-M
HB(θ)

HB(θ)

R1 + R2 = 1 + HB(θ)

Figure 12.3 Comparison of the rate regions achievable for the Körner–Marton problem

via random linear binning (K-M) and random i.i.d. binning via the Berger–Tung

scheme (B-T).

tion at the end of the next section, which focuses on the quadratic-Gaussian

variant of the two-help-one problem and a lattice coding solution.

12.1.2 Linear functions of two Gaussian sources

The Körner–Marton problem can be generalized naturally to the quadratic-

Gaussian setting. Consider two encoders that observe jointly Gaussian sources

X1 and X2, respectively. Each source has zero mean and variance σ2. Let ρ

denote the correlation coefficient, E[X1X2] = ρσ2. As in the binary case, the

goal of the receiver is to reconstruct a linear function,

T = X1 + aX2, (12.7)

for some real-valued coefficient a. The quality of the reconstruction T̂ is measured

by the quadratic distortion measure, D = E[(T − T̂ )2]. Let

σ2
T = (1 + 2ρa+ a2)σ2 (12.8)

denote the variance of T .

The conventional approach to this problem employs random i.i.d. quanti-

zation and binning. Its rate region follows by plugging in Gaussian auxiliary

random variables and the quadratic distortion measure into the Berger–Tung

region (10.25). It is important to note that even though we are only interested

in reconstructing a function of the sources, this approach implicitly gives the

decoder access to good estimates of the individual sources. If the product ρa is

positive, then we cannot improve on this approach, i.e., the Berger–Tung region

is optimal [264]. However, if ρa is negative, then lattice-based compression can

sometimes yield lower rates.
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x1

x2

Figure 12.4 Nested lattice quantization for the distributed compression of a linear

function of correlated Gaussian sources. The resolution of the coarse lattice is chosen

so that, with high probability, the difference of the sources lies in its fundamental

Voronoi region. The resolution of the fine lattice is chosen to meet the distortion

constraint.

To understand why this is the case, let us for now assume that the sources are

positively correlated, ρ > 0. The sources can thus be expressed as X1 = Y1 + YC

and X2 = Y2 + YC, where Y1, Y2 and YC are independent zero mean Gaussian

random variables with variances (1− ρ)σ2, (1− ρ)σ2, and ρσ2, respectively. It

follows that Var(X1) = Var(X2) = σ2, Var(X1|X2) = (1− ρ)σ2, and Var(X1 −
X2) = 2(1− ρ)σ2. If the decoder wants the sum T = X1 +X2 = Y1 + Y2 + 2YC

(i.e., a = 1), then random quantization and binning is a natural solution. For

example, the first encoder can send a quantized version of X1 and the second

encoder can send the innovation provided by the quantized X2 with respect to

X1 via binning. This scheme can be mimicked via nested lattice quantization, as

illustrated in Figure 12.4. That is, the first encoder can send the index obtained

by quantizing X1 onto the fine lattice. The second encoder can then send its

innovation by quantizing X2 onto the fine lattice and taking modulo the coarse

lattice (corresponding to lattice Wyner–Ziv encoding from Section 10.4). Thus,

distributed compression of the sum is an equivalent problem to the distributed

compression of the individual sources.

Now, consider the scenario where the decoder wants the difference T =

X1 −X2 = Y1 − Y2 (i.e., a = −1). Ideally, we would like to send only the inno-

vation provided by each source versus the other. That is, there is no need to

send any information regarding the common part YC . In this sense, compress-

ing the difference corresponds to compressing the modulo sum in the binary

case. The conventional approach, random i.i.d. quantization and binning via the

Berger–Tung scheme (10.25) with Gaussian auxiliary random variables, implic-

itly encodes information about YC .
2 However, it is possible to create a nested

lattice version of the Körner–Marton scheme. Each encoder quantizes its source

2 As discussed at the end of this section, it is possible to recover some of the benefits of lattice
coding within the Berger–Tung framework by departing from Gaussian auxiliaries.
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onto the fine lattice but only sends the innovation with respect to its coarse

lattice point. Owing to the fact that the encoders employ the same coarse lat-

tice, the decoder can estimate T by computing the difference of the codewords

modulo the coarse lattice. As we will show, the second moment of the coarse

lattice should be chosen so that it contains the quantized difference T within

its fundamental Voronoi region with high probability, and the second moment

of the fine lattice should be set according to the desired distortion. Again, see

Figure 12.4 for an illustration. This is why lattice encoding is useful: the shared

structure of the coarse lattice can be used for innovation alignment.

We now provide a formal description of the lattice scheme for distributed

compression of the difference

T = X1 −X2. (12.9)

Each source is scaled by α and then encoded by a Voronoi quantizer, where the

coarse lattice is identical at both encoders and tuned to match the variance of

the difference. 3 Here, we also use a common fine lattice Λ1, meaning that the

rates of the encoders are equal, R1 = R2 = R(Λ1/Λ2). The decoder subtracts

the two codewords, modulo the coarse lattice, to isolate the desired (quantized)

difference signal, and uses a Wiener coefficient β to reduce the overall mean-

squared distortion:

Encoder 1 v1 = QΛ1(αx1 + u1) mod Λ2 (12.10a)

Encoder 2 v2 = QΛ1(αx2 + u2) mod Λ2 (12.10b)

Decoding t̂ = β · ([(v1 − u1)− (v2 − u2)] modV0 Λ2), (12.10c)

where u1 and u2 are dithers. Note that, as in the lattice Wyner–Ziv

scheme (10.28), only the modulo operation at the decoder needs to be taken

with respect to the fundamental Voronoi cell V0. We can also define an “ideal”

reconstruction vector t̃ without the modulo-Λ2 operation at both the encoders

and the decoder,

t̃ = β · ((QΛ1(αx1 + u1)− u1)− (QΛ1(αx2 + u2)− u2)). (12.11)

We also define E = {T̂ 6= T̃} to be the event that an overload occurs along with

the probability of error

Pe = Pr{E}. (12.12)

The end-to-end distortion can thus be written as Dt , (1/n)E‖T̂−T‖2 =

Dcd +Do where the correct-decoding and overload distortion terms are defined

following (10.32) and (10.33).

3 Here, we have employed a symmetric pre/post-scaled dithered quantization. The same per-
formance can be attained through post-scaled quantization, i.e., setting α = 1 and adjusting
the other parameters accordingly. See (10.35) in the case of lattice Wyner–Ziv coding.
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To attain the smallest distortion under this scheme, we set the scaling param-

eters α and β and the fine lattice second moment σ2(Λ1) to

α = β =

√

1− D

σ2
T

σ2(Λ1) =
D

2
. (12.13)
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Note that the factor of 2 appears in the denominator of the fine lattice second

moment since there are two quantization noise terms due to the distributed

encoding.

Theorem 12.1.1 (Performance characterization) For the lattice Körner–

Marton coding scheme (12.10) with parameters as specified in (12.13), and inde-

pendent uniform (or modulo-uniform) dithers U1 and U2 with respect to Λ1, the

correct-decoding distortion satisfies

Dcd ≤ D, (12.14a)

the coding rate satisfies

R(Λ1/Λ2) =
1

2
log

(
2σ2

T

D

)

+
1

2
log(G(Λ1) · µeuclid(Λ2,Zeq, Pe)), (12.14b)

and the decoding error (i.e., overload) probability is equal to

Pe = Pr{Zeq 6∈ V0(Λ2)}, (12.14c)

where

Zeq = αT+Ueq,1 −Ueq,2 (12.14d)

is the equivalent source; and where G(Λ1) is the NSM of the fine lattice;

µeuclid(Λ2,Zeq, Pe) is the Euclidean mismatched NVNR (Definition 6.4.2) of the

coarse lattice; and Ueq,1 and Ueq,2 are the equivalent dithers (4.8), which are

uniform over V0(Λ1) and independent of each other and the source T.

Proof The analysis of this scheme closely follows that of Wyner–Ziv lattice cod-

ing in Sections 10.4.2 and 10.4.3, with the exception that there are now two

quantization noise terms. As before, we define quantization error terms

eq,1 = QΛ1(αx1 + u1)− (αx1 + u1) (12.15a)

eq,2 = QΛ1(αx2 + u2)− (αx2 + u2). (12.15b)

We can express the final reconstruction as

t̂ = β([(QΛ1(αx1 + u1)− u1)− (QΛ1(αx2 + u2)− u2)] modV0 Λ2) (12.16a)

= β([(αx1 + u1 + eq,1 − u1)− (αx2 + u2 + eq,2 − u2)] modV0 Λ2) (12.16b)

= β([αt+ eq,1 − eq,2] modV0 Λ2) (12.16c)

c.d.
= β(αt+ eq,1 − eq,2) (12.16d)

= t̃, (12.16e)
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where (12.16a) follows by the distributive law of the modulo operation (8.21),
c.d.
=

in (12.16d) denotes equality conditioned on correct decoding, and t̃ is as defined

in (12.11). Note that the overload probability (12.12) is

Pe = Pr{(αT+Eq,1 −Eq,2) 6∈ V0(Λ2)}. (12.17)

If decoding is successful, the reconstruction is equal in distribution to the chan-

nel T̂ = β
(
αT+Ueq,1 −Ueq2

)
; see the crypto lemma (Lemma 4.1.1) and The-

orem 4.1.1. The correct-decoding distortion is thus upper bounded as

nDcd ≤ E‖T̃−T‖2 (12.18a)

= E‖βUeq,1 − βUeq,2 − (1− αβ)T‖2 (12.18b)

= β2E‖Ueq,1‖2 + β2E‖Ueq,2‖2 + (1− αβ)2E‖T‖2 (12.18c)

= n
(
2β2σ2(Λ1) + (1− αβ)2σ2

T

)
. (12.18d)

Plugging in the choice of parameters from (12.13), we find that Dcd ≤ D. �

To keep the overload probability small, we should set the coarse lattice second

moment σ2(Λ2) to be greater than or equal to the second moment of the equiv-

alent source Zeq, which is σ2
T for the parameter choices in (12.13). Following the

proof of Theorem 10.4.2, it can be shown that the decoding error probability

Pe and overload distortion Do go to zero for an appropriate sequence of nested

lattices. This leads us to the following corollary on the asymptotic performance

of good nested lattice codes.

Corollary 12.1.1 (Optimality for good nested lattices) For a sequence

of nested lattices good for Voronoi quantization (Definition 10.4.1), the lattice

coding scheme (12.10) achieves

R1 =
1

2
log

(
2σ2

T

Dt

)

R2 =
1

2
log

(
2σ2

T

Dt

)

(12.19)

with respect to the total distortion Dt.

Specifically, for the choice of parameters in (12.13) (α = β =
√

1−D/σ2
T and

σ2(Λ
(n)
1 ) = D/2 for all n) and a sequence of good nested lattices Λ

(n)
2 ⊂ Λ

(n)
1 ,

this coding scheme satisfies σ2(Λ
(n)
2 ) → σ2

T , Pe(n) → 0, Do(n) → 0, Dt(n) → D,

and R(Λ
(n)
1 /Λ

(n)
2 ) → 1

2 log(2σ
2
T /Dt) as n → ∞.

If X2 (or X1) is available perfectly at the decoder, then reconstructing T

becomes equivalent to reconstructingX1 (or X2), i.e., to the Wyner–Ziv problem

from Section 10.3. This leads to the “genie-aided” lower bound

R1 ≥ 1

2
log

(
σ2
T

Dt

)

R2 ≥ 1

2
log

(
σ2
T

Dt

)

. (12.20)
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X2

Z2

X1

Z1

V2

V1

–
+independent

noises
β T̂

Figure 12.5 Standard Berger–Tung test channel with additive noise. The sum rate is

equal to I(X1, X2;V1, V2).

X2 α

Z2

X1 α

Z1

mod Λ2

mod Λ2
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Figure 12.6 Lattice Körner–Marton test channel. The sum rate is equal to

I(X1, X2;V1, V2). See footnote 3 above for a post-scaling only (α = 1) solution.

Observe that (12.19) is 1 bit (in sum rate) above the genie-aided lower bound

(12.20), corresponding to a 3 dB loss in distortion at high-resolution quantiza-

tion. Intuitively, this loss is due to the accumulation of the two independent 4

quantization noises in (12.18). Note also that the distortion D = σ2
T is trivially

achievable using zero rate, R1 = R2 = 0, simply by setting T̂ = 0. Interestingly,

this rate point is not captured by the expression in (12.19). This can be eas-

ily corrected by time-sharing between (12.19) and the zero-rate point, although

it would be preferable for the coding scheme to attain this performance on its

own. 5

Overall, the lattice Körner–Marton scheme often outperforms the conven-

tional random i.i.d. binning solution à la Berger–Tung (10.25), which (implicitly)

encodes both sources X1 and X2 just to transmit their difference T = X1 −X2.

In Figures 12.5 and 12.6, we have drawn the test channels corresponding to

Berger–Tung coding (with Gaussian auxiliary random variables) and lattice bin-

ning. It can be shown that the minimum sum rate attainable via Berger–Tung

coding with Gaussian auxiliaries is

RBT,sum = l.c.e.

{[

1

2
log

((
2σ2

D

)2(

1− ρD

σ2
− ρ2

))]+}

(12.21)

4 A common (or correlated) dithering scheme is complicated to analyze, but may reduce this
loss.

5 This zero-rate point can be achieved directly through a modified coding scheme that includes
a second linear binning stage. See [263] for more details.
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Figure 12.7 Comparison of the sum rate needed for compressing the difference

T = X1 −X2 by the Berger–Tung scheme (with Gaussian auxiliary random variables)

and the lattice Körner–Marton scheme: (A) ρ = 0.25, σ2 = 1, σ2
T = 1.5; (B)

ρ = 0.75, σ2 = 1, σ2
T = 0.5.

where l.c.e. represents the lower convex envelope with respect to time sharing

with R1 +R2 = 0 and D = σ2
T (as defined in (12.8)) and, as defined earlier,

σ2 refers to the variance of X1 and X2. See [142] for a derivation. Following

Corollary 12.1.1, the sum rate attainable via lattice quantization and binning is

RKM,sum = l.c.e.

{[

log

(
4(1− ρ)σ2

D

)]+}

. (12.22)

In Figure 12.7, we have plotted the sum rate used by these two schemes.

Notice that the performance gap widens as the sources become more correlated.

It can also be shown that if we let the variance of the common signal YC tend

to infinity while holding the variances of the innovations Y1 and Y2 fixed, the

sum rate used by this Berger–Tung scheme tends to infinity as well. However,

since the lattice Körner–Marton scheme manages to eliminate YC and send only

the innovations Y1 and Y2, its sum rate will remain constant as the variance

increases. We conjecture that in this scenario of a strong common part, the

sum rate obtained by lattice Körner–Marton is optimal, i.e., the 3 dB loss in

high-resolution quantization is unavoidable.

Essential structure Although we evaluated the lattice Körner–Marton scheme

using both fine and coarse lattice quantization steps, only the coarse quantizer

needs to be lattice structured and common to both encoders. The same per-

formance can be attained by replacing the fine lattice with any good vector
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quantizer. For instance, take a lattice Λ2 which is a good channel code for the

difference signal T and select a “good” set of 2nR vectors v(i) inside some fun-

damental cell P0(Λ2), for example, the vectors can be drawn independently and

uniformly over the cell. Form 2nR bins as the cosets

v(i) + Λ2, i = 1, 2, . . . , 2nR. (12.23)

Now, the fine lattice quantization encoding step can be replaced by quantizing to

the nearest coset, while the mod Λ2 steps (at the encoders and decoder) remain

unchanged. Note that the coding rate is R, regardless of the structure of the set

v(1), . . . ,v(2nR). Furthermore, each encoder can use a different set of v(i).

Beyond Gaussian It is also possible to design lattice schemes for non-Gaussian

sources X1 and X2. In particular, the proposed scheme is universal with respect

to the statistics of the common signal YC ; in fact, we could use exactly the same

scheme if YC were arbitrarily varying and Y1 and Y2 remained Gaussian. For

non-Gaussian innovations Y1 and Y2, we should take the modulo operation with

respect to an appropriately noise-matched (non-Voronoi) cell of Λ2.

Loss in single-letter characterization The choice of Gaussian auxiliary ran-

dom variables (U and V ) for evaluating the Berger–Tung rate region (10.25) is

quite natural since the sources are jointly Gaussian and the distortion measure is

quadratic. Surprisingly, for compressing the difference, this choice is suboptimal

in general. In fact, it is better to choose auxiliary random variables involving

scalar modulo-lattice operations with respect to a shared scalar lattice (Fig-

ure 12.6 with Λ2 = Z). The resulting performance is that of the lattice Körner–

Marton scheme, with a cubic coarse lattice. This implies a single-letter rate loss

equal to the “coding loss”: 1
2 log

(
µeuclid(Z,Zeq, Pe)/(2πe)

)
bits per user, that

can be assessed from the last row of Table 7.2.

12.1.3 Linear functions of K Gaussian sources

We now turn to the general case where K encoders observe jointly Gaussian

sources X1, . . . , XK and a single receiver wishes to recover a linear function

T = a1X1 + · · ·+ aKXK . (12.24)

As before, we assume that each source has zero mean and variance σ2. Let X =

[X1 · · ·XK ]T denote the vector of sources, ΣX = E[XXT ] denote their covariance

matrix, and a = [a1 · · · aK ]T denote the vector of coefficients. The desired linear

function has variance

σ2
T = aTΣXa (12.25)

and we assess the quality of the reconstruction T̂ with a quadratic distortion

measure D = E[(T̂ − T )2].
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The lattice scheme developed above for the symmetric case can be general-

ized to this setting in a straightforward fashion. The key difference is that each

encoder should be able to set its own resolution in order to optimize the sum

rate. To this end, we provide each encoder ℓ with its own fine lattice Λ1,ℓ and

a common coarse lattice Λ2 (with second moment chosen to match σ2
T ) to form

a Voronoi quantizer with rate Rℓ = R(Λ1,ℓ/Λ2). Each encoder sends its own

contribution to the linear function (12.24) by scaling its source xℓ by aℓ and

sending the dithered quantization modulo Λ2. The decoder makes an estimate

by removing the dithers, taking modulo Λ2, and scaling 6 by β:

Encoder ℓ vℓ = QΛ1,ℓ
(aℓxℓ + uℓ) mod Λ2 ℓ ∈ {1, 2, . . . ,K} (12.26a)

Decoding t̂ = β

([ K∑

ℓ=1

(vℓ − uℓ)

]

modV0 Λ2

)

. (12.26b)

Given sequences of nested lattices that are good for Voronoi quantization

(Definition 10.4.1), one can optimize β, σ2(Λ1,ℓ), and σ2(Λ2) to show that it

suffices to choose rates R1, . . . , RK satisfying

K∑

ℓ=1

2−2Rℓ ≤ D

σ2
T

(12.27)

in order to achieve distortion D. See [142, Theorem 3.1] for a detailed proof. The

minimum sum rate of this scheme is

RKP,sum =
K

2
log

(
Kσ2

T

D

)

(12.28)

and is attained by setting R1 = R2 = · · · = RK . Note that better rates are some-

times achievable by first reconstructing intermediate functions and using these

as side information for recovering T .

We now seek to compare the sum rate achievable via lattice coding to that

achievable via the Berger–Tung scheme with Gaussian auxiliary random vari-

ables. The latter is difficult to characterize in closed form in general. However,

the following expression is an excellent approximation to the sum rate in the

high-resolution regime (i.e., for small D),

RBT,sum =
K

2
log

(

K

D

(

det(ΣX)

K∏

ℓ=1

a2ℓ

)1/K
)

. (12.29)

See [142] for more details. It follows that, in the high-resolution regime, the

difference in sum rates is

RBT,sum −RKP,sum =
1

2
log

(

det(ΣX)
∏K

ℓ=1 a
2
ℓ

(
aTΣXa

)K

)

. (12.30)

6 Notice that here we have used a post-scaled quantizer although the same performance is
available via pre/post-scaling.
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Figure 12.8 Two-user multiple-access channel.

For the two-user setting from (12.7) where T = X1 + aX2, E[X2
1 ] = E[X2

2 ] = σ2,

and E[X1X2] = ρσ2, this specializes to

log

( |a|
√

1− ρ2

1 + 2ρa+ a2

)

. (12.31)

From this expression, we can see that the lattice-based scheme provides the

largest benefits when a = 1 or a = −1 and, for these special cases, the gap tends

to infinity as ρ → −1 or ρ → 1, respectively. Intuitively, this is due to the fact that

the Berger–Tung scheme with Gaussian auxiliary random variables implicitly

encodes both sources in their entirety, whereas the lattice Körner–Marton scheme

only encodes the difference of the sources. In other words, since the sources are

correlated, they will tend to agree on the most significant bits, so sending them

via Berger–Tung is inherently wasteful.

For |a| 6= 1, the relative gain of lattice-based coding is lower, owing to the

fact that the lattice is no longer perfectly matched to the function. A similar

phenomenon occurs in the lattice network coding when the channel and desired

function are mismatched, as we will explore in Section 12.3.

12.2 Dirty multiple-access channel

We next consider what seems to be the “dual” of the Körner–Marton problem: a

generalization of the Gaussian dirty-paper problem of Section 10.5 to a multiple-

access channel (MAC) setup.

The MAC is often compared to a cocktail party, where a curious guest wishes

to listen to several conversations simultaneously. See Figure 12.8 for an illustra-

tion of the two-user MAC. Let us add another complication: suppose that hidden

in each conversation is a secret message which is embedded into the speech signal

(say, similar to hiding a binary message in an integer sequence, as described in

the beginning of Chapter 10). Even if the guest knew how to extract the message

that is embedded in a single (isolated) speech signal, can he/she extract all of

the embedded messages in the cocktail party?

Recall that in the point-to-point Gaussian dirty-paper setting, there is a sin-

gle transmitter with input X , an interferer whose signal S is known non-causally

to the transmitter, and a receiver that observes Y = X + S + Z, where Z is

independent Gaussian noise. In terms of the cocktail party scenario above, X
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Figure 12.9 Two-user dirty multiple-access channel. Two transmitters communicate

with a single receiver. Each transmitter knows part of the interference non-causally.

carries the secret message embedded into the speech signal S. As discussed

in Section 10.6, it is possible to communicate reliably at the AWGN capac-

ity, regardless of the interference power. This can be accomplished via either

random or lattice binning. In the multiple-access Gaussian dirty-paper setting,

there are several transmitters each with input Xℓ, an interferer with signal S,

and a single receiver that observes Y =
∑

ℓ Xℓ + S + Z. The key issue is how the

knowledge of S is distributed across the transmitters. If S is completely known to

all transmitters, then classical random binning techniques suffice (as does lattice

binning). However, if the knowledge of S is decentralized, then structured coding

seems to be essential.

Let us assume that the interference can be decomposed into the sum S =
∑

ℓ Sℓ of independent component interference terms Sℓ. The ℓth transmitter has

access to Sℓ non-causally. See Figure 12.9 for an illustration of the two-user case.

In this scenario, the natural generalization of Costa’s random binning scheme

will yield rates that vanish as the interference power tends to infinity. We will

argue that lattice binning allows the transmitters to communicate reliably with

the receiver at rates that are nearly unaffected by the interference. This is a

special case of the general state-dependent multiple-access problem, which we

describe below.

Consider two transmitters with independent inputs X1 and X2 as well as

independent states S1 and S2. The channel output Y is the result of passing

X1 and X2 through the memoryless channel defined by p(y|x1, x2, s1, s2) where

S1 is i.i.d. according to p(s1) and S2 is i.i.d. according to p(s2). As above, the

first transmitter knows S1 non-causally and the second knows S2 non-causally.

The best known rate region that can be achieved via random i.i.d. binning is the

convex hull of all rate pairs (R1, R2) satisfying

R1 ≤ I(U1;Y |U2)− I(U1;S1) (12.32a)

R2 ≤ I(U2;Y |U1)− I(U2;S2) (12.32b)

R1 +R2 ≤ I(U1, U2;Y )− I(U1;S1)− I(U2;S2), (12.32c)
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for some distribution of the form p(u1, u2, x1, x2|s1, s2) =
p(u1, x1|s1)p(u2, x2|s2). The proof follows along similar lines as the point-

to-point case as described in Section 10.5 (i.e., the Gelfand–Pinsker solution

(10.54) for capacity with side information at the transmitter), with each user

generating its bins independently of the other. See [126] for more details. If the

channel p(y|x1, x2) is independent of the state (S1, S2) (or the state is unknown

to both the transmitters and the receiver), then the channel reduces to the

well-known “clean” MAC shown in Figure 12.8, and the rate region (12.32)

becomes the set of all rate pairs satisfying (see [53]):

R1 ≤ I(X1;Y |X2) (12.33a)

R2 ≤ I(X2;Y |X1) (12.33b)

R1 +R2 ≤ I(X1, X2;Y ), (12.33c)

for some distribution of the form p(x1, x2) = p(x1)p(x2).

We now demonstrate that classical random binning can be significantly out-

performed by linear binning through two special cases: the noiseless binary and

the Gaussian dirty multiple-access channels.

12.2.1 The noiseless binary dirty MAC

Consider a two-user, dirty-paper multiple-access channel (MAC) with binary-

valued inputs, interferences, and output. That is, let x1 and x2 denote the

length-n input sequences of transmitters 1 and 2, respectively. These inputs

are subject to average Hamming-weight constraints, wH(xℓ) ≤ qℓn for some

0 ≤ q1, q2 ≤ 1
2 . Define q = min(q1, q2). Also, let s1 and s2 denote the binary inter-

ference sequences. The noise-free channel output is

y = x1 ⊕ x2 ⊕ s1 ⊕ s2. (12.34)

As discussed above, the knowledge of the interference is decentralized: transmit-

ter 1 only knows s1 and transmitter 2 only knows s2.

To remove the effects of the interference in a distributed fashion, we can employ

a linear code and exploit the additive nature of the channel. More precisely,

the coding scheme depends on the availability of a linear code C that is good

for source coding for Bernoulli(q) sources in the sense of (10.8). Let H denote

the (n− k)× n parity-check matrix associated with this linear code. As in Sec-

tion 10.1.3, the messages will be encoded as “syndromes” of this parity-check

matrix. The lengths of the messages w1 ∈ {0, 1}k1 and w2 ∈ {0, 1}k2 are chosen

to sum up to the syndrome length, k1 + k2 = n− k. These messages are then

zero-padded to length n− k and mapped to coset leaders as follows:

v1 = leader

([
w1

0

])

v2 = leader

([
0

w2

])

. (12.35)
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From here, the encoding and decoding process mirrors that of the point-to-point

setting,

Encoding x1 = [v1 ⊕ s1] mod C (12.36a)

x2 = [v1 ⊕ s2] mod C (12.36b)

Decoding t̂ = y mod C (12.36c)

where t = v1 ⊕ v2 is the sum of the coset leaders. Note that the interference is

completely canceled out by this scheme,

y mod C = [[v1 ⊕ s1] mod C ⊕ [v2 ⊕ s2] mod C ⊕ s1 ⊕ s2] mod C (12.37)

= [v1 ⊕ v2] mod C (12.38)

= t (12.39)

where the second-to-last step is due to the distributive law of the modulo oper-

ation. Owing to the zero-padded structure of v1 and v2, the messages w1 and

w2 can be directly inferred from t.

Since C is assumed to be good for source coding, we have by (10.8) that
n−k
n ≈ HB(q). Moreover, if the interferences are i.i.d. Bernoulli(1/2), then we

also have that E{wH(x1)} = E{wH(x2)} = qn as desired. Overall, this means

that any rates R1 = k1/n and R2 = k2/n satisfying

R1 +R2 ≤ HB(q), (12.40)

are achievable. This turns out to be the capacity region for the noiseless binary

dirty MAC. The converse can be shown by giving the transmitters knowledge of

each other’s messages [215, Lemma 1].

Let us now focus on the special case where q1 = q2 = q and compare the

performance of the scheme above to that of random i.i.d. binning. Using (12.32),

it can be shown that the rate region for random i.i.d. binning is equal to the set

of all rate pairs satisfying

R1 +R2 ≤ u.c.e.{
[
2HB(q)− 1

]+} (12.41)

where u.c.e. stands for the upper convex envelope taken with respect to R1 =

R2 = 0 and q = 0. The achievability part follows by setting the distributions in

(12.32) according to Xℓ ∼ Bernoulli(q) and Uℓ = Xℓ ⊕ Sℓ for ℓ = 1, 2. Showing

that this choice yields the largest rate region is more involved and the proof can

be found in [215, Appendix B].

In Figure 12.10, we have plotted the sum rates associated with linear binning

from (12.40) and random i.i.d. binning from (12.41). Notice that the linear bin-

ning scheme strictly outperforms the random i.i.d. binning scheme. We discuss

the loss of single-letter characterization in more detail at the end of the next

section.

Arbitrary interference Even if the interferences s1 and s2 are not i.i.d.

Bernoulli(1/2), the same rate region is achievable by dithering the codewords
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Figure 12.10 Comparison of sum rates for random linear and random i.i.d. binning

over the binary dirty multiple-access channel.
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Figure 12.11 Lattice dirty multiple-access coding scheme.

prior to transmission. This parallels the universality property of the lattice

Körner–Marton scheme in Section 12.1.2 towards the common signal YC .

Noisy binary dirty MAC One can obtain the capacity region of the noisy

binary dirty MAC via linear binning by replacing the linear codes in the argument

above with the nested linear codes from Section 8.3. See [216] for more details.
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12.2.2 The Gaussian dirty MAC

For the two-user Gaussian dirty MAC, the channel output is

Y = X1 +X2 + S1 + S2 + Z (12.42)

where the interference terms S1 and S2 are arbitrary and, as usual, the noise Z

is i.i.d. Gaussian with variance N . See Figure 12.9 for an illustration. Encoder

1 generates the input X1, subject to a power constraint P1, and has non-causal

knowledge of S1. Encoder 2 generates the input X2, subject to a power constraint

P2, and has non-causal knowledge of S2.

The gains of lattice binning over random binning can be quite dramatic. For

example, consider the scenario where the interferences S1 and S2 are i.i.d. Gaus-

sian with variance Γ. As Γ tends to infinity, we will show that lattice-based

dirty-paper multiple-access scheme can operate very close to the interference-

free multiple-access capacity, whereas the rate of the random i.i.d. binning

scheme (12.32) with Gaussian auxiliary random variables tends to zero.

The encoding and decoding process for the lattice dirty-paper multiple-access

scheme is quite similar to that for the single-user scheme from (10.58), except

that now each user removes a separate interference term. The essential ingredient

is that both transmitters coordinate their interference removal through the use

of a common coarse lattice Λ2, as illustrated in Figure 12.11. The equivalent

effect is that of interference concentration over the points of Λ2, as we have

seen in Figure 10.20 for the single-interference case. The second moment of Λ2

is chosen to be the minimum 7 of the powers of the transmitters, σ2(Λ2) = P ,

min(P1, P2). We also employ a common fine lattice Λ1 for coding:

Encoding x1 = [v1 + u1 − αs1] modV0 Λ2 (12.43a)

x2 = [v2 + u2 − αs2] modV0 Λ2 (12.43b)

Decoding t̂ =
[

argmin
λ∈Λ1

‖αY − u1 − u2 − λ‖
]

mod Λ2 (12.43c)

where v1,v2 ∈ CΛ1,P0 are the message (coset) representatives, u1 and u2 are

independent dithers, and t̂ is the decoded estimate of the modulo sum t =

[v1 + v2] mod Λ2. Our coding scheme will be designed so that the message rep-

resentatives can be inferred directly from t. Note that only the encoding modulo

operation needs to be taken with respect to the Voronoi region.

As in the single-user dirty-paper channel, the resulting equivalent channel will

be completely interference free. However, owing to the distributed encoding pro-

cess, the decoder will face two self-noise terms, one from each transmitter. This

in turn results in a bounded rate loss from the point-to-point AWGN capacity.

As we will see, this is a small price to pay to remove the potentially unbounded

interference.

7 Although this choice may seem arbitrary, it also appears naturally in the outer bound.
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Lemma 12.2.1 (Equivalent modulo-Λ channel) Consider the dirty Gaus-

sian multiple-access channel (12.42) and the lattice coding scheme (12.43) with

arbitrary input vectors v1 and v2. For independent uniform (or modulo-uniform)

dithers U1 and U2 with respect to Λ2, and any interference vectors s1 and s2,

the channel from v1 and v2 to the decision vector Ỹ = [αY −U1 −U2] mod Λ2

is equivalent to the (zero-interference) modulo-Λ channel

Ỹ = [v1 + v2 + Zeq] mod Λ2, (12.44a)

where the equivalent noise is defined as

Zeq =
[

αZ+ (α− 1)(Ueq,1 +Ueq,2)
︸ ︷︷ ︸

Zmix

]

mod Λ2, (12.44b)

and Ueq,1, Ueq,2 are equivalent dithers (4.8) which are uniform over V0(Λ2) and

independent of each other and v1,v2.

Proof See Problem 12.5. �

To simplify our analysis, we begin with the special case where the rate of the

first user is R1 = R(Λ1/Λ2) and the rate of the second user is R2 = 0 (i.e., v2 = 0

so that t = v1).

Theorem 12.2.1 (System performance) Assuming that R2 = 0, the cod-

ing rate R1 = R(Λ1/Λ2) = (1/n) log |Λ1/Λ2| of the lattice dirty MAC coding

scheme (12.43) with a Wiener estimation coefficient α∗ = 2P/(2P +N) satisfies

R1 ≥
[
1

2
log

(
1

2
+

P

N

)

− L(Zmix)

]+

(12.45)

where Zmix = αZ+ (α − 1)(Ueq,1 +Ueq,2) is the linear estimation error (equal

to the mixture noise) in the modulo-Λ channel (12.44a), and

L(Zmix) ,
1

2
log(G(Λ2)µeuclid(Λ1,Zmix, Pe)) (12.46)

is the total (shaping plus coding) rate loss. For nested lattice pairs that are

good for Voronoi modulation over an AWGN channel, the scheme achieves

R1 = [ 12 log(
1
2 + P/N)]+ asymptotically in n.

Proof We follow the analysis of Voronoi modulation with general estimation in

Section 9.6.2. The second moment of the mixture noise from (12.44b) is equal to

1

n
E‖Zmix‖2 =

1

n
E‖αZ+ (α− 1)(Ueq,1 +Ueq,2)‖2 (12.47a)

=
1

n
α2E‖Z‖2 + 1

n
(1− α)2

(
E‖Ueq,1‖2 + E‖Ueq,1‖2

)
(12.47b)

= α2N + (1− α)22P. (12.47c)

This quantity is minimized by the Wiener coefficient α∗ = 2P/(2P +N) to yield

(1/n)E‖Zmix‖2 = 2PN/(2P +N). From here, (12.45) follows from the equiva-
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lent mod Λ channel (Lemma 12.2.1) and Lemma 9.6.1 by noting that

1

2
log

(
P

1
nE‖Zmix‖2

)

=
1

2
log

(
P (2P +N)

2PN

)

=
1

2
log

(
1

2
+

P

N

)

. (12.48)

Now, recall that good Voronoi codes result in equivalent dithers Ueq,1 and Ueq,1

that correspond to semi-spherical noise (Definition 7.8.2 and the subsequent

discussion) and, by Problem 7.12, the sum of semi-spherical noise and AWGN

noise is itself semi-spherical noise. Thus, the equivalent noise meets the conditions

of Definition 9.6.2 and the existence of asymptotically good codes is guaranteed

by Theorem 8.5.1. �

Thus, with lattice dirty-paper coding, we can nearly reach the AWGN capacity,

up to the loss of the “one plus” term inside the log. The resulting rate loss

vanishes as the SNR increases. Exchanging the roles of user 1 and user 2, we can

also asymptotically achieve R1 = 0 and R2 =
[
1
2 log(

1
2 + P/N)

]+
. We can also

trivially achieve R1 = R2 = 0. By time sharing 8 between these three rate pairs,

the following rate region is achievable:

R1 +R2 ≤ u.c.e.

{[
1

2
log

(
1

2
+

min(P1, P2)

N

)]+
}

(12.49)

since P = min(P1, P2).

While the rate region above is achievable for arbitrary interference, we will

need to specify the interference statistics to find an outer bound. Let us assume

that S1 and S2 are independent of each other and i.i.d. Gaussian with zero

mean and variance Γ. As Γ tends to infinity, the rate region of the dirty-paper

multiple-access channel must satisfy the following outer bound:

R1 +R2 ≤ 1

2
log

(

1 +
min(P1, P2)

N

)

. (12.50)

See [217, Corollary 2] for more details. This nearly corresponds to the inner

bound (12.49) established by the lattice scheme, with the addition of the “1 +”

term (instead of “ 1
2 +”) inside the logarithm. Interestingly, unlike the point-to-

point case, there is a rate loss for the dirty multiple-access channel compared

to the clean multiple-access channel (12.33), which has a sum rate of 1
2 log(1 +

(P1 + P2)/N). We shall discuss the slight gap between (12.49) and (12.50) in the

next section, where it reappears in the context of the two-way relay.

To find the rates available to the conventional random binning scheme (i.e.,

the natural extension of Costa’s binning scheme), we plug Gaussian auxiliary

random variables, U1 = αS1 +X1 and U2 = αS2 +X2, into the rate region from

(12.32), as illustrated in Figure 12.12. It can be shown [217] that the resulting

8 Alternatively, we could enable both transmitters to send information simultaneously by
partitioning the fine lattice in a similar fashion to the binary scheme in (12.35).
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Figure 12.12 Costa dirty multiple-access test channel.

sum rate is upper bounded by

R1 +R2 ≤
[

h(S1 + S2)− h(S1)− h(S2) +
1

2
log

(

2πe
P1P2

N

)

+ o(1)

]+

,

(12.51)

where o(1) → 0 as Γ → ∞. Since h(S1 + S2) =
1
2 log(4πeΓ) and h(S1) + h(S2) =

log(2πeΓ), we find that by taking the interference power Γ to infinity, R1 +R2 ≤
0. In other words, conventional random binning cannot achieve positive rates as

the interference power tends to infinity.

Essential structure Note that only the coarse lattices of the transmitters

need to be aligned in order to perform distributed interference cancelation. For

instance, a “semi-lattice” scheme as in the Körner–Marton problem (12.23) can

achieve the same rates by replacing the fine lattice with a random code generated

according to a uniform distribution over V0.

Beyond Gaussian As in the binary case, it is possible to handle arbitrary inter-

ferences s1 and s2 while attaining the same rate region, owing to the use of the

dithering operation. We focused on the case of i.i.d. Gaussian interference above

in order to make a clear comparison with classical random binning strategies

as well as to develop the upper bound. For non-Gaussian noise, we can employ

noise-matched (ML) decoding like in Voronoi demodulation; see Section 9.3.6

and the remark at the end of Section 12.3.2 below.

Loss in single-letter characterization Costa’s binning scheme is derived

from a Gaussian single-letter formula. It fails on the dirty MAC because, unlike

for lattice binning, the sum of two independent bins (from the two users) results

in a “bad” codebook. Mathematically, this failure is reflected by the vanishing

of the right-hand side of (12.51) in the limit of a strong interference.
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It turns out that we can improve upon this performance by evaluating (12.32)

using auxiliary random variables that involve modulo operations with respect to

a shared scalar lattice, instead of Gaussian random variables. This enables the

random i.i.d. binning scheme to mimic the lattice binning scheme proposed above

with a cubic coarse lattice, i.e., with the exception of the shaping provided by

a good coarse lattice. Compare Figures 12.12 and 12.11. We conjecture that the

best single-letter formula for the dirty MAC in the limit of strong interference and

high SNR is given in terms of a one-dimensional lattice. The resulting rate loss is

thus the “shaping gain” 1
2 log(2πe/12) ≈ 0.254 bits per user, i.e., the divergence

from Gaussianity of a scalar dither (see Example 9.3.1).

12.3 Lattice network coding

In a standard packet switching network, nodes act as routers – they wish to find

the best route for a packet under the current conditions. If the inflow to a node

is higher than its output capacity, then some of the packets will be discarded.

The idea of network coding is that a bottleneck node can “combine” together

packets rather than choose which one to pass on and which one to discard. If the

final destination gets enough such “combinations” (from different routes), then

it can resolve the ambiguity and decode all the transmitted packets reliably.

If the nodes are linked together by a network of lossless bit pipes, then the des-

tination can decode from any end-to-end information-preserving mapping, i.e., a

network code. Random binning at the nodes results in an information-preserving

mapping with high probability and was used to establish the multicast capac-

ity of such networks [4]. Much of the subsequent research on network coding has

focused on linear schemes [138, 155], in part due to their reduced implementation

complexity. However, when extending the network coding idea to noisy interfer-

ence networks (i.e., networks in which the transmissions of the nodes interfere

with one another and are corrupted with noise), employing a network code with

algebraic structure is essential to avoid rate loss.

This phenomenon is of particular interest in wireless networks, where each

receiver naturally observes a noisy linear combination of all transmitted code-

words (or packets). The separation-based approach suggests that each receiver

should first decode a subset of the codewords, and only then perform linear net-

work coding to create the packet to be transmitted over the next hop. However,

using appropriately chosen lattice codes, it is possible for each receiver to decode

a linear combination of the codewords directly, often at significantly higher rates.

This technique falls into the family of physical-layer network coding strategies

[157, 195], which aim to exploit the linear combinations taken by the channel

as part of an end-to-end network code. Note that while the analog combination

taken by the channel can be used directly as a form of network code, this suffers
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ŵ1

Figure 12.13 Two-way relay channel. There are two users who wish to exchange

messages through a relay. The relay observes the noisy sum of the users’ signals and

communicates back to them via a broadcast channel.

from the problem of noise accumulation, i.e., the destinations will have to decode

from the sum of the noise terms of all the relays.

A compelling scenario for physical-layer network coding is provided by the

linear two-way relay channel, as illustrated in Figure 12.13. User 1 has a message

w1 which it wishes to send to user 2. Similarly, user 2 wishes to send w2 to user

1. The challenge is that the users can only communicate through a relay that

observes the noisy sum of the transmitted signals. The separation-based approach

to this problem combines classical multiple-access techniques (at the channel

coding layer) with network coding (at the source coding layer): the relay first

decodes both messages, then computes the modulo sum, and finally broadcasts

to the users to solve for their desired messages. Interestingly, if both users employ

the same linear or lattice codebook, then the relay can decode the sum directly

without inferring the individual messages, which roughly doubles the achievable

sum rate. Note that random i.i.d. codebooks are good for classical multiple-

access and bad for computation for the same reason: they make each pair of

codewords discernible from their sum. Below, we will explore this “compute-and-

forward” technique in the context of binary and Gaussian channels, and compare

its performance to that of random i.i.d. coding as well as to the theoretical

performance limits.

12.3.1 Binary case, single receiver

We set the stage with a coding technique for computing the modulo sum of mes-

sages over a binary multiple-access channel. We will then use this as a building

block for a compute-and-forward strategy for the binary two-way relay channel.

Computation over multiple-access channels
Consider a simple multiple-access channel with binary-valued messages, channel

inputs, noise, and output (see Figure 12.14). Specifically, let w1 and w2 be the

length-k messages of transmitters 1 and 2, respectively. Also, let x1 and x2 denote
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Figure 12.14 Computation over a multiple-access channel. The receiver wishes to

recover the modulo sum of the messages. By using the same linear code at each

transmitter, we can attain the capacity region, which is much larger than the rate

region achievable via random i.i.d. codes.

the transmitters’ length-n channel inputs. The receiver observes a noisy sum of

these inputs,

y = x1 ⊕ x2 ⊕ z (12.52)

where z is i.i.d. Bernoulli(p) noise. The goal is for the receiver to recover the

modulo sum

t = w1 ⊕w2 (12.53)

with low probability of error at the highest possible rate 9 R = k/n.

If the channel were noiseless (e.g., p = 0), then communicating the sum would

be trivial. The transmitters could send their messages in an uncoded fashion,

x1 = w1 and x2 = w2, to give the receiver the sum y = w1 ⊕w2 at the maximum

rate of R = 1. However, in the noisy setting, some form of channel coding is

required to attain a low probability of error.

The classical approach to proving achievability results for the multiple-access

channel is to employ an independent random codebook at each transmitter whose

codewords are generated element-wise i.i.d. This implicitly ensures that each

possible pair of messages (w1,w2) is assigned to a pair of codewords with a

unique sum (assuming the rates are set appropriately). While this is a desirable

property in the case where the receiver desires both messages, it leads to a

significant rate loss when it only wants the sum. Specifically, this strategy only

achieves a rate of R = (1−HB(p))/2 per user, which is what is required to send

both messages in their entirety.

Now, consider employing the same linear code at each transmitter in the spirit

of the Körner–Marton scheme describe in Section 12.1. Specifically, let G be an

n× k generator matrix for a linear code that is good for coding over a BSC in

9 The rate is defined in terms of the average number of bits per channel use sent by each

transmitter, rather than the average number of bits obtained by the receiver. This dis-
tinction will be useful later on in the two-way relay, since we are ultimately interested in
communicating messages between users.
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the sense discussed in Section 10.1.1. The encoding and decoding procedure is

Encoding x1 = Gw1 (12.54a)

x2 = Gw2 (12.54b)

Decoding t̂ = y ⊕
(

[y] mod C
︸ ︷︷ ︸

ẑ

)

. (12.54c)

Notice that, from the receiver’s perspective, it appears as if the sum was

directly encoded with G,

y = x1 ⊕ x2 ⊕ z (12.55a)

= Gw1 ⊕Gw2 ⊕ z (12.55b)

= G(w1 ⊕w2)⊕ z (12.55c)

= Gt⊕ z. (12.55d)

It follows that, sinceG is good for coding over a BSC, the second term in (12.54c),

ẑ = [y] mod C, is equal with high probability to the noise z, so t̂ = t with high

probability as well. Thus, any rate up to

R = 1−HB(p) (12.56)

is achievable. This turns out to be the capacity for sending the binary sum, as

the transmitters could do no better if they were permitted to cooperate fully.

We can also consider the case where the transmitters have unequal rates.

Specifically, let transmitter ℓ have kℓ bits and rate Rℓ = kℓ/n. The messages w1

andw2 comprise these bit sequences zero-padded to the longer of the two lengths

k = max(k1, k2) so that the sum w1 ⊕w2 is well defined. It follows that any rate

pair (R1, R2) satisfying

max(R1, R2) ≤ 1−HB(p) (12.57)

is achievable whereas random i.i.d. codes only achieve the multiple-access rate

region

R1 +R2 ≤ 1−HB(p) . (12.58)

See Figure 12.14 for a comparison of these rate regions.

Two-way relaying
We can use this computation result as part of a compute-and-forward relaying

strategy for the two-way relay channel depicted in Figure 12.13. Consider the

scenario where all of the channels are binary

yMAC = x1 ⊕ x2 ⊕ zMAC (12.59a)

y1 = xBC ⊕ z1 (12.59b)

y2 = xBC ⊕ z2 (12.59c)
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and the independent noise sequences zMAC, z1, and z2 are i.i.d. Bernoulli(p).

Each user’s message is written as a length-k binary vector, w1,w2 ∈ {0, 1}k.
Thus, the users have equal rates R1 = R2 = k/n where n is the number of chan-

nel uses. 10 The computation scheme developed above can be used to send the

sum t = w1 ⊕w2 to the relay at rates R1 = R2 = 1−HB(p). Afterwards, the

relay re-encodes its estimate of the sum using the same linear code 11 and conveys

it to both users, xBC = Gt̂. The users then make estimates t̂1 and t̂2 of the sum

and combine these with their own messages to estimate their desired messages,

ŵ2 = t̂1 ⊕w1 and ŵ1 = t̂2 ⊕w2. Overall, this shows that R1 = R2 = 1−HB(p)

is achievable. This corresponds to the sum capacity of the binary two-way relay

channel since each user simultaneously attains the rate it could achieve if the

other user were silent. Classical relaying strategies fall short of this performance.

For instance, the “decode-and-forward” strategy would have the relay recover

both messages w1 and w2 prior to forming the modulo sum t for the broad-

cast phase. We know from the multiple-access capacity region that this is pos-

sible only if R1 +R2 ≤ 1−HB(p), meaning that this strategy cannot reach the

capacity. Another possibility, known as “compress-and-forward,” would have the

relay compress its observation of the noisy sum y so that it can be conveyed

over the broadcast segment. Each user can then receive a noisy observation of

its desired codeword by combining its estimate of y with its own codeword.

Similarly, the relay could follow an “amplify-and-forward” strategy and simply

repeat its observation uncoded over the broadcast segment. However, owing to

the accumulation of noise, neither of these strategies will attain the capacity.

Modulo channels The binary framework developed above can be generalized

to any modulo-additive multiple-access channel or relay with no input con-

straints. In all such cases, the compute-and-forward approach is “perfect,” i.e.,

it achieves the cut-set bound on capacity. For real addition, the story is more

involved, as we will see below in the Gaussian case.

12.3.2 Gaussian case, single receiver

We now consider the problem of computing over a Gaussian multiple-access

channel and its application to two-way relaying. Ideally, we would like the receiver

to decode the modulo sum of the codewords as this is well suited for two-way

relaying. That is, the modulo sum provides enough information to each user to

recover its desired message, without the need for any excess rate (which would be

required for sending the real sum without binning). Note that there is mismatch

10 Here, we have implicitly assumed that the relay is half-duplex, meaning that it cannot
transmit and receive simultaneously. Thus, it will have received all n channel outputs from
the multiple-access stage prior to generating its n channel inputs for the broadcast stage.

11 While the use of a linear code seems essential for the multiple-access phase, we are free to
choose a standard capacity-achieving i.i.d. random code for the broadcast phase. Here, we
used a linear code for the broadcast phase for ease of exposition.
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between this desired function and the channel, which only returns a noisy version

of the real sum. As we will see, nested lattice codes provide a means to bridge

this gap.

Computation over multiple-access channels
Consider the setting where the receiver observes a linear combination

Y = X1 +X2 + Z (12.60)

of the users’ real-valued inputs X1 and X2, corrupted by i.i.d. Gaussian noise

Z with variance N . As in the binary case, we would like the receiver to recover

the sum of the codewords. In other words, we need to guarantee that any sum

of codewords is protected against Gaussian noise. Lattice-based codes are an

excellent choice for this problem due to the fact that lattices are closed under

addition. Moreover, nested lattice codes provide a natural way to compute a

modulo sum of the codewords.

For now, let us assume that both users have equal power constraints P1 =

P2 = P . This allows each transmitter to use the same Voronoi code, created

from nested lattices Λ2 ⊂ Λ1. The receiver decodes to the closest lattice point,

just as in the point-to-point case, except that here the estimate will correspond

to the modulo-lattice sum. The encoding and decoding operations are as follows:

Encoding x1 = [v1 + u1] modV0 Λ2 (12.61a)

x2 = [v2 + u2] modV0 Λ2 (12.61b)

Decoding t̂ =
[

argmin
λ∈Λ1

‖αY − u1 − u2 − λ‖
]

mod Λ2 (12.61c)

where v1,v2 ∈ CΛ1,P0 (for some nested lattice pair Λ2 ⊂ Λ1) are the message

(coset) representatives, u1 and u2 are independent dithers, and t̂ is the decoded

estimate of the modulo-lattice sum

t = [v1 + v2] mod Λ2. (12.62)

The coding rate is defined as R(Λ1/Λ2) =
1
n log |Λ1/Λ2|, which, as above, is the

number of bits per channel use sent by each transmitter; see footnote 9.

Note that the modulo operation need only be taken with respect to the Voronoi

cell at the encoders, as is the case for point-to-point channel coding.

From the receiver’s perspective, the effective channel closely resembles the

point-to-point AWGN channel under Voronoi modulation studied in Chapter 9.

The main difference is the distribution of the equivalent noise, which consists of

two self-noise terms, one from each transmitter. This in turn results in a small

rate loss from the point-to-point AWGN capacity, which closely resembles the

penalty encountered in the the dirty MAC setting of Section 12.2.2.

Lemma 12.3.1 (Equivalent modulo-Λ channel) Consider the Gaussian

multiple-access channel (12.60) and the lattice coding scheme (12.61) with arbi-
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trary input vectors v1 and v2. For independent uniform (or modulo-uniform)

dithers U1 and U2 with respect to Λ2, the channel from v1 and v2 to the deci-

sion vector Ỹ = [αY −U1 −U2] mod Λ2 is equivalent to the additive modulo-Λ2

channel:

Ỹ = [v1 + v2 + Zeq] mod Λ2 (12.63)

with equivalent noise

Zeq =
[
αZ+ (α− 1)(Ueq,1 +Ueq,2)
︸ ︷︷ ︸

Zmix

]
mod Λ2, (12.64)

where Ueq,1 and Ueq,2 are the equivalent dithers (4.8), which are uniform over

V0(Λ2) and independent of each other and v1,v2.

Proof See Problem 12.5. �

Using this lemma, we now characterize the performance of our scheme.

Theorem 12.3.1 (System performance) The coding rate R(Λ1/Λ2) =

(1/n) log |Λ1/Λ2| of the lattice MAC computation scheme (12.61) with a Wiener

estimation coefficient

α∗ =
2P

2P +N
(12.65)

satisfies

R(Λ1/Λ2) ≥
[

1

2
log

(
1

2
+

P

N

)

− L(Zmix)

]+

(12.66)
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Figure 12.15 Conventional random i.i.d. coding ensures that sums of codewords are

unique, hence they are denser and less resilient to noise. Lattice coding guarantees

that sums of codewords are themselves codewords.

where Zmix = αZ + (α− 1)(Ueq,1 +Ueq,2) is the mixture noise in the modulo-Λ

channel (12.64), and L(Zmix) is the rate loss (12.46). For nested lattice pairs that

are good for Voronoi modulation over an AWGN channel (in the sense of Defini-

tion 9.6.2), the scheme achieves R(Λ1/Λ2) =
[
1
2 log(

1
2 + P/N)

]+
asymptotically

in n.

The proof is nearly identical to that of Theorem 12.2.1 and is omitted.

The rate [ 12 log(
1
2 + P/N)]+ can be thought of as the “computation rate,”

meaning the effective rate of the codebook induced by the modulo sum of the

codebooks of the two users. Since we have constrained the users to have equal

rates, this computation rate is also a constraint on the rate of each user. One

peculiar feature of this rate expression is the absence of the usual “1 +” term

inside the logarithm. From one perspective, the loss seems to be due to a mis-

match between the transmitters and the receiver. That is, the receiver observes

the sum at power 2P as well as Gaussian noise at power N . The resulting effec-

tive SNR (after the modulo operation) imposes a constraint on the density of

the fine lattice. This fine lattice, if combined with a coarse shaping lattice of sec-

ond moment 2P , would yield a Voronoi codebook with rate of 1
2 log(1 + 2P/N).

However, each transmitter only has power P , meaning that the coarse lattice

will have second moment P and the resulting Voronoi codebook will only have

rate [ 12 log(
1
2 + P/N)]+. (This is due to the fact that the volume of the Voronoi

region is decreased by a factor of 2n/2.)

This performance is much higher than what is available via classical random

i.i.d. coding for decoding the sum. Specifically, random i.i.d. coding ensures that,

with high probability, each pair of codewords is mapped to a unique sum. Thus,

in decoding the sum, the receiver will end up implicitly decoding the individual

messages and will be constrained by multiple-access capacity bounds to a com-

putation rate of 1
4 log(1 + 2P/N). See Figure 12.15 for a visual comparison of

random i.i.d. and lattice coding.

If there are K transmitters (each with power P and equal rates) and a single

transmitter that desires the modulo sum of their messages, Voronoi modulation
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can attain a computation rate of [ 12 log(1/K + P/N)]+. This is a special case of

the compute-and-forward framework that will be presented in Section 12.3.3.

Two-way relaying
We now turn back to the Gaussian two-way relay channel and propose a compute-

and-forward relaying strategy. Specifically, assume that the channels in Fig-

ure 12.13 are given by

yMAC = x1 + x2 + zMAC (12.67a)

y1 = xBC + z1 (12.67b)

y2 = xBC + z2 (12.67c)

where the real-valued inputs x1, x2, xBC are power limited by P and the

independent noise sequences zMAC, z1, and z2 are i.i.d. Gaussian with mean

zero and variance N . Each user’s message is mapped to a coset representative,

v1,v2 ∈ CΛ1,P0 , which implies that the rates are equalR1 = R2 = R(Λ1/Λ2). The

lattice scheme developed above can be used as part of a compute-and-forward

relaying strategy. The relay can decode the modulo sum t = [v1 + v2] mod Λ2

at rates R1 = R2 = [ 12 log(
1
2 + P/N)]+. It can then simply transmit its estimate

t̂ of the modulo sum to the users which can also decode reliably. Now, using

their own messages as side information, the users can solve for their desired mes-

sages. For example, user 1 can form the estimate v̂2 = [̂t1 − v1] mod Λ2 using

its message representative v1 and its estimate t̂1 of the modulo sum t. Overall,

this yields a sum rate of

Rcompute,sum =

[

log

(
1

2
+

P

N

)]+

(12.68)

which nearly matches the upper bound on the sum rate

Rupper,sum = log

(

1 +
P

N

)

(12.69)

that would be attainable if each user had a dedicated (i.e., interference-free)

AWGN channel to the other. The only difference is the absence of the “1+” term

inside the logarithm, as discussed above. It is an open problem as to whether

the upper or lower bound is loose 12 (or both).

Comparison with other relaying strategies We now briefly review the per-

formance of classical relaying strategies. For instance, consider a decode-and-

forward strategy where the relay first decodes the individual messages w1 and

w2 at the symmetric multiple-access capacity R1 = R2 = 1
4 log(1 + 2P/N) (via

standard random i.i.d. coding). It then transmits the modulo sum w1 ⊕w2 to

12 See [270] for an alternative proof of this lower bound based on spherically shaped lattice
codes.
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the users to attain a sum rate of

Rdecode,sum =
1

2
log

(

1 +
2P

N

)

. (12.70)

Notice that the penalty for not taking advantage of the natural sum computation

provided by the multiple-access channel is nearly a factor of 1/2 in the limit of

high SNR.

Under an amplify-and-forward strategy, the relay makes no attempt to decode.

Instead, it simply repeats its channel observation yMAC on the broadcast phase

xBC =
√

P
2P+N yMAC (scaled to meet the power constraint). Each user can cancel

out the effect of its own codeword to get an effective point-to-point channel from

the other user. If the users employ i.i.d. Gaussian codebooks, the resulting sum

rate is

Ramplify,sum = log

(

1 +
P

N

P

3P +N

)

. (12.71)

Note that this strategy matches the slope of the upper bound, owing to the fact

that it exploits the sum taken by the multiple-access stage. However, it has a

lower end-to-end effective SNR as compared to compute-and-forward, due to the

fact that it does not remove noise at the relay.

Finally, under a compress-and-forward strategy, the relay quantizes its channel

observation yMAC and broadcasts the resulting bits to both users. Each user

then forms an estimate of the relay’s observation and again subtracts its own

codeword to obtain an effective point-to-point channel from the other user. It can

be shown that, for i.i.d. Gaussian codebooks, the sum rate is equal to (12.71),

i.e, this strategy suffers from noise accumulation as in amplify-and-forward.

In Figure 12.16, we have plotted the performance of these strategies versus

SNR. Notice that the compute-and-forward strategy is dominant except in the

low SNR range (where the absence of the “1+” term has a more pronounced

effect).

Asymmetric powers
It may be the case that the two users have different power constraints or that

their signals travel across channels with unequal strengths. For instance, consider

the Gaussian two-way relay channel (12.67) and assume that the input power

constraints are

1

n
E‖X1‖2 ≤ P1

1

n
E‖X2‖2 ≤ P2

1

n
E‖XBC‖2 ≤ PBC, (12.72)

where, without loss of generality, we assume that P1 ≥ P2. The i.i.d. zero mean

Gaussian noise sequences zMAC, z1, and z2 have variances NMAC, N1, and N2,

respectively.

We could directly apply the lattice coding scheme developed for the symmetric

powers by setting the second moment of the coarse lattice to the minimum of
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Figure 12.16 Comparison of the sum rates of various relaying strategies over the

Gaussian two-way relay channel.

these powers. However, this may be quite wasteful if one user has significantly

more power than the other. Interestingly, it is possible to utilize fully the power

at each transmitter while still reliably decoding the sum at the relay. The main

idea is to use the same fine lattice at both users but different coarse lattices,

each sized to meet its user’s power constraint.

To this end, we will select a triple of nested lattices

Λ3 ⊂ Λ2 ⊂ Λ1

to form two Voronoi codebooks C1 = Λ1 ∩ P0(Λ2) and C2 = Λ1 ∩ P0(Λ3). These

codebooks share a common fine lattice, which ensures that the sum of codewords

is itself an element of the fine lattice and thus afforded protection against noise.

The second moments of the coarse lattices are set to meet the power constraints of

the users σ2(Λ2) = P1 and σ2(Λ3) = P2, which allows each user to use a different

rate,R1 = R(Λ1/Λ2) and R2 = R(Λ1/Λ3). The encoding process at the users and

the decoding process at the relay is summarized as follows:

Encoding x1 = [v1 + u1] modV0 Λ2 (12.73a)

x2 = [v2 + u2] modV0 Λ3 (12.73b)

Decoding t̂ =
[

argmin
λ∈Λ1

‖αYMAC − u1 − u2 − λ‖
]

mod Λ3 (12.73c)

where v1 ∈ C1 and v2 ∈ C2 are the message (coset) representatives, u1 and u2

are independent dithers, and t̂ is the decoded estimate of the modulo-lattice

sum t =
[
v1 + v2 −QΛ2(v2 + u2)

]
mod Λ3. It can be shown that there exist

sequences of lattices Λ
(n)
1 , Λ

(n)
2 , and Λ

(n)
3 such that both codebooks C1 and C2

are good for Voronoi modulation (Definition 9.6.2). By combining this fact with

the steps in the proof of Lemma 12.3.1 and Theorem 12.3.1, it can be shown that

for a Wiener coefficient α∗ = (P1 + P2)/(P1 + P2 +N), any rate pair (R1, R2)
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satisfying

R1 ≤
[
1

2
log

(
P1

P1 + P2
+

P1

NMAC

)]+

R2 ≤
[
1

2
log

(
P2

P1 + P2
+

P2

NMAC

)]+

(12.74)

is achievable asymptotically in n. Note that for symmetric powers (P1 = P2),

(12.74) reduces to Theorem 12.3.1. See [192] for more details.

The final step is for the relay to communicate back to the users. One possibility

is for the relay to randomly bin its estimate t̂ and send the resulting index to the

users via a capacity-achieving channel code. The users can then combine their

channel observations with the side information provided by their own messages

to infer their desired messages. This is possible so long as

R1 ≤ 1

2
log

(

1 +
PBC

N1

)

R2 ≤ 1

2
log

(

1 +
PBC

N2

)

. (12.75)

Overall, the achievable rate region for the two-way relay channel with unequal

powers is described by the intersection of the regions (12.74) and (12.75). This

region turns out to be within half a bit of the outer bound that can be established

by assuming that each user has exclusive access to the channel through the relay

to the other user.

Notice that the compute-and-forward strategy would work just as well if the

broadcast phase were not Gaussian. That is, classical random i.i.d. binning and

channel coding suffices to convey the modulo sum back to the users. See [204]

for more details.

Remarks
Essential structure Clearly, the fine lattice is essential to guarantee that the

sum of two codewords is afforded protection against noise. However, the rate

regions described above for the Gaussian two-way channel do not require the

shaping code to be identical at both users or even to be a lattice. Specifi-

cally, we could generate the codebooks by intersecting the fine lattice with an

n-dimensional ball to enforce the power constraint, i.e., spherical shaping as dis-

cussed in Section 9.3.3. Note that the broadcast stage will have to use a binning

step to avoid sending the excess rate associated with the real sum of the code-

words. See [270] for more details. A simpler, but suboptimal, scheme is to use a

cubic shaping lattice, which results in a rate loss of 1
2 log(2πe/12) ≈ 0.254 bits

per user (see Example 9.3.1).

Beyond Gaussian It is also possible to design compute-and-forward schemes

for non-Gaussian noise. In particular, the fine lattice decoder should be designed

according to the noise-matched NVNR criterion from Definition 6.4.1. Since from

the receiver’s perspective, the equivalent channel looks like a point-to-point chan-
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Figure 12.17 K users communicate to a single destination through K relays, each of

which observes a noisy linear combination of the transmitted signals.

nel, we can turn to the ideas from Section 9.3.6 for analyzing the performance

under non-Gaussian noise. Note that by Theorem 7.8.1, we can obtain a sequence

of good fine lattices in the sense that the noise-matched NVNR tends to 2πe.

Loss in single-letter characterization It does not seem that a random

i.i.d. ensemble can attain similar performance for computation over a multiple-

access channel. That is, standard approaches to derive single-letter expressions

seem implicitly to decode both messages. Nevertheless, for the Gaussian two-

way relay channel, it is possible to match nearly the lattice-based performance

of compute-and-forward via a random (non-lattice) i.i.d. coding. Specifically, a

more sophisticated version of the compress-and-forward relaying strategy, known

as noisy network coding [159], comes within 1 bit (per user) of the capacity region.

This rate loss is partly due to the fact that this strategy does not attempt to

remove noise at the relay (i.e., it does not decode a linear combination), which

may carry a larger cost in relay networks with many hops.

12.3.3 Gaussian case, multiple receivers

We now turn to consider a broader class of relay networks. In Section 12.3.2,

we introduced the idea of having the relay decode the sum of the transmitted

codewords, rather than the codewords themselves. Here, we expand the class of

decodable functions to include integer linear combinations of codewords.

To illustrate the key principles at work, consider the relay network depicted in

Figure 12.17 which consists ofK transmitters, K relays, and a single destination.

The ℓth transmitter generates a channel input Xℓ which is constrained to have

power less than or equal to P . The kth relay observes a noisy linear combination

of all transmitted signals,

Yk =
K∑

ℓ=1

hkℓXℓ + Zk (12.76)
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where the hkℓ are real-valued channel coefficients and the Zk are i.i.d. Gaussian

noise of variance N . Each relay has access to a noise-free bit-pipe that can

carry R0 bits per channel use to the destination, which must recover all of the

transmitted messages.

One possible strategy would be to designate each relay responsible for the

message from a particular transmitter. The relay would then aim to decode this

transmitter’s codeword while ignoring the rest (although it might use knowledge

of their codebooks in its decoding scheme). This decode-and-forward strategy

is interference limited as each relay must overcome K − 1 interfering signals

to decode its targeted message. Of course, the relays are not required to decode

anything: they could simply quantize their channel observations and send them to

the destination for decoding. While this compress-and-forward strategy alleviates

the problem of interference, it is noise limited as the relays end up wasting some

of their rate on quantizing the noise. While this may not seem to be an issue

in the high SNR regime, it will be exacerbated in relay networks with multiple

hops between the transmitters and the destination(s).

Computation over interfering channels
Ideally, we would like the relays to “denoise” their observed linear combinations

and let the destination disentangle the interference between users. It turns out

that some version of this compute-and-forward strategy is possible via lattice

coding. Specifically, consider the following lattice encoder (for each transmitter)

and decoder (for each relay):

Encoding xℓ = [vℓ + uℓ] modV0 Λ2 (12.77a)

Decoding t̂k =

[

argmin
λ∈Λ1

∥
∥
∥
∥
αkYk −

K∑

ℓ=1

akℓuℓ − λ

∥
∥
∥
∥

]

mod Λ2 (12.77b)

where the vℓ ∈ CΛ1,P0 are message (coset) representatives, the uℓ are independent

dithers, and t̂k is the decoded estimate of the integer linear combination

tk =

[ K∑

ℓ=1

akℓvℓ

]

mod Λ2, (12.78)

where the akℓ are integer-valued
13 coefficients that can be freely chosen by each

receiver. These coefficients should be chosen to ensure that the destination can

recover the messages, i.e., the matrix A = {akℓ} should be full rank. As we will

see, the effective noise encountered in decoding is governed by how well the

integer-valued akℓ approximate the real-valued hkℓ. In general, the channel will

not be “perfectly matched” to any integer linear combination, resulting in a rate

loss. This resembles the phenomenon encountered in the Gaussian many-help-

13 The constraint that the akℓ are integer valued ensures that tk is an element of the nested
lattice codebook CΛ1,P0

.
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one source coding problem when the desired function is not well matched to the

lattice structure, i.e., it has non-integer coefficients (see Section 12.1.3).

The lemma below characterizes the equivalent channel to each relay.

Lemma 12.3.2 (Equivalent modulo-Λ channels) Consider the Gaussian

relay network (12.76) and the lattice coding scheme (12.77) with arbitrary

input vectors v1, . . . ,vK . For independent uniform (or modulo-uniform) dithers

U1, . . . ,UK with respect to Λ2, the channels from v1, . . . ,vK to the decision

vectors

Ỹk =

[

αkYk −
K∑

ℓ=1

akℓUℓ

]

mod Λ2, (12.79)

k = 1, . . . ,K, are equivalent to the modulo-Λ2 channels

Ỹk = [tk + Zeq,k] mod Λ2, (12.80)

where tk is the integer linear combination of the inputs defined in (12.78), and

the equivalent noise is

Zeq,k =

[

αkZk +

K∑

ℓ=1

(αkhkℓ − akℓ)Ueq,ℓ

︸ ︷︷ ︸

Zmix,k

]

mod Λ2 (12.81)

where the Ueq,ℓ are equivalent dithers (4.8), which are uniform over V0(Λ2) and

independent of each other and the tk.

Proof See Problem 12.5. �

In the next theorem, we will establish achievable rates for the compute-and-

forward strategy. First, it is useful to define the computation rate

Rcomp(hk, ak) =
1

2
log+

(
N + P‖hk‖2

N‖ak‖2 + P
(
‖hk‖2‖ak‖2 − (hT

k ak)
2
)

)

(12.82)

where hT
k = [hk1 · · · hkK ] represents the channel vector to the kth relay and

aTk = [ak1 · · · akK ] represents the vector of integer-valued equation coefficients

desired by the kth relay. At a high level, the theorem states that a relay can

reliably decode any 14 integer linear combination whose coefficients ak yield a

computation rate that exceeds the coding rate R(Λ1/Λ2). Notice that the trans-

mitters only emit codewords at a fixed coding rate and are oblivious to the

channel and equation coefficients: the choice of equation coefficients is deter-

mined completely by the relays.

Theorem 12.3.2 (System performance) The coding rate R(Λ1/Λ2) =

(1/n) log |Λ1/Λ2| of the lattice compute-and-forward scheme (12.77), with ran-

14 In fact, if several linear combinations satisfy this condition, the relay can decode all of them
concurrently.
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dom dithers and Wiener estimation coefficients

α∗
k =

P aTk hk

N + P‖hk‖2
, (12.83)

satisfies

R(Λ1/Λ2) ≥ min
k

[Rcomp(hk, ak)− L(Zmix,k)]
+ (12.84)

where Zmix,k is the kth estimation error in the modulo-Λ channel (12.81)

and L(Zmix,k) is the rate loss from (12.46). For nested lattice pairs that are

good for Voronoi modulation over an AWGN channel, the scheme achieves

R = mink Rcomp(hk, ak) asymptotically in n.

Proof The second moment of the kth estimation error from (12.81) is equal to

1

n
E‖Zmix,k‖2 =

1

n
E

∥
∥
∥
∥
αkZk +

K∑

ℓ=1

(αkhkℓ − akℓ)Ueq,ℓ

∥
∥
∥
∥

2

(12.85a)

=
1

n
α2
kE‖Zk‖2 +

1

n

K∑

ℓ=1

(αkhkℓ − akℓ)
2E‖Ueq,ℓ‖2 (12.85b)

= α2
kN + P‖αkhk − ak‖2. (12.85c)

This quantity is minimized by the Wiener coefficient α∗
k = PaTk hk/(N +

P‖hk‖2) to yield (1/n)E‖Zmix,k‖2 = P‖ak‖2 − P 2(aTk hk)
2/(N + P‖hk‖2).

From here, (12.84) follows from Lemma 9.6.1 by noting that

1

2
log

(
P

1
nE‖Zmix,k‖2

)

=
1

2
log




P

P‖ak‖2 − P 2 (aT
k hk)2

N+P‖hk‖2



 = Rcomp(hk, ak).

(12.86)

Note that the minimization with respect to k is to ensure that all relays can

decode their linear combinations. Following the proof of Theorem 12.3.1, it can

be argued that the equivalent noises are semi-spherical and thus good Voronoi

codes exist that can achieve mink Rcomp(hk, ak) asymptotically in n. �

Linear combinations over a finite field
Interestingly, it is possible to make an explicit connection between this lattice-

based strategy and linear network coding over a prime-sized finite field. Recall

from Section 8.5.2 that the Voronoi codebook CΛ1,P0 is generated from a pair

of nested linear codes using construction A. In fact, the Voronoi codebook is

isomorphic to a linear code over a prime-sized finite field Fp. It can be shown

that there exists a function φ : Fk
p → CΛ1,P0 that maps finite field messages wℓ

to lattice message representatives vℓ = φ(wℓ) such that

φ−1

([ K∑

ℓ=1

akℓvℓ

]

mod Λ2

)

=
K⊕

ℓ=1

qkℓwℓ (12.87)
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where qkℓ is the finite field element corresponding to [akℓ] mod p under a natural

mapping. In other words, this mapping preserves linearity. The function φ(·)
can be derived from nested construction A (Section 8.3), and is related to coset

enumeration by diagonal nesting (Section 8.2). See [78] and [196] for more details.

Given this mapping and the fact that the underlying prime p tends to infinity

asymptotically in n, it can be argued that the original message representatives

v1, . . . ,vK can be recovered from their integer linear combinations t1, . . . , tK
provided that the matrix A = {akℓ} is full rank. Turning back to the relay net-

work of Figure 12.17, we find that each relay can convey its estimated function

t̂k to the destination if the rate of the Voronoi codebook does not exceed R0

and the destination can decode if A is full rank over the reals. Overall, we find

that the following coding rate (per user) is achievable via compute-and-forward

(asymptotically in n),

R(Λ1/Λ2) = min






(

max
A∈Z

K×K

rank(A)=K

min
k=1,...,K

Rcomp(hk, ak)

)

, R0




 . (12.88)

Finding the best integers
We now examine the issue of finding the optimal integer coefficients for a single

relay. As shown in Theorem 12.3.2, the achievable rate is determined by how well

the integer coefficients approximate the real-valued channel gains. It turns out

that determining the quality of this integer approximation is closely linked to

the problem of Diophantine approximation, which, at a high level, studies how

well the reals can be approximated with the rationals. See [201] for more details.

Below, we discuss simple algorithms for selecting the integers.

As a starting point, consider an exhaustive search strategy, in which the relay

plugs in all viable integer vectors into (12.82) to find the coefficients that yield

the highest computation rate. From (12.82), it can be seen that only integer

vectors satisfying

‖ak‖2 ≤ 1 +
P‖hk‖2

N
(12.89)

will result in a positive computation rate, i.e., it suffices to search over a bounded

set.

To develop a deeper understanding of this issue, the following equivalent form

of the computation rate is quite useful:

Rcomp(hk, ak) =

[

1

2
log

(
P

‖Fkak‖2
)]+

(12.90a)

Fk =

(
1

P
I+

1

N
hkh

T
k

)−1/2

. (12.90b)
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From here, we observe that the search for the integer vector ak that maximizes

Rcomp(hk, ak) is equivalent to the search for the shortest vector in the lattice

FkZ
K . Although finding this vector is challenging (in terms of computational

complexity), efficient approximation algorithms, such as the LLL algorithm [154],

can be used to find near-optimal solutions.

12.3.4 Integer-forcing MIMO equalization

So far, we have examined network scenarios where lattice codes can attain per-

formance beyond what has been available for classical random i.i.d. codes. Here,

we investigate a scenario for which the capacity can be attained via a random

i.i.d. ensemble, and lattice codes can be used to reduce the decoding complexity

significantly. Specifically, take a multiple-input multiple-output (MIMO) chan-

nel with a single transmitter and receiver, each equipped with K antennas. The

channel output can be written as

Y = HX+ Z (12.91)

whereH ∈ RK×K is the channel matrix, X ∈ RK×n is the channel input, and the

noise Z ∈ RK×n is element-wise i.i.d.N (0, N). We will assume that each transmit

antenna encodes an independent message and that the associated (independent)

codewords x1, . . . ,xK make up the rows of the channel input, X = [x1 · · · xK ]T .

The capacity of this point-to-point MIMO channel can be attained by draw-

ing each codeword from an i.i.d. Gaussian codebook and employing a maxi-

mum likelihood (or joint-typicality) decoder at the receiver. Note that since we

have restricted each transmit antenna to encoding independent information, the

capacity is

RMIMO(H) = min
S⊆{1,...,K}

K

2|S| log det
(

I+
P

N
HSH

T
S

)

(12.92)

where HS denotes the submatrix of H consisting of the columns with indices

in the subset S. (Without this restriction, the capacity is simply 1
2 log det(I+

P
NHHT ).)

The issue with this capacity-achieving approach is that the complexity of

the maximum likelihood decoder scales rapidly with the number of antennas.

Therefore, it is often of interest to find a “single-user” decoding approach that

decomposes the problem intoK effective point-to-point channels for which single-

antenna decoding suffices. The conventional approach, known as zero-forcing,

tries to isolate the codewords from each other via a linear projection,

Ỹ = BY = BHX+BZ, (12.93)

and then tries to decode the individual codewords from the rows of Ỹ. If the chan-

nel matrix is full rank, setting B = H−1 will completely eliminate interference

between codewords. Unfortunately, this comes at the cost of noise amplification.

Even the optimal choice of LMMSE projection, B = PHT
(
NI+ PHHT

)−1
,
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does not fully close the gap to capacity (unless combined with successive decod-

ing). Furthermore, both methods have the unintended effect of spreading the

noise power unequally across the resulting point-to-point channels. If the trans-

mitter does not know the channel state, then it cannot counter this effect through

rate allocation across its antennas, resulting in a significant rate loss.

Most of this rate loss can be eliminated via a twist on conventional single-

user decoding known as integer-forcing. Instead of trying to decode the code-

words directly, the receiver first recovers integer linear combinations, and only

afterwards solves these for its desired messages. The linear projection (12.93)

can be used to induce an effective integer-valued channel matrix A ∈ ZK×K .

For instance, if the channel matrix is full rank, setting B = AH−1 will per-

fectly match the channel to the desired equations, although the optimal choice is

again the LMMSE projectionB = PAHT
(
NI+ PHHT

)−1
. Overall, this closely

resembles the compute-and-forward scheme (12.77), except that the receiver has

full access to all channel observations. We summarize the encoding and decoding

operations below:

Encoding xℓ = [vℓ + uℓ] modV0 Λ2 (12.94a)

Decoding t̂k =

[

argmin
λ∈Λ1

∥
∥
∥
∥
bT
kY −

K∑

ℓ=1

akℓuℓ − λ

∥
∥
∥
∥

]

mod Λ2 (12.94b)

v̂k =

[ K∑

ℓ=1

ainvkℓ t̂ℓ

]

mod Λ2 (12.94c)

where the vℓ ∈ CΛ1,P0 are message (coset) representatives, the uℓ are indepen-

dent dithers, the t̂k are the decoded estimates of the integer linear combinations

tk =
[∑K

ℓ=1 akℓvℓ

]
mod Λ2 for some akℓ ∈ Z, the bT

k are the rows of the projec-

tion matrix B, and the ainvkℓ are the elements of an integer-valued matrix Ainv

satisfying [AinvA] mod p = I with respect to the matrix A = {akℓ}.
It can be shown that if the coding rate R(Λ1/Λ2) is less than the MIMO

computation rate

Rcomp(H,A) = min
k=1,...,K

[

1

2
log

(
P

‖Fak‖2
)]+

(12.95a)

F =

(
1

P
I+

1

N
HTH

)−1/2

(12.95b)

then the receiver can decode all desired integer linear combinations with van-

ishing error probability in n (for good Voronoi codes). It follows that, after

optimizing over A ∈ ZK×K , the following rate is achievable via integer-forcing,

RIF(H) = K · max
A∈Z

K×K

rank(A)=K

Rcomp(H,A). (12.96)
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Figure 12.18 Comparison of 5% outage rates for maximum likelihood, integer-forcing,

and zero-forcing decoding over a MIMO channel with two transmit and two receive

antennas and i.i.d. N (0, 1) fading.

This strictly improves on the rate available via zero-forcing, which can be

expressed as

RZF(H) = K · Rcomp(H, I) . (12.97)

That is, zero-forcing can be viewed as a special case of integer-forcing that always

sets A = I.

The optimization over the integer matrix A in (12.96) is closely related to

the problem of finding a good basis for a lattice discussed in Section 2.1.1. In

particular, near-optimal solutions can be obtained by applying the LLL algorithm

to the lattice Λ(F). (The difference between this optimization and finding a good

basis is that we do not restrict A to be unimodular; see [294].)

To compare these approaches, we consider, as an example, a MIMO channel

with K = 2 transmit and receive antennas. The channel matrix H is generated

element-wise i.i.d. N (0, 1) and is only revealed to the receiver. To deal with

the fact that the transmitter lacks channel state information and cannot set its

coding rate appropriately, we allow for a 1/20 probability of outage. For example,

for the integer-forcing approach, we set the coding rate so that

Pr{K · R(Λ1/Λ2) ≥ RIF(H)} =
1

20
, (12.98)

meaning that with probability 19/20, decoding is successful. In Figure 12.18,

we have plotted the resulting 5% outage rates K ·R(Λ1/Λ2). Notice that

integer-forcing nearly matches the performance of maximum likelihood decoding,

whereas zero-forcing falls far short of it. It can also be shown that integer-forcing

outperforms successive cancelation decoding (i.e., after recovering a codeword,

the receiver is able to subtract its contribution to the effective noise encountered

in decoding subsequent codewords). See [294] for more details.
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Figure 12.19 K-user Gaussian interference channel. There are K transmitter-receiver

pairs that share a common wireless channel.

12.4 Interference alignment

We now explore the phenomenon of interference alignment, which is one of the

most surprising consequences of structured signaling. To demonstrate its poten-

tial, we consider K transmitters that share a common wireless channel. Each

transmitter wishes to communicate with a unique receiver. From the perspective

of each receiver, one of the transmitters emits a useful signal while the other

K − 1 transmitters emit interference. The goal is to design a scheme that max-

imizes the total throughput of this network, known as the K-user interference

channel. See Figure 12.19 for an illustration of the Gaussian case.

At a first glance, this problem may seem simple. That is, the transmitters can

eliminate the interference issue via time or frequency division (or some other

form of orthogonalization). For example, by dividing up time slots equally, each

transmitter can attain 1/K its interference-free throughput (i.e., the through-

put that would be available in the absence of other users). This corresponds

to the throughput scaling encountered in a K-user Gaussian multiple-access or

broadcast channel. As it turns out, this is quite far from the optimal throughput

scaling, which enables each user to attain 1/2 its interference-free throughput

regardless of the total number of users.

This striking behavior is due to the application of interference alignment. At

a high level, the aim of this technique is to make it appear to each receiver that

its observed signal comprises only its desired signal and a single effective inter-

fering signal. Inducing this effect is the main challenge underlying interference

alignment. Initial work demonstrated the feasibility of alignment for time-varying

channels in the high SNR regime through the selection of appropriate beamform-

ing vectors [26]. Subsequent work has focused on uncovering settings in which

alignment is feasible as well as novel techniques for inducing it.

We now take a closer look at a specific alignment scheme for time-varying

channels. Let us say that, at some time t1, the kth transmitter emits a symbol
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Xk with power P and that the kth receiver observes

Yk[t1] = hkk[t1]Xk +
∑

ℓ 6=k

hkℓ[t1]Xℓ + Zk[t1] (12.99)

where hkℓ[t1] are the channel gains and Zk[t1] is independent noise of variance N .

Now, assume that, at some later time t2, the channel gains from each transmitter

to its intended receiver are identical, hkk[t2] = hkk[t1], and the channel gains to

all unintended receivers are flipped, hkℓ[t2] = −hkk[t1] for all ℓ 6= k. If this is

indeed the case and this fact is known to all transmitters and receivers, the

following strategy induces alignment. Each transmitter repeats its symbol Xk

from time t1 so that each receiver observes

Yk[t2] = hkk[t1]Xk −
∑

ℓ 6=k

hkℓ[t1]Xℓ + Zk[t2] (12.100)

where Zk[t2] is again independent noise of variance N . Each receiver can now

simply combine its observations from time t1 and t2 to obtain an interference-free

look at its desired symbol

Yk[t1] + Yk[t2] = 2hkk[t1]Xk + Zk[t1] + Zk[t2]. (12.101)

The simple idea described above can be developed into a full-fledged com-

munication strategy by pairing up channel gains that are “close enough” rather

than waiting indefinitely for a perfect match. It can be shown that if the time

sequences of channel phases are independent of one another, marginally uniform,

and ergodic, then this strategy, known as ergodic alignment, permits each user

to operate at 1/2 its interference-free throughput at any SNR. See [197] for more

details.

Although this scheme attains a very high throughput, it comes at the cost of

extremely high latency or delay. Specifically, the expected delay between channel

pairings scales at least like (KP/N)K
2

since K2 channel gains must be matched

to within precision N/(KP ) in order to remove most of the effects of the inter-

ference. This leaves us with the following question: is alignment possible with

low latency? Going further, is it possible to induce alignment when the channel

gains are static? It is here that lattice codes enter the picture.

The capacity region of the static K-user Gaussian interference channel lies

beyond our current understanding. Below, we discuss a class of symmetric chan-

nels where alignment is easy to induce in order to gain a better understanding

of the problem in the finite SNR regime. For a broader view of the interference

alignment phenomenon, see [127].
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12.4.1 Symmetric K-user Gaussian interference channel

Consider a symmetric interference channel in which each receiver sees a noisy

version of its desired signal plus the sum of the interfering signal scaled by g,

Yk = Xk + g
∑

ℓ 6=k

Xℓ + Zk. (12.102)

As usual, we assume that Xk is power constrained to P and Zk is i.i.d. Gaussian

with variance N .

If all of the codewords are drawn from the same lattice codebook, then the

sum of the interfering codewords will itself be a codeword. Thus, each receiver

will see an effective two-user multiple-access channel,

Yk = Xk + gXint,k + Zk (12.103)

where Xint,k =
∑

ℓ 6=k Xℓ. It might seem that the problem is now easy to solve

as the capacity region of the multiple-access channel is well understood. How-

ever, the fact that the transmitters employ the same lattice codebook introduces

additional complications.

To understand why this is the case, consider two transmitters that employ

the same PAM constellations X1, X2 ∈ {0, 1, 2, . . . , q − 1}, which can be viewed

as a simple Voronoi code. The sum X1 +X2 takes values over 2q − 1 points,

which is not enough to distinguish the q2 possible (X1, X2) pairs. However, the

linear combination X1 +
√
2X2 does take values over q2 points, meaning that it

is possible to recover X1 and X2 for sufficiently large SNR. Turning back to the

symmetric interference channel, it follows that the receiver will have much more

difficulty discerning its desired codeword from the interference when g = 1 than

when g =
√
2. This is because when g = 1, the desired codeword is aligned with

the interfering ones. In fact, in this case the channel is equivalent to a compound

multiple-access channel for which the sum capacity is only 1
2 log(1 +KP/N).

It can be argued that the sensitivity of the rate to the channel gains is a

fundamental property of the interference channel with K ≥ 3 users, owing to the

possibility of alignment. For instance, the number of degrees of freedom is K/2

for irrational g and strictly less for rational g [73, 190]. From an engineering

perspective, extreme sensitivity to the channel parameters is quite undesirable.

The lattice coding approaches explored below will enable us to develop a better

understanding of this phenomenon in the finite SNR regime.

12.4.2 The very strong regime and successive cancelation

If the interference is much stronger than the desired signal, a natural decoding

strategy is first to decode the sum of the interfering codewords while treating

the desired codeword as noise. Then, the interference can be canceled to yield
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an interference-free effective channel. This completely circumvents the issue of

alignment between the desired and interfering signals.

The compute-and-forward strategy from Section 12.3.3 can be used at each

receiver to decode the modulo sum of the interfering lattice codewords. However,

in order to cancel the interfering signals, we need to recover the real sum of the

dithered codewords xint,k. This is possible via an additional decoding step that

estimates the closest coarse lattice point to xint,k.

We focus on the case of symmetric 15 rates R1 = · · · = RK = RSYM. The fol-

lowing encoding and decoding operations encapsulate the successive interference

cancelation strategy for lattice-based alignment:

Encoding xℓ = [vℓ + uℓ] modV0 Λ2 (12.104a)

Decoding t̂int,k =

[

argmin
λ∈Λ1

∥
∥
∥
∥
αYk −

∑

ℓ 6=k

uℓ − λ

∥
∥
∥
∥

]

mod Λ2 (12.104b)

r̂int,k =

[

t̂int,k +
∑

ℓ 6=k

uℓ

]

modV0 Λ2 (12.104c)

x̂int,k = QΛ2(αYk − r̂int,k) + r̂int,k (12.104d)

v̂k =

[

argmin
λ∈Λ1

∥
∥
∥βYk − βgx̂int,k − uk − λ

∥
∥
∥

]

mod Λ2 (12.104e)

where the vℓ ∈ CΛ1,P0 are message (coset) representatives, the uℓ are indepen-

dent dithers, t̂int,k is the decoded estimate of the modulo sum of the message

representatives tint,k =
[∑

ℓ 6=k vk

]
mod Λ2, r̂int,k is the decoded estimate of the

modulo sum of the dithered codewords
[
xint,k] modV0 Λ2, x̂int,k is the decoded

estimate of the real sum of the dithered codewords xint,k, and v̂k is the decoded

estimate of the desired message.

Theorem 12.4.1 (System performance) For nested lattice pairs that are

good for Voronoi modulation over an AWGN channel, the coding rate Rsym =

(1/n) log |Λ1/Λ2| of the lattice interference-alignment scheme (12.104) with

Wiener estimation coefficients

α∗ =
P (K − 1)g

N + P (1 + (K − 1)g2)
β∗ =

P

N + P
(12.105)

achieves

RSYM = min

(

1

2
log

(
1

K − 1
+

g2P

N + P

)

,
1

2
log

(

1 +
P

N

))

(12.106)

asymptotically in n.

15 It can be argued that the sum capacity of the symmetric interference channel is equal to K
times the symmetric capacity.



360 Gaussian networks

Proof The decoded estimate t̂int,k is identical to the compute-and-forward

decoding operation for a linear combination with integer coefficient vector

aTk =
[

1 · · · 1
︸ ︷︷ ︸

k−1 users

0 1 · · · 1
︸ ︷︷ ︸

K−k users

]
(12.107)

over the channel vector

hT
k =

[
g · · · g
︸ ︷︷ ︸

k−1 users

1 g · · · g
︸ ︷︷ ︸

K−k users

]
. (12.108)

It follows from Theorem 12.3.2 that with Wiener coefficient α∗ (12.83), each

receiver can reliably estimate its modulo sum tint,k at achievable rate (12.106).

For the remainder of the proof, we condition on the event that t̂int,k = tint,k.

This implies that r̂int,k = [xint,k] modV0 Λ2.

Using the fact that [xint,k] modV0 Λ2 = xint,k −QΛ2(xint,k), the term inside

the quantizer in (12.104d) can be written as

αYk − r̂int,k = QΛ2(xint,k) + αxk + (αg − 1)xint,k + αzk. (12.109)

By assumption, RSYM is positive, which via (12.106) implies that 1
nE‖αxk +

(αg − 1)xint,k + αzk‖2 < P . Since Λ2 is a good quantizer, we have that

QΛ2(αYk − r̂int,k) = QΛ2(xint,k) and x̂int,k = xint,k with high probability

(asymptotically in n).

Finally, the receiver cancels the interference by subtracting gx̂int,k from Yk.

Conditioned on correct decoding, the receiver now has a point-to-point AWGN

channel between xk and Yk − gx̂int,k. It follows from Theorem 9.6.2 that reliable

decoding is possible if RSYM < 1
2 log(1 + P/N). �

Clearly, the symmetric capacity is upper bounded by 1
2 log(1 + P/N). There-

fore, in the regime where

1

2
log

(
1

K − 1
+

g2P

N + P

)

>
1

2
log

(

1 +
P

N

)

(12.110)

we have determined the symmetric capacity. The very strong interference regime

is usually taken to mean the regime where successive interference cancelation

suffices to achieve the (interference-free) capacity 1
2 log(1 + P/N). From (12.110),

this certainly includes all channel gains satisfying

g2 ≥ (N + P )2

NP
− N + P

(K − 1)P
. (12.111)

As a comparison point, consider a scheme that employs i.i.d. Gaussian coding

and decodes all of the interfering signals individually prior to successive can-

celation. It can be shown that this only attains the interference-free capacity

when

g2 ≥

((
1 + P

N

)K−1 − 1
)

(N + P )

(K − 1)P
. (12.112)



Interference alignment 361

That is, the threshold for the “decode all” successive cancelation strategy

increases exponentially with the number of users K, whereas the threshold for

lattice-aligned successive cancelation decreases slightly.

12.4.3 The strong regime and joint decoding

For the two-user symmetric interference channel (i.e., K = 2), it is well known

that successive interference cancelation is suboptimal outside the very strong

regime. For instance, in the strong regime, 1 ≤ g2 ≤ 1 + P
N , both receivers should

jointly decode the desired and interfering codewords. The symmetric capacity in

this regime is

RSYM =
1

4
log

(

1 + (1 + g2)
P

N

)

. (12.113)

See [116, 233] for more details.

Thus, for K > 2 users, it seems that each transmitter should encode its mes-

sage vk using a lattice codebook as in (12.104a) and each receiver should jointly

decode its desired message vk and the sum of the interfering messages
∑

ℓ 6=k vℓ.

Unfortunately, a direct analysis of this strategy’s achievable rates lies beyond

our current understanding, owing to dependencies between competing codeword

pairs. See [208] for more details. Another possibility is to decode indirectly by

first recovering two linear combinations

tk1 =

[

b11vk + b12
∑

ℓ 6=k

vℓ

]

mod Λ2 (12.114)

tk2 =

[

b21vk + b22
∑

ℓ 6=k

vℓ

]

mod Λ2. (12.115)

If the integer vectors [b11 b12] and [b21 b22] are linearly independent, then each

receiver can solve for its desired codeword vk.

From Theorem 12.3.2, it follows that, asymptotically in n, each receiver can

decode its linear combinations if

RSYM,align = max
B∈Z

2×2

rank(B)=2

min(Rcomp(h, a1), Rcomp(h, a2)) (12.116)

where

B =

[
b11 b12
b21 b22

]

hT =
[
1 g · · · g
︸ ︷︷ ︸

K−1 users

]
(12.117)

aT1 =
[
b11 b12 · · · b12
︸ ︷︷ ︸

K−1 users

]
aT2 =

[
b21 b22 · · · b22
︸ ︷︷ ︸

K−1 users

]
. (12.118)

In Figure 12.20, we have plotted the sum rate of this strategy for K = 3 users.

In the very strong regime (corresponding to about 20 dB onwards), we applied
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Figure 12.20 Comparison of the sum rates of the upper bound, lattice alignment, and

the “decode all” strategy over the symmetric Gaussian three-user interference channel.

the successive cancelation scheme from Theorem 12.4.1. For comparison, we have

also plotted a “two-user” upper bound (i.e., the rate that would be achievable if

each receiver had one interferer’s message as side information),

RSYM,upper = min

(

1

4
log

(

1 + (1 + g2)
P

N

)

,
1

2
log

(

1 +
P

N

))

, (12.119)

as well as the rate for decoding all of the messages at each receiver,

RSYM,all = min

(

1

6
log

(

1 + (1 + g2)
P

N

)

,
1

2
log

(

1 +
P

N

))

. (12.120)

Notice that the local maxima of the lattice alignment rate nearly reach the

two-user upper bound. The minima occur when the channel vector lies very

close to one of the integer vectors and is thus far from the other. Since both

equations must be decoded to recover the message, this leads to a decrease

in performance. Interestingly, this phenomenon captures the channel sensitivity

encountered earlier.

The gap between the lattice alignment rate (12.116) and the two-user

upper bound (12.119) can be lower bounded analytically. In particular, for

g ∈ [1,
√

P/N ], it can be shown that, for any c ≥ 0, the lattice-alignment rate is

lower bounded by

RSYM,align ≥ 1

4
log

(
g2P

N

)

− c

2
− 3 (12.121)

up to an “outage set” of channel gains with measure at most 2−c. The proof

relies on two interesting facts. The first is that the sum of the computation rates

Rcomp(h, a1) +Rcomp(h, a2) is always at least equal to the multiple-access sum

capacity minus a constant gap (assuming that a1 and a2 maximize (12.116)). The
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second is that the rate of the best linear combination can be upper bounded using

the theory of Diophantine approximation. Combining these two facts enables us

to lower bound the rate of the worst of the two linear combinations, correspond-

ing to a lower bound on (12.116). See [209] for more details.

Asymmetric channels For general channel matrices, it is still unclear whether

alignment results in throughput gains outside the very high SNR regime. The

difficulty lies with inducing lattice alignment between users. If each transmitter

emits a single lattice codeword, aligning the interference at all receivers cor-

responds to an overconstrained problem. This barrier can be circumvented by

employing many layers of lattice codewords at each transmitter and inducing

alignment between layers. This approach, sometimes referred to as “real inter-

ference alignment,” is able to achieve K/2 degrees of freedom up to a set of

channel matrices of measure 0 [190]. Unfortunately, each additional layer incurs

an additional rate loss, owing to the loss of the “1 +” term in the computa-

tion rate for decoding the sum (12.68). Overall, there is still much work to be

done in terms of developing new alignment techniques for general channels and

characterizing their performance.

Essential structure For interference alignment, the key point is that the sum of

the interfering codewords must itself be a codeword. As argued in Section 12.3.2

for lattice network coding, this does not require the use of a coarse shaping

lattice, only a fine coding lattice.

Beyond Gaussian If the noise has non-Gaussian statistics, then the fine lattice

decoder can be tuned as discussed at the end of Section 12.3.2.

Loss in single-letter characterization Unlike the scenarios considered ear-

lier, we are unaware of a random i.i.d. coding scheme whose performance approx-

imates that of our lattice-based scheme. However, a multi-letter characterization

of the capacity region is known, which can be used to obtain directly the degrees

of freedom for general H [273].

12.5 Summary and outlook

In this chapter, we have examined several network scenarios where linear or lat-

tice coding can offer a performance advantage over the conventional random cod-

ing approach. In each of these scenarios, the (explicit or implicit) goal was to send

functions of the transmitters’ information to the receivers. Random i.i.d. ensem-

bles are not well suited for this task as they ensure that all of the codewords

can be individually distinguished (with high probability). For linear or lattice

ensembles, the resulting codebook is closed under linear operations, meaning
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Table 12.1 Essential structure for the coding schemes considered

in this chapter

Coarse (shaping) Fine

Coding scheme lattice lattice

Lattice Körner–Marton aligned –

Dirty multiple-access aligned –

Lattice network coding – aligned

Lattice interference alignment – aligned

that the codeword corresponding to a linear function can be generated by the

transmitters in a distributed fashion.

It is important to note that while linear or lattice codes outperform the best

known random i.i.d. code constructions in the scenarios considered above, this

does not itself imply that structured coding is necessary. That is, even though

it seems natural to insist on linear or lattice codebooks when the goal is to

communicate a linear function, we do not yet have a proof that using such a

codebook is required to reach the capacity. In fact, for most of the Gaussian

scenarios we have considered, the capacity itself is unknown. We believe that

part of this gap can be closed by developing novel converse arguments that

account for the algebraic structure inherent to the problem. These arguments

may in turn reveal what form of codebook structure is required to approach the

capacity limits.

As discussed in the “essential structure” remark in each section, it is often

unnecessary to employ a nested linear or lattice code: depending on the scenario,

it may suffice to replace either the fine or coarse code with a conventional random

i.i.d. codebook. In Table 12.1, we have summarized, for each of the Gaussian

network scenarios, whether the fine or the coarse codebook should be aligned

across the transmitters. By aligned, we mean that the specified lattice code

is either the same across all transmitters or that it is taken from a chain of

nested lattices. If no requirement is placed on the coding (fine) lattice, each

transmitter can either replace it with a random i.i.d. code or employ a lattice

that has no nesting relationship with any other fine or coarse code. If the shaping

(coarse) lattice is unconstrained, it can be replaced with a spherical shaping

region (i.e., the codebook is formed by taking all fine lattice points that fall within

the sphere). In some cases, it may also be desirable to align both the fine and

coarse lattices across transmitters. For instance, this is needed to establish the

link between the lattice-based compute-and-forward scheme and linear network

coding over a finite field (Section 12.3.3).

The scenarios considered in this chapter should be viewed as examples of the

promise of structured coding in networks, rather than as representatives of a

general theory. Much work is needed to establish a structured random coding
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framework for network information theory that is on a par with the existing

random i.i.d. coding framework. (See the book of El Gamal and Kim [64] for

an in-depth treatment of the random i.i.d. coding framework.) These efforts will

certainly include taking the coding techniques studied here beyond the Gaussian

(or binary) setting. More broadly, part of the power of the random i.i.d. coding

framework lies in the availability of sophisticated multi-user encoding and decod-

ing techniques, such as binning and joint-typicality decoding. While structured

counterparts of these techniques are sometimes available, more effort is needed

to link the examples presented here into a robust framework.

On the practical side, the code design criteria for these scenarios are quite

similar to the criteria for point-to-point Voronoi modulation and quantization,

as discussed in Chapter 9. Specifically, good lattice codes for Gaussian channel

and source coding can be directly employed to implement the coding techniques

proposed in this chapter. In some cases, there are additional benefits to paying

close attention to the algebraic structure of the lattice code. For example, in the

compute-and-forward technique, it is possible to create a direct correspondence

with a finite field if the lattice code is generated over the same finite field via

construction A. (More generally, one can link compute-and-forward to a finite

ring, see [78] for more details.)

Summary of Chapter 12

Linear Körner–Marton coding To encode the modulo sum T = X1 ⊕
X2 of distributed binary sources X1 and X2, send the syndromes

S1 = H ·X1 S2 = H ·X2

and reconstruct T as

T̂ = leader(S1 ⊕ S2),

where the code C (with parity-check matrix H) is good for a BSC with noise

T .

Lattice Körner–Marton coding To encode the difference T = X1 −X2

of distributed Gaussian sources X1 and X2, send the relative cosets

V1 = [QΛ1(α
∗X1 +U1)] mod Λ2 V2 = [QΛ1(α

∗X2 +U2)] mod Λ2

and reconstruct T as

T̂ = β∗([(V1 −U1)− (V2 −U2)] modV0 Λ2)

where U1 and U2 are random dithers and, for targeted distortion D, the fine

lattice Λ1 is a good quantizer matched to distortion D/2, the coarse lattice

Λ2 is a good channel code for noise T , and α∗ = β∗ =
√

1−D/Var (T ).
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Lattice dirty multiple-access coding To send coset information v1,v2 ∈
CΛ1,P0 over the multiple-access channel Y = X1 +X2 + S1 + S2 + Z where

the interference S1 is available at the first encoder and S2 at the second,

transmit the vectors

X1 = [v1 +U1 − α∗S1] modV0 Λ2 X2 = [v2 +U2 − α∗S2] modV0 Λ2

and infer v1 and v2 from t = [v1 + v2] mod Λ2, which is decoded as

t̂ = [QΛ1(α
∗Y −U1 −U2)] mod Λ2

where the fine lattice Λ1 is a good channel code for the noise Z, the coarse

lattice Λ2 is a good quantizer (matched to the target transmit power), and

α∗ is the Wiener coefficient for estimating X1 +X2 from Y.

Equivalence to an interference-free channel The channel from v1 and

v2 to [α∗Y −U1 −U2] mod Λ2 is independent of the statistics of S1 and

S2.

Dirty multiple-access rate If Λ1 and Λ2 are good for coding and shaping,

respectively, the coding rate R(Λ1/Λ2) can approach
[
1
2 log

(
1
2 + P/N

)]+

while driving the error probability to zero.

Computation over a binary MAC To send the modulo sum t = w1 ⊕
w2 of information vectorsw1 and w2 over a binary MAC Y = X1 ⊕X2 ⊕ Z,

transmit

x1 = G ·w1 x2 = G ·w2,

and decode t as

t̂ = Y ⊕ ([Y] mod C),

where the code C (with generator matrix G) is good for a BSC with noise

Z.

Compute-and-forward To send integer linear combinations tk =
[∑

ℓ akℓvℓ] mod Λ2 of the message (coset) representatives vℓ ∈ CΛ1,P0 to K

relays over interfering channels Yk = hk1X1 + · · ·+ hkKXK + Zk, transmit

Xℓ = [vℓ +Uℓ] modV0 Λ2

and reconstruct tk as

t̂k =

[

QΛ1

(

α∗
kYk −

K∑

ℓ=1

akℓUℓ

)]

mod Λ2
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where the fine lattice Λ1 is a good channel code for the effective noises

Zeff,k = α∗
kZk +

∑

ℓ(α
∗
khkℓ − akℓ)Xℓ, the coarse lattice Λ2 is a good quan-

tizer (matched to the target transmit power), and α∗
k is the Wiener coefficient

for estimating
∑

ℓ akℓXℓ from Yk.

Computation rate If Λ1 and Λ2 are good for coding and shaping, respec-

tively, the coding rate R(Λ1/Λ2) for compute-and-forward can approach

mink Rcomp(hk, ak) while driving the error probability to zero where

Rcomp(hk, ak) =

[

1

2
log

(
N + P‖hk‖2

N‖ak‖2 + P
(
‖hk‖2‖ak‖2 − (hT

k ak)
2
)

)]+

.

Alignment via two equations To send coset information v1, . . . ,vK ∈
CΛ1,P0 over the symmetric interference channel Yk = Xk + g

∑

ℓ 6=k Xℓ + Zk,

transmit

Xℓ = [vℓ +Uℓ] modV0 Λ2 ,

and decode two independent linear combinations

tk1 =

[

b11vk + b12
∑

ℓ 6=k

vℓ

]

mod Λ2 tk2 =

[

b21vk + b22
∑

ℓ 6=k

vℓ

]

mod Λ2

at each receiver via the compute-and-forward framework, and solve for vk.

Problems

P.12.1 (Asymmetric two-help-one) Consider two dependent binary sources X1

and X2 with probability distribution pij = Pr(X1 = i,X2 = j) for i, j ∈ {0, 1}.
In Section 12.1, we argued that the Körner–Marton scheme (12.2) is optimal for

the distributed compression of the modulo sum for the symmetric case where

p00 = p11 = 1− θ and p10 = p01 = θ. Find pij such that the scheme (12.2) is

suboptimal (as compared to the rate region in (12.6)).

P.12.2 (Quantization and innovation) Show that the sum rate for the Berger–

Tung scheme in (12.21) can be equivalently written as

RBT,sum =
1

2
log

(

1 +
σ2

D1

)

+
1

2
log

(

1 +
Var (X2|X1 + Z1)

D2

)

(12.122)

where D1 = D2 = D̃/2, Z1 ∼ N (0, D1), and D̃ satisfies 1/D = (1/D̃) + (1/σ2
T ).

The first term is the rate needed to send X1 at distortion D1 and the second

term is the rate needed to send the innovations to describe X2 at distortion D2.
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P.12.3 (Noisy binary dirty MAC) Consider the following twist on the binary

dirty MAC studied in Section 12.2.1: the channel output is now y = x1 ⊕ x2 ⊕
s1 ⊕ s2 ⊕ z where z is an i.i.d. Bernoulli(δ) noise sequence. Develop a nested

linear coding scheme to achieve the capacity region

C =
{
(R1, R2) : R1 +R2 ≤ u.c.e.{

[
HB(q) −HB(δ)

]+}
}

(12.123)
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where the upper convex envelope is taken with respect to the weight constraints

q1 and q2.

P.12.4 (Computation with dependent sources) Consider the problem of com-

puting over a binary multiple-access channel from Section 12.3.1. Develop an

optimal coding scheme for the scenario where the messages are replaced with

the dependent sources from Problem 12.1 (and the decoder still wants their

modulo sum). Write down the associated rate region.

P.12.5 (Equivalent modulo-Λ2 channels) Provide a proof for Lemmas 12.2.1 and

12.3.1, 12.3.2. (Hint: see Lemma 9.5.1.)

P.12.6 (Computation rate) Show that the two expressions for the computation

rate in (12.82) and (12.90) are equivalent.

P.12.7 (Amplify-and-forward) Prove that the rate (12.71) is achievable via an

amplify-and-forward strategy. Specifically, calculate the effective SNR of the

point-to-point channel that is established once user 1 has subtracted its own

codeword from its observation y1 =
√

P
2P+N (x1 + x2 + zMAC) + z1. (The anal-

ysis for user 2 follows by symmetry.)

P.12.8 (Integer-forcing) Provide a full proof that the integer-forcing rate (12.96)

is achievable. (Hint: see the proof of Theorem 12.3.2.) Show that the zero-forcing

rate (which is attained using i.i.d. Gaussian codebooks and the MMSE projection

B = PHT (NI+ PHHT )−1) can be expressed as (12.97).

P.12.9 (Sum of the computation rates is nearly the MAC sum capac-

ity) Consider a K-user Gaussian multiple-access channel with output Y =

h1X1 + · · ·+ hKXK + Z where Z ∼ N (0, N) and h = [h1 · · · hK ]T denotes

the channel vector. Let a1, . . . , aK ∈ Z
K denote the K linearly inde-

pendent integer coefficient vectors with the highest computation rates

Rcomp(h, a1), . . . ,Rcomp(h, aK) over this channel. Show that the sum of these

computation rates is lower bounded by the multiple-access sum capacity minus

a constant gap,

K∑

k=1

Rcomp(h, ak) ≥
1

2
log

(

1 +
P‖h‖2
N

)

− K

2
logK. (12.124)

(Hint: use the equivalent form of the computation rate from (12.90).)

P.12.10 (Decoding the real sum) Show that, within the context of the compute-

and-forward scheme in Theorem 12.3.2, if a receiver has successfully decoded

an integer linear combination of the message representatives modulo the coarse

lattice,
[∑K

ℓ=1 aℓvℓ

]
mod Λ2, then it can also decode an integer linear combina-

tion of the dithered codewords,
∑K

ℓ=1 aℓxℓ, with vanishing probability of error

(as n tends to infinity).
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P.12.11 (Successive compute-and-forward) Consider the scenario from Prob-

lem 12.9 where a single receiver wishes to decode K linear combinations with

integer coefficient vectors a1, . . . , aK ∈ ZK over a MAC with channel vector

h ∈ RK . Assume that, after decoding each equation, the receiver also decodes the

corresponding integer linear combination of the dithered codewords as in Prob-

lem 12.10. Thus, when decoding the equation with integer coefficient vector am,

the receiver has access to y,
∑K

ℓ=1 a1ℓxℓ, . . . ,
∑K

ℓ=1 a(m−1)ℓxℓ, from which it can

form a new effective channel observation (via an MMSE projection). Determine

the successive computation rateRcomp(h, am|am−1, . . . , a1), i.e., the highest cod-

ing rate R(Λ1/Λ2) at which
[∑K

ℓ=1 amℓvℓ

]
mod Λ2 can be decoded.

P.12.12 (Sum rate optimality) Show that the sum of the successive computa-

tion rates derived in Problem 12.11 is equal to the multiple-access sum capacity

for any unimodular matrix A = [a1 · · · aK ]T (i.e., an integer-valued matrix with

determinant equal to one),

K∑

k=1

Rcomp(h, ak|ak−1, . . . , a1) =
1

2
log

(

1 +
P‖h‖2
N

)

. (12.125)

Historical notes

The first instance of a network scenario (the two-help-one problem from Sec-

tion 12.1) in which random structured coding outperforms random i.i.d. coding

was discovered by Körner and Marton in 1979 [139]. With the exception of

a 1983 paper by Ahlswede and Han [5] which proposed an achievable region

that includes the Körner–Marton and Slepian–Wolf regions as special cases, this

research thread appears to have lain dormant until the 2000s. Motivated in part

by renewed interest in network information theory, several groups independently

and concurrently uncovered new scenarios where structured coding helps. Specif-

ically, Krithivasan and Pradhan [142] generalized the Körner–Marton scheme to

the case of correlated Gaussian sources, Nazer and Gastpar [193] proposed the

problem of computation over a MAC and its application to network coding,

and Philosof et al. [217] introduced the dirty Gaussian multiple-access prob-

lem. Soon thereafter, lattice coding was recognized as a promising approach for

relaying and interference alignment as well. Below, we survey 16 the literature on

structured coding within the context of each of these scenarios. Note that we will

not attempt to give a full account of the vast literature on random i.i.d. coding

strategies associated to these networks.

For distributed source coding, the Körner–Marton scheme serves as an

example that random i.i.d. quantization and binning (e.g., the Berger–Tung

16 Since these topics were the focus of active research when this chapter was written, this list
is necessarily incomplete.
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scheme [20]) is not always optimal. As mentioned earlier, in the quadratic-

Gaussian setting, Wagner et al. [264] established that, for two users, the Berger–

Tung scheme is optimal (optimality for general sources at the high-resolution

regime was shown in [285]). They also demonstrated that, for the many-help-one

problem, Berger–Tung is optimal if the Gaussian sources can be expressed in

terms of a Gauss–Markov (binary) tree [253]. If this condition does not hold,

the lattice Körner–Marton scheme proposed by Krithivasan and Pradhan [142]

yields achievable rate tuples outside the Berger–Tung region. Subsequent work

byWagner [263] showed that this scheme can be further improved (in the low rate

regime) through the use of a second linear binning stage. Additionally, Wagner

developed new lower bounds for the distributed compression of a linear func-

tion of correlated Gaussian sources (as described in Section 12.1.2). Building on

these results, Tse and Maddah-Ali approximated the rate-distortion region to

within a constant gap [258]. The upper and lower bounds were further refined

by Yang and Xiong [278]. For the more general setting of distributed source

coding for discrete memoryless sources, Krithivasan and Pradhan have also pro-

posed a framework based on Abelian group codes which strictly contains the

Berger–Tung and Körner–Marton regions [143].

In the context of computing over a MAC, Nazer and Gastpar proposed linear

and lattice coding strategies for sending linear functions of discrete and Gaussian

sources, respectively [193]. They also showed that these techniques are useful for

(linear) network coding over noisy, interfering links by characterizing the mul-

ticast capacity for a class of finite field multiple-access networks. Independently

and concurrently, Zhang et al. [295] as well as Popovski and Yomo [223] noticed

that the physical layer can be exploited for network coding (with the former coin-

ing the phrase “physical-layer network coding”). See [157, 195] for surveys of the

physical-layer network coding literature. Subsequent work led to the discovery of

the compute-and-forward framework for Gaussian relay networks, starting with

the work of Nazer and Gastpar [194] and Wilson et al. [270] for the single receiver

case with equal transmit powers, followed by that of Nam et al. [192] for the single

receiver case with unequal transmit powers, and finally that of Nazer and Gast-

par [196] for the multiple receiver case with equal transmit powers. Later work by

Ntranos et al. [203] extended the multiple receiver case to unequal transmit pow-

ers. Building on these ideas, Zhan et al. [294] proposed integer-forcing for MIMO

channels. Ordentlich and Erez [207] showed that integer-forcing, when combined

with linear “space-time coding” at the transmitter, achieves the MIMO capacity

to within a constant gap. Hong and Caire [122] proposed “reverse compute-

and-forward” for a single transmitter communicating to many receivers with the

help of relays: the transmitter pre-inverts (over the finite field) the linear combi-

nations of the messages targeted by the relays. Although compute-and-forward

offers rate gains over decoding the messages in their entirety, this advantage may

disappear in the high SNR regime if the transmitters do not know the channel

realization, as argued by Niesen and Whiting [201] for the scheme of [196]. Their

bounds were further refined by Ordentlich et al. [209]. Feng et al. [78] proposed a



372 Gaussian networks

generalized algebraic framework for compute-and-forward that links the under-

lying nested lattice code to a finite ring and provides guidance for practical code

design.

For the dirty Gaussian two-user MAC considered in Section 12.2.2, it was con-

jectured by Gel’fand and Pinsker [101] that the capacity region is equal to that

of the Gaussian MAC with no interference. While this is true if the interference

terms are available at both transmitters (as shown by Gel’fand and Pinsker [101]

as well as Kim et al. [134]), this is not the case when knowledge of the interfer-

ence is distributed. In particular, Philosof et al. [217] developed the lattice coding

scheme and upper bounds discussed in Section 12.2.2, which established that for

i.i.d. Gaussian interferences (whose power is taken to infinity), the sum capacity

is determined by the minimum of the transmitters’ powers, as opposed to their

sum. Philosof and Zamir [215] then derived the capacity region for the noiseless

binary setting in Section 12.2.1. Subsequent work by Philosof et al. [216] gener-

alized this result to the noisy setting using nested linear codes. The best known

random i.i.d. coding region for the general dirty MAC is due to Jafar [126]. For

the dirty Gaussian K-user multiple-access channel, Wang [265] characterized the

capacity region to within a constant gap.

The phenomenon of interference alignment has been thoroughly studied since

its introduction as a technique for wireless communication in the papers of

Maddah-Ali et al. [177], Jafar and Shamai [128], and Cadambe and Jafar [26].

In particular, [26] made the surprising discovery that the (time-varying) K-

user Gaussian interference channel has K/2 degrees of freedom. See the survey

of Jafar [127] for an in-depth account and further references. For the two-user

case, Etkin et al. [74] characterized the capacity region to within one bit per

user. Although their coding scheme does not rely on alignment, their capacity

bounds are often used as a benchmark for K > 2 users. Bresler et al. [25] were

the first to note the potential of lattice codes for alignment over K-user static

channels, in the context of a “many-to-one” Gaussian interference channel where

only one receiver observes interference. Afterwards, Sridharan et al. [251] deter-

mined the capacity of the K-user symmetric Gaussian interference channel in

the very strong regime via successive cancelation. For the same channel, Jafar

and Vishwanath [129] characterized the generalized degrees of freedom. For gen-

eral channel gains, Etkin and Ordentlich [73] showed that the degrees of freedom

is discontinuous at rational-valued channel matrices. Subsequently, Motahari et

al. [190] showed that K/2 degrees of freedom are available (up to a set of channel

matrices of measure zero) through the use of carefully layered codebooks com-

prising lattice symbols. Wu et al. found an alternative perspective of this result

based on the multi-letter characterization of the capacity region [273]. Later

efforts sought to characterize the sensitivity of alignment to the channel gains.

In particular, Niesen and Maddah-Ali [200] approximated the sum capacity of the

two-user Gaussian X channel up to an outage set through the aid of a determin-

istic model. Ordentlich et al. [209] established a similar characterization of the
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K-user symmetric Gaussian interference channel via the compute-and-forward

framework (as discussed in Section 12.4.3). They also showed that the sum of

the computation rates (for K independent linear combinations) is nearly equal

to the MAC sum capacity (see Problem 12.9). In subsequent work [210], they

established that successive compute-and-forward can attain the exact MAC sum

capacity (see Problem 12.12). Finally, we mention that the ergodic alignment

technique is due to Nazer et al. [197].

We also note that there are many other network scenarios where struc-

tured coding can improve performance (which we did not manage to discuss

in this chapter). For instance, Song and Devroye [250] as well as Nokleby and

Aazhang [202] have combined lattice coding with classical relaying techniques,

He and Yener [118] as well as Shashank and Kashyap [245] have proposed lattice

techniques for physical-layer secrecy, and Haim et al. [115] have improved upon

existing multiple-access error exponents using linear codes.



13 Error exponents

The Shannon capacity C is the most important theoretic performance figure of

a communication channel. But it is only one extreme point. Information theory

provides a more elaborate characterization of a channel, in terms of its error

exponent – that is, the exponent governing the decay of the decoding error prob-

ability as the dimension of the code increases. This exponent depends on the gap

to capacity: it is large for a coding rate R which is far below C, and it vanishes

for R ≥ C.

In a similar manner, we can assess the asymptotic behavior of good lattice

constellations by considering their error exponent over unconstrained additive-

noise channels. Such exponential behavior occurs under various circumstances.

For example, in the AWGN channel, the error probability of good modulation

lattices decays exponentially if we keep the VNR µ (3.30) fixed at some value

above the ideal VNR of 2πe – the equivalent of capacity in the unconstrained

channel setup.

As in Chapter 7, a simple and effective way to assess the error exponent is

provided by the sphere bound (7.14), i.e., the probability Pe(Breff (Λ), σ
2) that the

noise leaves a ball with the same volume as the lattice cell. The sphere bound

gives rise to an exponential lower bound of the form 1

Pe(Λ, σ
2)

·
≥ e

−nEsp

(

r2eff (Λ)

r2
noise

)

, (13.2)

where Pe(Λ, σ
2) is the probability (3.32) that an AWGN of variance σ2 leaves the

fundamental Voronoi cell of a lattice Λ (corresponding to the error probability

in NN decoding), n is the lattice dimension, rnoise = σ
√
n is the typical noise

radius (7.27), and the function Esp(x) – known as the Chernoff “sphere packing”

exponent – is given by 1
2 [x− 1− ln(x)], for x ≥ 1, and zero elsewhere.

The argument of Esp(·) in (13.2) is the square of the effective radius to noise

ratio reff(Λ)/rnoise. Like the VNR µ, it measures the lattice density with respect

1 An exponential inequality an
·
≥ bn means that

lim inf
n→∞

1

n
log

(

an

bn

)

≥ 0. (13.1)
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to AWGN of variance σ2. (For a large lattice dimension, (reff(Λ)/rnoise)
2 ≈

µ/2πe.) The sphere packing exponent vanishes, as expected, when this radius

ratio is smaller than or equal to 1, corresponding to VNR below 2πe. As we shall

see further, the lower bound (13.2) is exponentially tight, i.e.,

Pe(Λn, σ
2)

.
= e

−nEsp

(

r2eff (Λn)

r2
noise

)

,

for a sequence of good modulation lattices Λn, operating at a fixed radius ratio

in the range (1,
√
2] (or a fixed VNR in the range (2πe, 4πe]).

Another way to assess the error exponent in the presence of AWGN is via the

minimum-distance bound Pe(Λ, σ
2) ≥ Q(dmin/2σ) of (3.34). This bound, com-

bined with the conjecture that the best asymptotic packing efficiency ρpack(Λ) is

one-half (see the discussion following Corollary 7.6.1), gives rise to an exponential

lower bound of the form

Pe(Λ, σ
2)

·
≥ e

−n
8

(

reff (Λ)

rnoise

)2

. (13.3)

The bound (13.3) is better than (13.2) for a large radius to noise ratio, i.e., large

VNR. And in fact, it is asymptotically tight for VNR greater than or equal to

8πe (radius ratio greater than 2), for lattices which are good for packing.

Achievability of the exponential lower bound (13.2) is shown using the MHS

ensemble, and of (13.3) using an expurgated version of the MHS ensemble. The

derivation uses the same “averaging argument” as in proving the achievability of

NVNR of 2πe (Section 7.7): there must exist a lattice in the ensemble which is at

least as good as the ensemble average. (An alternative derivation follows from the

Gallager error exponent of a modulo-additive-noise channel; see Problem 13.6.)

The combination of (13.2) and (13.3) is known as the Poltyrev error exponent.

In the end of the chapter we shall apply these results to finite lattice constel-

lations, and derive the error exponent of a lattice-shaped (Voronoi) codebook.

13.1 Sphere packing exponent

A useful tool to estimate the exponent of the probability that i.i.d. noise leaves

a ball (and more general events associated with threshold crossing) is provided

by the Chernoff bound.

Proposition 13.1.1 (Chernoff bound) Let the vector Z consist of n i.i.d.

copies of a random variable Z, and let g(s) = E{esZ2} denote the characteristic

function of Z2. Then, the probability that Z leaves a ball of radius r = t
√
n

satisfies

Pr{‖Z‖ > r} ≤
(
g(s)

est2

)n

, ∀s > 0. (13.4)
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The Chernoff bound is meaningful when the radius r is larger than the root

mean square of ‖Z‖, i.e., r >
√

E‖Z‖2 (or t >
√
EZ2); see Problem 13.1. For

example, for Z ∼ N(0, σ2), the interesting range is r > σ
√
n. Otherwise the

upper bound can be replaced by 1. The proof of this bound is based on a well-

known probabilistic inequality.

Proposition 13.1.2 (Markov inequality) If X is a non-negative random

variable, then

Pr{X > t} ≤ E{X}
t

.

Proof E{X} = Pr{X ≤ t} · E{X | X ≤ t} + Pr{X > t} · E{X | X >

t} ≥ 0+ Pr{X > t} · t. �

Proof of Proposition 13.1.1 The event ‖Z‖ > r is equivalent to es‖Z‖2

> esr
2

,

for all s > 0. Thus, by Markov’s inequality,

Pr{‖Z‖ > r} = Pr
{

es‖Z‖2

> esr
2
}

≤
E
{

es‖Z‖2
}

esr2
. (13.5)

Since es‖Z‖2

= es
∑n

i=1 Z2
i =

∏n
i=1 e

sZ2
i , and since the Zi are i.i.d., the expectation

in the numerator breaks into
∏n

i=1 E{esZ2
i } = gn(s), and the bound follows. �

The Chernoff bound is exponentially tight under mild conditions on the dis-

tribution of Z. These conditions hold in the Gaussian case.

Proposition 13.1.3 (Gaussian sphere crossing) IfZ is a zero-mean white-

Gaussian vector of variance σ2, then g(s) = 1/
√
1− 2σ2s, and the best (mini-

mizing) value of the parameter s in (13.4) is s∗ = 1
2σ2 (1− σ2/t2), for t > σ. The

resulting Chernoff bound is

Pr{‖Z‖ > r} ≤ e
−nEsp

(

r2

r2
noise

)

, (13.6)

where rnoise = σ
√
n is the typical noise radius (7.27), and Esp(·) is the sphere

packing exponent:

Esp(x) =

{
1
2 [x− 1− ln(x)], if x > 1

0, if x ≤ 1.
(13.7)

Furthermore, asymptotically as n → ∞, the bound is tight for r < rnoise (where

Pr{‖Z‖ > r} goes to 1), and is exponentially tight for r > rnoise, i.e.,

Pr{‖Z‖ > αrnoise} .
= e−nEsp(α

2) (13.8)

for α > 1, where
.
= denotes exponential equality as n → ∞; see (7.26).

Proof The first part of the proposition follows by analyzing the (simple) char-

acteristic function g(s) in the Gaussian case. The second part (the exponential
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Figure 13.1 Gaussian sphere crossing: true probability compared to the Chernoff

bound for several block lengths n, as a function of α = the sphere radius divided by

the noise radius r/σ
√
n.

tightness (13.8)) can be shown, for example, using the Laplace method of inte-

gration, presented later in this chapter. See Problem 13.2. �

As can be seen in Figure 13.1, the bound (13.6) is not necessarily tight for

small n. For example, for n = 1, the probability that Z > ασ is given by the

Q-function calculated at α, which is upper bounded by [62, section 1; 272, p.

83],

Q(α) ≤ 1

2
e−α2/2. (13.9)

The exponent α2/2 in (13.9) is indeed slightly stronger (higher) than the sphere

packing exponent (13.7).

In light of the sphere bound (7.14), the Gaussian sphere crossing exponent

implies the exponential lower bound (13.2), which we now state formally. See

Figure 13.2.

Theorem 13.1.1 (Sphere packing exponent) For any sequence of lat-

tices Λn of increasing dimension n, with a fixed effective radius to noise ratio

reff(Λn)/rnoise = α for all n, the error probability (3.32) in nearest-neighbor

decoding in the presence of AWGN with variance σ2, is lower bounded by

Pe(Λn, σ
2) ≥ Pe(Breff (Λn), σ

2)
.
= e−nEsp(α

2). (13.10)
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Table 13.1 Transition points in error exponents

Lattice to noise measure

∆ [bit] µ α =
reff (Λ)
rnoise

α [dB]

Capacity 0 2πe 1 0

Cutoff rate 1
2 log(4/e) ≈ 0.28 8π 2/

√
e ≈ 1.21 1.7

Critical rate 1/2 4πe
√
2 3

Expurgated rate 1 8πe 2 6
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Figure 13.2 Error exponents of good (uniform-ensemble) lattices in the presence of

AWGN, as a function of the gap to capacity ∆ = C∞ −R∞: (i) sphere packing

exponent (outer bound); (ii) threshold-decoding exponent; (iii) ML decoding

random-coding exponent; (iv) minimum-distance (conjectured) exponent (outer

bound); and (v) expurgated exponent. The transition points in the graphs are

summarized in Table 13.1.

13.2 Measures of lattice to noise density

The effective radius to noise ratio (ERNR)

reff(Λ)

rnoise
=

reff(Λ)√
nσ2

(13.11)
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in the exponents above is a measure for the density of the lattice Λ with respect

to AWGN with variance σ2. It is tightly connected to the gap to capacity (6.26):

∆ = C∞ −R(Λ) =
1

2
log
( µ

2πe

)

(13.12)

and to the VNR µ. Indeed, using the definitions of the effective radius (3.10) and

the VNR (3.30), we obtain

log

(
reff(Λ)

rnoise

)

= ∆+
1

2
log

(
2πe

nV
2/n
n

)

→ ∆ (13.13)

as n → ∞, where the limit follows from (7.28). Hence, for large n we have

reff(Λ)

rnoise
≈ 2∆ =

√
µ

2πe
. (13.14)

As Table 13.1 shows, at capacity we have ∆ = 0, µ = 2πe, and the ERNR is equal

to 1.

Since the error exponent is, by definition, asymptotic in n, we shall see essen-

tially the same exponential behavior of the error probability either by fixing the

ERNR, or by fixing the VNR (equivalently the gap to capacity) as n goes to

infinity. In particular, using (13.14) in (13.7), the sphere packing exponent for a

fixed VNR µ is given by

Esp

( µ

2πe

)

=

{
1
2 [

µ
2πe − 1− ln( µ

2πe)], if µ > 2πe

0, if µ ≤ 2πe.
(13.15)

For the sake of consistency, we shall stick from now on to the VNR as a

measure for the lattice density with respect to the noise. Keeping the VNR

µ = V 2/n(Λ)/σ2 fixed for a given noise variance σ2, amounts to keeping the rate

per unit volume R(Λ) = 1
n log(1/V (Λ)), and the gap to capacity ∆ = C∞ −R(Λ)

fixed; hence the lattice point density γ = 1/V (Λ) scales exponentially with the

dimension:

γ =
1

(σ
√
µ)n

.

Furthermore, from (13.14), the effective radius scales roughly as the square

root of the dimension, i.e., reff(Λ) ≈
√

nµ/2πe. (The correction factor is
√

2πe/nV
1/n
n , which goes to 1 as n → ∞.)

13.3 Threshold-decoding exponent

Our next goal is to try to approach the sphere packing exponential lower bound

of Theorem 13.1.1 by a high-dimensional lattice from the MHS ensemble. We

saw in Section 7.7 that a random lattice from this ensemble can achieve, with

threshold decoding, an arbitrary small error probability, for VNR as close as
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desired to 2πe. For AWGN, this corresponds to achieving the capacity per unit

volume, i.e., R(Λ, Pe) → C∞ for all Pe, or ∆ → 0.

In this section we examine the exponential behavior of the threshold decoder

of Section 7.7, which will turn out to be weaker than the sphere packing exponent

(13.10). In the next section we will examine an NN decoder, whose exponential

behavior is better, and meets (13.10) at a range of rates near capacity.

Recall that the MHS ensemble threshold-decoding bound of Lemma 7.7.2 is

parametric in the search radius rth = r:

PTB
e (r, n) = Pr{‖Z‖ > r}

︸ ︷︷ ︸

sphere crossing

+ γVnr
n

︸ ︷︷ ︸

competing codewords

, for r > 0, (13.16)

where γ is the MHS ensemble point density. It is given by the sum of two terms:

a sphere crossing term Pr{‖Z‖ > r} which decreases with r, and a competing

codewords term γVnr
n = (r/reff)

n which increases with r. Interestingly, for a

white-Gaussian noise Z the optimum r that minimizes the sum has a simple

closed form expression.

Proposition 13.3.1 (Optimal search radius) For AWGN at VNR µ ≥ 2π

(i.e., ensemble point density γ ≤ (2πσ2)−n/2), the optimal search radius in the

threshold-decoding bound PTB
e (r, n) of Lemma 7.7.2 is given by

r∗th = rnoise ·
√

1 + ln(µ/2πe)

= rnoise ·
√

1 + 2 ln(e)∆, (13.17)

where rnoise = σ
√
n.

Proof Taking the derivative of PTB
e (r, n) with respect to r and equating to zero,

we obtain

dPTB
e (r, n)

dr
= γVnnr

n−1 − f∗
‖Z‖(r;n) = 0

where f∗
‖Z‖(r;n) denotes the density function of the norm ‖Z‖ of an n-

dimensional AWGN vector with variance σ2. Due to the isotropy of the AWGN

distribution, the latter density is given by the density of Z (at ‖Z‖ = r) multi-

plied by the area of a spherical shell of radius r (see (7.11c)): 2

f∗
‖Z‖(r;n) = Vnnr

n−1

(
1√
2πσ2

)n

e−r2/2σ2

. (13.18)

Substituting in (13.17), we obtain γ = (2πσ2)−n/2 exp(−r2/2σ2). This equation

is solved by r = r∗th of (13.17), provided γ ≤ (2πσ2)−n/2. �

2 It can also be written in terms of the nth-order chi-square density function:

f∗
‖Z‖(r;n) =

1

σ
χ2
PDF(r/σ; n).
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As we see in the proof above, the optimum search radius r∗th equalizes the

derivatives of the two terms in the threshold bound (13.16). It turns out, not

surprisingly, that it also equalizes their exponents; see Figure 13.3. Thus, the

exponent of the sum at r = r∗th is equal to the exponent of each of the terms.

Proposition 13.3.2 (Threshold-decoding exponent) For AWGN and a

fixed VNR µ ≥ 2π, the optimal threshold-decoding bound (13.16) is given expo-

nentially by

PTB
e (r∗th, n)

.
= e

−nEsp

(

r∗2
th

r2
noise

)

= e−nEsp(1+ln( µ
2πe )). (13.19)

Proof Writing the competing codeword term as γVnr
n = (r/reff)

n, the

threshold-decoding bound (13.16) is given exponentially by

PTB
e (r, n)

.
= e−n ln( reff

r ) + e
−nEsp

(

r2

r2
noise

)

(13.20)

and it is dominated by the smaller of the two exponents. Figure 13.3 shows these

two exponents for rnoise < r < reff . We see that while the competing codeword

exponent decreases (from ln(reff/rnoise) to zero), the sphere crossing exponent

increases (from zero to Esp(r
2
eff/r

2
noise)), and the exponents meet at

r = rnoise ·
√

1 + ln(reff/rnoise)2 ≈ r∗th

where the last approximation holds for large n (see (13.14)); hence we can plug

it in the right term of (13.20) to obtain the desired exponent. �

We see that near capacity (i.e., a small gap to capacity ∆ → 0, or µ → 2πe

and reff/rnoise → 1), the optimum search radius r∗th is approximately equal to the

typical noise radius rnoise =
√
nσ2. This is in line with the proof of the existence

of lattices which are good for channel coding (Theorem 7.7.1), where we want

the lattice to be the densest possible with respect to the noise.

Channel dispersion

A careful analysis of the threshold-decoding bound (13.16) of the MHS

ensemble reveals that near capacity PTB
e (r∗th, n) goes approximately like

e−n∆2

; more precisely, the gap to capacity decreases with the dimension

n as

∆MHS(n, Pe) =

√

1

2n
Q−1(Pe) +O

(
lnn

n

)

, (13.21)

for a fixed error probability Pe (where here ∆ is measured in nats). The

factor 1/2 in the first term is known as the channel dispersion. This term

confirms the O(1/
√
n) convergence of the NVNR to the ideal value of 2πe

in (7.58). See [125, 222] and Problem 13.3.
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Figure 13.3 The sub-exponents ln(reff/r) and Esp(r
2/rnoise

2) of the

threshold-decoding bound, for r in the range rnoise < r < reff , where reff/rnoise = 3.

Also shown is their sum for the NN decoding bound below.

When deviating from capacity, however, r∗th increases much slower than reff
(the square radius increases logarithmically with the VNR instead of linearly).

Hence, as can be seen in Figure 13.2, the threshold-decoding exponent is much

worse than the sphere packing exponent (13.15).

13.4 Nearest-neighbor decoding exponent

Setting a fixed search radius around the received vector, as in threshold decoding,

may reduce the search complexity. However, it is clearly not optimal.

As we have seen in the discussion above, if the rate is far from capacity, then

the optimal search radius r∗th is much smaller than the effective radius reff of the

lattice cells. On the other hand, quantization goodness (Section 7.9.4) implies

that the distance of a random point to the nearest lattice point of a “good” lattice

is ≈reff with a high probability. It follows that even if the noise Z exceeds r∗th,
implying a threshold-decoding failure, it is still unlikely that there are competing

codewords within a distance ‖Z‖ around the received point. 3

3 The reason for this conservative choice of r∗th is that it avoids ambiguity in the rare event
(in the MHS ensemble) of a lattice with an atypically short minimum distance. See more
on that in Section 13.7.
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rnoise

r ∗th

≈r ∗ml

Figure 13.4 A situation where the typicality decoder declares an error (“no codeword

inside search radius”), while ML decoding is successful.

As illustrated in Figure 13.4, a more efficient decoder strategy is to use an

adaptive threshold: enlarge the search radius until it hits the first codeword. Thus,

the search radius is usually small, around the noise typical radius rnoise, and it

is large only if the noise is atypically large. This strategy amounts to nearest-

neighbor (NN) decoding, which for AWGN amounts to ML decoding. We shall

next modify the derivation of Lemma 7.7.2 to account for NN decoding.

Given that the zero lattice point was transmitted, and that the noise vector is

z, the NN decoder will make an error if and only if there is another lattice point

within a radius ‖z‖ around the point z. This amounts to the eventNB(z,‖z‖)(Λ) ≥
1. The error probability of the NN decoder is thus

PNN
e (Λ) =

∫ ∞

0

f‖Z‖(r, n) · Pr{NB(Z,r)(Λ) ≥ 1 | ‖Z‖ = r}dr, (13.22)

where f‖Z‖(r, n) is the radius density function of the noise Z.

For a random lattice from the MHS ensemble, the probability of the event

NB(z,‖z‖)(Λ) ≥ 1 is bounded from above by (see Lemma 7.7.2)

γVn‖z‖n =

(‖z‖
reff

)n

. (13.23)

When ‖z‖ = reff , this bound is equal to 1. Thus, for larger values of ‖z‖ the

bound is useless, and we can replace it by 1. Substituting (13.23) in (13.22)

(with a switch to 1 at r = reff), we obtain the following bound on the average

NN decoding error probability over the MHS ensemble L:

PNN
e (L) ≤

∫ ∞

0

f‖Z‖(r, n) ·min
{( r

reff

)n

, 1
}

dr (13.24a)

which is simply

PNN
e (L) =

∫ reff

0

f‖Z‖(r, n) ·
(

r

reff

)n

dr + Pr
{

‖Z‖ ≥ reff

}

, (13.24b)
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where the second term amounts to
∫∞
reff

f‖Z‖(r, n)dr. Using integration by parts

for the integral in (13.24b), the second term in (13.24b) cancels, and we obtain

PNN
e (L) ≤

∫ reff

0

Pr{‖Z‖ ≥ r} · n
r
·
(

r

reff

)n

dr. (13.24c)

The bound (13.24) holds for a general noise distribution. In the case of AWGN,

NN decoding amounts to ML decoding, and we denote the upper bound of (13.24)

by PMLB
e (n). Neglecting sub-exponential terms in (13.24c), we conclude that the

bound on the average ML decoding error probability of the MHS ensemble in

the presence of AWGN is given exponentially by

PMLB
e (n)

.
=

∫ reff

0

e
−nEsp

(

r2

r2
noise

)

· e−n ln( reff
r )dr. (13.25)

Interestingly, the integrand in (13.25) is a product of the two exponential terms

in the threshold-decoding bound (13.20). Hence, the exponent of the integrand is

the sum of the two sub-exponents, shown in Figure 13.3. To assess the integral

of an exponential function, we shall use the Laplace method of integration.

Proposition 13.4.1 (Laplace’s method of integration) If g(x, n)
.
= e−nf(x)

is Riemann integrable, and f(x) is a continuous function in the interval [a, b],

then
∫ b

a

g(x, n)dx
.
= e−nfmin , (13.26)

where

fmin = min
a≤x≤b

f(x).

In other words, the integral is dominated exponentially by the smallest expo-

nent of the integrand.

Proof See Problem 13.5. �

It follows from Proposition 13.4.1, that the exponent of the integral in (13.25)

is given by the minimum exponent of the integrand in the range (0, reff). Hence,

the exponent Er of PMLB
e (n) is given by

Er = min
0≤r≤reff

{

Esp

(
r2

r2noise

)

+ ln
(reff

r

)}

. (13.27)

Note that at the edge r = reff , the minimum is equal to the sphere packing

exponent Esp(r
2
eff/r

2
noise). A closer inspection reveals that for reff ≤

√
2rnoise,

this edge is also the minimizing point in the entire interval 0 ≤ r ≤ reff (see

Figure 13.3); hence, in this case Er coincides with the sphere packing exponent.

In general, the minimum occurs at

r∗ml =

{
reff , for rnoise ≤ reff ≤

√
2rnoise√

2rnoise, for reff ≥
√
2rnoise,

(13.28)
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hence for reff >
√
2rnoise the minimum is strictly smaller than the sphere packing

exponent.

Replacing the square radius to noise ratio r2eff/r
2
noise by µ/2πe (which, by

(13.14), holds for large n), we thus obtain the following exponential upper bound

on the error probability of the MHS ensemble, under ML decoding in the presence

of AWGN. See Figure 13.2.

Theorem 13.4.1 (Random coding exponent) The ML decoding bound of

(13.25), on the average error probability of the MHS ensemble in the presence of

AWGN at VNR µ, is given exponentially by

PMLB
e (n)

.
= e−nEr( µ

2πe ) (13.29)

where Er(·) is the random coding error exponent, defined as

Er(x) =







1
2 [ln(x) + ln(e/4)], if x ≥ 2
1
2 [x− 1− ln(x)], if 2 ≥ x ≥ 1

0, if x ≤ 1.

(13.30)

Since in the mid range of VNRs between 2πe and 4πe the exponent Er(·) meets

the sphere packing exponent (13.15) – which is an exponential lower bound on the

error probability for any lattice – we conclude that in this range Er(·) cannot be
improved. A stronger analysis of the average performance of a random (lattice)

ensemble shows that the upper bound of Theorem 13.4.1 is, in fact, exponentially

tight for all VNR; see [12, 13, 60]. Hence, Er(µ/2πe) is the true error exponent of

the random ensemble. Is this also the best possible error exponent of any lattice

for µ > 4πe?

It turns out that for rates per unit volume which are significantly smaller than

capacity (i.e., µ ≫ 2πe) the minimum distance dominates the error behavior. In

this regime, the MHS ensemble average suffers from a small subset of lattices

which have a “bad” minimum distance. By excluding these lattices from the

ensemble – in a process called expurgation – the exponent of the remaining

ensemble exceeds that of the full ensemble (Theorem 13.4.1).

But in order to capture the improvement due to expurgation, we must deviate

from our previous line of analysis. We shall develop bounds on the error proba-

bility based on the minimum distance, as well as on the more elaborate distance

spectrum.

13.5 Distance spectrum and pairwise errors

The threshold-based analysis of Sections 13.3 and 13.4 took an a posteriori (or

“reverse channel”) viewpoint: given the received vector Y, examine the presence

of competing codewords within the search range. We now center our viewpoint
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around the transmitted codeword λ, and ask: what is the chance that a neigh-

boring codeword λ′ will be more likely?

A pairwise error between a transmitted codeword λ and a competing codeword

λ′ is an error event for a codebook that contains only these two codewords. The

error probability in this case is simple to compute.

Proposition 13.5.1 (Pairwise error) For AWGN with variance σ2 and NN

decoding, the pairwise error probability between two codewords λ and λ′ is given

by Q(‖λ− λ′‖/2σ), where Q(·) denotes the Q-function.

Proof Since the AWGN distribution is rotation invariant, it can be rotated so

that the first noise component would be parallel to the line connecting λ and

λ′. All the other noise components are then orthogonal to this line. It follows

that an error will occur if and only if the first noise component (after rotation)

is larger than half the distance between λ and λ′. �

The simple dependence on the pairwise distance in Proposition 13.5.1 gives

rise to the definition of a distance spectrum.

Definition 13.5.1 The distance spectrum NΛ(d), for d ≥ dmin, is defined as

NΛ(d) = number of lattice points at a distance d from the origin.

Note that discreteness of the lattice implies that NΛ(d) is non-zero for a count-

able set of values of d. Also, the geometric uniformity of the lattice implies that

each lattice point sees the same distance spectrum; that is, NΛ(d) is, in fact, the

number of lattice points at distance d from any lattice point. 4

Consider now a decomposition of the error event {Z 6∈ V0} into a union

of pairwise errors to the Voronoi cell’s neighbors. Assuming nearest-neighbor

(Euclidean) partition, we have

Pr{Z 6∈ V0} = Pr{Z is closer to λ than to 0, for some λ 6= 0 }. (13.31)

Clearly, only points λ that determine the faces of the fundamental Voronoi cell

affect this probability. This includes lattice points whose distance from the origin

is between dmin = 2rpack(Λ) and 2rcov(Λ).

The probability of the union of events in (13.31) is, on the one hand, lower

bounded by the probability of each one of them; in particular, by the most likely

one, i.e., the error to the non-zero lattice point closest to the origin:

Pr{Z 6∈ V0} ≥ max
λ∈Λ,λ6=0

Pr{Z is closer to λ than to 0}

= Q

(
dmin/2

σ

)

,

4 The Laplace transform of the function NΛ(d) is related to the theta series of the lattice;
see [49].
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Figure 13.5 Pairwise approximation for error probability for the hexagonal lattice.

where in the second line we assumed AWGN and used Proposition 13.5.1. This

gives us the minimum-distance bound (3.34).

On the other hand, by the union bound, (13.31) is upper bounded by summing

the pairwise error probabilities over all non-zero lattice points.

Proposition 13.5.2 (Distance-spectrum bound)

Pr{Z 6∈ V0} ≤
∑

d≥dmin

NΛ(d) ·Q
(
d/2

σ

)

. (13.32)

Note that the sum above can be limited to distances in the range 2rpack(Λ) ≤
d ≤ 2rcov(Λ).

A “compromise” between the minimum-distance lower bound (3.34) and the

distance-spectrum upper bound (13.32), is given by the first term in the sum in

(13.32):

Pe(Λ, σ
2) ≈ NΛ(dmin) ·Q

(
dmin/2

σ

)

, (13.33)

where NΛ(dmin) is the kissing number of the lattice (see Section 3.1). As can

be seen from Figure 13.5, this approximation is useful at high VNR (µ ≫ 2πe),

when the lattice is sparse with respect to the noise. As it turns out, the exact

value of the coefficientNΛ(dmin) does not affect the error exponent in this regime.
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13.6 Minimum-distance exponent

We know that the packing efficiency ρpack(Λ) is always smaller than or equal to

1, and it is equal to one-half for “Minkowski good” lattices. Furthermore, it is

conjectured that for large-dimensional lattices, ρpack(Λ) cannot exceed one-half;

see the discussion after Corollary 7.6.1. That is, for any sequence of lattices Λn

of increasing dimension n,

lim sup
n→∞

ρpack(Λn) ≤ 1/2. (13.34)

Using the minimum-distance bound (3.34), the relation between minimum

distance and packing efficiency, and using the fact that the Q-function satisfies

Q(
√
nt)

.
= e−nt/2, as n → ∞ (see (13.9)), we obtain the following.

Proposition 13.6.1 (Minimum-distance exponent) For a sequence of lat-

tices Λn of increasing dimension with a bounded packing efficiency ρpack(Λn) ≤ ρ

for all n, the decoding error probability in the presence of AWGN at VNR µ is

exponentially lower bounded by

Pe(Λn, σ
2)

·
≥ e−nρ2 µ

4πe .

As a consequence, if the conjecture (13.34) is also true, then

Pe(Λn, σ
2)

·
≥ e−n µ

16πe (13.35)

for any sequence of lattices of increasing dimension. (This is the same as (13.3)

with ERNR replaced by µ/2πe.)

Proof By the definition of packing efficiency, ρpack(Λ)reff(Λ) = rpack(Λ). Thus,

for any lattice Λn in the sequence dmin(Λn)/2 = rpack(Λn) ≤ ρreff(Λn), so the

minimum-distance lower bound (3.34) becomes

Pe(Λn, σ
2) ≥ Q

(√

nρ2reff(Λn)/rnoise

)

where rnoise = σ
√
n. The proof follows since the Q-function satisfies Q(

√
nt)

.
=

e−nt/2, as n → ∞ (see (13.9)), and by the asymptotic ERNR–VNR relation

(13.14). �

13.7 The expurgated MHS ensemble

The exponent (13.35) ignores the multiplicity of code words at distance d, and it

is too optimistic near capacity; see Figure 13.2. Nevertheless, we shall now show

that far from capacity it is, in fact, achievable by a slight modification of the

MHS ensemble.

The volume of a spherical shell about the origin of radius d and thickness ∆d is

approximately nVnd
n−1∆d. Thus, for an MHS ensemble L of point density γ, the
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average number of lattice points inside this shell is approximately γnVnd
n−1∆d.

Substituting in the distance-spectrum bound (13.32), and taking the limit of

infinitely small increments, we obtain the bound

Pe(Ln, σ
2) ≤ γnVn

∫ ∞

dmin

tn−1Q

(
t/2

σ

)

dt. (13.36)

If we take the MHS ensemble as is, it contains lattices with arbitrarily small

minimum distance. Hence, the integral above must start at zero, making the

upper bound poor. Nevertheless, the probability of such “bad” lattices is small.

Minkowski’s theorem (see Corollary 7.6.1) assures us that in each dimension

n ≥ 2, there exists a lattice whose minimum distance is greater than or equal to

its effective radius. As evident from the following lemma, this property holds not

only for one lattice but for most lattices in the MHS ensemble as the dimension

goes to infinity.

Proposition 13.7.1 (Bad minimum distance) For a random n-dimensional

lattice Λ in the MHS ensemble Ln,

Pr {dmin(Λ) < reff} → 0 as n → ∞, (13.37)

where reff is the effective radius of the ensemble (i.e., reff = (γVn)
−1/n where γ

is the ensemble point density). Hence, dmin(Λ) is asymptotically greater than or

equal to reff in probability.

Proof Note that dmin(Λ) ≤ r amounts to NB(0,r)(Λ) ≥ 1. Thus, for a random

lattice Λ ∈ Ln,

Pr {dmin(Λ) ≤ r} = Pr
{
NB(0,r)(Λ) ≥ 1

}
(13.38)

≤ EL

{
NB(0,r)(Λ)

}
(13.39)

=

(
r

reff

)n

, (13.40)

where in (13.39) we followed the proof of Lemma 7.7.1. It follows that

Pr

{

dmin(Λ) <
reff
1 + ǫ

}

≤ 1

(1 + ǫ)n
, (13.41)

which goes to zero as n goes to infinity, for all ǫ > 0. �

We can therefore exclude the lattices with minimum distance smaller than

reff from the MHS ensemble, almost (as n → ∞) without affecting the distri-

bution of the remaining lattices. Specifically, for 0 < α < 1, let Lexp(α) denote

the conditional MHS ensemble given dmin(Λ) ≥ αreff . Then, by (13.41) (setting

α = 1/(1 + ǫ)), the integral (13.36) becomes

Pe(Lexp(α), σ
2) ≤ (1− αn)

∫ ∞

αreff

γnVnt
n−1Q

(
t/2

σ

)

dt,
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so

Pe(L, σ
2)

·
≤
∫ ∞

reff

(
t

reff

)n

e
−n

2

(

t/2
rnoise

)2

dt, (13.42)

where the factor before the first integral follows from Bayes’ law (noting that

p(A|B) ≤ P (A)/P (B), where B is the event that dmin(Λ) ≥ αreff), and the

asymptotic inequality follows by taking n → ∞ and then α → 1, and using the

bound (13.9) on the Q-function. See Problem 13.7.

We can now apply the Laplace method of integration to investigate the expo-

nential behavior of this integral. It turns out that for reff/rnoise ≥ 2, i.e., VNR

greater than or equal to µx = 8πe, the integral (13.42) is dominated by its lower

boundary reff . In this case, its exponent is strictly better than the random coding

error exponent (13.30), and it coincides with the conjectured minimum-distance

exponent (13.35). For lower values of VNRs, the integral (13.42) is dominated

by t∗ = 2rnoise, and the new exponent coincides with the middle section of the

random coding error exponent.

Theorem 13.7.1 (Expurgated exponent) The average error probability of

the expurgated MHS ensemble is exponentially upper bounded by

Pe(Lexp, σ
2)

·
≤ e−nEx(µ/2πe)

where Ex(·) is the expurgated error exponent, defined as

Ex(x) =







x/8, if x ≥ 4
1
2 [ln(x) + ln(e/4)], if 4/e ≤ x ≤ 4

0, if x ≤ 4/e.

(13.43)

We see that in the range 1 ≤ x ≤ 2, the expurgated exponent (13.43) is worse

than the random coding exponent (13.30). The best achievable exponent is the

combination of both exponents. This combination is the full Poltyrev exponent,

shown in Figure 13.2.

13.8 Error exponents of Voronoi codes

So far we have dealt with infinite (unbounded) lattice constellations. In this

section, we turn to examine the error exponent in Voronoi modulation, where the

receiver employs estimation and lattice decoding; see Chapter 9. The analysis

applies also for lattice dirty-paper coding, because it has the same equivalent

channel as in the zero-interference case; see Section 10.6.

For a linear estimator g(Y) = αY, the estimation error vector is a linear

mixture of AWGN and dither (9.58). The (Euclidean) lattice decoding error

probability is bounded by the probability (9.67) that this mixture noise falls
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outside the fundamental Voronoi cell of the fine lattice:

Pe ≤ Pr{αZ+ (α− 1)U 6∈ V0(Λ1)}, (13.44)

where the dither U is uniform over the fundamental Voronoi cell V0(Λ2) of the

coarse lattice. Since the dither is not Gaussian, this bound may have a different

exponential behavior than that characterized in Theorems 13.1.1–13.4.1.

We shall first investigate nested lattice pairs, where the fine lattice is good

while the coarse lattice is arbitrary (e.g., Λ2 = Zn). We then show that if both fine

and coarse lattices are good (the fine for AWGN-channel coding, and the coarse

for covering, i.e., Rogers good), and the estimation coefficient is the Wiener

coefficient α∗, then the error exponent is at least as good as the Poltyrev random

coding exponent (13.30) at the same gap to capacity. Finally, we observe that

if we reduce α below α∗, then the error exponent can improve beyond that of

unbounded lattices; in fact, with an optimal α(SNR, R) it achieves the optimum

ML decoding error exponent of the power-constrained AWGN channel for all

rates R near capacity. Thus, for a good Voronoi modulation system, the linear

estimation lattice decoder is error-exponent-wise optimal.

13.8.1 Sphere crossing exponent for mixture noise

We start our analysis with modifying the Gaussian sphere crossing bound of

Proposition 13.1.3 to the case of a mixture noise.

Theorem 13.8.1 (Mixture sphere crossing) If Z is an n-dimensional

AWGN with variance N , and U ∼ Unif(V0(Λ)) for some lattice Λ in Rn, then

Pr{‖αZ+ (α− 1)U‖ > r} ≤ e−nEsp(r
2/r2mix), (13.45)

where Esp(·) is the sphere packing exponent (13.7),

r2mix
∆
= nα2N + (1 − α)2r2cov(Λ), (13.46)

and rcov(Λ) is the lattice-covering radius (3.16).

In view of the pure AWGN case (Proposition 13.1.3), we conclude the follow-

ing.

Corollary 13.8.1 (A Gaussian bound) The sphere crossing exponent of a

mixture noise (13.45) is the same as the sphere crossing exponent of a pure

AWGN with power

Neq =
r2mix

n
= α2N + (1 − α)2

r2cov(Λ)

n
. (13.47)

In particular, setting σ2(Λ) = P , if Λ is a high-dimensional “Rogers-good”

lattice, then r2cov(Λ)/n ≈ σ2(Λ) = P; thus Neq ≈ α2N + (1− α)2P = MSE(α),

which is the variance of the mixture noise (9.61). The exponent in (13.45) then

becomes that of an AWGN with the same variance. At the other extreme,
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if Λ is a cubic lattice, then rcov(aZ
n) =

√
na/2, while σ2(aZn) = a2/12, so

r2cov(aZ
n)/n = 3σ2(aZn) = 3P ; thus, Neq becomes α2N + 3(1− α)2P , i.e., the

self-noise component of the mixture noise is 5 dB higher than in (9.61).

The proof of Theorem 13.8.1 follows from the Chernoff bound (Proposi-

tion 13.1.1) and the following three lemmas. The first lemma bounds the mixture

sphere crossing probability by conditioning on a specific dither value.

Lemma 13.8.1 (Conditioning on a large dither) If Z is AWGN and ‖U‖ ≤
umax, then

Pr{‖αZ+ (α − 1)U‖ > r} ≤ Pr{‖αZ+ (α − 1)u0‖ > r} (13.48)

for any vector u0 with norm umax.

Proof The right-hand side amounts to conditioning the sphere crossing event

on U = u0. The unconditional sphere crossing probability is the expectation of

the right-hand side over the random dither U. Now, due to the isotropy of the

AWGN Z, the conditional sphere crossing probability depends only on the norm

of u0, and increases monotonically with it; see Problem 9.11 and Appendix A.4.

Thus, the conditional probability is maximum for the largest possible norm of

the dither, which is rcov(Λ). �

The vector αZ + (α− 1)u0 in (13.48) is a non-zero-mean Gaussian vector.

The second lemma gives the characteristic function of its squared norm.

Lemma 13.8.2 (Characteristic function of a squared non-zero-mean

Gaussian) If Z̃ ∼ N(η, σ2I) is Gaussian with mean η and white covariance

matrix σ2I, then the characteristic function of ‖Z̃‖2 is given by

E
{

es‖Z̃‖2
}

=
es‖η‖

2/(1−2sσ2)

(1 − 2sσ2)n/2
, for 0 ≤ s < 1/2σ2. (13.49)

Proof The proof is based on a straightforward integration, and is left as an

exercise; see Problem 13.9. �

Note that (13.49) depends on the mean vector η only through its norm. For η =

0, it reduces to the squared AWGN characteristic function of Proposition 13.1.3.

To complete the proof of Theorem 13.8.1, the last lemma shows that the char-

acteristic function associated with a non-zero-mean Gaussian is upper bounded

by that of a zero-mean Gaussian with the same second moment.

Lemma 13.8.3 (Zero mean maximizes Chernoff) For all 0 ≤ s < 1/2σ2,

e
2
n s‖η‖2/(1−2sσ2)

1− 2sσ2
≤ 1

1− 2s(σ2 + ‖η‖2/n) (13.50)

with equality (for η 6= 0) if and only if s = 0.
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Proof Inequality (13.50) is equivalent to

e−
2
n s‖η‖2/1−2sσ2 ≥ 1− 2s‖η‖2/n

1− 2sσ2
,

which follows from the well-known inequality e−x ≥ 1− x, with equality if and

only if x = 0. �

Proof of Theorem 13.8.1 Lemma 13.8.1 implies that the sphere crossing proba-

bility of the mixture noise (left-hand side of (13.45)) is upper bounded by that of

a biased Gaussian Z̃ = (α− 1)umax +N(0, α2N · I). Lemmas 13.8.2 and 13.8.3

then imply that the characteristic function of ‖Z̃‖2 is upper bounded by the

characteristic function of a squared AWGN with variance r2mix/n (see (13.47)).

The desired result now follows from the Chernoff bound (Proposition 13.1.1),

with the optimum parameter s∗ for AWGN with variance r2mix/n. �

The equivalence to Gaussian noise in Corollary 13.8.1 hides the fact that

the mixture noise may have a lighter tail – hence a smaller error probability –

than that of a white-Gaussian noise. See the discussion near Figure 9.13. This

weakness of the exponential bound (13.45) is due to the zero mean bound of

Lemma 13.8.3, and we shall reconsider it in Section 13.8.3.

13.8.2 Random coding exponent for mixture noise

The mixture sphere crossing bound of Theorem 13.8.1 is a useful tool for deriving

exponential bounds on the error probability (9.66) in NN lattice decoding.

Following our earlier analysis of an unbounded lattice, we use a random coding

argument with respect to a fine lattice satisfying the ensemble uniformity prop-

erty – (7.52) for the MHS ensemble or (7.92) for the Ln,k,p,γ (Loeliger) ensemble.

The shaping (coarse) lattice can be arbitrary, although eventually we shall take

a Rogers-good lattice; see Definition 7.3.1. See Section 8.5 for the existence of

good nested lattice pairs.

We obtain the following exponential upper bound on Pe.

Theorem 13.8.2 (Wiener estimation achieves the Poltyrev random-

coding exponent) Consider a rate-R/block-length-n Voronoi modulation sys-

tem, with a random fine lattice Λ1 satisfying the ensemble uniformity property,

and a shaping (coarse) lattice Λ2 with a covering efficiency upper bounded by

ρ̄cov(Λ2) (3.17). The system transmits over an AWGN channel at some SNR,

and the receiver employs Wiener estimation (with α = α∗ = SNR/(1 + SNR))

and NN lattice decoding. As n goes to infinity, the error probability (13.44) is

exponentially upper bounded by

Pe

·
≤ e−nEr(22∆ / ρ̄2

cov(Λ2)), (13.51)
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where Er(·) is the Poltyrev random coding exponent (13.30), and

∆ = CAWGN −R =
1

2
log(1 + SNR)−R (13.52)

is the gap to capacity. At high SNR conditions (where α∗ → 1), the bound (13.51)

can be tightened by replacing ρ̄2cov(Λ2) by the shaping loss 2πe Ḡ(Λ2), where

Ḡ(Λ2) is an upper bound on the NSM of the coarse lattice.

It follows that for a Rogers-good shaping lattice (where ρcov(Λ2) ≈ 1), the

error exponent is at least as good as the Poltyrev random coding exponent, at

the same gap to capacity ∆:

Pe

·
≤ e−nEr(22∆). (13.53)

In particular, Theorem 13.8.2 shows that a good Voronoi modulation system can

approach the AWGN channel capacity with an arbitrarily small error probability;

thus, it provides an alternative proof for Theorem 9.6.1 (with a slightly stronger

condition on the shaping lattice, replacing quantization goodness by covering

goodness).

Proof of Theorem 13.8.2 We observe from Section 13.4, that for any addi-

tive noise, the NN decoding error exponent of a uniform lattice ensemble is

governed only by the sphere crossing exponent of the noise. Furthermore, by

Theorem 13.8.1, the mixture sphere crossing probability is exponentially upper

bounded by that of a corresponding AWGN. It thus follows from Theorems 13.4.1

and 13.8.1 that

Pe

·
≤ e

−nEr

(

reff
2(Λ1)

r2
mix

)

, (13.54)

where r2mix = nα2N + (1− α)2r2cov(Λ2); see (13.46). We can write the inverse of

the argument of this exponent as

r2mix

reff2(Λ1)
=

nα2N + (1− α)2 · ρ2cov(Λ2) · r2eff(Λ2)

reff2(Λ1)
(13.55a)

= 22R · ρ2cov(Λ2) ·
[ nN

ρ2cov(Λ2) · r2eff(Λ2)
· α2 + (1− α)2

]

(13.55b)

= 22R · ρ2cov(Λ2) ·
[nV

2/n
n ·G(Λ2)

ρ2cov(Λ2)
· N
P

· α2 + (1− α)2
]

(13.55c)

≤ 22R · ρ̄2cov(Λ2) ·
[ α2

SNR
+ (1 − α)2

]

, (13.55d)

where P = σ2(Λ2) and N are the transmitter and noise power, respectively; and

where (13.55a) follows from the relation rcov(Λ2) = reff(Λ2) · ρcov(Λ2); (13.55b)

follows since the coding rate is given by R = log(reff(Λ2)/reff(Λ1)); (13.55c)

follows from the definition of the NSM; and finally (13.55d) follows from the

assumed bound ρcov(Λ2) ≤ ρ̄cov(Λ2), and using the sphere bound for the NSM
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(7.14)–(7.15):

G(Λ2)

ρ2cov(Λ2)
≤ G∗

n =
1

(n+ 2)V
2/n
n

≤ 1

nV
2/n
n

.

The theorem now follows by plugging α = α∗ in (13.55d). �

13.8.3 Rate-optimized linear estimation

It turns out that at high SNR conditions, the Poltyrev random coding exponent

Er(2
2∆) of (13.53), with ∆ = CAWGN −R, coincides with the best achievable ran-

dom coding exponent of the AWGN channel, denoted EAWGN(R, SNR) [97]. In

this regime the linear coefficient α is close to 1; thus, the simple (no-estimation)

lattice decoder of Section 9.3 is error-exponent optimal at a range of rates near

capacity (specifically, for CAWGN − 1/2 ≤ R ≤ CAWGN), in line with the discus-

sion in Section 9.3.4.

For non-high SNR conditions, however, EAWGN(R, SNR) is strictly better than

the Poltyrev random coding exponent at the same gap to capacity. The exponent

loss in Theorem 13.8.2 has two sources: (i) the weakness of our analysis, in

particular, the mixture sphere crossing bound of Theorem 13.8.1; and (ii) the

choice of the linear estimation coefficient α. We shall improve our analysis by

giving up the (loose) bound for a non-zero-mean Gaussian of Lemma 13.8.3. This

will allow us to optimize the linear coefficient α, depending on both the SNR and

rate R. And luckily, the resulting exponent meets EAWGN(R, SNR).

A direct incorporation of Lemmas 13.8.1 and 13.8.2 into the Chernoff bound

(Proposition 13.1.1) implies the following parametric sphere crossing bound

depending on s.

Corollary 13.8.2 (Parametric bound) Let ‖η‖ = (1 − α)rcov(Λ), and σ2 =

α2N . Then, for 0 ≤ s < 1/2σ2,

Pr{‖αZ+ (α− 1)U‖ > r} ≤
(

e
s
n ‖η‖2/1−2sσ2

/
√
1− 2sσ2

e
s
n r2

)n

(13.56)

∆
= e−nEmix(r,s,α). (13.57)

In view of the derivation of the NN decoding bound in Section 13.4, we can

replace the Gaussian sphere crossing exponent in (13.27) by Emix(r, s, α) from

(13.57). This will give us an exponential upper bound on the average error prob-

ability of a fine lattice Λ1 from a uniform ensemble (the covering efficiency of

the coarse lattice is assumed to be bounded for all n as in Theorem 13.8.2):

Er = max
0<s, 0≤α≤1

min
0≤r≤reff(Λ1)

{

Emix (r, s, α) + ln

(
reff(Λ1)

r

)}

, (13.58)

where the effective radius reff(Λ1) is a parameter of the ensemble of fine lattices,

which is determined by the rate, power constraint and NSM of the coarse lattice
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(see (13.55)):

reff
2(Λ1) = reff

2(Λ2) · 2−2R (13.59a)

=
P

V
2/n
n ·G(Λ2)

· 2−2R (13.59b)

≈ nP · 2−2R, (13.59c)

where the approximation holds for a large n and good shaping lattice. As in

Theorem 13.4.1, for some range of rates near capacity the minimum is achieved

at the edge r = reff(Λ1); hence the resulting exponential bound meets the mixture

sphere crossing exponent Emix for the best choice of s and α.

Theorem 13.8.3 (Rate-optimized estimation) For rate-R Voronoi modula-

tion with lattice decoding in the presence of AWGN as in Theorem 13.8.2, where

the fine lattice is drawn from a uniform ensemble, and the shaping (coarse) lat-

tice is taken from a sequence of Rogers-good lattices, if the estimation coefficient

α is equal to

αopt = −γ

2
+

√

γ2

4
+ γ, (13.60)

where

γ
∆
= (1− 2−2R) · SNR, (13.61)

then the error probability is exponentially upper bounded by

Pe
.
= e−nEAWGN(R,SNR), (13.62)

for all rates Rcr ≤ R ≤ CAWGN, where EAWGN is the optimal error exponent of

the power-constrained AWGN channel, given by

2EAWGN (R, SNR) = 2−2R · SNR− αopt + ln
[
(1 − αopt) · 22R

]
, (13.63)

and Rcr is the critical rate, given by

Rcr =
1

2
log




1

2
+

1

4
SNR +

1

2

√

1 +
SNR2

4



 . (13.64)

Proof The proof is based on optimizing (13.58) over s and α, and is left as an

exercise; see Problem 13.11. �

Note that as R varies from zero to CAWGN, γ increases from zero to SNR2/(1 +

SNR), while αopt increases from zero to the Wiener coefficient α∗ = SNR/(1 +

SNR). As a by-product of the proof, we get that the error exponent for a specific

α (i.e., omitting the maximization over α in (13.58)) is given by

EAWGN (R, SNR, α) = E

(
1

α2
SNR · 2−2R,

(1− α)2

α2
SNR

)

(13.65)
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Figure 13.6 The error exponent EAWGN (R,SNR, α) for Voronoi modulation with a

linear estimation lattice decoder. The graph is drawn for SNR = 1, for three cases of

the estimation coefficient: (i) α = α∗ = 1/2, (ii) α = 0.2, and (iii) the rate-optimized

value αopt = α(R,SNR) of (13.60). For comparison, the Poltyrev random-coding

exponent Esp

(

22(C−R)
)

is also shown; see (13.68).

for

0 ≤ R ≤ C(SNR, α)
∆
=

1

2
log

(
SNR

(1− α)2SNR + α2

)

(13.66)

where C(SNR, α) is the capacity of the mod Λ channel for a general (non-Wiener)

estimation coefficient α (see (9.62b)), and where E(x, y) is given by

2E(x, y) = x+ y −
√

1 + 4xy + ln

[
1

2x

(

1 +
√

1 + 4xy
)]

. (13.67)

It is easy to verify that within half a bit from capacity, the error exponent for

the Wiener coefficient α = α∗(SNR) is lower and upper bounded as

EAWGN (R, SNR) > EAWGN (R, SNR, α∗) > Esp

(

22(CAWGN−R)
)

, (13.68)

and the gap between the bounds vanishes as the SNR goes to infinity. Figure 13.6

shows the dependence of the error exponent EAWGN (R, SNR = 1, α) on the esti-

mation coefficient α.

Like for unconstrained constellations, the error exponent can be improved for

low rates by expurgation; see [171] and [252].
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Summary of Chapter 13

Gap to capacity of an unbounded lattice constellation

∆
∆
= C∞ −R(Λ) =

1

2
log
( µ

2πe

)

≈ log

(
reff(Λ)

rnoise

)

,

where µ = V 2/n(Λ)/σ2 is the VNR, and rnoise =
√
nσ2 is the typical noise

radius.

Sphere crossing exponent For AWGN Z = (Z1, . . . , Zn) with power σ2,

Pr {‖Z‖ > r} .
= e

−nEsp

(

r2

r2
noise

)

,

where Esp(x) =
1
2 [x− 1− lnx] for x ≥ 1, and zero elsewhere.

Threshold-decoding exponent (for good unbounded lattices) For

the optimal search radius, r∗th = rnoise ·
√

1 + 2 ln(2)∆,

PTB
e (n, r∗th)

.
= e−nEsp(1+2 ln(2)∆).

NN decoding exponent (for good unbounded lattices) For a gap to

capacity 0 ≤ ∆ ≤ 1/2 bit,

PMLB
e (n)

.
= e−nEsp(22∆).

Power-constrained lattice decoding exponent (for a good Voronoi

constellation) The decoding error probability

r is exponentially upper bounded by e−nEsp(22∆), for a Wiener estimation

coefficient α∗ = SNR/(1 + SNR), and a gap to capacity ∆
∆
= 1

2 log(1 +

SNR)−R smaller than half a bit; and
r is exponentially given by the optimal error exponent of the power-

constrained AWGN channel, for a rate-R-optimized linear estimation coef-

ficient α = αopt(R, SNR) at all rates above the critical rate.

Both exponents coincide in the limit of high SNR.

Problems

P.13.1 (Chernoff bound) Prove that the Chernoff bound (Proposition 13.1.1) is

informative (i.e., smaller than 1 for some s) for r >
√

nE{Z2}, and otherwise it

is greater than or equal to 1. Guidance: compute the first and second derivatives

of the function g(s)e−st2 at s = 0.
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P.13.2 (Tightness of sphere crossing exponent) Prove the tightness (13.8) of the

Gaussian sphere crossing exponent for r > rnoise, using the Laplace method of

integration (Proposition 13.4.1).

P.13.3 (Dispersion) Prove that near capacity, the threshold-decoding bound

(13.16) can be approximated as PTB
e (r∗th, n) = e−n(∆2+O(∆3)), where ∆ is the

gap to capacity in nats. Use the approximation Q(x) ≈ e−x2/2, to show that it

agrees with the first term (“dispersion”) in (13.21).

P.13.4 (Exponent of a white-Gaussian norm distribution) Show that the tail

probability (1-CDF) and the density (13.18) of the norm of a white-Gaussian

vector have the same exponential behavior, given by the Chernoff bound (13.6):

f∗
‖Z‖(r, n)

.
= e

−nEsp

(

r2

r2
noise

)

. (13.69)

P.13.5 (Laplace’s method of integration) Prove Proposition 13.4.1. Guidance:

write the integral as a Riemann sum, bound from below and from above in

terms of the dominating bin, take the limit as n goes to infinity (where the

bounds meet), and then the limit of infinitely small bins. Extension: show the pre-

factor of the exponent in the case of a smooth maximum, relative to a “peaky”

maximum.

P.13.6 (Relating the Gallager and Poltyrev exponents [97, 221]) The Gal-

lager error exponent of a modulo-additive-noise channel, Y = X + Z mod a, is

achieved by a uniform input, and it can be written in the following parametric

form:

Er(∆, ρ, a) = ρ [∆ + h(Z)− hρ̃(Z)] , 0 ≤ ρ ≤ 1,

where ∆ = Ca −R = log(a)− h(Z)−R is the gap to capacity, h(Z) is the Shan-

non entropy of Z, hα(Z) = 1/(1− α) · log
(∫

fα
Z (x)dx

)
is the Rényi entropy of

order α of Z, and ρ̃ = 1/(1 + ρ) (see Csiszár [54] and Erez and Zamir [70]). Show

that Er(∆, ρ, a) (for the best value of the parameter ρ = ρ(∆)) coincides with

the random coding exponent of the MHS ensemble (13.30) at the same gap to

capacity ∆.

P.13.7 (Distance-spectrum exponent) Prove the asymptotic inequality in

(13.42).

P.13.8 (An alternative expurgated ensemble exponent) Consider the exponent

(13.27) of the ML bound. Show that for the expurgated ensemble, the range

of r in the inner minimization of (13.27) narrows, and becomes reff/2 ≤ r ≤ reff
(instead of 0 ≤ r ≤ reff). Show that as a result, the dominating radius r∗ for reff >

2
√
2rnoise becomes reff/2 (instead of

√
2rnoise); furthermore, that this improves

the random coding exponent Er (Theorem 13.4.1) for low rates (find the range),

but the exponent is still worse than the expurgated exponent of Theorem 13.7.1.
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P.13.9 (Characteristic function for a non-zero-mean Gaussian) Prove the for-

mula in (13.49) for the characteristic function of a squared non-zero-mean Gaus-

sian.

P.13.10 (Chernoff bound for a scalar mixture noise) Calculate the characteristic

function E{es(αZ+(1−α)U)2} for a scalar dither U . (Note that the cross-term does

not allow one to break the expression, in spite of the independence of Z and U .)

Find the corresponding Chernoff bound, and compare with the mixture sphere

crossing bound of Theorem 13.8.1.

P.13.11 (Rate-optimized estimation) Prove Theorem 13.8.3, under the assump-

tion that the minimizing radius in (13.58) is the effective radius of the lattice, i.e.,

r = reff(Λ1). (This assumption holds for the range of rates Rcr ≤ R ≤ CAWGN.)

Guidance: denote the right-hand side of the parametric bound of Corollary 13.8.2

as A(s). Show that A(0) = 1 and lims→1/2σ2{A(s)} = +∞, and that A′(0) ≤ 0

for r2 ≥ nσ2 + ‖η‖2. Conclude that A(s) has a unique minimum in the interval

0 ≤ s < 1/2σ2, given by

s∗ =
2r2 − nσ2 −

√

(nσ2)2 + 4‖η‖2r2
4σ2r2

, (13.70)

for r2 ≥ nσ2 + ‖η‖2. Next, plug this value back into (13.56), to obtain

− 1

n
ln
(

Pr
{
‖αZ+ (α − 1)U‖ > r

})

≥
{

E
(

r2

nσ2 ,
‖η‖2

nσ2

)
, r2

nσ2+‖η‖2 ≥ 1

0, 0 < r2

nσ2+‖η‖2 ≤ 1,

(13.71)

where the exponent function E(x, y) is defined in (13.67). Now, use the relation

(13.59) between reff(Λ1) and the system parametersR, P and G(Λ2), and assume

a Rogers-good shaping lattice (G(Λ2) ≈ 2πe and ρcov(Λ2) ≈ 1) to obtain the

formula (13.65) for the α-dependent exponent EAWGN(R, SNR, α). Differentiate

(13.65) with respect to α, equate to zero, and obtain the following polynomial

equation of degree 4:

(α2 + γα− γ)((1 + SNR)α2 − 2SNRα+ γ) = 0. (13.72)

Finally, show that αopt of (13.60) is the only zero of (13.72) satisfying the con-

dition R < C(SNR, α), which maximizes EAWGN(R, SNR, α).

Historical notes

The error exponent of an infinite constellation in the presence of AWGN was

studied by Poltyrev [221] in 1994. His achievability proof assumes a sequence of

good lattices, and it follows de Buda’s analysis from 1975 and 1989 of spher-

ical lattice codes using the Minkowski–Hlawka theorem [57, 58]. Loeliger [175]

re-derived the Poltyrev exponent using averaging bounds on construction A lat-

tices. Not too surprisingly, this exponent coincides with the Gallager reliability
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function of the power-constrained AWGN channel [97], in the limit of high SNR,

for the same gap to capacity. (Although for a general SNR it is strictly lower.)

The analysis of infinite lattice constellations in this chapter follows Ingber et

al. [125] (for the random coding error exponent) and Ingber and Zamir [124] (for

the expurgated exponent). Like Poltyrev’s analysis, it is based on the uniformity

property of the MHS ensemble (the Siegel version of the Minkowski–Hlawka

theorem [36]). But our spherical error bounds – used both for the typicality

(threshold) exponent and for the ML decoding exponent – are simpler. (The

latter is reminiscent of “Gallager’s type II bound”; see, for example, Divsalar

[59].) The derivation of Ingber et al. [124, 125] also contains tighter estimates for

the error probability of finite-dimensional lattices (lower bounds for any lattice,

upper bound for random lattices), as well as comparison to some state-of-the-art

lattices, and a relation to the dispersion analysis of Polyanskiy et al. [222].

The error exponent of finite (bounded) lattice constellations was studied by de

Buda [57] – for spherical shaping with ML decoding – and by Forney et al. [92] –

in the high SNR regime. Erez and Zamir [71] showed that, with Wiener estima-

tion at the receiver, Voronoi modulation with nearest-neighbor lattice decoding

can achieve the Poltyrev error exponent at the same gap to capacity. Thus, this

modulation and demodulation scheme is error-exponent-wise optimal at high

SNR, but possibly suboptimal for a general SNR (although it achieves capac-

ity). Liu et al. [171] strengthened this result using a large-deviation approach;

they showed that with a rate-optimized (non-MMSE) linear estimator, the error

exponent of the mod Λ channel with nearest-neighbor decoding coincides with

the Gallager reliability function at all SNR. Swannack et al. [252] provide a

geometric explanation for this increase in the error exponent. The derivation in

Section 13.8 is based on simple parametric characterization and bounds for the

Chernoff exponent, due to Yeredor [279] and Tridenski [257].
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A.1 Entropy and mutual information

This appendix summarizes formulas and properties of information measures:

chain rule, discrete and continuous distributions, maximum entropy and data-

processing inequalities. For a comprehensive (and elegant) survey, see the book

of Cover and Thomas [53].

1. The entropy of a discrete random variable X ∼ p(x):

H(X) = −
∑

x

p(x) log2 p(x) [bit]. (A.1)

H is non-negative and upper bounded by the logarithm of the size of the

alphabet:

0 ≤ H(X) ≤ log |A|. (A.2)

2. The conditional entropy:

H(X |Y ) =
∑

y

p(y) ·H(X |Y = y) =
∑

x,y

p(x, y) log p(x|y). (A.3)

3. Conditioning reduces entropy:

H(X |Y ) ≤ H(X). (A.4)

4. The joint entropy (the entropy of the joint distribution) satisfies the chain

rule:

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X |Y ). (A.5)

5. The mutual information between two random variables is the reduction in

the entropy of one of them when the other becomes available:

I(X ;Y ) = H(X)−H(X |Y ) (A.6a)

= H(Y )−H(Y |X) (A.6b)

= H(X) +H(Y )−H(X,Y ). (A.6c)

Futhermore, the conditional mutual information is given by I(X ;Y |Z) =

H(X |Z)−H(X |Y, Z).
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6. The chain rule for mutual information:

I(X ;Y, Z) = I(X ;Y ) + I(X ;Z|Y ). (A.7)

7. The differential entropy of a continuous random variable X ∼ f(x):

h(X) = −
∫

f(x) log f(x)dx. (A.8)

8. Regular and differential entropy If Q∆(·) is a step-∆ uniform scalar quan-

tizer, and U∆ ∼ Unif(0,∆) is independent of X , then

H (Q∆(X)) + log(∆) = h (Q∆(X) + U∆) . (A.9)

9. Differential entropy via fine lattice quantization If X has a density, then

lim
∆→0

[

H(Q∆(X)) + log(∆)
]

= h(X). (A.10)

10. If Y = X + Z is an additive-noise channel, then

I(X ;Y ) = h(X + Z)− h(Z). (A.11)

11. The maximum entropy under a peak-amplitude constraint is achieved by a

uniform distribution,

max
X∈(a,b)

h(X) = h (Unif(a, b)) = log |b− a|, (A.12)

and under a power constraint it is achieved by a Gaussian distribution,

max
X:EX2≤P

h(X) = h (N(0, P )) = 1
2 log(2πeP ). (A.13)

12. The capacity of a modulo-additive-noise channel Y = [X + Z] mod a is

achieved by a uniform input X ∼ Unif(0, a):

C = I (X ; [X + Z] mod a) = log(a)− h(Z). (A.14)

13. The entropy power of a random variable X is the variance of a Gaussian

having entropy h(X):

PE(X) =
22h(X)

2πe
. (A.15)

14. The entropy power inequality (EPI) for a sum of independent random vari-

ables:

PE(X + Y ) ≥ PE(X) + PE(Y ), (A.16)

with equality if and only if X and Y are Gaussians.

15. The data-processing inequality for a Markov triplet X ↔ Y ↔ Z:

I(X ;Y ) ≥ I(X ;Z). (A.17)
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16. The divergence (known also as relative entropy or Kullback–Leibler distance)

between two density functions:

D(f‖g) =
∫

f(x) log

(
f(x)

g(x)

)

dx. (A.18)

17. Divergence data-processing inequality (“second law of thermodynamics”) If

f̃ is the output of a channel with an input ∼f , and g̃ is the output of the

same channel with an input ∼g, then

D(f̃‖g̃) ≤ D(f‖g). (A.19)

A.2 Success-threshold exponent

An exponential number of trials with an exponentially small “success” proba-

bility obeys a simple asymptotic “0–1 law.” This law is very useful in random

coding arguments.

Lemma A.2.1 (Success-threshold exponent) Suppose we conduct 2nR inde-

pendent trails where the “success” probability in each trial is 2−nr. Then

lim
n→∞

Pr{success in at least one trial} →
{
0, R < r

1, R > r.

Moreover, the first case holds even if the trials are dependent (with the same

success probability in each trial).

Proof By the union bound, this probability is upper bounded (even if the trails

are dependent) by

2nR
∑

i=1

Pr{success in ith trial} = 2nR2−nr,

which vanishes as n goes to infinity if R < r, thus proving the first case. As for

the second case, the probability that all trials fail (which is the complementary

event) is given, due to independence, by

2nR
∏

i=1

Pr{ith trial fails} = (1− 2−nr)2
nR ≤ (exp[−2−nr])2

nR

= exp[−2−nr2nR],

where the inequality follows since exp(−x) ≥ 1− x for all x. The last term van-

ishes as n goes to infinity if R > r, thus proving the second case. �
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A.3 Coset density and entropy

Since the operation x mod Λ maps a whole coset of Λ to its representative point

in some fundamental cell P0, we can think of the density of X mod Λ as the

coset density of Λ with respect to the random variable X and the cell P0.

Lemma A.3.1 (Lemma 4.2.2) Let X be a continuous random variable with a

density fX(x). The density of X, after modulo-Λ reduction with respect to some

fundamental cell P0, is given by

fX mod Λ(x) =

{
fX rep Λ(x), x ∈ P0

0, x 6∈ P0,
(A.20)

where

fX rep Λ(x) =
∑

λ∈Λ

fX(x+ λ) (A.21)

is the periodic replication of fX by the lattice Λ.

Proof (due to Tamas Linder [162]) The lemma amounts to

Pr {[X ∈ B] mod Λ} =

∫

B

∑

λ∈Λ

fX(x+ λ)dx, (A.22)

for any measurable set B that can be packed by Λ (i.e., Λ +B contains no

overlaps). But [X ∈ B] mod Λ amounts to X ∈ [Λ +B], so the probability of

this event is
∑

λ

∫

B+λ
f(x)dx, which amounts to (A.22). �

Since fX rep Λ is invariant of the choice of the fundamental cell P0, and since

any fundamental cell is a period of the (Λ-periodic) function fX rep Λ, it follows

from Lemma A.3.1 that the coset entropy

h(X mod Λ) = −
∫

P0

fX rep Λ(x) · log (fX rep Λ(x)) dx (A.23)

is invariant of the choice of P0.

Let us denote Q = QΛ(X) for some quantization cell P0. We have the following

properties:

H(Q|X) = 0 (A.24)

h(X mod Λ|Q) = h(X−Q|Q) = h(X|Q) (A.25)

(since entropy is invariant to a shift). Thus,

I(Q;X mod Λ) = h(X mod Λ)− h(X|Q). (A.26)

By the data-processing inequality (A.17) (since Q ↔ X ↔ [X mod Λ])

I(Q;X mod Λ) ≤ I(Q;X), (A.27)

implying, by (A.25), h(X mod Λ) ≤ h(X).
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We can also find the difference term. Specifically, using (A.24),

H(Q) = I(Q;X) = I(Q;X mod Λ) +H(Q|X mod Λ), (A.28)

so by (A.26),

h(X) = h(X mod Λ) +H(Q|X mod Λ). (A.29)

Due to the non-negativity of H , we conclude the following.

Lemma A.3.2 (Modulo reduces entropy) For a random variable X with a

differential entropy h(X), and a lattice Λ:

h(X) ≥ h(X mod Λ),

and the difference is H(Q|X mod Λ). See Problem 9.7. 1

A.4 Convolution of log-concave functions

We say that a non-negative function f : Rn → R+ is log-concave if

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ

for all x,y ∈ Rn and 0 < θ < 1. If f(x) is strictly positive, then this amounts to

the function log[f(x) ] being concave ∩.

Lemma A.4.1 (Convolution of log-concave functions) If f and g are two

log-concave functions, then so is their convolution f ∗ g(x) =
∫
f(y)g(x− y)dy.

Proof See [56, 225]. �

This lemma is used in Problem 9.11 and in the proof of Lemma 13.8.1 to show

that the error probability in biased decoding is larger than in unbiased decoding,

and is monotonically non-decreasing with the bias.

A.5 Mixture versus Gaussian noise

This section confirms that the tail of a mixture noise distribution becomes heavier

if we replace the uniform component by another Gaussian. This implies that the

Gaussian NVNR upper bounds the mixture NVNR for a sufficiently small Pe;

see Section 9.6.1.

1 For discrete random variables, this lemma follows easily from the properties of regular
(non-differential) entropy: since there is a one-to-one mapping between X and the error-
quantization pair (X mod Λ, Q), the chain rule for regular entropy implies

H(X) = H(X mod Λ, Q) = H(X mod Λ) +H(Q|X mod Λ).
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Lemma A.5.1 (Mixture versus Gaussian tail) Let Z denote an n-

dimensional AWGN vector. Let U denote an independent random variable which

is uniform over a compact set in Rn, and let U∗ be AWGN with the same vari-

ance as U. Let Λ be a lattice in Rn. Then,

Pr{Z+U 6∈ V0(a · Λ)} < Pr{Z+U∗ 6∈ V0(a · Λ)} (A.30)

for a sufficiently large value of the scaling parameter a.

Proof Let r = supx∈S ‖x‖ denote the radius of the set S (the support of U)

about the origin. Since the density fZ+U(x) is the average of of fZ(x) over x

in S, fZ+U(x) < K1 exp
(
(‖x‖ − r)2/2σ2

z

)
, for all x with ‖x‖ > r. On the other

hand, fZ+U∗(x) = K2 exp
(
(‖x‖)2/2(σ2

z + σ2
u)
)
. It follows that there exists some

threshold T (which is a function of r, σ2
z and σ2

u), such that

fZ+U(x) < fZ+U∗(x), (A.31)

for all x with ‖x‖ > T . This implies inequality (A.30) for all a such that rpack(a ·
Λ) > T . �

Since the NVNR (6.33) is monotonic in the error probability Pe and invariant

to scaling, it follows that

µeuclid(Λ,Z+U, Pe) < µeuclid(Λ,Z+U∗, Pe) = µ(Λ, Pe) (A.32)

for a sufficiently small Pe. In particular, this behavior holds in the case where U

is uniform over the Voronoi cell of another lattice.

The application of this result to nested lattices (where the uniform component

U is induced by the quantization lattice, while the error event is measured with

respect to the coding lattice) must be done with care. This is because the coupling

between the lattices does not allow scaling of one lattice while keeping the other

lattice fixed. In particular, the mixture NVNR (9.69), µmix(Λ1, Pe; Λ2, α), obeys

(A.32) for α close enough to one. It is an open question whether this relation

holds eventually for a sequence of good nested lattices of increasing dimension.

A.6 Lattice-distributed noise

Corrupting the channel output by a discrete noise which is nearly uniform over

a lattice, is equivalent to reducing the output modulo the lattice. The following

lemma – which states this fact formally – is used in Section 10.6.1 to prove that

for a strong interference, the modulo-lattice output of the dirty-paper channel is

a sufficient statistic for the decoder. (The proof of the lemma is due to Tamas

Linder [162].)

Lemma A.6.1 (Strong lattice-distributed noise) If Y and Y′ have finite

second moments, then for any S which is independent of (X,Y,Y′), has a p.d.f.
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and a finite second moment,

lim
a→∞

I(X;Y +QΛ[aS+Y′]) = I(X;Y mod Λ). (A.33)

Note that the variable QΛ[aS+Y′] is nearly uniform over the points of Λ in

a region that increases with a, and is asymptotically independent of Y′.

Proof To simplify the exposition, we shall assume Y′ ≡ 0. Let us use the sim-

plified notation S̃ = aS, Yq = QΛ[Y] and S̃q = QΛ[S̃]. We have the following

identities:

I(X;Y + S̃q) = I(X;QΛ[Y + S̃q], [Y + S̃q] mod Λ) (A.34a)

= I(X;Yq + S̃q, Y mod Λ) (A.34b)

= I(X;Y mod Λ) + I(X;Yq + S̃q | Y mod Λ), (A.34c)

where (A.34a) follows from the one-to-one decomposition (2.12); (A.34b) follows

since a translation by a lattice point does not affect the modulo operation (2.22);

and (A.34c) follows from the chain rule (A.7). Proving (A.33) thus amounts to

showing that the second term of (A.34c) vanishes as a goes to infinity. We write

this term as

I(X;Yq + S̃q | Y mod Λ) = H(Yq + S̃q | Y mod Λ)

−H(Yq + S̃q | Y mod Λ,X) (A.35a)

≤ H(Yq + S̃q)

−H(Yq + S̃q | Y mod Λ,X,Yq) (A.35b)

= H(Yq + S̃q)−H(S̃q), (A.35c)

where (A.35a) follows from the definition of the (conditional) mutual information

(A.6); (A.35b) follows since conditioning reduces entropy (A.4); and (A.35c)

follows since S is independent of (X,Y). Thus, to prove that the second term

of (A.34c) indeed vanishes, we need to show that Yq does not much affect the

entropy of the first term in (A.35c) for a large a. To this end, observe that 1
a ·

QΛ(aS) = QΛ/a[S], by the lattice-scaling law (2.43). We can thus write (A.35c)

as

H
(
QΛ/a[S] +QΛ/a[Y/a]

)
−H

(
QΛ/a[S]

)
(A.36a)

= [H
(
QΛ/a[S] +QΛ/a[Y/a]

)
− log(an)]− [H

(
QΛ/a[S]

)
− log(an)]. (A.36b)

By the “fine-quantization property” of the differential entropy (A.10), the sec-

ond square bracket [·] in (A.36b) goes to h(S), as a goes to infinity (where for

simplicity we assume a unit lattice volume V (Λ) = 1). We next show that the

first square bracket in (A.36b) is asymptotically equal to h(S). For that, we use
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(A.9) to rewrite it as a differential entropy:

H
(
QΛ/a[S] +QΛ/a[Y/a]

)
− log(a) = h

(
QΛ/a[S] +QΛ/a[Y/a] +Ua

)
,

(A.37)

where Ua is uniform over the cell of QΛ/a. Then, since QΛ/a[S] converges to S

in distribution, and QΛ/a[Y/a] and Ua converge to zero in distribution, we have

lim sup
a→∞

h
(
QΛ/a[S] +QΛ/a[Y/a] +Ua

)
≤ h(S) (A.38)

by the lower semi-continuity of the divergence; see [164, proof of theorem 1].

The reverse inequality follows since the independent term QΛ/a[Y/a] cannot

reduce the entropy [53]. It follows that the two square brackets in (A.36b) are

asymptotically equal. Hence (A.35c) goes to zero, as desired. �
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additive-noise channel, 76, 114, 401
AEP, 143, 212, 216, 218, 245

Gaussian, 143
generalized, 162, 163

Agrell, 9
Ahlswede, 368
Ajtai, 38
Akyol, 82
algebraic binning, 247, 250
algebraic codebook, 38
algebraic construction, 29
aliasing, 203, 221
alignment, 178
α-capacity, 224, 244, 395
alphabet, 171, 194, 213

extended, 186
amplify-and-forward, 344
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asymptotic ball error probability, 145
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asymptotic equipartition property, see AEP
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asymptotic optimality, 227
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bad codes, 385, 386
bad minimum distance, 387
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ball projection, 145
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additive-noise channel, 401
AWGN, 226, 232
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modulo-additive channel, 401
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with side information, 279
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capacity per unit cost, 214, 225
capacity per unit volume, 116
capacity with side information, 280
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Cassels, 153, 398
causal side information, 255, 279, 287, 293
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chain rule, 400, 401
channel

additive, 76
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dirty-paper, 248, 279
forward, 215
input constraint, 248
interference, 279
modulo-additive, 401
modulo-lattice, 219, 284
non-additive, 221
reverse, 216
state, 248
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channel coding, 4, 295
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channel coding with side information, 248,
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channel dispersion, 380
channel with side information, 254
channel-state information, 254
characteristic function, 390
Chebishev inequality, 170
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Chernoff, 399
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Chernoff bound for mixture noise, 389
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Chiang, 294

Chou, 108
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Cioffi, 246, 294
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code, see also linear code

convolutional, 34
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erasure-correction, 257
error-correcting, 4
geometrically uniform, 34
Hamming, 33
linear, 29, 250, 251
modulo, 251
multi-level, see construction D
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q-ary, 30
random, 6
rate, 4, 31, 110
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signal, 34
structured, 7

systematic, 32
trellis, 34
uniquely decodable, 90
variable-rate, 84
Voronoi, 181, 197, 199

code-excited linear prediction, 38
codebook, 4, 5, 110, 181, 182

dithered, 189
Gaussian, 197
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codebook enumeration, 182, 185, 199, 204
codebook power, 200
codebook size, 184
coded modulation, 33, 171, 194, 213
coding, 124

block sequential, 91
channel, 4
dirty-paper, 262
feedback, 90
fixed-rate, see fixed-rate coding
lossless, 85
predictive, 90
random, 6
source, 4, 84, 92
variable-rate, see variable-rate coding
with side information, 247

coding gain, 44, 53, 54, 116, 124, 208, 270
coding loss, 208, 210, 272, 324
coding rate, 122
Cohen, 294
colored-Gaussian noise, 117
coloring, 247, 248
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complexity, 15, 26, 134, 201, 269
compress-and-forward, 344
compression, see source coding
computation over multiple-access channels,

337, 340, 348
computation rate, 349
conditional entropy, 87, 217, 400
conditional rate-distortion function, 262
conditioning on dither, 221
constellation, 171, 194, 213

finite, 112, 199
good, 134, 156, 164, 192
infinite, 110

construction A, 29, 37, see also modulo-p
lattice

dither, 192
generalized, 31
nested, 185
random, 165, 167
transformed, 192

construction D, 37, 196
convex body theorem, 43
convolution, 404

convolutional code, 34
Conway, 9, 37, 57, 82, 156, 177, 196, 245, 384
copyright protection, 255
corner point, 257
correct decoding, 241, 270
correlation, 215
coset, 16, 23, 30, 181, 251

relative, 182
coset code, 178, 293
coset coding, 250
coset decoding, 200, 203, 227, 235
coset density, 403
coset distribution, 203
coset entropy, 221, 403
coset enumeration, 185, 199, 269, 351
coset leader, 24, 185, 199
coset representative, 24, 182, 184, 251
Costa, 248, 279, 281–283, 293, 326
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covering, 24, 134, 147, 164, 192

efficiency, 45, 134, 142, 148, 391
good, 134, 147, 148, 164, 169, 192, 389
radius, 45, 134, 272, 389
sphere, 266f
thinnest, 46

critical rate, 394
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cryptography, 37, 38
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cubic lattice, 13, 116
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Dn lattice, 28, 135
data hiding, 248
data-processing inequality, 401

divergence, 402
Davisson, 108
de Buda, 38, 176, 245, 398
decorrelation, 215
decision cell, 204
decision vector, 204, 221
decode-and-forward, 343
decoding

correct, 270
coset, 200, 203
joint, 259
lattice, 198, 200, 202
linear estimation, 231
maximum likelihood, see ML decoding
mismatched, 117
ML versus lattice, 210
NN, 26, 380
NN versus ML, 235
noise-matched, 113
source-matched, 276, 277

threshold, 112, 377
typicality, 157
with linear estimation, 223

decoding and estimation, 202
decoding cell, 204
decoding complexity, 15, 26, 201
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determinant of a lattice, 14
deterministic, 79
deterministic broadcast, 258, 293
deterministic dither, 79, 102, 207, 228, 237,
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Devroye, 371
diagonal nesting, 181, 351
diameter, 138
difference distortion measures, 94
differential entropy, 88, 93, 400, 401
differential pulse-code modulation, see
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digital communication, 4, 110
digital watermarking, 248, 279, 294
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binning, 258
syndrome, 205

directed information, 91
dirty MAC, 326
dirty-paper channel, 248, 279, 326

lattice coding, 283
dirty-paper coding, 3, 262
dirty-paper problem, 299, 326
disjoint covering, 190
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spectrum, 52

distance spectrum, 82, 383
distance-spectrum bound, 385
distortion, 241

entropy-distortion trade-off, 92
measure, 94
per letter, 95
rate-distortion function, 94

distributed communication, 178, 247
distributed compression, 257, 259
distributed source coding, 3, 315, 317
distributed video coding, 259
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codebook, 189
construction A, 192
deterministic, 92, 102, 237, 238
distribution, 190
error probability, 149
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generalized, 66, 70, 190

imperfect, 70
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modulo-uniform, 66, 190
spectrum, 71
tendency to a ball, 149
time variation, 90
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dithered codebook, 189
dithered modulation, 219
dithered quantization, 59, 78, 79, 84, 102
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divergence, 402
divergence from Gaussianity, 145–147, 149,
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divergence-entropy relation, 147
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doubly symmetric binary source, 250
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dual lattice, 68
duality

source and channel, 240, 248, 282
Dudevoir, 246

E8, 29, 33, 38, 187
E8 lattice, 135
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pre/post filtering, 99
rate, 87
versus Lloyd’s conditions, 101

ECVQ, see entropy-coded quantization

effective radius, 42
Eggers, 294
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Elias, 176
encoder

Voronoi, 199
energy per bit, 214, 225
ensemble

linear code, 166
Loeliger, 134, 164, 167, 169, 192
MHS, 134, 164, 192, 386

entropy, 84, 98, 400
conditional, 87, 217, 400
coset, 403
differential, see differential entropy
differential to regular, 401
joint, 89, 400
maximum, 95, 98, 401
relative, 146, 402

entropy power, 212, 401
entropy-coded quantization, 84, 85
entropy-constrained quantization, see

entropy-coded quantization
entropy-distortion trade-off, 92

entropy power inequality, see EPI
enumeration cell, 204, 241
enumeration codebook, 182, 185, 199, 269
EPI, 98, 401
equalization, 215, 294
equivalent channel, 219
equivalent dimension, 14, 188
equivalent mixture source, 272
equivalent mod Λ channel, 206, 220
equivalent noise, 220, 221
erasure-correction code, 257
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288, 293, 368–371, 397, 399
Erikson, 9
error exponent, 210, 229, 372

AWGN, 388, 394
expurgated, 388
Gallager, 397
minimum-distance, 385, 386
mixture-noise, 389
NN decoding, 380
Poltyrev, 373, 388, 397
power-constrained channel, 388
random coding, 383, 391
sphere crossing, 389
sphere packing, 373
threshold decoding, 377
Voronoi code, 388

error floor, 171, 194
error probability, 50, 51, 112, 122, 138, 145,

162, 228, 372
block, 55



Index 431

mixture noise, 229
overload, 240, 270
symbol, 55

error-correcting code, 4, 37
estimate and decode, 214, 218
estimation, 59, 202

linear, 223
minimum noise entropy, 224
rate-optimized, 393, 394
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391, 394
estimation and lattice decoding, 202
estimation error, 204, 215, 221
Etkin, 370
Ettinger, 294
Euclidean lattice decoder, 202
Euclidean NVNR, 119, 164, 228, 231, 232,
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