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2 The goal

The goal of arithmetic coding is finding an algorithmic coding scheme (source word — code word),
and not a table based coding, without compromising optimality, that is, still reaching the entropy in
code length.

3 The main idea for coding a source sequence n — oo

1.

2.

Each source sequence x1, z2,... = X is mapped to a single point y in the interval [0, 1).

The point y can also be described by its binary development: y = 0.b1b2b3 . . ..

. The code word is given by b1bobs .. ..

The goal is to receive an incompressible code-book. This is reached by making use of our
knowledge of the source’s probabilistic structure. The mapping X — y should create a uniform
distribution of y in the interval [0, 1).

Reminder: y = F;(z) has a uniform distribution in the interval [0, 1).

The construction of the code is sequential:

a. A source sequence of length n, will be mapped to the interval J(z™), so that:

T # T = J(@)NJ(2) =10

12



b. The mapping of a source sequence of length n+ 1 will be a refinement of the mapping done
for a source sequence of length n.

c. For each n, we require that a “more likely” source sequence of length n will be mapped to
a larger section in the interval [0,1), so that it could be described in less bits.

d. J(zp) nmeo y

4 Definitions

1. A binary development:
o0
1
01bobs ... =D by o Vi €0,1
n=1

2. A development over a general alphabet y:
o0 1 n
0.x12223 ... = Zazn . ﬂ = value(X*) V; € x
X
n=1

3. Partitioning of the interval [0,1) to binary sections:
Jp(b") = [0.b1by ... by, 0.b1by ... b, +27") = half open section of size 27"
4. Partitioning of the interval [0, 1) according to the source x (with a known distribution p(z™)):

J") =1 f@&"), f@@")+p™) ) where,  f(2") = Pr{value(X") < value(z")}

5 Example - Phase one

We will examine a memoryless trinary source:

x ={0,1,2}
z=0, 0.6
plz) =< =1, 0.2
z=2, 02

Figure 1, demonstrates the sections received for the first two source letters, and for the first two
code bits.

Code sequence:

J(00) Jo1) J(10) J(i1) o

® »

Code sequence:
Jio) Jo) n=1

Source
J(0) J(1) J@) sequence: n = 1

J(00) J1) J(02) J(10) 1) [12) J(20) J21) [ J(22) Source
sequence: n =2

Figure 1: Partitioning of [0,1) for both the first two source letters and the first two code bits

13



6 Specific case - memoryless source with alphabet y

For this case we have a recursive formula for the partitioning according to the source:
n

a memoryless source: p(z") = Hp(wz)
i=1
r—1 .
FE) = ) + o) ) where, i) = { S0P w2

7 Remarks & conclusions
L [J(z")] = p(z")

2. Y nJ@) =1

3. The lower bound = f(z") < f(z"*t%)  for all k
The upper bound = f(z") + p(z™) > f(x™F) for all k

4. Nesting of intervals:
v  J(@"T) CJ(@") = 2" = (2", zn01)

That is,
J(@1) 2 J(z122) 2 J(T12273) 2 ... 2 J(X™) = f(X*)

5.y = f(X*) ~Unif(0,1)

8 Sequential Coding & Decoding of an infinite length source se-
quence

The main principle is to code & decode “on the fly”

1. At any given time, the coder will put out only the bits (from the partial binary development)
that he can commit on, that is: J(z") C Jp(b') = b

2. At any given time, the decoder will reconstruct only the source letters that he can commit on,
that is: Jp(b!) C J(2™) = 2™

The system will have a delay both in coding, and decoding.

9 Coding & Decoding rates

e The coding rate is:

J(@") < Jp(b)
l
p(a") =1J(")| < |Jp(d) =2"
l
I < —log(p(z™)) = I(z")
3
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UNIVERSAL LOSSLESS SOURCE CODING

Lecture notes for the course Data Compression, faculty of engineering, TAU.
Summary by Amir Ingber.

1. Problemdescription

How do we code a sequence x1; Xz; ::i; Xn, When thedistribution p(x]) isunknown
(or no-existent) ?

When thedata X1; X2; :::; Xn, comes from an unknown stochastic sourcep (x); 2

, the setting is called the stochadic or probahilistic setting. when there is no
stochastic source for the data, i.e. the data is a single, individual sequence of
symbols, we call it the deterministic setting.

This summary deals with the probabilistic setting.

2. Parametric families of sources

It is usually convenient to assume a parametrization on the sources. p 2 fp :
2 g. Here knowing the source p is equivalent to knowing
Examples of parametric families of sources:
Binary memoryless sources:
X Ber();0 1:
M arkov chain with n ite alphabet:
Here _ is the transition probability matrix of the chain, p;; , where 0
i;j jXj 1. Usually stationary sources are assumed, therefore the initial
state of the chain is neglected.
Auto regressive sources with n ite resolution:
The source X is generated according to the following mode!:
xa
Xn = iXn i+ Wy
i=1
where W, is the generating white noise, and the vector _ consists of the
IR Iter coe cients.

The optimal rate for decoding a source is its entropy:

_1 n _1X n 1
Rate = nH X" = n p (x )Iogp(xn)

where p () isthe source's real probability function.
3. Two approaches in universal coding

These are two possible models for a universal coding system:
1

18



2 UNIVERSAL LOSSLESS SOURCE CODING

3.1. The batch approach. In the batch approach the processing is done per
block. First, the parameters of the process are estimated from the block, and then
coded assuming these parameters.

Since the decoder knows neither the estimated parameters nor the data that the
parameters are estimated from, the decoder also adds the estimated parameters to
the codeword as side-information (See Fig. 1(a)).

The e ective code length (in bits per source symbol) is

%[‘(sideinf ormation) + *(code(x7j ))1:

Due to the nature of working in block units, a delay of one block is inevitable.
The batch approach isalso called the 2-passor 2-part approach, for obviousreasons.

3.2. The sequential approach. Also called the adapive approach. Here the
parameters for coding a symbol are estimated based on past data (See Fig. 1(b)).

Since the code is lossless, the decoder can estimate the process parameters in
the same method used in the encoder, and by that eliminating the need for the side
information as in the batch approach.

On theface of it, the sequential approach seems preferable since side information
is not needed. However, it should be kept in mind that the parameters used for
coding each symbol are estimated based on past data and not on the symbol itself,
resulting in a longer code length.

Having estimated the parameters " = "(x| 1), the probability used for coding
the symbol x; is p(xjx} 1) = pa(xjx} 1), and the ideal code length for one symbol
is

i1y =

‘u(xijxl ! :

log p(xijx}
This can be achieved, for example, by an adaptive arithmetic code.
The code length for the entire sequence is given by:
~ X] ~ - l Y] .
u(x]) = u(xijxy )= log  p(xijx
i=1 i=1

1 oF logpu (x7):
In fact, the code length is induced by some probability function py() over X",
which is called the universd distribution.

As opposed to the batch approach, where the convergence to the distribution
of the source is done in advance, in the sequential approach the universal proba-
bility p,() converges to the true source's distribution on-the- y, as the sequence
progresses.

4. Redundancy in univer sal coding

Given a universal decoder u, that maps source words x| to code words of length
“u(x7), itsredundancy over the entropy of the source is given by:
2

oy 1 X .
Ra( ), = p (x1)"u(x}) ")
|XT z } Entropy bound

Average universal codelength

19



UNIVERSAL LOSSLESS SOURCE CODING 3

Encoder side ' Decoder side
W A Estimate7 | Sidelnfo
1
from x/
> 5y
ny - : i
| ParametricEncodet-229€% | 7 ParametricDecoder— %, x,
@
Encoder side ' Decoder side
" R Estimate 7 Estimate 7 —
1 1
fromx' * 5 fromx *
T T
ParametricEncoder Codex, | T ParametricDecoder l»% x,
(b)

Figure 1. Two approaches in universal coding: (a) The batch
approach. (b) The sequential approach

A coder is called universa w.r.t. a group of sources if
8 nI!ilm Rn( ;7 u)=0:

If the convergence is uniform in , then the encoder is called strongly universd.
if not, it is called weakly universa

5. Feasibil ity of universal coding: AEP viewpoint

Asweknow, isispossibleto codeasource X inarateR = H (X ) when the source
is known - eg. Hu man coding. Now, suppose we wish to code with a constant

20



4 UNIVERSAL LOSSLESS SOURCE CODING

HP R
HP 'R

Figur e 2. The probability simplex

rate R. We now show, that it is possible to universally code all memoryless sources
with entropy H R. Thisis based on the fact that the number of sequences of
a type P increases exponentially, and that there is only a polynomial number of
types.

We consider all thq,memoryl&ss sources with alphabet X, that is the simplex

p1 P2 n Pk O yp =1

Inside that simplex, we see the sources with entropy equal to, greater and less
than R. (See Fig (2)).

de nethe set A asthe set of all sequences, whose type's entropy is less than or
equal to R:

A, fx2 X"jH(Px Rg:
Then, by marking the set of all types by P:
X X X
jAj = iT(P)j 2n (™) 2R
P2P :H(P) R P2P :H(P) R P2P :H(P) R

By noting that the number of possible types of sequences from X" is (n + 1)iXi 1,
we get :

JAj  (n+ 1)yXT 1R
The needed rate to encode all the sources from A is:
%Iog2 iT(P)j = %Iogz(n + 1)X1 1R - JXJTlIogz(n +1)+R
P2A

21



UNIVERSAL LOSSLESS SOURCE CODING 5

Which goesto Rasn ! 1 , meaningthat coding of all sourcesof entropy H (X) <
R can be coded at rate R.
The section is based also on [1], the result appears also in [2].

6. An exampl e: Variable rate universal coding of a Bernoulli source

The objectiveisto code a binary sequence X§ = X1;X2; ::5; Xn When the distribu-
tion isunknown. It is only known that the sequence comes from a Bernoulli source,
with unknown p.

6.1. Th e bat ch approach.

First, we count the number of ones in the sequence, marked by k. We send k
as side-information to the decoder. Since k is taken from f 0::ng, this adds to the
overall rate of the code a factor of dog,(n + 1)e bits. We now select one of two
options (which lead to the same asymptotic rate):

Assumethat the sourceis Bernoulli(%) and use Hu man or arithmetic code
to encode the sequence.

By assuming that the sequence islong enough, % convergesto thereal p
of the sequence, and the rate of the code converges to h(p) bits per source
symbols, plus an additive term that vanishes like O(%). To that rate we
must add the rate of the side information - dog, (n + 1)e for the entire
sequence, or nldlog2 (n + 1)e bits per source symbol. The overall rate we
get is:

Rate= h(p) + O(%) + %dlogz(n + e h(p)+ %Iogz(n)

Theredundancy isgiven by R = Rate H(X) = %Iogz(n).
In fact (shown in [6]), when coding according to Bernoulli( ), it issu -
cient to describe with aresolution of pl—ﬁ and by that achieving a redun-

dancy of 2 log,(n).
Since the decoder already knows that the sequence hask ones, it only needs

to know which of the E sequences with k ones the encoder withes

to encode. This requires dog, e bits for the entire sequence. By

n
k
utilizing Stirling's approximation:

g | NN 1062 npd p)

Tlog, § N oo l06,@ npL P) R o l0(n)

we get the overall code rate:
Rate h(p) iIo (n) + Elo (n) = h(p) + iIo (n)
p n % n G(N) = NP n %

(wheretheterm %Iogz(n) isthe side information rate). The redundancy is
given by 5k log,(n).

22



6 UNIVERSAL LOSSLESS SOURCE CODING

6.2. Th e sequential approach.

In that approach the estimation for p is done on the 'y, asthe sequence progresses.
We mark the empirical probahility after seeing i bits as p(xjx}) , pi(x). Deter-

mining the code length for the next bit is done according to:

Wxiixt Y, log (B 1(xi)
But how do we determine p (x)?
A somewhat intuitive suggestion might be
no(x1). y—n-
L 1 X_Oy
pi(x) = nl(IX‘l).

x=1;

where np(x}) marks the number of b's (b 2 f0;1g) in x;. The motivation for

such estimation may come from the fact that as the sequence gets longer, "l(l—xll)
converges to the real p.

However, when the coding starts, serious problems occur which are demonstrated
by the following simple example:

suppose x7 = 010::. First, in the very beginning of the sequence, Po(x) is
unde ned. Let usthen de ne fo(x) , % The code length for the rst symbol shall
be log,(1=2) = 1hit. For the next symbol, however, p;(1) = 0, since n1(%0%) = 0,
yielding "y (X2jx1) = 1 which is, of course, unacceptable.

We would like an estimator, that starts with po(x) = % and continues towards
the real probability p in a more 'relaxed’ manner.

A bett er suggestion is the Laplace estimation for the probability:

( i
No(xy)+1. -0
Q (X) = nl(i;lj*' 1j X_ 0,
i+2 ! x=1

Laplace's estimator can be thought of asthe original estimator , wherethe string
01°is added at the beginning of the sequence, as a starting condition:

_ Nx(01x})
POI= T
For example:
Xi 01 0 0 1 0O
Papace 2 3 45 5 5 7 3

and the universa probahility assigned to the above sequence, de ned

Y
pU(XE) ’ p(xl)y

i=1

I81123245: 120 .
2345678 40320° . )
The code length assigned for a sequence is.

X » N
W) = Tuaixt = logy( p(xi)) = logy(pu(x3)):

i=1 i=1
For Laplace's estimator, it can be shown that

Ni(x1)! No(x1)!

Pu(x1) = (n+ 1)!
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UNIVERSAL LOSSLESS SOURCE CODING 7

which is followed by
n
n1(x1)
yielding the same rate and redundancy as the second batch coding method from

6.1 above.
Laplace's estimator is not the only estimator that starts with po(x) = % and

WD) = logy(pu(x])) = logy(n + 1) + log,

continues is a consistent way; all estimators of the form i (x) = =%UJ* - > ()

i+2
share that property. See, e.g. Krichevsky and Tro mov's [4] estimator -
KTy - Mx(X) + 3
I F

6.3. Conclusions and generalizations.

(1) The additive term % which stems from the side information in the
batch approach, and from the bias in the sequential approach, does not
depend on the sequence.

(2) Theuniversal distribution p,(x7) can bethought of asamixture over types:

pu(x7) = 1 Unif orm(T())

2fo;d; g
Where T ( ) isthetype ,i.e. theset of all sequences x] whose empirical
probability is ; and Unif orm(T ( )) isa probability function over X" that

gives an equal probability to sequences from T ( ) and zero probability to
other sequences.

This gives:
1 - ny(x7)
ny — .
pu(x7) = mUnn‘orm(T(T)).
From the AEP property, asn ! 1 ,'all' of the sequences coming from

a source Ber(p) are of the type p, giving :

n .

Pu(X1) — Ber( )):

2fodntg

(3) A universal distribution may be a mixture of the distributions in the class
. Note that a mixture of memoryless sources may be with memory.

(4) Generalizing: when gets a value out of M possible values, i.e. j j= M,

the maximum likelihood (ML) estimator for is given by:
"ML (x]) = argmax(p , (x1)):

The coding scheme: First, we encode ; - which requires dog,(M )e bits.

Then weencodex! assumingthat = " using code lengths of d log, (p~(X7)) e

Note that for every sequence x] that comes from a source :

log, (p~(x1)) logy(p (X1)) = I(x1)
which gives
E[u(xD] log(M)+ H (x7)
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8 UNIVERSAL LOSSLESS SOURCE CODING

yielding a redundancy Ra( ;')  2%2M)  (Remember that M is depen-
dant on n.)
(5) The equivalent universal distribution (for 4) :
1 X 1 1
Puxi) = & P g maxp(x]) = rpa(xd)

The Mi factor causes the universality price.

6.4. Further questions.

What is the optimal resolution for describing , i.e. how large must M be?

Should we always encode " according to a uniform distribution (using

log,(M) bits)? Can we save a few bits here?

We know that universal coding is possible if and only if the sources family
is not too rich, that is if the redundancy vanishes, %Iog(Mn) 0.

What conditions on the family  enable this?

7. The Lynch - Davisson t heory

T his approach [3] was continued and broadened by Rissanen [6], Gallager , Feder
and Merhav [5] and others.
We deal with a variable rate code, for minimum redundancy.
Supposewe havea B2V code " (x), satisfying Kraft'sinequality with an equality.
(i.e. there exists a distribution g(x) s.t. “(x]) = log,(q(x7])) are integers).
The redundancy for this code (for the source ) is given by
Ro( ()= TE TXM] H (X")]= ~D(p jia):

How dowe nd agood distribution g for the universal problem? that is, a universad
g that is good for the entire family of sourcesp ; 2

The min-max sense:: we seek the distribution g that is optimal for the
worst source , that is:

1 .
Rmin Max Hm{;nmaxD(puq)

Th e Bayesian sense:: we assume a prior distribution over the parameters,
w( ), and get:

_ 1 X y
Rigw) =~ w()D(p jj9)
The optimal q for a given w( ):
qy = argmqinﬁ(q;w)

Now we take the worst distribution w ( ), and get the Max-Min Redun-
dancy:

1 X N
RMax Min = Hw(a;mp w( )D(p jja)

25



UNIVERSAL LOSSLESS SOURCE CODING 9

Note that the Min-Max redundancy can be also writt en as

X
R wax = =minmax  w()D(pjig)
n a w()

De ne as the set of all parameters that achieve the worst redundancy in
the min-max de nition. This maximum is also achieved by any distribution w( )
over ,withw( )=0for 2

Under certain conditions, the order (max-min or min-max) does not change the
redundancy, i.e. the duality gap is zero, and the optimum is achieved in a saddle
point. We shall now that thisis the case here.

By noting gy (x) = w( )p (x7), we get:

X - X X X -
F(w;q), w( )D(p jia) w()D pji w()p = w()D(pjjaw)

X
[=" w()H (X)= H(Xj)
X X . X
o= wO) PO upd) = () log(ax])) Ha, (X])
X1 log, q(xp) X1

with an equality if and only if 8,q(x) = qu(X).

Lo L% H(XD) HXD)=1(XP)

(1) Without knowing we encode x7 according to the mixture distribution
aw (X) (that minimizes the average code length).

(2) for q(x) = aquw(x), the redundancy is | (X7 ) - the mutual information
between the parameter(s) and the source x3.

mqin(H(X?) H(XTj)=1(X1i)
(3) What is the worst prior w () that maximizes | (X{j )? (The achieving
prior, same as in channel capacity.)
max min(R(q; w)) = maxI(X?j)=C
w q w
Fromw () wederiveq = qy .
(4) Properties of the achieving prior w ( ):
D(pjig)=C;forw ()>0
D(pjig)<C;forw()=0

(stems from Karush-Khun-Tucker).
For every prior w( ),

N Ruin Max:mJanaXF(q;W) mWaXF(W;Q) C=n Rmax Min
Which completes the proof that
Rmin Max = Rmax min = C

which is known as the redundancy-capacity theorem for universal coding.

(*) If the capacity does not grow slower than linearly, i.e. if lim, 1 %Cn 6 0,
then universal coding is not possible.
Newer results have been found since:
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10 UNIVERSAL LOSSLESS SOURCE CODING

The strong version of the redundancy-capacity theorem[5, 6]: For every

encoder (not necessarily q ), for most of the sources the redundancy is
C, that is, that the family of 'bad' parameters consists of almost all

the sources 2

For a smooth family with K parameters, it was further shown [6, 5], that

Cn = % log(n).
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Figure 1 : Tunstall Tree
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Lossy Compression

Data and Signal Compression
Dept. of Electrical Engineering - Systems, Tel-Aviv University

Summarized by Tal Philosof

1 Introduction

The lossy compression model is:

Entro b
- PYL 2w Decoder | -
Encoder

al
I
|
z(t) X=21...TK Encoder i Y Decoder X
—_— A/D - - —

f(x) 9(%)

f:RE - {1...N} g:{1...N} = RK

Figure 1: The lossy compression model

For K =1 scalar quantization (SQ).
For K > 1 Vector quantization (VQ).

The quantization function £ = Q(x) £ g(f(x)) presents the decoder and encoder operation.
g(+) - is one to one mapping.
f(-) - is many to one mapping.

The quantizer can be either fixed rate or variable rate:

1 bit:
{ K logQ N [SOIH‘CIG Scode] ) fixed rate
R —

%E {L(f(x))} [%] , var.rate B2V

source code

where L(f(x)) is the length of the codeword of f(x).

Distortion measures: for a given distortion measure d(x,X) the distortion is
D = E{d(X, Q(X))}.

Examples of distortion measures:

1. “ Per letter” - d(x,y) = S d(x;, vi)

d(x,y) = >, (yi — 7:)? - squared distortion measure.

d(x,y) = > ;(y;i — x;)" - r-th distortion measure.

2. Vectorial -

d(x,y) = ||y — x||? - squared distortion measure.

d(x,y) = (y —x)TW(y — x) - weighted square distortion measure.
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These are difference distortion measures.
3. Non-difference measures -

d(z,y) = [*77].

1.1 The Quantizer Structure

Y1,¥2,--.,¥N - are the representative vectors (that is Q(x) € {y1,y2,....YN}).
51,83, ...,5N - are the quantization cells, that is Vx € S; = Q(x) = y;. The cells produce a partition of
the RX space. Therefore,

SiﬁSjZQ,Vi,j
N
s =R~
i=1

Let us consider that x has a probability density function f(x), thus
N
D=FE{dQX),X)} = x)d(x, Q(x))dx = x)d(x, Q(x))dx
Q). X)) = [ 1x)dix. Q) Z/Sf( Jd(x. Q(x))

2 Lloyd Condition

I. Nearest neighbor Condition -
Suppose the representative vectors y1,ys,...,yn are known, and it is needed to set the cells S1,55,...,Sn
(the decoder is known, and the encoder is needed to be designed). The optimal partition is in this case is:

S = {x:d(x,y;) <d(x,y;), Vj} ,i = 1ldotsN (1)

II. Centroid Condition-
Suppose the cells 51,5, ..., Sy are known, and it is needed to set the representative vectors y1,yo,...,yn
(the encoder is known, and the decoder is needed to be designed). The optimal representatives are:

yvi=argmin E{d(X,y)|x € S))},i=1...N (2)
y
In case of square distortion measure the condition becomes
yi = E{X|X € S;}, Vi

The centroid and nearest neighbor conditions are known as Lloyd Conditions (1953), which are necessary
conditions.

2.1 Nearest Neighbor Condition for the Euclidean Space

x—yill? < Ix—y,l?
x'x —oxly; +yiyvi < x'x— 2XTYj +Yy;y;
2yi —y) " x + |yl — lly;l)2 < 0.

Let us define —U;; £ 2(y; — ;) x and —R;; £ ||yi||? — ||y;||?, therefore x € S; if
USX +R;; >0,

i.e, the i-th cell is located “above” the hyperplane U5x+R¢j = 0. As a consequence, S; is a K dimensional
polytope. Furthermore, the cells are convex sets, i.e, Vx1,x2 € S;, ax; + (1 —a)x2 € 5;, 0 < a < 1.
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2.2 The Implication of the Nearest neighbor Condition for Square Distortion Measure

The estimation error is
eq - Q(X) — X,

which is the quantization error. In MMSE estimation the estimation error is perpendicular to the mea-
surements (the cell ¢ in our case), i.e, e; L Q(x). Therefore,

E|[X|P? = BIQX)|]* + EI[E|[* = ElIQ(X)|* + KD.

The equivalent additive noise channel model is:

€q

Q(x) d’/ X

Figure 2: The equivalent additive noise channel

2.3 Lloyd Algorithm

The Lloyd algorithm performs (2) and (1) iteratively. Therefore, the distortion can only decrease. The
algorithm converges to local minimum. If f(x) is log concave (i.e, log (f(x)) is concave) then the Lloyd
algorithm converges to the global minimum.

3 A Geometrical View of the Benefit of VQ Vs. SQ

For two dimensional quantizer for z1,x9 with N = 6 levels, the rate is R = %log6 bit/sample. The
equivalent quantizer after two scalar quantizations is:

Q(z1,22) = (Q1(21), Q2(22)),

which consists of two scalar quantization. The codeword and the cells are Cartesian product of the dimen-
sion as shown in Figure 3.

Figure 3: 2D-quantizer with cells and the codewords that are Cartesian product
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The vector quantize case:
1. The shaping gain - the region that contains the representatives is shown in Figure 4.

Granular )
region Shaping

Gain

XX X XXX
XXX XXXXX
XXX XXXXX
XXX XXXXX

Figure 4: Shaping gain

2. The memory gain - the gain due the dependency between the dimensions is shown in Figure 5.

X,

X X

X X
X)X

Figure 5: Memory gain

3. The granular gain - the gain due to the cells shapes is shown in Figure 6.
It should be noted that we can achieve a shaping gain even though the x1, x5 are independent.

Figure 6: Granular gain
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4 Entropy Constrained Quantization (ECQ)

The Entropy Constrained Quantization model is shown in Figure 7.

X=a1...TK Q0) i Entropy Entropy i Quant. Q(x)
Encoder Decoder Decoder
R= % log N R= %H (Q(x)) bit/sample
fixed rate var. rate

Figure 7: Entropy constrained quantization model

The problem can be written as:

min D given H < R,
{NAyi}.S:}

using Lagrange multiplier A, we get the unconstrained minimization:

min D+ \H ,
{N7{yi}7si}

Graphically the distortion versus the entropy is shown in Figure 8.

Convex Hull

Figure 8: Entropy constrained quantization the distortion vs. entropy

Lloyd like solution is based on the “modified distortion measure” (“distortion+A\ rate”):

~ 1
d(X7Yi) = d(X, yz) + )‘log <F> )

1

where P; = Pr(S;) £ foSZ' f(x)dx, and d(x,y;) is the distortion of when quantizing x to y;, and A log (P%)
is the ideal codeword length of encoding the i-th cell.
For fixed N and A — 0 = fixed rate d = d

For fixed N and A — oo = the distortion is ignored (w.r.t the rate)

4.1 Tterative Algorithm

1. Calculate P, ..., Py for given cells S;,...,Sn.
2. Calculate the centroid:

yi —argmin E{d(X,y)|X € S;},i=1,...,N
y

(@3
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3. The cells 5;, ..., Sy are generated using the nearest neighbor condition using the “distance measure”

d(-,-) with respect to y;, i =1,...,N (The P;, ¢ =1... N are from phase 1).
4. return to phase 1.

The algorithm is sub-optimal, however the algorithm is improving in each step (phase 3 improves D+AR),
therefore it will converge to local minimum.

5 Uniform Scalar Quantization

Uniform scalar quantization is shown in Figure 9.

I I I I I I
Nzil YN !

‘
Lyl ‘ ‘
| A

Granular Regiom————

Figure 9: Scalar uniform quantizer

A - is the quantizer step.

N - number of levels.

R - is logy N bit/sample.

The quantizer (mid-thread) function is:

. . A . A .
Q) = i ‘ iA—5 <zx< Z.A + 5 (gran region)
edge point overload (ol) region

Unlike in Lloyd, the quantizer is robust, i.e, does not depend on the distribution (ignoring the fact that
A

N3 = o).

The distortion is

D = FE{d(Q(X),X)|X € granular)} Pr(granular) + E {d(Q(X), X)|X € ol)} Pr(ol).

5.1 High Resolution Quantization

In high resolution quantization (HRQ), we assume that:

1. In the granular region the source is distributed “almost” uniformly in each cell, i.e, % << 1 (Af is the
tilt of f in the cell).

2. The distortion in overload region is negligible with respect to the distortion in the granular region, thus
for difference distortion measure

1 A2 a2 ()? measure
D =~ Dgpain >~ — da)da = 12
s TA A)2 (a)da { K,A" ()" measure

5.2 Non-Uniform Scalar Quantization

The following scheme performs non-uniform scalar quantization (usually used for uniform quantization in
logarithmic scale (A-law, p-law)):

48



Q(z)

fffff Mid-Rise
—— Mid-Thread

Figure 10: Mid-rise and Mid-thread quantizers

Companding Expander

Unifa
o O .| Uniform - )

Quantizer

Figure 11: Non-uniform Quantizer

6 Uniform Vector Quantization

In uniform vector quantization we need to find space filling polytopes which are tessellating the space
without overlapping between polytopes. Each polytope is a quantizer cell and under some conditions the
representatives of the space filling polytopes form “linear” set, in which case the set is called lattice.

6.1 Lattice Definitions and Properties

1. Lattice - A set of discrete points in R¥ is a lattice A, if y; + y; € A, for all y;,y; € A.
2. Generator matrix - G is a generator matrix of the lattice A, then

G=(g182 .- 8K)-

and the lattice is defined as

A={x:x=Gm},

where m = (m;...mg), m; € {0,£1,£2,...}, thus A is all the integer linear combinations of g1,...,gx.
The vectors g1,...,gxk are called basis vectors. The basis vectors are not unique; also G’ = G'B is a basis

where B is an integer matrix
1 -1
o0 )
with det(B) = 1.

3. Partition - Any lattice code is also attached to partition. The partition associated with a given lattice
is not unique. Partition of nearest neighbor for Fuclidean distance is known as Voronoi partition.
4. Normalized second moment (A, partition) - Let us define the lattice basic cell V where V{x :
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Q(x) = 0. For any K dimensional set S, the normalized second moment is define as:

G(S) = 1 second moment for uniform pdf over S
K (volume S)2/K
The normalized second moment of lattice is defined as

G(A) =G(V).
For V' which is the volume of the basic cell, i.e,
V = Vol(V) = det (G) = / dx,
xey

where G is the lattice generator matrix. The normalized second moment of the lattice is

© Jey |Ix|Pdx

a K
G(A) = V1+2/K
For uniform source and square distortion measure and lattice quantizer, the distortion is
D = G(A VK,

5. Isoperimetric Inequality - Sphere has the minimal second moment from all the shapes with equal

volume (V), i.e,
1 1
5 Il 5 [ xiPax
Vs Vs

where B is a sphere with volume V. The inequality can be written with respect to normalized second
moment

G(A) > G% = G(B)

Some known normalized second moment for spheres:

1 1
A 12
1
=2 G = —
4
1 1
K = — = —
e G 2me 17

7 Sphere Packing / Covering and Lattices

7.1 Covering and Packing using Spheres

Covering - Each point in the space is covered at least by one sphere.
An efficient covering < minimum spheres.
An efficient covering < minimum overlapping.

Packing - There is no overlap between spheres (the spheres are not flexible).
An efficient packing < maximum spheres.
An efficient packing < minimum wasted volume.

Let us define the following values:

spheres volume N - sphere volume

© = covering thickness = =
covered volume covered volume

spheres volume

A = packing density = :
packing volume space
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Figure 12: Covering using sphere

Figure 13: Packing using sphere

7.2 Lattices

In case that the spheres are laid on the lattice points the covering thickness and the packing density is
defined as :

volume of circumscribed sphere of Voronoi cell

Voronoi cell volume

A volume of inscribed sphere in Voronoi cell

Voronoi cell volume

For large dimension the covering problem is equivalent to the quantization problem with MSE distortion
measure.

The packing problem is similar with the modulation problem (constellation points in signal space) for
AWGN channel. However, packing is not equivalent to modulation even in large dimension; it more
pessimistic than Shannon theory.

For K — oo:

1
?logGK —0

1
17 log Ag — log 0.66 = —0.599.

The covering thickness is increased sub exponential, thus it is good also for quantization. The packing
density is decreased sub exponential, however for AWGN channel coding we would expected it will converge

to log(3).
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Lecture notes - Signd and Data Compression Prof. Rami Zamir, 2005
Summarized by Ofer Shayevitz

Compressio n under Uncertai nty Conditions

| Lectur e Outline

There are severa types of uncertainty. Corresponding to them, there are severa information-
theoretic formulations:

2 Required quality of reconstruction )
{ Successie Re nement (SR) (also Progressve Transmission)

2 Channd capacty or noise level )

{ Unequd Error Protection (SR+BCC)

{ Gracefu Degradation (Analog vs. Digital Transmission)

2 Network characteristics - Connectivity, Delays, Trax ¢ loads)

{ Multipl e Descriptions

{ Rateless codes (not discussed)

2 Correlative signd known only to the decoder (sensa array transmission) )

{ Hybrid Analog+Digita | Transmission Systems
{ Souree coding with side information at the recever (Wyner-Ziv coding)
{ Distribute d source coding (lossy SlepianWolf, not discussed)

2 Distortio n measue (not discussed))

{ Robus codebooks

{ Side-information dependent distortion measures
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Il Uncertai nty: Require d Quality

Di®erent users may require di®erent levels of reconstruction quality, and may want to improve
quality on demand For instance transmittin g a large compressd image via the internet may
take some tim e (depending on the size of the image and the speal of connection), so in order for
the usea not to get bored the image can be progressvely enamoded, so that a coarse reconstruction
of the image may be quickly available for display, and as further encoded data is received, a more
re ned image will be displayed.

Il.1 Successive Re neme nt (SR)

The Setting:

Figure 1. Successie Re nement System

If all of the deaoders work with the same distortion measure then

D1, D2, D3

Conside the case of two deading steps What are the rate pairs (R1; R2) allowing a desired
distortion pair (D1;D») ? The bed we can hope for is given by the rate-distortio n function:

R1, R(D2) (1)
Ri1+ Rz, R(Dy)

2
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and say that a source is successivey re nable if theratesin (1) are attainable for every D, - Dj.
In [1] it was proved that a necessay and suzcient condition for a source to be successiely
re nable is the existen of a conditional distribution p(R1;R2]jXx) so that

Ed(X;X1) - D1; 1(X;X1) = R(D1)
Ed(X;X2) - Da; 1(X;X1;X2) = R(Dy)

and
P(R1;R2]X) = p(R2] X)p(R1] R2) (2)

where equation (2) is equivalent to saying that X;X1;X, can be writte n as a Markov chain
X1 X,1 X, whereX; isthe course reconstruction of X and X, isthe ner one Notice that
this also implies | (X ; X1;X2) = 1 (X;X>).

A practical systam in the spirit of successie re nement is a multistag e quantization system:

Figure 2: Multistag e Quantization System
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[l Uncertai nty: Channel Capacity / Noise Level

Communicating a source over a channd whose capacty isunknown in advance may tur n disastrous
whenever theinstantaneous capacty istoo low, and possibly no decent reconstruction of the source
can be guaranteed. In this section we descrbe two di®erent approaches to this problem: One
employs a source code and a channd code that enable some level of reconstruction dependent on
the realized channel, and the other tries to guarantee that the distortion degradation when the
capacty is somewha lower than expected will not be severe.

[11.1 Unequal error protection
Consida severa transmission scenarios:

1. Channd capacty is known to the transmitte r and compressor) The compresso can match
the codebook to the channel.

2. Channd capacty is known to the transmitter but not to the compresso (e.g., compres-
sion is performed on a remote computer) ) The compresso can use a SR source code,
the transmitte r decides how many levels of re nement to use for transmission Another
practical (but less optimal) alternative is transcoding, where the compresso uses a single
“xed codebook (not SR type) and the transmitter performs "recompressiorf according to
the available capacty.

3. Channd capacty unknown to the transmitter and compressor) Separation principl e (see
remark at the end of the section). Concatenate a SR source code with a broadcag type

4
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channd code. Every re nement level is suited to a virtual use that "sees a channd with
capacty that can accomnodate therequired rate. E®ectiely, the decmder uses the maximal
number of re nement levels the instantaneous capacty allows, with high level re nements
(dedicated to better receivers) acting as noise and reducing capacty. Thisisreferred to as
unequd error protection, since the higher re nement levels are less "protected” from noise
in the channel, and will only be deamded by the better recewvers.

In a Gaussian channd where it is known that SNR , SN Rpin, the transmitter can use a
broadcag code suited for a degradel Gaussian broadcag channel. For instance with two

levels of re nement, the correponding degradal broadcag channd for which the channel
code is designal is

where
Z1» N(©;%); Z9» N(0;% i %)

The capacty region for this channd is of the form

75



Notice there is an inherent trade-o® between the rates. The higher the rate we want to
dedicate to the bad recewer, the lower the rate we can provide to the good recewer.

concatenating the SR source code with the broadcag channd code we get

with an achievable distortio n region of the form

Figure 3: Achievable distortio n region for SR+BCC
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Notice that the separation principle does not apply here since this is not a point-to- point
setting, and thus our suggestel solution is not optimal. Indeed, as we shal see in the next
subsection in certain situations a better distortio n region (D1; D») can be attained using methods
that are not purely digital.

1.2 Gracefu | Degradation

Transmittin g over a channd with unknown SNR (or to severa users with di®erent SNR's):

1. Limitation s of pure digital transmissiort The "threshold phenomend - When transmission
rate exceed the instantaneous channd capacty, The block error probability tends to one.

2. Limitation s of analog transmission (FM,SSB,AM):

Assume a °at Gaussian source with a quadratic distortion measue over a °at AWGN
channd and no bandwidth expansionl/zé E—; = 1.

Figure 4: Flat Gaussiaa source over a °at AWGN channel

Fundamental limits:

3 ’ 3

R(D)=C) Bslog £ Bolog 1+ ) SNRou = (1+ SNR)”
2} el
SN Rout SNR

Transmittin g using SSB:
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Theinput to output SNR relation is given by:
SN Rout = 1+ SN RC

Since the channd is static, the Wiener factor  is assumel to be matched to the channel
(i.e., the SNR is known to the recever but not to the transmitter) . We therefore see that
analog transmission attains (for %2= 1) the ided rate distortion point. Hence when the
noise level increases the distortio n increases as well but in a gracefd manner, and there is
no threshold phenomera as in digital transmission (not tru e for FM).

For Y5> 1 we can repea the analog transmission in adjacent frequeng/ bands and we get
SNRgut = 1+ ¥6NR¢

Which grows only linearly (rather than exponentially ) with %2 and if the constraint is on
the total transmitte d power, we have no gain from the bandwidth expansia at all. Hence
we see that analog transmission does not take full advantage of bandwidth expansion and
similarly canna approach capacty for a colored noise channel.

IV Uncertai nty: Network Characteristics

In many situations, the network through which the source is communicated may encowunter unex-
pected trat c loads delays, and packet losses It is therefore essatial that the use will be able
to create a decent reconstruction of the source basel on partial data only. Notice that a solution
to this problem must be essatiall y di®erent from progressve transmission (e.g., SR) as there is
no guarantee to what part of the source description ends up at the user's terminal.

IV.1 Multipl e Description s (MD ) (or Diversity Source Coding)

Goal: Describe the sourcee using two (generally several) di®erent "stand-alone" descriptions, so
that possessig both provides a better reconstruction of the source Usefu for packet loss in
internet communications.

The MD block diagram is depicted on the next page Generally,

R1+ Rz, R(Dy)

We say that there is no excess rate when the above is satis ed with equality, meaning that the
two descriptions "complement™ each other so that thereis no rate loss w.r.t. a single description
attainin g the same distortion Dg. In general we cannd have both R; + R, = R(Dgp) and
R = R(Di); i=12.

the MD problem is characterizing the achievable rate pairs (R1;R>2) for a desired distortion
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triplet (Do;D1;D>). It was shown [2] that any pair satisfying the conditions below is achievable:

Ry - [I(X;U)
R, - 1(X;V)
Ri+ Ry, - I(X;U;V)+ l(l{zvg

Excess term between U and V

for some pair of r.v.'s (U; V) (which represat the two descriptions) such that
9 X1(U); X2(V); Xo(U; V)

satisfying (Do; D1;D2). The full solution of this problem is however not yet available, exceg for
the quadratic Gaussian cas that was solved by [3].

Figure 5: Multipl e Descriptions System

V  Uncertai nty: Correlati ve Signal Kn own Only to the Decoder

In this section we discuss the situation where the decder has side information in the form of a
signd correlative to the source that isnot available at the encoding terminal. We present settings
where this may occur and mears of utilizin g thi s side information to attain a lower enading rate.

V.1 Hybri d Analog+Digita | Systems

1. Systematic transmission (back-compatibili ty):
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The deoder can use the analog data as side information. The encder has no acces to the
received distorted analog signal, but nonetheles can enmde the digital data to allow the
deaoder to use this side information. This re nement without a referene point is called
coding with side information at the receiver, or Wyner-Ziv coding, and is discusse on the
next subsection.

2. Analog Re nement:

Digital enaoding is designel for the bad receiver, and analog re nement data is sent for the
benet of the better recevers, providing them with the gracefu degradation property.

10
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Figure 6: Hybrid System using Analog Re nement

V.2 Wyner-Zi v (WZ ) Coding

The Wyner-Ziv problem is one of enading wit h side information available only to the deder. It
is desirable to utiliz e the existence of this side information to attain a lower enading rate albeit
the information is not available while encoding. The basic idea is demonstrated in the following
riddle: Assume the ambient temperature is a nonnegative integer, that changes by exactly one
degree (up or down) every day. Alice knows the temperature yesterday, and she wantsto nd out
the today's temperature by receiving a single bit from her friend Bob, who knows it but already
forgot yesterchy's temperature. How is that possible? Solution: Bob transmits a zero if today's
temperature divides by four, and one otherwise.
A Gaussian setting of the problem is depicted below:

X=Y+Z; Z?2Y; X»N(@©O;%) Z»N(0;%)

11
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The achievable rate-distortio n function R%yz (D) satis es

Ry(D) = 2log( %) = RUZ(D)

Generally however

ijy(D)' Rwyz(D)
The proof [4] uses a random binning technique and is nonconstructive. We now descrbed a
constructive solution using algelraic binning [5].

Encoder's structure :

2 o4: Fine lattice, volume determined according to the required distortion D.

2 n,: Coars lattice, volume determined according to the a-priori uncertainty at the decoder,
i.e., proportional to ¥3.

2 o, isnested ino; (D < 33)

q
2 ®= 1j % is the Wiener coezcient.

Deooder's structure:

The rate attained by this scheme is

V| o1
1 Voo 1 7 : :
R = K log A Ya > log D (for a large dimensionK)

Where V, is the basic cel volume of @;. Notice that for ®= 1 we ge&t ® = Qg (X).

12

82



Th e basic idea: Assume® = 1. The enmder quantizes the souree w.r.t. =1 (using dither
to create a uniform distributio n over the cell and satisfy the required distortion D), performs a
modulo-a, operation, and sends the result. The demder now knows that the (quantized) source
point is one of an (in nite- numbered) cose points of the receved point. The decder also knows
Y and therefore knows that the corred point resides with high probability, in a ball of radius
¥4 around y, which corresponds to a cell of @, centered at y. The dewder then places a lattice
cell centered at y, and selecs ® asthe (single) cosé point of the received point (w.r.t. the lattice
o,), that intersects with that cell.
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