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Abstract

Quantization with variable resolution and channels with varying input alphabet
have interesting lines of similarity as coding problems with side information at
the encoder. We explore this relationship and propose coding strategies based on
erasure correction coding for the discrete case and band-limited interpolation for
the continuous case. The varying input alphabet setup is shown to be useful for
coding for deterministic broadcast channels.

1 Introduction

Quantization where the resolution changes with time is conceptually similar to channel
coding where the input alphabet varies with time. The information about the resolution
/ alphabet constraints is provided in both these setups to the encoder. This is unlike the
familiar source-channel coding duality, where the channel encoder plays a role dual to the
source decoder [3]. We explore the relationship between the two setups and demonstrate
how similar coding concepts apply to both.

In information theoretic terms, quantization with variable resolution is a special case
of source coding with a side-information dependent distortion measure. In this problem
the distortion measure at the n-th source sample, d (xn, x̂n; sn), depends on a “state”
variable sn which is available to the encoder [7]. This setup finds applications in context-
dependant quantization and in sensor networks. We call “variable resolution” to the case
where

d(x, x̂; s) =

{
0, if |x̂− x| < r(s)
∞, otherwise

(1)

with r(s) denoting the required quantization resolution at state s. This is a “hard
decision” easy-to-analyze version of the weighted squared distortion measure

d(x, x̂; s) = w(s)[x̂− x]2. (2)

Channel coding with variable input alphabet belongs to the family of Gelfand-Pinsker
problems, i.e., channels with side information at the encoder [5, 3]. The specific applica-
tion we consider here is of layered transmission over non-additive broadcast channels, in
particular, deterministic and semi-deterministic broadcast channels (DBC) [9, 10], where
the transmission to one user puts constraints on the alphabet available to the transmis-
sion to the other user. For example, the Blackwell channel is a broadcast channel with
three inputs and two binary outputs (users) [2]. See Figure 1. Sending a “1” to user-1
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Figure 1: Blackwell Channel

requires to select channel input “1”, which constrain user-2 to receive a “1”. On the other
hand, sending a “0” to user-1 is possible with either channel input “2” or “3”, allowing
the full binary degree of freedom for user-2 transmission. Hence, the (unconstrained)
transmission to user-1 determines whether the effective alphabet for user-2 is unary or
binary.

The classical view in information theory is that the Gelfand-Pinsker problem is dual
to the Slepian-Wolf / Wyner-Ziv problem, i.e., source coding with side-information at the
decoder [3]. Similarly, sources with distortion side-information at the encoder have a dual
relationship with channels with channel-state information at the decoder. These dualities
are not only on a formal level, but have an operational significance. For example, “al-
gebraic binning schemes” prove to be useful for a class of additive / symmetric channels
and sources with side-information, such as “writing on dirty paper”, MIMO broadcast
channels, and “Wyner-Ziv video coding”. See [11] and the references therein. Inter-
estingly, the current work finds a common framework for a class of source and channel
coding problems which are not dual in the classical sense.

The problem of source coding with distortion side-information was proposed recently
by Martinian, Wornell and Zamir [7, 8]. They showed that variable resolution coding of
a discrete uniform source achieves the conditional rate-distortion function, i.e., it does
not suffer any loss relative to the case where the side-information is available to both the
encoder and the decoder. The same is true for continuous sources in the high resolution
limit. Martinian et al proposed also efficient schemes which approach this performance
based on erasure correction codes in the discrete case, and band-limited interpolation in
the continues case.

In this paper we show that similar concepts apply to the problem of channels with
variable input alphabet. This extension allows to find efficient coding schemes for new
classes of broadcast channels, such as the DBC, the semi-DBC and the weakly noisy
DBC. Similar schemes were proposed for the discrete DBC in a recent paper by Coelman
et al [1].

The paper is organized as follows. We start in Section 2 by defining the problem of
DBC, and discuss how the GP setup provides a key to its solution. Section 3 describes the
Blackwell channel, which is the simplest non-trivial DBC. We then turn in Section 4 to
define the problem of sources with distortion side information at the encoder, and describe
efficient schemes based on erasure correction codes for the discrete source case. In section
5 we find special cases in which the GP setup does not suffer capacity loss with respect
to the case where the side information is available to both the encoder and the decoder.
In Section 6 we show how these schemes apply to some interesting examples of DBCs.



Finally in section 7 we describe efficient schemes based on band-limited interpolation for
the continuous case.

2 Deterministic Broadcast Channel

Consider a discrete memoryless deterministic broadcast channel (DBC). The channel
input is denoted by X, and the channel outputs are deterministic functions of X:

Y1 = f1 (X)

Y2 = f2 (X)

where the input alphabet X and the output alphabets Y1 and Y2 are all finite. The signals
of length n at the channel input are sequences of letters of X , x = (x (1) , ..., x (n)); the
signals of length n at the channel output of terminal t are sequences of letters of Yt,
yt = (yt (1) , ..., yt (n)), where

yt (i) = ft (x (i)) , t = 1, 2.

Unlike the general broadcast channel, the capacity region of the DBC is known [9, 10].
It is composed of all rate pairs (R1, R2) such that

0 ≤ R1 ≤ H(Y1)
0 ≤ R2 ≤ H (Y2)
R1 + R2 ≤ H (Y1, Y2)

(3)

for some input distribution PX . Achievability is shown in general by random binning
[9, 10].

The DBC problem can be interpreted as an extension of the Gelfand-Pinsker problem,
i.e., channels with channel-state side-information at the encoder. First, information to
one terminal is encoded in an unconstrained manner; the channel to the other terminal
can be viewed now as a state-varying channel: the encoded information to the former
terminal imposes a per-letter constraint on the alphabet of the latter channel. Since the
encoder is common, it knows the state of this virtual channel and can use it in order to
encode information.

The Gelfand-Pinsker channel capacity is given by:

CGP = max
U↔(X,S)↔Y

[I (Y ; U)− I (U ; S)] = max
U↔(X,S)↔Y

[H (U |S)−H (U |Y )] (4)

where S is the channel-state side-information, X is the channel input, Y is the channel
output, U is an auxiliary variable, and the maximization is over (U,X). The GP capacity
is upper bounded by the capacity when the side-information is known also at the decoder,

Cboth = max
PX|S

I (Y ; X|S) . (5)

In the deterministic channel case, Y = f (X, S), both (4) and (5) are simplified to

CGP = Cboth = max
PX|S

H (Y |S) . (6)

This can be seen by substituting U = Y in the GP capacity formula.



For each given channel input distribution, the achievable region is a pentagon. To see
how it can be achieved as a Gelfand-Pinsker capacity, assume that information to the first
terminal is sent at maximal rate: R1 = H (Y1). By using G-P coding, R2 = H (Y2|Y1)
rate can be achieved, when S = Y1 is the state of the constrained channel to terminal
2. Thus the pentagon corner point (H (Y1) , H (Y2|Y1)) is achieved. The other pentagon
vertex point can be achieved in a similar way, and the intermediate points can be achieved
by time-sharing between the two corner points.

3 Motivation: The Blackwell Channel

One motivation for the coding algorithm that is presented in this paper is a known practi-
cal coding algorithm for the Blackwell channel. The Blackwell channel is a deterministic
broadcast channel, given by [2]:

Y1 =

{
1, x = 1
0, x = 2 or 3

Y2 =

{
1, x = 1 or 2
0, x = 3

Per transmission, one bit can be sent to receiver Y1 or one bit can be sent to receiver
Y2 but not simultaneously. However, the channel sum capacity is equal to log 3 bits per
transmission.

Gelfand [4] found the Blackwell channel capacity region. He used a “good” binary
erasure correction code (near Maximum Distance Separable (MDS) code) in order to
encode information. This method is explained in short for a corner point of the capacity
region (Figure 2): suppose that information to receiver Y1 is sent in a rate of R1 = H2 (p),
where p , Pr (Y1 = 1) = Pr (X = 1). Therefore the information rate receiver Y2 should
be able to reach

R2 = max
PY2|Y1

H (Y2|Y1) = 1− p

In order to achieve this rate, it is required that Y2 would be conditionally symmetric
given Y1 = 0, implying that

Pr (X = 2) = Pr (X = 3) =
1− p

2
.

The problem can now be viewed as writing to memory with defects [6]: Y2 is stuck-at
1 if x = 1, therefore a defect occurs with probability p. In order to code information in
this problem, an (n, np) near-MDS code is used in the following way: This code has the
property that for every set of np stuck-ats, every coset of this code has a word which
agrees with the stuck-ats. Therefore the coset of the word carries the information. Since
there are 2n(1−p) cosets, information to Y2 is coded at a rate of (1− p) bit per channel
use.

4 Quantization with Variable Resolution

A second motivation for the coding algorithm presented here comes from source coding
with distortion side information at the encoder [7, 8]. This paper introduces a new
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Figure 2: Blackwell Channel Capacity

concept, which lets the distortion measure vary from one sample to another according
to the quality of each sample. Suppose the encoder is fed with a random uniform source
X ∼ Unif(X ), and suppose each source sample comes with a quality side information S,
describing how “important” it is. The random variable S is statistically independent of
the source X. The way S affects the overall fidelity of the reconstruction is reflected by
a three-letter distortion measure d (x, x̂; s).

As an example (from [7]), let the distortion measure be of the form

d (x, x̂; s) = s · (x⊕ x̂) =

{
x⊕ x̂, if s = 1 (“important”)
0, if s = 0 (“non-important”).

For a block of n samples, there are approximately k , n · Pr (S = 1) positions with
”important” information. If the quality side-information S was known at the decoder
too, then in order to achieve zero distortion, the minimal rate would be k

n
log |X | bits per

sample. If the quality side-information was not known at the encoder, log |X | bits per
sample would be required. They showed that if S is known only at the encoder, then
there is no rate-loss in comparison to the fully aware system. To see how this can be
done, consider the source samples as a codeword of an (n, k) Reed-Solomon (RS) code
(or more generally any MDS code) with s (i) = 0 indicating an erasure at sample i. The
code is used to ”correct” the erasures and determine the k corresponding information
symbols, which are sent to the receiver. To reconstruct the signal, the receiver encodes
the k information symbols using the code, and produces the reconstruction vector. Only
symbols with s (i) = 0 could have changed, hence the relevant samples are losslessly
communicated using only k log |X | bits. The RS decoding (at the transmitter) can be
viewed as curve-fitting, and RS encoding (at the receiver) can be viewed as interpolation.

This example can be extended to a multi-level quality information. In view of equation
(1), we may think of X in the form of a binary word, where r(s) determines how many
LSBs of X may be changed without causing notable distortion. The solution in this case
would be to encode each bit level in the expansion of X in separate layers, where in
layer L we use the erasure correction mechanism above according to important samples
probability Pr(log r(S) ≤ L). See [8]. We next use this multi-resolution framework for
coding of channels with variable input constraint.
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Figure 3: A channel with two-state input alphabet

5 A Channel with Two-State Input Alphabet

Consider a two-state channel, where when S1 = 1 the input X is free to take any value
of X , while when S1 = 0 the input X must be equal to an external source V which is
independent of the information. An equivalent formulation for this setup is as a channel
that randomly switches between “transfer” state and “pure noise” state. Specifically,
p (y|x) = p (x̃|x) ◦ p (y|x̃), where p (y|x̃) is a general channel, and

X̃ =

{
X, if S1 = 1
V, if S1 = 0

with
S1 ∼ Bernulli (q)

where X,V, S1 are independent random variables, (X, V, S1) ↔ X̃ ↔ Y and q ∈ [0, 1].
We define the full channel state S as the pair (V, S1).

It is easy to verify that the capacity (5) when both the transmitter and the receiver
have access to S = (V, S1) is given by

Cboth = q · C̃
where C̃ is the capacity of the channel p (y|x̃).

The Gelfand-Pinsker (GP) capacity is given in general by (4). It is not hard to verify
that for any pair (U,X) such that U ↔ (X,S) ↔ Y form a Markov chain, and X is a
deterministic function of (U, S), we have

I(X; Y |S) = [I (Y ; U)− I (U ; S)] + I(U ; S|Y ).

It follows that the capacity loss in the GP problem is zero whenever I(U ; S|Y ) = 0, i.e.,
U ↔ Y ↔ S form a Markov chain, for some admissible pair (U,X) such that X achieves
Cboth (5). A simple interpretation for this condition is that given Y , the channel state
information S does not give any information about the information bearing variable U .
In any case, the for the discrete state we have that the rate loss is bounded by H(S).

The zero loss situation occurs when the channel p(y|x̃) is deterministic, i.e., Y = f(X̃).
In this case Y is a deterministic function of (X, S) = (X, V, S1), implying by (6) that the
choice U = Y is optimal, and we obtain

CSI@enc = Cboth = q · C̃
where C̃ = maxPX

H(Y ).
We next extend the discussion above to a class of channels with multiple states,

corresponding to communicating to the second terminal in the DBC corner point.



6 Coding under a Variable Resolution DBC Model

As noted above, the capacity region of the deterministic broadcast channel can be derived
by using Gelfand and Pinsker’s channel capacity. Therefore we can consider only one
vertex point. Assume that a distribution PY1 of the output of one terminal is set, and
the information rate for this terminal is R1 = H (Y1). For any y1 ∈ Y1, the mappings
f1, f2 determine the achievable values at Y2:

Y2 (y1) , f2

(
f−1

1 (y1)
)

This implies that the maximal value of R2 is E {log |Y2(Y1)|}. Equivalently, we may say
that an optimum pair (Y1, Y2) in (3) satisfies that Y2 is conditionally uniform over the
constrained alphabet Y2(y1) given Y1 = y1. To see why, note that the event Y1 = y1

imposes a constraint on the transmission to the second terminal: only x ∈ X such
that f1 (x) = y1 can be used as the channel input. Therefore f2

(
f−1

1 (y1)
)

is the set of
the (instantaneous) achievable symbols at terminal 2. This implies that the conditional
entropy is bounded by H(Y2|y1) ≤ log |Y2(y1)|, and the inequality is achievable for a
conditionally uniform Y2. Here B and W correspond to the V and S1 from section 5.

In order to consider one terminal as a ”channel” and the other terminal as known
“state”, it would be convenient to denote the former channel output by Y , and the known
channel-state by S. This channels capacity is denoted by C.

We consider a special case of a deterministic broadcast channel, which is an extended
case of the Blackwell channel. The state in this case has a ”metrical” meaning, and
information can be coded using erasure (near- MDS) codes. This ”metrical” meaning
is related to resolution in source coding. In this case, each input alphabet x ∈ X is
mapped to a different binary number of length log |X |, such that the side-information S
is characterized by two components: W which is the number of LSBs that are free in the
set, and B which are the MSBs imposed by S. The metrical meaning is that for a given
B, the allowable channel inputs are those in the interval which starts at B, with length
of 2W − 1. Notice that since the number of degrees of freedom of Y in the current state
is 2W , W bounds the current possible transmission rate. It follows that

C =
∑
s∈S

Pr (S = s) log |ws| = E{W}

where ws is the value of W at state s. Therefore B doesn’t influence the capacity (but
it does influence the information coding).

In order to encode information block coding is used, with block length=N . For
a given channel state vector s = (s1, ..., sN), encoding is done in layers, each layer is
encoded independently of the others. The number of layers is:

L , log |W|

Denote the channel input vector x = (x1, ..., xN), and x
(m)
i is the mth bit of xi in it’s

binary representation (starting from the LSB): xi =
L−1∑
m=0

2mx
(m)
i . At each layer m ∈

{0, ..L− 1} we look at the vector of bits: x(m) =
(
x

(m)
1 , ..., x

(m)
N

)
. At layer m, if wi > m,

then x
(m)
i can be either {0, 1}. Otherwise, x

(m)
i is stuck-at. It is useful to denote

qw , Pr (W = w) =
∑

s∈S:ws=w

Pr (S = s)
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Figure 4: Semi-discrete semi-continuous channel

Hence a stuck-at occurs with probability

pm , Pr (Wi ≤ m) =
m∑

w=0

qw

Therefore each layer m can be used to encode information by using a near-MDS (N, pmN)
code, with an erasure probability of 1 − pm (every coset of the code has a word which
agrees with the stuck-at constraints; see [1] for construction of such codes). So at layer
m information is encoded at a rate of 1− pm. It can be easily shown that the total rate
that is achieved is equal to C:

R =
L−1∑
m=0

(1− pm) = C

7 Band-Limited Interpolation for Variable Resolu-

tion Coding

As mentioned above, the workings of the erasure-correction mechanism can be explained
in terms of the notion of band-limited (BL) interpolation. The codebook corresponds to
a collection of bandlimited signals, that can meet a certain number of constraints in time
domain no matter in which order they come.

This idea was used in [7] to extend the discrete variable resolution quantization ex-
ample of Section 4 to the quadratic-Gaussian source case. Specifically, the scheme of
[7] uses a low-pass filter (LPF) codebook of DFT bandwidth k to quantize a block of n
samples from an i.i.d. Gaussian source where only k samples are “important”. In terms
of the weighted squared-error distortion measure (2), the state is binary s ∈ {0, 1}, where
w(s) = s and Pr(S = 1) = k/n. Furthermore, only the encoder needs to know the exact
location of the important samples in order to do “correct” interpolation.

We can use BL interpolation also to extend the discrete GP and DBC coding schemes
above to Gaussian signaling under various types of constraints in time domain. Consider
first the semi-discrete / semi-continuous BC problem described in Figure 4:

Y1 =

{
0 if X ∈ (−ε, ε)
1 if X /∈ (−ε, ε)

Y2 = X + Z



where ε > 0, and Z ∼ N (0, σ2
Z), and there is a channel input power constraint E (X2) ≤

P . The first channel output is discrete and a deterministic function of the channel
input. The second channel output is continuous and noisy version of the channel input.
Marton (&G-P) found the capacity region of a broadcast channel with one deterministic
component. This region consolidates with the Marton inner-bound, i.e. it is the convex-
closure of the vertex points, where each vertex point is a point where information to one
terminal is sent in a certain rate, while information to the other terminal is send while
the message to the first terminal is viewed as a channel-state side information.

Specifically, suppose that information to the first terminal is encoded in a rate of
R1 = H (q). This rate is achieved by setting Pr (Y1 = 1) = q. We use the following
auxiliary random variable U as the channel input:

X = U ,
{

Ũ ∼ N (0, P/α) if Y1 = 1
0 if Y1 = 0

The channel input power constraint holds: E (X2) = P . It can be easily shown that at
high SNR this setting achieves the capacity, moreover, there is no rate loss due to not
knowing Y1 at the second terminal. At high SNR:

R2 ' α
1

2
log

(
P/α

N

)

This GP performance can be achieved by a superposition of two n-dimensional code-
books: a high-pass filter (HPF)-codebook of DFT bandwidth qn which carries the infor-
mation, and a LPF auxiliary codebook of bandwidth (1 − q)n which enforces the time
domain constraint of (1− q)n zeros. The receiver detects the information from the HPF
band alone, just as in the discrete case the information was extracted from the “coset”
(or syndrome).

A second variant of the problem is writing on dirty paper (WDP) with variable res-
olution (”information embedding with distortion side-information”). Here the signal V
corresponds to the clean source, in which information can be embedded with variable
resolution, and it is observed through an AWGN channel with noise variance σ2

z. Assume
the distortion constraint of (2), with a binary side information S1, so embedding can dis-
tort “sensitive” samples of V at a level Dl and the rest of the samples at level Dh. Both
S1 and V are known to the encoder. Assuming a strong source and high signal-to-noise
ratio in the channel (σ2

v À Dh > Dl À σ2
z) we can show that

CGP = Cboth ≈ q log

(
Dl

σ2
z

)
+ (1− q) log

(
Dh

σ2
z

)

where q = Pr(S = “sensitive′′). This performance can be achieved by concatenation of a
BL-interpolator and a standard WDP encoder. The BL interpolator uses a superposition
of HPF and LPF codebooks to enforce zero (or small) modulating signal values at the
more sensitive positions. This is done in a way that the uninformed decoder can still ex-
tract the embedded information from the HPF band of the demodulated signal. Efficient
methods for BL-interpolation using discrete codebooks are currently under investigation.
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