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Abstract

In Costa’s dirty-paper channel,Gaussian random binningis able to eliminate the effect of interference which

is known at the transmitter, and thus achieve capacity. We examine a generalization of the dirty-paper problem to a

multiple access channel setup, wherestructured (lattice-based) binningseems to be necessary to achieve capacity. In

the dirty-MAC, two additive interference signals are present, one known to each transmitter but none to the receiver.

The achievable rates using Costa’s Gaussian binning vanishif both interference signals are strong. In contrast, it is

shown that lattice-strategies (“lattice precoding”) can achieve positive rates, independent of the interference power.

Furthermore, in some cases - which depend on the noise variance and power constraints - high-dimensional lattice

strategies are in fact optimal. In particular, they are optimal in the limit of high SNR - where the capacity region

of the dirty MAC approaches that of a clean MAC whose power is governed by the minimum of the users’ powers

rather than their sum. The rate gap at high SNR between lattice-strategies and optimum (rather than Gaussian)

random binning is conjectured to be1
2

log2(πe/6) ≈ 0.254 bit. Thus, the doubly-dirty MAC is another instance

of a network setting, like the K̈orner-Marton problem, where (linear) structured coding ispotentially better than

random binning. Finally, it is shown that lattice strategies are at most0.167 bit from the capacity region for all

SNR. The results are also compared and contrasted to thesingle dirt multiple access channel case (considered by

other researchers), where lattice strategies and Gaussianrandom binning have similar performance.

Index Terms

Dirty paper coding, multiple access channel, channel stateinformation, lattice-strategies, interference cancella-

tion, interference alignment, interference concentration.

I. I NTRODUCTION

A subclass of multiple-access channels (MAC) with side information (SI) known at the transmitters is considered.

Figure 1 depicts the problem of interest, a two-user GaussianMAC with two known interferences. The channel

output is given by

Y = X1 + X2 + S1 + S2 + Z, (1)
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††This research was supported in part by the Braun-Roger-Siegl Foundation and by ISF under Grant 1234/08.
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whereZ is an additive white Gaussian noise, i.e.Z ∼ N (0, N), andX1 andX2 are the channel inputs from user

1 and user2, respectively, which must satisfy the power constraintsP1 andP2. The interference signalsS1 andS2

are known non-causally to the transmitters of user1 and user2, respectively, but unknown to the receiver. We call

this setup thedoubly-dirty MAC.

Enc. 1

Enc. 2

Dec.

S1

X1

X2

W1

W2

S2

Z

Y Ŵ1

Ŵ2

Fig. 1: Doubly-dirty MAC.

This channel model generalizes Costa’s dirty-paper channel[1] to a multiple access setup. In [1], Costa considered

the single-user case,

Y = X + S + Z, (2)

where the interference is assumed to be i.i.d. Gaussian, i.e., S ∼ N (0, Q). He showed that the capacity of this

channel is1
2 log2(1 + SNR), whereSNR = P

N , independent of the interference powerQ. Thus, the capacity is

the same as that of the “clean” (interference-free AWGN) channel and no loss is incurred by the presence of the

the interference. We will compare (and contrast) this well-known result with effect of known interference on the

capacity region of the doubly-dirty MAC as well as some otherrelated scenarios.

The proof of Costa [1] uses the general capacity formula derived by Gel’fand and Pinsker [2] for channels with

(non-causal) side information at the transmitter. Their technique falls in the framework ofrandom binningwhich is

widely used in the analysis of multi-terminal source and channel coding problems. Using random binning for the

direct coding theorem, they obtained asingle lettercapacity expression (originally derived for the discrete channel

case) which involves an auxiliary random variableU :

CGP = max
p(u,x|s)

{I(U ; Y ) − I(U ; S)} (3)

where the maximization is over all joint distributions of the form p(u, s, y, x) = p(s)p(u, x|s)p(y|x, s). Selecting

the auxiliary random variableU to be

U = X + αS, (4)

whereX ∼ N (0, P ) is independent ofS, and takingα = P
P+N , maximizes (3), and the associated random binning

scheme is capacity achieving1.

1Although (3) was originally derived for the case of discrete memorylesschannel, it holds also for continues signals.
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A special case of the dirty MAC (1) was considered by Gel’fandand Pinsker in [3]. They showed that in the

noiseless case (N = 0), arbitrary large rate pairs(R1, R2) are achievable. For the general (N > 0) case and

independent Gaussian interferences, they conjectured that the capacity region is the same as that of a “clean” MAC,

i.e., the standard Gaussian MAC with no interference. The outer bound in Section IV shows that the capacity region

is in fact smaller.

An interesting observation we make in this work is that in thelimit when both interference signals are strong,

Gaussian binning (i.e., the extension of Costa’s solution (4) to the two-user case) isunable to achievepositive

ratesover the doubly-dirty MAC of Fig. 1 (see Proposition 1 in SectionIII). This is in contrast not only to Costa’s

problem, but also to the “single dirt” MAC case (with one interference known to one user) and the common

interference case (one interference known to both users), where Gaussian binning was shown to be optimal (or

nearly optimal) [4], [5], [3], [6]. Nevertheless, as we showin this work, lattice-strategies [7] achieve positive rates

over the doubly-dirty MAC by employinginterference concentrationandalignment.

One-dimensional lattice-strategies provide a positive - though still sub-optimal -single-lettersolution for the

rate region. We conjecture that this is, in fact, thebestsingle-letter solution for the doubly-dirty MAC when the

interference is strong and the SNR is high.2 High-dimensional lattice strategies - which can be regarded as a

special case of a multi letter solution - are strictly better; as we show, they are in fact asymptotically optimal for

this problem, i.e., capacity achieving, under certain conditions (e.g., high SNR).

The sum-rate gap between the one-dimensional and the high-dimensional lattice schemes is theshaping gain[8]

1
2 log2(2πe/12) ≈ 0.254 bit. Thus, the doubly-dirty MAC is an instance where linear codes (lattices) are strictly

better than any known single letter solution, i.e., better than any random binning technique; see [9] for an extensive

discussion on this issue. A similar phenomenon was observedby Körner and Marton [10] in a distributed lossless

source coding problem (the modulo-two sum problem), where they showed that the rate region achievable using

linear codes is optimal, and is superior to the “best known single letter characterization” for the rate region.

Beyond the the central role that linearity plays in coding for the doubly-dirty MAC channel, we will observe

that the capacity region itself exhibits some interesting characteristics. First, there is an inherent “power loss” with

respect to the clean MAC channel, i.e., the sum rate is governed by the minimum (rather than the sum) of the

encoders’ powers. This follows from the outer bound presented in Section IV. A second phenomenon, which is

manifested at least in theachievableregion derived in Section VI, is the further (partial) loss ofthe “1” in the

capacity expressions. More specifically, the “1” is replacedby a factor of1/K, whereK is the number of users.

While this observation is only based on our coding approach and achievability results, we conjecture that this loss

is in fact inherent.

The paper is organized as follows. Section II defines the doubly-dirty MAC, the MAC with a single dirty user

and the MAC with common interference. Section III gives a brief overview of the main concepts and insights

developed in the paper. Section IV derives outer bounds for the capacity region of the doubly-dirty MAC and

2This approach may be interpreted as a degenerate form of random binning, as we shall discuss in Section VI.
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for the MAC with a single dirty user for the case of strong-interference. A brief review of lattice codes, and a

lattice-alignment transmission scheme are presented in Section V. The main result of this work, the near-optimality

of lattice strategies for the doubly-dirty MAC, is presented in Section VI. In Sections VII and VIII we study the

single dirt variants (MAC with a single dirty user and MAC with common interference) which were previously

treated in [5], [4], [3], [6]. Using the lattice strategies approach, we extend these previously derived results (which

assumed Gaussian interference of known power) to the case ofan arbitrary interference. Other extensions of these

problems are considered in Section IX. Section X concludes thepaper.

II. PROBLEM FORMULATION

A. The General Memoryless Model

The channel model in (1) is a special case of a memoryless MAC with two channel statesS1 ∈ S1 andS2 ∈ S2,

which are known non-causally at the transmitters of user1 and user2, respectively. The statesS1 and S2 are

memoryless and independent with distributionsp(s1) andp(s2), respectively. The channel transition probability is

p(y|x1, x2, s1, s2), whereX1 ∈ X1 and X2 ∈ X2 are the channel inputs, andY ∈ Y is the channel output. The

channel is memoryless i.e.,

p(y
∣

∣x1,x2, s1, s2) =
n
∏

i=1

p(yi|x1i, x2i, s1i, s2i), (5)

where bold face indicates vectors (of lengthn). The encoder outputs of user1 and user2 are given by

xi = fi(wi, si) for, i = 1, 2,

wherewi ∈ Wi are the transmitted messages. The achievable rates are denoted byR1 andR2 where|W1| = 2nR1

and |W2| = 2nR2 . The decoder reconstructs the transmitted messagesw1, w2 from the channel output, hence

(ŵ1, ŵ2) = g(y).

A single letter characterization for the capacity region isnot known; see [9], [11] for a more detailed discussion.

The best known achievable rate region for this channel, basedon the random binning technique, was presented by

Jafar in [12], and it is given by the convex hull of all rate pairs (R1, R2) satisfying

R1 ≤ I(U1; Y |U2) − I(U1; S1)

R2 ≤ I(U2; Y |U1) − I(U2; S2) (6)

R1 + R2 ≤ I(U1, U2; Y ) − I(U1; S1) − I(U2; S2)

for somep(u1, u2, x1, x2|s1, s2) = p(u1, x1|s1)p(u2, x2|s2).3 The case where there is only a single stateS1 known

to user1 was treated by Kotagiri and Laneman in [5]. In this case, the single letter expression (6) reduces to the

3If the channel inputs and states have finite alphabets, then it is enough to use in (6) auxiliary random variables with alphabets whose

cardinality is bounded by|Ui| ≤ |Xi| + |Si| for i = 1, 2.
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convex hull of all rate pairs(R1, R2) satisfying

R1 ≤ I(U1; Y |X2) − I(U1; S1)

R2 ≤ I(X2; Y |U1) (7)

R1 + R2 ≤ I(U1, X2; Y ) − I(U1; S1).

for somep(u1, x1, x2|s1) = p(x2)p(u1, x1|s1). The common message capacity (W1 = W2) was solved by Somekh-

Baruch et al. in [4]. Furthermore, the capacity region for thecase of degraded messages was derived in [13],

[14].

B. The Gaussian Model

We now turn to the Gaussian channel case which is the focus of the paper. Specifically, consider the following

models:

1) Doubly-dirty MAC:

Y = X1 + X2 + S1 + S2 + Z, (8)

where Z ∼ N (0, N) is independent ofX1, X2, S1, S2, and where user1 and user2 must satisfy the power

constraints1
n

∑n
i=1 x2

1i
≤ P1 and 1

n

∑n
i=1 x2

2i
≤ P2, respectively; see Fig. 1. The interferencesS1 and S2 are

known non-causally to the transmitters of user1 and user2, respectively. The signal-to-noise ratio for each user

is defined asSNR1 = P1

N andSNR2 = P2

N . We consider the case ofstrong interferences, i.e., the interferences are

assumed to be eitherarbitrary sequences, or independent Gaussian variables with unbounded variances:

Si ∼ N (0, Qi), i = 1, 2, Q1, Q2 → ∞. (9)

Ideally, we wish to be able to cancel the effect ofS1 and S2 regardless of their strength - just as in Costa’s

single-user case (2). However, as we shall see, this is not always possible.

2) MAC with a single dirty user and the “helper problem”:

Y = X1 + X2 + S1 + Z. (10)

In this asymmetric case, shown in Fig. 2, user1 knows the interferenceS1 (informed user) and user2 is not aware

of the interference (uninformed user)4.

The “helper problem” is a special case of (10), where the informed user does not send any information, and its

sole role is to help the uninformed user.

3) MAC with common Interference [3], [6]:

Y = X1 + X2 + Sc + Z. (11)

In this case, there is a single interferenceSc which is known non-causally to both encoders, as shown in Fig.3.

4Note that under the strong interference assumption, (10) is not a special case of (8) because we cannot setS2 = 0 in (8). Indeed, the

fact that only a single interference is present allows us to derive in Section VII a better achievable rate region than for the doubly-dirty case.
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Fig. 2: MAC with a single dirty user (T open corresponds to the helper problem).
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Fig. 3: MAC with common interference.

Remark: The above models can also be extended by allowing common randomness (dither signals) at the encoders

and decoder.

III. OVERVIEW OF THE KEY CONCEPTS

In this section we introduce the main ideas in a nutshell for some special cases. For simplicity, we assume

throughout the limit of high SNR,PN → ∞, in addition to the strong interference assumption (9). We begin with

a simple interpretation of some known techniques for the single-user dirty paper channel.

A. Single-User Dirty Paper Channel

The capacity of the dirty paper channel can be achieved using random binning. The single-letter expression for

the capacity is given in (3) which is maximized by the auxiliary variableU in (4) . At high SNR, this choice of

U is given byU = X + S. Hence, the achievable rate using random binning is given by

R = I(U ; Y ) − I(U ; S)

= h(U |S) − h(U |Y )

= h(X) − h(X + S|Y )

= h(X) − h(Z|Y )

≈ h(X) − h(Z)

=
1

2
log2

(

P

N

)
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where the approximation≈ is due to the strong interference assumptionQ → ∞. We call this solution “Costa

strategy” or “Gaussian random binning”.
√

nP
√

nN

xn
1

un
1

Fig. 4: Single-user: geometric view of random binning.

Random Binning:To translate the auxiliary variableU above into a random binning scheme (see, e.g., [2]), we

select≈ 2nI(U ;Y ) vectorsun
1 i.i.d. according to the distribution ofU , and partition them evenly into2nR bins,

whereR ≈ I(U ; Y )− I(U ; S) (i.e., there are approximately2nI(U ;S) vectorsun
1 in each bin). Each bin represents

a messageV , and the encoder selects a vectorun
1 in bin V (i.e., in the message’s bin) which is jointly typical with

the side-informationsn
1 . With high probability there exists at least one suchun

1 (for large n). This un
1 induces a

channel inputxn
1 which in turn induces a channel outputyn

1 . The decoder decodes the message (bin)V by looking

for a vectorun
1 which is jointly typical withyn

1 . With high probability there exists one and only one suchun
1 which

is the true one (for largen).

Since in our case the auxiliary variable isU = X + S, the channel output is given byY = U + Z. Thus, the

selectedun
1 is in the vicinity (for large enoughn) of the channel output vectoryn

1 within a distance of
√

nN , and

to the interference vectorsn
1 within a distance of

√
nP , where the transmitted vectorxn

1 is the latter difference:

xn
1 = un

1 − sn
1 .

Let QV (sn
1 ) denote the vectorun

1 selected by the encoder to transmit the messageV ∈ {1, . . . , 2nR}. Bin V thus

consists of all possible values thatQV (·) can take for differentsn
1 vectors. We can think ofQV (·) as aquantizer

for Sn
1 with average “distortion”nP . The transmitted vectorxn

1 ,

xn
1 = QV (sn

1 ) − sn
1 ,

can thus be interpreted as thequantization error; while the channel output,

yn
1 = QV (sn

1 ) + zn
1 , (12)

is the superposition of the noise over the quantized value.

Fig. 4 describes the random binning technique in a qualitative manner. Thex-axis describes the collection of

the vectorsun
1 . Due to the randomness of the binning scheme, the points are not necessarily located on a uniform

grid. Each of the symbols�, ◦,×, ♦, M represents a different bin. Again, due to the randomness of the scheme,

each bin has a possibly different pattern of points on thex-axis. The set of typicalun
1 ’s for a given vectorsn

1 is
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represented by a bell shape of standard deviation
√

nP , while for a given vectoryn
1 - by a bell shape of standard

deviation
√

nN .

Interference Concentration:Willems [15] proposed the technique ofinterference concentrationfor the causal

dirty paper (“dirty tape”) channel. Although the scheme is sub-optimal even at high SNR, it conveys the main idea

of canceling the interference using a structured coding scheme. Willems suggested to dedicate half of the input

power to mitigate the interference effect and half of the power to send the information. Specifically, the transmitted

signal is given by

X = V − [S mod ∆], (13)

whereV is now a real number, andS mod ∆ = S − Q(S) whereQ(S) is a uniform quantizer with step size∆,

i.e., Q(S) = ∆ ·
⌊

S
∆

⌋

whereb·c is the floor operation. The input powerP is divided between the information signal

V which is uniformly distributed over∆, and the interference concentration operationS mod ∆. Therefore, the

input power and step size are related by∆ =
√

6P . The channel output is given by

Y = V + Q(S) + Z (14)

= V + Z + i∆ (15)

for some integeri. The interference is thus concentrated on a discrete and uniform grid with step size∆, i.e., on

the one-dimensional latticeΛ = ∆ · Z. By restricting the information-bearing signalV to an interval of size∆, it

can be reconstructed fromY as if the channel wasinterference-free. Since only half the power is used for carrying

the information, the achievable rate at high SNR is given by

R ≈ 1

2
log2

(

P

2N

)

− 1

2
log

(

2πe

12

)

(16)

where the second term is the loss of the shaping gain due to thechannel input being uniform rather than Gaussian.

Fig. 5 describes the interference concentration technique.The center of each cell is denoted byQ(·), where this

time they are located on auniform grid Λ. The symbols�, ◦,×, ♦, M represent modulation ofQ(S) by different

values ofV .5

v

√

P/2
√

N

Q(s)

Fig. 5: Single-user: geometric view of interference concentration scheme.

5The modulation signalV can in general depend onQ(S), although for ease of exposition it is not shown in (13).
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Lattice Strategies:In [16], [7] the idea of lattice strategies was presented. Itwas shown how the transmitted

power can be exploited such that all the power goes effectively to the information signal. Specifically, using the

same notation as in (13), the transmitted signal is

X = [V − S] mod ∆, (17)

where∆ =
√

12P . SinceV is distributed uniformly over∆, the transmitted signal uses the full powerP . In this

case, the channel output is given by

Y = V − Q(V − S) + Z (18)

= V + Z + i∆ (19)

for some integeri. Again, the residual interference is concentrated on the discrete set of valuesΛ, and it can

be completely eliminated if we restrictV to an interval of size∆. Furthermore, it was shown in [7] that using

high-dimensional lattice vector quantizers, and a suitable choice ofV , the full (non-causal) dirty-paper channel

capacity - 1
2 log

(

1 + P
N

)

- is achieved.

Fig. 6 illustrates the lattice strategies technique. The center of each cell are again located on a uniform gridΛ,

as in interference concentration. Each of the information-bearing symbols�, �, ◦.4, however, corresponds now to

a shift Λ − V of the uniform grid:

QV (S) = Q(V + S) − V (20)

for some fixed valueV = v, and it can be decoded from (Y modulo∆) - the channel output modulo the grid step

size. Thus, lattice strategies amount to astructuredform of the random binning technique discussed earlier: each

bin is a lattice shift, and all bins are shifts of thesamelattice.

v

√
P

√
N

Q(s)

Fig. 6: Single-user: geometric view of lattice strategies.

B. MAC with a Single Dirty User (S2 = 0)

Taking the Costa strategy for user 1 (the informed user), theauxiliary random variableU1 is given byU1 =

X1 + S1, whereX1 ∼ N (0, P1) is independent ofS1. For user 2 (uninformed user), the natural choice isU2 =
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X2 ∼ N (0, P2), independent ofX1 andS1. Substituting in (6), and noting thatY = U1 + X2 + Z, we get that the

sum rate is given by

R1 + R2 = I(U1, X2; Y ) − I(U1; S1)

=
[

h(Y ) − h(Z)
]

−
[

h(U1) − h(X1)
]

≈ h(X1) − h(Z)

=
1

2
log2

(

P1

N

)

where the approximation follows sinceh(Y ) ≈ h(U1) ≈ h(S1) for strong Gaussian interference (Q1 → ∞). The

individual bounds in (6) imply alsoR1 ≤ 1
2 log2

(

P1

N

)

and (for high SNR)R2 ≤ 1
2 log2

(

P2

N

)

. Hence, if user 1 (the

informed user) serves as a helper, then

R2 ≈ 1

2
log2

(

min(P1, P2)

N

)

is achievable at high SNR.

√
nP1

√
nN

un
1

x1
n
1 + x2

n
1

Fig. 7: Two Users with a Singe Dirt (S2 = 0): geometric view of random binning.

Random binning for the MAC with single dirt can be thought of as a superposition of clean-paper transmission,

X2, over dirty-paper transmission. The latter can be written as(settingn = 1 for ease of notation)X1 = QV (S1)−
S1, whereQV (·) is a quantizer with “distortion”P1 for S1. See Fig. 7.

We can equivalently use lattice strategies instead of random binning, in which case a bin is a lattice shiftΛ−V ,

as in (20). In the helper caseV degenerates, and we have only one bin which is the uniform grid (or lattice)Λ. In

this case,lattice strategies reduce to interference concentration.

C. Doubly Dirty MAC

In all problems we have seen so far, capacity can be achieved using either the random binning technique [1]

or lattice-strategies [7]. In the doubly-dirty MAC, however, lattice structure is essential to achieve or approach

capacity.
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Consider the doubly-dirty MAC (8), whereS1 ∼ N (0, Q1) andS2 ∼ N (0, Q2) are independent. We shall first

show that Costa’s strategy (4) is not efficient in the limit of strong interference and high SNR. We substitute

U1 = X1 + S1

U2 = X2 + S2

(21)

in Jafar’s inner bound (6), whereX1 ∼ N (0, P1) andX2 ∼ N (0, P2) are independent.

Proposition 1 (Costa’s strategies in Jafar’s inner bound):The sum-rate of (6) for the auxiliary random variables

(21) is bounded from above by

R1 + R2 ≤
[

h(S1 + S2) − h(S1) − h(S2) + Γ + o(1)
]+ −→

Q1,Q2→∞

0 (22)

whereΓ , 1
2 log2(2πeP1P2

N ), ando(1) → 0 asQ1, Q2 → ∞.

Proof: From (6) we get that

R1 + R2 =
[

I(U1, U2; Y ) − I(U1; S1) − I(U2; S2)
]+

(23)

=
[

h(Y ) − h(Y |U1, U2) − h(U1) + h(U1|S1) − h(U2) + h(U2|S2)
]+

(24)

=
[

h(Y ) − h(Z) − h(U1) − h(U2) + h(X1) + h(X2)
]+

(25)

≤
[

h(Y ) − h(S1) − h(S2) + h(X1) + h(X2) − h(Z)
]+

(26)

=
[

h(Y ) − h(S1) − h(S2) + Γ
]+ (27)

≤
[

h(S1 + S2) − h(S1) − h(S2) + Γ + o(1)
]+

(28)

where (25) follows sinceY = U1 + U2 + Z and sinceh(Ui|Si) = h(Xi) for i = 1, 2; (26) follows sinceh(Si) ≥
h(Ui); (27) follows from the definition of the constantΓ , 1

2 log2(2πeP1P2

N ); (28) follows sinceh(Y ) ≤ h(S1 +

S2) + o(1) asQ1, Q2 → ∞. The lema follows sinceh(S1 + S2) − h(S1) − h(S2) → −∞ asQ1, Q2 → ∞.

Thus, the random binning scheme corresponding to this choiceof U1 andU2 does not achieve any positive rate.

To understand this failure, observe that the channel output(12) can be written as (setting againn = 1 for simplicity

of notation)

Y = QV1
(S1) + QV2

(S2) + Z

whereQV1
(S1) = U1 andQV2

(S2) = U2. If the binsQV1
(·) andQV2

(·) have no structure, and if they are spread

over a large region in the interference domain (since the interference is strong), then the range of their set sum

QV1
(·) + QV2

(·) tends to be dense. See Fig. 8 for the bin labeled by◦. Fig. 9 further illustrates the effect of

increasing the size of bin◦. Thus the immunity to noise is lost, and the bins cannot be decoded from the channel

output.

To overcome this failure, we would like to have the property that

QV1
(S1) + QV2

(S2) = QV (S1 + S2)

for someV , i.e., that the order of quantization and summation can be exchanged. In other words, we require the

range ofQV1
(·) andQV2

(·) to be a lattice - a set which is closed under addition.
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2−a 3−b 3−a 4−b 4−a

1+c 2+c 1+d1+a 1+b 2+b

4−c

1 2 3 4

a b c d

U2

√
nN

U1 + U2

U1

√
nP

√
nP

√
nP

Fig. 8: Doubly dirty MAC: bottom axis shows the reflection of bin◦ of the two users on the decoder.

√
nN

U1 + U2

√
nP

Fig. 9: Doubly dirty MAC: geometric view of random binning - increasing the range of bin◦.

With this motivation in mind, consider now lattice strategies for the doubly-dirty MAC where only user1 carries

information and user2 serves as a helper. Both transmitters use thesame latticewhereP1 = P2 = P . The encoders

send

X1 = [V1 − S1 mod ∆] (29)

X2 = [−S2 mod ∆], (30)

where∆ =
√

12P . Thus, user2 (helper) performs interference concentration (with respect to its known interference)

while user1 uses lattice strategies. In this case, the channel output isgiven by

Y = V1 − Q(V1 − S1) − Q(−S2) + Z = V1 + Z + i∆ (31)

for some integeri. since the sum of two uniform grids is a uniform grid, the residual interference is concentrated

and alignedon the same set of discrete values (Λ) as shown in Fig. 10.

As in the point-to-point case, ifV is restricted to an interval of size∆ then the interference is completely

eliminated; if we use high dimensional lattices instead of ascalar lattice, then a rate of

1

2
log2

(

P

N

)

(32)
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v1

√
P

√
N

Q(v1 − s1) + Q(−s2)

Fig. 10: Doubly-dirty MAC: geometric view of lattice strategies.

can be achieved. Note that this is almost the full capacity ofthe clean MAC: we loose only the (non-coherent)

summation of the powers of the two transmitters.

Can random binning approach this rate? Indeed, if we substitute in Jafar’s inner bound (6) the auxiliary random

variables

Ui = [Xi + Si] mod∆i, i = 1, 2 (33)

where∆i =
√

12Pi, then we obtain the rates corresponding toone-dimensionallattice strategies. This amounts to

the capacity in (32), up to a loss ofshaping gain[8]:

1

2
log2

(

2πe

12

)

.

We conjecture that this loss of the single-letter expression (6) is unavoidable at high SNR.

To summarize, we have seen that structured (linear) coding plays a key role in the doubly-dirty MAC channel. A

formal derivation based on multi-dimensional lattices (some background on which is given in Section V) is carried

out in Section VI. In Section VI we also extend the analysis to general SNR and discuss the (conjectured) loss of

the “1” in the capacity expression, which was mentioned in the Introduction.

We have also seen that the capacity of the doubly-dirty MAC channel (as well as that of the uninformed user

in the MAC with a single dirty user) is governed by the power ofthe weaker of the users. This observation is

substantiated in the next Section where it is proved that the “power loss” is unavoidable.

IV. OUTER BOUNDS FOR THEDIRTY MAC

We establish an outer bound for the capacity region of the Gaussian MAC with a single dirty user (10), and then

this result is used to obtain an outer bound for the doubly-dirty MAC (8).

Theorem 1 (Outer bound for single dirty user6 ): In the limit of strong interference, the capacity region of the

MAC with a single dirty user (user1) (10) is contained in the following region:

R2 ≤ 1

2
log2

(

1 +
min(P1, P2)

N

)

R1 + R2 ≤ 1

2
log2

(

1 +
P1

N

) (34)
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The outer bound in Theorem 1 indicates that in the limit of strong interference, the sum-rate of Gaussian MAC

with a single dirty user is limited by the power of the informed userP1, where in the clean MAC the optimal

scheme gains the sum of the users powers, that isP1 + P2. In the sequel we show that in the limit of strong

interference the Gaussian doubly-dirty MAC is limited bymin(P1, P2).

For the case of Gaussian interference, the outer bound (34) can also be derived by taking the limit (Q1 → ∞)

of the common message capacity in [4]. To keep the paper self-contained, we provide below a direct proof of the

outer bound, based on Lemma 1 below.

Consider the MAC with a single dirty user (10), with GaussianinterferenceS1 with finite variance, i.eS1 ∼
N (0, Q1). For this case, an outer bound for the capacity region is given in the following lemma.

Lemma 1 (Outer bound for the single dirty user with Gaussian interference):For finite Gaussian interferenceS1 ∼
N (0, Q1), the capacity region of the MAC with a single dirty user (user1) (10) is contained in the following region:

R2 ≤ 1

2
log2

(

1 +
P2

N

)

R1 + R2 ≤ 1

2
log2

(

(N + (
√

P1 +
√

P2 +
√

Q1)
2)

Q1
· (P1 + N)

N

) (35)

Proof: The proof is given in Appendix I.

We note that the outer bound still holds if we let encoder1 and the decoder share common randomness (dither).

Clearly, the outer bound (35) for theindividual rateof user2 can not be exceeded by applying common randomness.

Additionally, since common randomness does not result in a greater capacity forfixed probabilisticchannels with

SI at the transmitter [17], also the outer bound for thesum-ratecan not be exceeded by using common randomness.

Assume that the interference has an infinite variance, i.e.,Q1 → ∞. We have that12 log2(N + (
√

P1 +
√

P2 +
√

Q1)
2) ≤

(

1
2 log2 Q1 + o(1)

)

whereo(1) → 0 asQ1 → ∞ for fixed P1, P2. Hence, in this case the outer bound

for the sum-rate (35) becomes

R1 + R2 ≤ 1

2
log2

(

1 +
P1

N

)

+ o(1).

As a consequence, the individual rate for user2 is bounded from above byR2 ≤ 1
2 log2

(

1 + min(P1,P2)
N

)

+ o(1).

The outer bound of Theorem 1 now follows since the capacity region for an arbitrary interference cannot be greater

than the capacity region with Gaussian interference of unbounded variance. This is because arbitrary interference

contains, as a special case, the set of typical sequences of Gaussian interference (of any variance).

The outer bound is depicted in Fig. 11 and in Fig. 12 forP1 ≤ P2 and for P1 > P2, respectively, where

C(x) , 1
2 · log2(1 + x). In Fig. 12, the corner point(Rc

1, R
c
2) is given by

Rc
1 =

1

2
log2

(

P1 + N

P2 + N

)

Rc
2 =

1

2
log2

(

1 +
P2

N

)

.

(36)

The outer bound in Theorem 1 is specialized to thehelper problem in the following corollary.

Corollary 1 (Outer bound for the helper problem):If only user 2 (the uninformed user) sends a message (i.e.,

R1 = 0) in the single dirty user model (10), then for strong interference, an upper bound for the rateR2 is given
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Fig. 11: Outer bound for MAC with a single dirty user (user1) for P1 ≤ P2.
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Fig. 12: Outer bound for MAC with a single dirty user (user1) for P1 > P2.

by

R2 ≤ 1

2
log2

(

1 +
min(P1, P2)

N

)

. (37)

The outer bound (34) for the single dirty user case is also an outer bound for the doubly-dirty MAC, provided

that S1 and S2 are strong interferences. Clearly, the intersection of theouter bounds for a MAC with a single

interferenceS1 known to user1 (34), and a MAC with a single interferenceS2 known to user2 (whereP1 and

P2 switch roles in (34)) gives the following tighter outer bound for the doubly-dirty MAC.

Corollary 2 (Outer bound for the doubly-dirty MAC):For strong interferences, the capacity region of the doubly-

dirty MAC (8) with S1 andS2 independent is contained in the following region:

R1 + R2 ≤ 1

2
log2

(

1 +
min(P1, P2)

N

)

. (38)

From Theorem 1, the outer bound for the doubly dirty MAC holds also for the case that encoder1, encoder2 and

the decoder share a dither signal. In Figure 13, the outer bound for the doubly-dirty MAC region is plotted.

Gel’fand and Pinsker in [3] showed that in the noiseless case (N = 0), arbitrarily large rate pairs(R1, R2) are

achievable. For the general case (N > 0) and independent Gaussian interferences, they conjectured that the capacity
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Fig. 13: Outer bound for the doubly-dirty MAC in Fig. 1.

region is the same as that of the MAC with no interference (clean MAC). The outer bound for the doubly-dirty

MAC (38) as shown in Figure 13 disproves their conjecture. The sum capacity of the clean MAC is given by

1
2 log2(1 + P1+P2

N ). For the case thatP1 = P2 the loss of the doubly-dirty MAC is at least3 dB with respect to

the clean MAC.

V. L ATTICE ALIGNMENT

A. Preliminary: Lattices

An n-dimensional latticeΛ is a discrete group in the Euclidian spaceR
n which is closed with the respect to the

addition and reflection operations (overR). The lattice may be specified by

Λ = {λ = G · i : i ∈ Z
n}, (39)

whereG is ann× n real valued matrix called the lattice generator matrix. A coset of the lattice is any translation

of the original latticea + Λ wherea ∈ R
n.

The nearest neighbor quantizerQΛ(·) associated withΛ is defined by

QΛ(x) = λ ∈ Λ if ||x − λ|| ≤ ||x − λ′||, ∀λ′ ∈ Λ, (40)

where|| · || denotes Euclidian norm. The Voronoi region of a lattice pointλ is the set of all points inRn that are

closer (in Euclidian distance) toλ than to any other lattice point. Specifically, the fundamentalVoronoi region is

defined as the set of all points that are closest to the origin

V = {x ∈ R
n : QΛ(x) = 0}, (41)

where ties are broken arbitrarily. The modulo lattice operation with respect toΛ is defined as

x modΛ = x − QΛ(x). (42)
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The modulo lattice operation satisfies the following distributive property

[x modΛ + y] modΛ = [x + y] modΛ. (43)

The second moment of a latticeΛ is given by

σ2
Λ =

1
n

∫

V0
||x||2dx

V
, (44)

whereV is the volume of the fundamental Voronoi region, i.e.,V =
∫

V0
dx (the same for all Voronoi regions of

Λ). The normalized second moment is given by

G(Λ) =
σ2

Λ

V 2/n
. (45)

The normalized second moment is always greater than1/2πe. It is known [18] that for sufficiently large dimension

there exist lattices that are good for quantization (these lattices are also known as good lattices for shaping [19]),

in the sense that for anyε > 0

log2(2πeG(Λ)) < ε, (46)

for large enoughn. In addition, there exist lattices with second momentP that aregood for AWGN channel coding,

satisfying [19]

Pr(X 6∈ V) < ε, where X ∼ N (0, (P − ε)In), ∀ε > 0, (47)

whereIn is ann × n identity matrix.

The differential entropy of ann-dimensional random vectorD which is distributed uniformly over the fundamental

Voronoi cell, i.e.,D ∼ Unif(V) is given by [18]

h(D) = log2(V )

= log2

(

σ2
Λ

G(Λ)

)n/2

=
n

2
log2

(

σ2
Λ

G(Λ)

)

≈ n

2
log2

(

2πeσ2
Λ

)

,

where the last (approximate) equality holds for lattices that are good for quantization.

B. Lattice-Alignment Transmission Scheme

We present a general lattice-based transmission scheme which will be specialized to the Gaussian doubly-dirty

MAC (in Section VI) and for the MAC with a single dirty user (in Section VII).

In the following transmission scheme, encoder1 and encoder2 use the latticesΛ1 andΛ2, with second moments

P1 andP2, and fundamental Voronoi regionsV1 andV2, respectively. We further require that the two lattices are
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identical up to scaling. That is,

Λ1 = κ1Λ (48)

Λ2 = κ2Λ (49)

for some real numbersκ1 andκ2 to be specified.

The encoders transmit the following signals as shown in Fig. 14:

X1 = [V1 − α1S1 + D1] modΛ1

X2 = [V2 − α2S2 + D2] modΛ2,
(50)

where α1, α2 ∈ [0, 1]; V1 ∈ Unif(V1) and V2 ∈ Unif(V2) are independent and carry the information of user

1 and user2, respectively. The encoders use independent (pseudo-random) dither signalsD1 ∼ Unif(V1) and

D2 ∼ Unif(V2), whereD1 is known to encoder1 and to the decoder, andD2 is known to encoder2 and to the

decoder, as shown in Fig. 14. From the dithered quantization property [18],

Xi ∼ Unif(Vi) for any Vi = vi, for i = 1, 2 (51)

whereXi independent ofVi, and hence the power constraints are satisfied.

The decoder uses a latticeΛr = κrΛ, which is another scaled version ofΛ, and reduces modulo-Λr the term

αrY − γD1 − βD2, i.e.,

Y′ = [αrY − γD1 − βD2] modΛr. (52)

The scalarsα1, α2, αr, κ1, κ2, κr, β, γ and the basic latticeΛ will be determined in each scenario in the sequel.

The main advantage of the lattice-alignment transmission above is its robustness. Unlike in the random binning

technique, the achievable rates of the lattice-alignment scheme are oblivious to the exact distributions of the

interferences. Hence, this scheme remains applicable for arbitrary interference sequences.

In the above lattice-alignment transmission scheme, it is assumed that the information-bearing signalsV1,V2

are uniformly distributed over the basic cell of the appropriate shaping lattice (also known as coarse lattice [20]).

Of course, it is possible to use a nested lattice structure asin [20] whereV1,V2 belong to fine lattices and the

coarse lattices are nested in these fine lattices, i.e., we have a nested lattice chain with two nesting ratios.

VI. T HE DOUBLY-DIRTY MAC

In this section we present lattice-alignment transmissionscheme of Section V for the Gaussian doubly-dirty MAC

(8). We derive conditions for optimality as well as (when theconditions do not apply) a uniform bound for the

gap-to-capacity. The results formalize the presentation inSection III, as well as utilize multi-dimensional lattices

and extend the scope to general SNR.

As discussed in Section III, while the capacity of the single-user dirty paper can be achieved both by using

random binning [1] or using lattice-strategies [7], in the doubly-dirty MAC, random binning results in a strictly

smaller achievable rate region with respect to that obtained using lattice strategies.
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Fig. 14: Lattice-alignment transmission scheme.

It turns out that the gap in SNR between the two users plays a central role in the analysis. More specifically,

when the SNR gap is large (“imbalanced case”), i.e.,
√

SNR1SNR2 −min(SNR1, SNR2) ≥ 1, the capacity region

is fully determined. A natural extension is the high SNR regime where the capacity is also fully characterized. For

the “nearly balanced” case, i.e., when
√

SNR1SNR2 −min(SNR1, SNR2) < 1, we obtain achievable regions using

lattice-alignment transmission schemes, and derive a universal bound on the gap to capacity. In this case the lattice-

alignment scheme looses the “1” in the capacity expression,due to the accumulation of two self noise components

(rather than one self noise in the single-user dirty paper case [7]). This loss is avoided in the “imbalanced case”

by pre-inflating the lattice of the user with the redundant power. We shall begin with the latter case.

A. Imbalanced Doubly-Dirty MAC

In the following theorem, we provide conditions under whichlattice-strategies are optimal.

Theorem 2 (Imbalanced SNRs):Suppose thatN ≤ √
P1P2 − min(P1, P2) for P1 6= P2. The capacity region of

the doubly-dirty MAC (8) in the limit of strong interferences meets the outer bound of Corollary 2, and is given

by the set of all rate pairs(R1, R2) satisfying

R1 + R2 ≤ 1

2
log2

(

1 +
min(P1, P2)

N

)

.
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Proof: The converse part has been proved in Corollary 2. In this proofwe show achievability for the case

where user1 is a helper for user2, i.e., for the point

(R1, R2) =

(

0,
1

2
log2

(

1 +
min(P1, P2)

N

))

, (53)

whereN ≤ √
P1P2 − min(P1, P2) and P1 6= P2. We present here the achievability of (53) for the case where

P2

(

P2+N
P2

)2
≤ P1. While the achievability of (53) for the case whereP1

(

P1+N
N

)2 ≤ P2 is proved similarly and

is given in Appendix II.

Clearly from the symmetric betweenP1 andP2 in (53) also the point

(R1, R2) =

(

1

2
log2

(

1 +
min(P1, P2)

N

)

, 0

)

, (54)

can be achieved. In view of the outer bound (38) in Corollary 2, the theorem follows by time sharing between (53)

and (54).

In order to achieve (53) whereP2

(

P2+N
P2

)2
≤ P1, we apply the lattice-alignment transmission scheme of

Section V-B.Λ1 and Λ2 are scaled lattices, i.e.,Λ1 = Λ and Λ2 = Λr = α2Λ for someΛ (that is κ1 = 1 and

κ2 = κr = α2). The second moments of the latticesΛ1 andΛ2 areσ2
1 = P1 andσ2

2 = α2
2P1, respectively, where

α2 will be determined later. We setV1 = 0, α1 = β = 1 andαr = γ = α2, hence the encoders send

X1 = [−S1 + D1] modΛ1 (55)

X2 = [V2 − α2S2 + D2] modΛ2, (56)

whereV2 ∼ Unif(V2) carries the information of user2; D1 andD2 are the dithers signal whereD1 ∼ Unif(V1)

andD2 ∼ Unif(V2). User1 mitigates the influence of the interference signalS1 by quantizingS1 with respect to

the shifted latticeΛ1 + D1. It is equivalent to using theconcentrationtechnique originally proposed by Willems

[15].

The receiver calculatesY′ = [α2(Y − D1) − D2] modΛ2. The equivalent channel fromV2 to Y′ is given by

Y′ =
[

α2(X1 + S1 + X2 + S2 + Z − D1) − D2

]

modΛ2 (57)

=
[

α2[X2 + S2 + Z] − D2 − α2QΛ1
(−S1 + D1)

]

modΛ2 (58)

=
[

V2 − (1 − α2)X2 + α2Z − α2QΛ1
(−S1 + D1)

]

modΛ2, (59)

where (58) follows from (55); (59) follows from (56).

SinceΛ1 = Λ andΛ2 = α2Λ (scaled lattices), we have thatα2QΛ1
(−S1 +D1) ∈ Λ2 i.e., the interference signal

is aligned withΛ2. Hence, the elementα2QΛ1
(−S1 + D1) disappears after the modulo-Λ2 operation. In this case,

the equivalent channel is given by

Y′ =
[

V2 − (1 − α2)X2 + α2Z
]

modΛ2. (60)
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From the dithered quantization property (51),V2 andX2 are independent. The term(1 − α2)X2 is known as the

self noise[7] which is due to user2. The rate achieved by user2 is given by

R2 =
1

n
I(V2;Y

′) =
1

n

{

h(Y′) − h(Y′|V2)
}

=
1

n

{

h(Y′) − h([(1 − α2)X2 + α2Z] modΛ2)
}

≥ 1

2
log2

(

P2

G(Λ2)

)

− 1

2
log2

(

2πe
(

(1 − α2)
2P2 + α2

2N
))

where in the last inequality we used the fact thatV2 is unform overV2 thenY′ is also uniform overV2, and since

modulo operation reduces the second moment and Gaussian distribution maximizes the entropy for fixed second

moment.

For P1 = P2

(

P2+N
P2

)2
, using the optimal MMSE factor for user2, i.e., α2 = P2

P2+N , and for lattice that is good

for quantization (46), i.e.,G(Λ) → 1/2πe asn → ∞, we get that any rate

R2 ≤ 1

2
log2

(

1 +
P2

N

)

, (61)

is achievable. Clearly, forP1 = P2

(

P2+N
P2

)2
the inner bound meets the outer bound (38). Likewise, forP2(

P2+N
P2

)2 ≤
P1, the outer bound (38) remains12 log2

(

1 + P2

N

)

, thus the outer bound is also achievable.

The proof is completed in Appendix II for the case thatP1

(

P1+N
N

)2 ≤ P2.

In the above lattice-alignment scheme, the “strong user” (the user with higher power constraint) effectively uses

α = 1 (the scalar factor which multiplies the interference at theencoder (55)). Therefore, this user performs

interference concentration which does not contribute an additional self noise term in (60). This technique can be

viewed aspre-inflatedlattice transmission by the strong user.

Furthermore, an additional property of the above scheme is that the users use thesamelatticeΛ (up to scaling), and

therefore the residual interferences are aligned, and can in turn be eliminated. Hence, the lattice-base transmission

simultaneously accomplishesinterference concentrationand interference alignment.

B. Nearly Balanced Doubly-Dirty MAC

We now derive an inner bound for the “nearly balanced” case, whereN >
√

P1P2−min(P1, P2). For simplicity,

we first consider the symmetric (“exactly balanced”) case, i.e., P1 = P2 = P for any N .

Using the lattice-alignment transmission scheme of SectionV-B with Λ1 = Λ2 = Λr = Λ (that is κ1 = κ2 =

κr = 1) whereα1 = α2 = αr = α andβ = γ = 1, the encoders send

X1 = [V1 − αS1 + D1] modΛ (62)

X2 = [V2 − αS2 + D2] modΛ, (63)

where V1,V2 ∼ Unif(V) are independent and carry the information of user1 and user2, respectively. Since

D1,D2 ∼ Unif(V) are independent dither signals, from the dither propertyX1,X2 ∼ Unif(V), and hence the
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power constraints are satisfied. In this case, the decoder is given by

Y′ = [αY − D1 − D2] modΛ. (64)

The equivalent mod− Λ MAC is given in the following lemma.

Lemma 2 (The equivalentmod Λ MAC): The equivalent channel using the encoders (62) and (63) and the

decoder (64) is given by

Y′ =
[

V1 + V2 + Zeq

]

mod Λ, (65)

where

Zeq =
[

− (1 − α)X1 − (1 − α)X2 + αZ
]

mod Λ, (66)

and Zeq is independent ofV1 and V2, whereX1, X2 are the self noises which are mutually independent, and

independent ofZ,V1,V2

Proof: The equivalent channel is given by

Y′ =
[

α(X1 + S1 + X2 + S2 + Z) − D1 − D2

]

modΛ (67)

=
[

V1 + V2 − (1 − α)X1 − (1 − α)X2 + αZ
]

modΛ, (68)

where (67) follows sinceY = X1 + S1 + X2 + S2 + Z; and (68) follows from (62) and (63). Due to the dithers,

the vectorsV1, V2, X1, X2 are independent, and also independent ofZ. Therefore,Zeq is independent ofV1

andV2.

From the modulo-Λ equivalent channel (65) and (66), the achievable sum-rate is given by

R1 + R2 =
1

n
I(V1,V2;Y

′) (69)

=
1

n

{

h(Y′) − h(Y′|V1,V2)
}

(70)

=
1

n

{

h(Y′) − h([(1 − α)X1 + (1 − α)X2 + αZ] modΛ)
}

(71)

≥
[

1

2
log2

(

P

G(Λ)

)

− 1

2
log2

(

2πe(α2N + 2(1 − α)2P )
)

]+

(72)

=

[

1

2
log2

(

P

α2N + 2(1 − α)2P

)

− 1

2
log2 (2πeG(Λ))

]+

(73)

where (72) follows sinceY′ has uniform distribution overV, and since modulo operation reduces the second

moment and Gaussian distribution maximizes the entropy forfixed second moment.

Like in the single-user case [7], the problem of finding the optimal α when the lattice dimension goes to infinity

amounts to finding the value ofα that minimizes the mean squared error of the effective noiseterm, i.e., of

−(1 − α)X1 − (1 − α)X2 + αZ, hence

αopt = αMMSE =
2P

2P + N
, (74)



23

For the optimalα and for a lattice that is good for quantization, i.e., for which G(Λ) → 1/2πe asn → ∞, we get

that any rate pair satisfying

R1 + R2 ≤
[

1

2
log2

(

1

2
+

P

N

)]+

is achievable, where[x]+ , max(x, 0). Clearly, using a time sharing argument the following ratescan be achieved

R1 + R2 ≤ u.c.e

{

[

1

2
log2

(

1

2
+

P

N

)]+
}

, (75)

whereu.c.e is the upper convex envelope with respect toP
N . Compared to the outer bound (38), the partial loss

of the “1” inside the logarithmic function (instead of one) is due to the presence oftwo independent self noises

X1 and X2 that we have in the equivalent channel model as shown in Lemma 2. Nonetheless, this technique is

asymptotically optimal at high SNR, sincelog
(

1
2 + P

N

)

≈ log
(

P
N

)

as P
N → ∞.

At low SNR, i.e.,SNR ≤ 1/2 (−3dB), pure (infinite dimensional) lattice-strategies cannot achieve any positive

rates as shown in Fig. 15. Hence, time sharing is required between the pointSNR = 0 and SNR∗, which is a

solution of the following equation

df(SNR)

dSNR
=

f(SNR)

SNR
,

wheref(x) = 1
2 log2(

1
2 +x). Numerical evaluation gives thatSNR∗ ≈ 1.655. At low SNR, i.e.,SNR → 0 the inner

bound is given byR1+R2 ' 0.425 P
N , while the outer bound is given byR1+R2 ≈ 0.721 P

N , hence the gap between

the outer bound and the inner bound is bounded by approximately 2.3 dB. In Fig. 15, we also evaluate numerically

the achievable rates for one dimensional lattice strategies (the dashed curve), which is given in (71) whereΛ is

a scalar lattice withG(Λ) = 1
12 using the optimalα for each SNR (which is not necessarily the MMSE factor).

Like for the infinite dimensional case, time sharing also improves the achievable rates of pure one dimensional

lattice strategies. Clearly, the achievable rates of infinite dimensional lattice strategies are strictly higher than one

dimensional lattice strategies when applying time sharingas shown in Fig. 15.

We now return to consider the general “nearly-balanced” case, whereN >
√

P1P2 − min(P1, P2) for general

P1, P2.

Theorem 3 (Nearly-balanced SNRs):Suppose thatN ≥ √
P1P2 − min(P1, P2). An achievable region for the

doubly-dirty MAC (8) is given for any interferences by the set of rate pairs(R1, R2) satisfying

R1 + R2 ≤ u.c.e

{[

1

2
log2

(

P1 + P2 + N

2N + (
√

P1 −
√

P2)2

)

]+}

, (76)

where the upper convex envelope is with respect toP1 andP2.

Proof: The proof is given in Appendix III

For the symmetric case, i.e.,P1 = P2, the region becomes

R1 + R2 = u.c.e

{[

1

2
log2

(

2P + N

2N

)

]+}

= u.c.e

{[

1

2
log2

(

1

2
+

P

N

)

]+}

, (77)
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Fig. 15: Achievable sum-rate forP1 = P2.

which coincides with that in (75). ForN =
√

P1P2 − min(P1, P2) the expression in (77) coincides with that in

Theorem 2.

Unfortunately, as can be seen from Theorem 3, there is a gap between the inner bound and the outer bound for

the “nearly balanced” case. We now derive a uniform bound on this gap. ForN >
√

P1P2 −min(P1, P2), the gap

between the outer bound (38) and the inner bound (77) is definedas

ζ(P1, P2, N) ,
1

2
log2

(

1 +
min(P1, P2)

N

)

− u.c.e

{[

1

2
log2

(

P1 + P2 + N

2N + (
√

P1 −
√

P2)2

)

]+}

. (78)

The following lemma provides a uniform upper bound forζ(P1, P2, N).

Lemma 3:Let x∗ be the solution of the equation x
x+1/2 = loge(x+1/2). For anyP1, P2, N , the gapζ(P1, P2, N)

is bounded by

ζ(P1, P2, N) ≤ log2

(

1
2 + x∗)

4x∗ ≈ 0.167 bit, (79)

where equality holds forP1 = P2 = P , and P
N = x∗ − 0.5 ≈ 1.155.

Proof: The proof is given in Appendix IV

The solutionx∗ is evaluated numerically and it is equal to1.655.

From the proof of Lemma 3, the gap is bounded by the symmetric case, i.e.,ζ(P1, P2, N) ≤ ζ(Pmin, Pmin, N)

wherePmin = min(P1, P2). In Fig. 16, the upper bound for the gapζ(P, P, N) is depicted with respect toSNR = P
N .
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Fig. 16: Outer bound forζ(P, P, N).

The above bound describes a uniform outer bound for the gapζ(P1, P2, N) which is tight for the case that

P1 = P2. A tighter outer bound for the gap in the asymmetric case, i.e., P1 6= P2 can be derived [21]. Let us define

Pmax , max(P1, P2) (80)

Pmin , min(P1, P2), (81)

andµ2 , Pmax/Pmin, henceµ ≥ 1. The bound find the worst gap for fixed power ratioµ, hence there is such a

ratio that the bound is tight. The outer bound for the gap is shown in Fig. 17 with respect toµ2. For µ = 1, i.e.,

P1 = P2, the gap is equal to0.167 bit. The following lemma is due to Mustafa Kesal.

Lemma 4 (Kesal [21]): For anyP1 andP2, the gapζ(P1, P2, N) is upper bounded by

ζ(P1, P2, N) ≤ C∗ log2(e) −
1

2
log2(eC

∗) − 1

2
, (82)

whereC∗ is defined as follow:

C∗ =
d

dθ
f(θ)|θ=θ∗ (83)

θ∗ =
f(θ∗)
C∗ (84)

f(θ) ,
1

2
loge

(

(µ2 + 1)θ + 1

(µ − 1)2θ + 2

)

(85)

whereθ , Pmin

N . For anyµ equality in (82) holds forθ = 1
2C∗

− 1.

Proof: The proof can be found in [22]
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Fig. 17: Outer bound for the gapζ(P1, P2, N).

C. Doubly-Dirty MAC at High SNR

We now observe that although there is a gap for the “nearly balanced” case between the inner and outer bounds,

the gap vanishes at high SNR and hence the capacity region is completely determined in this limit. Indeed, for fixed

P1, P2 which are not equal, if we take the noise powerN to zero, we enter (eventually) the imbalanced regime.

We next formally show that the outer bound is indeed tight at high SNR (even whenP1 = P2) as a direct corollary

to Lemma 2.

Corollary 3: At high SNR and in the limit of strong interferences, the capacity region of the doubly-dirty MAC

(8), is given by the set of all rate pairs(R1, R2) satisfying

R1 + R2 ≤ 1

2
log2

(

1 +
min(P1, P2)

N

)

− o(1), (86)

whereo(1) → 0 asmin(P1, P2) → ∞.

Proof: Using Lemma 2 withα = 1 and takingΛ to be a lattice (that is good for quantization) with second

moment equal tomin(P1, P2), we get the equivalent channel

Y′ =
[

V1 + V2 + Z
]

mod Λ, (87)

for which the sum rate12 log2

(

min(P1,P2)
N

)

is achievable, and hence (86) holds at high SNR.

VII. MAC WITH A SINGLE DIRTY USER

In this section, a lattice-based transmission scheme is presented for the Gaussian dirty MAC with a single dirty

user (10), see Fig. 2. Clearly we could apply the scheme for thedoubly-dirty case as presented in the previous
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section. However, we will see that some of the “loss of the 1”,see (75), may be avoided in the present case, taking

advantage of the presence of asingle interference. This in turn translates to a single self-noisecomponent (rather

than two as in the doubly-dirty case).

For the case of Gaussian interference, the results obtainedin this section coincide with previous works [4], [5],

[23], which were based on random binning. We extend the results to arbitrary interference (rather than Gaussian

with known variance).

The results in this section are derived using the lattice-alignment transmission scheme of Section V. However,

here the requirement thatΛ1 andΛ2 are equal up to scaling is not necessary. Furthermore, the informed user could

use any code that is good for both quantization and channel coding, while the uniformed user could use any code

that is good for channel coding (for instance, a Gaussian codebook).

As in the previous section, the tightness of the results depends on the gap between the SNRs, i.e., on how

“balanced” the SNRs are. The precise conditions on the gap are different from the previous section. This difference

is due to the non-presence of the second interference which reduces the constraints on the transmission scheme.

We now say that the SNR gap is large (“imbalanced case”) when|SNR1 − SNR2| ≥ 1, in which case the

capacity region is fully determined. The “nearly balanced” case is now defined by|SNR1 − SNR2| < 1, for which

we obtain achievable regions using lattice-alignment transmission schemes, and derive a universal bound on the

gap to capacity which istighter than the one obtained for the doubly-dirty MAC scenario above. We begin by

treating the helper problem where only the uninformed user has a message to transmit, and then consider the full

rate region.

A. The Helper Problem

We now consider thehelper problem, where only user2, the uninformed user, has a message to send and the

informed user (user1) helps user2 to transmit at the highest possible rate, i.e., a rate pair ofthe form (0, R2) is

considered. The upper bound for this case is given in corollary 1. In the following theorem, we present the capacity

for the helper problem, for the “nearly-balanced” case where N ≤ |P1 − P2|.
Theorem 4 (Imbalanced SNRs):Suppose thatN ≤ |P1−P2| in a MAC with a single dirty user (10). In the limit

of strong interference, the capacity of the helper problem is given by

Chelper(P1, P2) =
1

2
log2

(

1 +
min(P1, P2)

N

)

. (88)

Proof: The proof is given in Appendix VI.

For |P1 − P2| < N , we derive the following inner bound.

Lemma 5 (Nearly-balanced SNRs):Suppose that|P1 − P2| < N . The capacity of thehelper problemsatisfies

Chelper(P1, P2, N) ≥ u.c.e

{

1

2
log2

(

1 +
4P1P2

(P2 − P1 + N)2 + 4P1N

)}

, (89)

where the upper convex envelope is with respect toP1 andP2. For P1 = P2 = P , this inner bound reduces to

Chelper(SNR) ≥ u.c.e

{

1

2
log2

(

1 + SNR

(

4SNR

4SNR + 1

))}

, (90)
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where the upper convex envelope is with respect toSNR , P
N .

Proof: The proof is given in Appendix VII.

Although the function inside the upper convex envelope operation in (89) is non-negative, by examining its

Hessian matrix [24] it can be shown that this function is not convex-∩ for anyP1 andP2 (also in (90) the function

inside the upper convex envelope operation is not convex-∩ for any SNR).

The above inner bound can be also expressed in terms ofSNRmin , min(SNR1, SNR2) and∆SNR , |SNR1−
SNR2|, in this case we have that

Chelper(SNRmin, ∆SNR) ≥ u.c.e

{

1

2
log2

(

1 +
4SNRmin(SNRmin + ∆SNR)

(∆SNR + 1)2 + 4SNRmin

)}

. (91)
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Fig. 18: Inner bound versus outer bound for the helper problemfor P1 > N .

In Fig. 18, the outer bound and the inner bound for the capacityof the helper problem are depicted for various

values ofP1, P2, N . As indicated in Lemma 5, there is a gap between the inner bound(89) and the outer bound

(37) for |P1 − P2| < N . This gap is defined as

η(P1, P2, N) ,
1

2
log2

(

1 +
min(P1, P2)

N

)

− u.c.e

{

1

2
log2

(

1 +
4P1P2

(P2 − P1 + N)2 + 4P1N

)}

. (92)

In the following lemma a uniform upper bound for the gapζ(P1, P2, N) is derived.

Lemma 6:For |P1 − P2| < N , the gapη(P1, P2, N) (92) is upper bounded by

η(P1, P2, N) ≤ η(Pmin, Pmin, N) < log2(3) − 3

2
≈ 0.085 bit,

wherePmin = min(P1, P2).

Proof: The proof is given in Appendix VIII.

We now show that at high SNR, i.e.,P1, P2 � N and for |P1 −P2| < N , the achievable rateRhelper (89) meets

asymptotically the outer bound (37).
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Lemma 7: In the limit of strong interference, the capacity of the helper problem at high SNR is given by

Chelper =
1

2
log2

(

1 +
min(P1, P2)

N

)

− o(1), (93)

whereo(1) → 0 asP1, P2 → ∞ for fixed N .

Proof: The lemma trivially follows by combining the outer bound given in Corollary 1 and noticing that (93)

is achievable by Corollary 3.

The pure lattice-strategies approach is not optimal at low SNR in the helper problem, i.e. the upper convex

envelope strictly increases the achievable rate in the helper problem. In order to see that, consider the case of

P1 = P2 = P . We now observe that time sharing can achieve higher rates than pure lattice-strategies transmission

(the expression inside the upper convex envelope in (90)). Assume that the users coordinate their transmissions

only for 1/δ of the time (δ ≥ 1), while the rest of the time the users stay silent. During thetransmission period

(1/δ), user2 transmits with powerδP , while user1 transmits during half of the transmission period (1
2δ ), with

powerδP −N , and during the rest of the time, withδP + N . In this way, the users satisfy the power constraints.

The achievable rate of user2 is given by

R2 =
1

2δ
· 1

2
log2

(

1 +
δP

N

)

+
1

2δ
· 1

2
log2

(

1 +
δP − N

N

)

=
1

4δ
log2

(

δ
P

N

(

1 + δ
P

N

))

.

Numerical evaluation shows that this expression is maximized for δ = 1.832N
P , and the rate is given byR2 =

0.324 ·SNR, which is higher than achievable rate using pure lattice-strategies in (90) as shown in Fig. 19. However,

this scheme is feasible only forSNR ≤ 1.832 sinceδ ≥ 1.

For SNR → 0, this inner bound behaves likeO(SNR), while the inner bound in (90) behaves likeO(SNR2).

On the other hand, the outer bound (37) forSNR → 0 is limSNR→0
1
2 log2(1+SNR) ≈ 0.721 ·SNR which behaves

like O(SNR) as the inner bound.

B. Capacity Region at High SNR

While the capacity region for the MAC with a single dirty user(10) is not known in general, the following

theorem determines the capacity region at high SNR, i.e., when P1, P2 � N .

Lemma 8: In the limit of strong interference, the capacity region of dirty MAC with a single dirty user (10) and

high SNR, is given by

R2 ≤ 1

2
log2

(

1 +
P2

N

)

− o(1)

R1 + R2 ≤ 1

2
log2

(

1 +
P1

N

)

− o(1),

(94)

whereo(1) → 0 asP1, P2 → ∞.

Proof: WhenP1 ≤ P2, the lemma follows by combining the outer bound given in Theorem 1 and noticing

that (94) is achievable by Corollary 3. The proof for the caseP1 > P2 is given in Appendix IX.
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Fig. 19: Inner bounds and outer bound for helper problem at lowSNR.

C. Achievable Rate Region

We now derive an achievable rate region using lattice-basedtransmission for anyP1, P2, N . The same region

was derived using random binning in [5].

Lemma 9:An achievable rate region for the MAC with a single dirty user(10) is given by

R = cl conv







⋃

α1∈[0,1]

R(α1)







, (95)

and

R(α1) =

{

(R1, R2) : R1 ≤ 1

2
log2

(

P1

min(P1, (1 − α1)2P1 + α2
1(N + P2))

)

R2 ≤ 1

2
log2

(

min(P1, (1 − α1)
2P1 + α2

1(P2 + N))

(1 − α1)2P1 + α2
1N

)

} (96)

wherecl andconv are the closure and the convex hull operations, respectively.

Proof: The proof is given in Appendix X

This expression is a general form which describes the achievable rate region of the MAC with a single dirty user

(10). It includes the achievable rate of the helper problem,i.e., the point(0, R2) for any P1, P2, N , and also the

capacity region at high SNR.

We now explore the behavior of the achievable rate region specified in Lemma 9 for several cases with respect

to P1, P2, N :
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Fig. 20: Inner bound versus outer bound in the MAC with a singledirty user.

a) ForP1 ≤ P2−N : It is easily verified that the point(R1 = 1
2 log2(1+P1/N), 0) can be achieved when user2 is

silent, i.e.,X2 = 0 while user1 performs point-to-point dirty-paper coding (DPC), which can be implemented

using lattice-strategies precoding. Furthermore, in Theorem 4 it was shown that forP1 ≤ P2 −N , user2 can

achieve the rateR2 = 1
2 log2(1 + P1/N), and thus the point(0, R2 = 1

2 log2(1 + P1/N)) is also achievable.

Therefore, time sharing between these two points achieves the outer bound (34) as shown in Fig. 20a.

Corollary 4: In the limit of strong interference, forP1 ≤ P2 − N the capacity region of the MAC with a

single dirty user (10), is given by

R1 + R2 ≤ 1

2
log2

(

1 +
P1

N

)

. (97)
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b) For P1 > P2 − N : This case refers to Fig. 20b-20d. We define the following rate pair

R∗
1 ,

1

2
log2

(

P1 + N

N + P1P2

P1+N

)

R∗
2 ,

1

2
log2

(

1 +
P2

N
· P1

P1 + N

)

.

This rate pair is located on the outer bound (34) as shown in Fig.20b-20d. To see that, it can be verified that

R∗
1 + R∗

2 = 1
2 log2(1 + P1/N) andR∗

2 < 1
2 log2(1 + min(P1, P2)/N). On the other hand, usingα1 = P1

P1+N

in (96) (Lemma 9), this rate pair can be achieved. Therefore, the rate pair(R∗
1, R

∗
2) belongs to the boundary

of the capacity region.

Corollary 5: In the limit of strong interference, and forP1 > P2 −N , the rate pair(R∗
1, R

∗
2) belongs to the

boundary of the capacity region in MAC with a single dirty user (10).

The rate pair(R∗
1, R

∗
2) corresponds to the vertex point where the inner bound and theouter bound depart

from each other as shown in Fig. 20b-20d. The behavior of the achievable region versus the outer bound is

shown in Fig. 20b forP2−N < P1 ≤ P2. In this case, the gap between the inner bound and the outer bound

is maximal for the helper problem, i.e., the point(0, R2), which is bounded bylog2(3) − 3/2 ≈ 0.085 bit

(Lemma 6). In Fig. 20c, the inner bound and the outer bound forP2 < P1 ≤ P2 + N are depicted.

c) For P2 + N < P1: We define the following rate pair

Ro
1 ,

1

2
log2

(

P1

P2 + N

)

Ro
2 ,

1

2
log2

(

1 +
P2

N

)

.

Clearly, this rate pair is located on the boundary of the outer bound (34). On the other hand, usingα1 = 1

in (96) (Lemma 9), this rate pair can be achieved, as shown in Fig. 20d. In fact, it is the maximal achievable

rate that user1 can transmit while user2 transmits at its highest rateR2 = 1
2 · log2(1 + P2/N).

Corollary 6: In the limit of strong interference, and forP2 + N < P1 the rate pair(Ro
1, R

o
2) belongs to the

boundary of the capacity region in MAC with a single dirty user (10).

VIII. MAC WITH COMMON INTERFERENCE

In this section we consider the MAC with common interference(11). The stateSc is known non-causally to both

users. The channel model is given by

Y = X1 + X2 + Sc + Z, (98)

whereZ ∼ N (0, N). The power constraints are1n
∑n

i=1 x2
1i ≤ Pi for i = 1, 2. In [3], it was shown that as in

the point-to-point writing on dirty paper problem, the capacity region of the dirty MAC is the same as that of the

interference-free Gaussian MAC (clean MAC), i.e, the capacity region is a pentagonal region [25]. This is unlike

the MAC with a single dirty user problem (Section VII), where the capacity of the uninformed user is limited by

the minimum power between the users.
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The corner point(R1, R2) = (1
2 · log2(1 + P1

P2+N ), 1
2 · log2(1 + P2/N)) of the pentagon is achieved by applying

DPC twice for each user [6]. As in the point-to-point case, theauxiliary random variables are set toU1 = X1+α1Sc

whereX1 andS1 are independent, andU2 = X2 + α2S̃c whereS̃c = (1−α1)Sc, andX2 andS2 are independent.

a) Writing on dirty paper for user1 - the channel is given by

Y = X1 + Sc + Zeq, (99)

whereZeq = X2 + Z, thus Zeq is independent ofX1 and Sc. Using α1 = P1

P1+P2+N , user1 can achieve

R1 = 1
2 · log2(1 + P1

P2+N ).

b) Writing on dirty paper for user2 - the equivalent channel is given by

Y ′ = Y − U1 = X2 + S̃c + Z, (100)

whereS̃c = (1 − α1)Sc. Using α2 = P2

P2+N user2 can achieveR2 = 1
2 · log2(1 + P2/N).

We now present how to achieve the capacity region of GaussianMAC with common interference (98) using

lattice-strategies. Specifically, we derive a transmission scheme for the corner point of the pentagon(R1, R2) =

(1
2 · log2(1 + P1

P2+N ), 1
2 · log2(1 + P2/N)) using lattice-strategies. User1 and user2 use the latticesΛ1 andΛ2 with

second momentsP1 andP2, respectively. Specifically, the encoders send

X1 =[V1 − α1Sc + D1] modΛ1 (101)

X2 =[V2 − α2S̃c + D2] modΛ2, (102)

whereS̃c = (1 − α1)Sc. The vectorsVi ∼ U(Vi) carries the information of useri for i = 1, 2. The dither signals

D1 and D2 are independent, whereD1 ∼ U(V1) is known at the encoder of user1 and to the decoder, and

D2 ∼ U(V2) is known at the encoder of user2 and to the decoder as well. From the dither quantization property

the power constraints are satisfied.

DEC 2

−

Phase III

−

DEC 1

+ −

Phase I

Phase II

v̂2y′′

d1

α1

α2

y

ỹ

1 − α1

ẑeq

v̂1y′

d2

MOD Λ2

MOD Λ1

MOD Λ1

Fig. 21: Decoder for MAC with common interference.

The information-bearing signals,V1 andV2, are reconstructed using a three-stage decoder as shown in Fig. 21:



34

a) Stage I: The decoder calculatesY′ = [α1Y − D1] modΛ1. The equivalent channel is given by

Y′ =
[

α1(X1 + X2 + Sc + Z) − D1

]

modΛ1

=
[

V1 − (1 − α1)X1 + α1(X2 + Z)
]

modΛ1.

From the dither quantization property,V1 andX1 are independent. The rate achieved by user1 is given by

R1 =
1

n
I(V1;Y

′) =
1

n

{

h(Y′) − h(Y′|V1))
}

=
1

n

{

h(Y′) − h([(1 − α1)X1 + α1(X2 + Z)] modΛ1)
}

≥ 1

2
log2

(

P1

G(Λ1)

)

− 1

2
log2

(

2πe
(

(1 − α1)
2P1 + α2

1(P2 + N)
))

.

Using α1 = P1

P1+P2+N and lattices that are good for quantization, i.e.,G(Λ1) → 1/2πe asn → ∞, any rate

R1 such that

R1 ≤ 1

2
log2

(

1 +
P1

P2 + N

)

(103)

is achievable. As a consequence, the decoder can reconstruct V1 with high probability.

b) Stage II: The decoder reconstructs the effective noise, i.e.,

Ẑeq = [Y′ − V̂1] modΛ1

=
[

− (1 − α1)X1 + α1(X2 + Z)
]

modΛ1.

Furthermore, with high probability we have thatẐeq = −(1 − α1)X1 + α1(X2 + Z), since 1
nE{|| − (1 −

α1)X1 + α1(X2 + Z)||2} = P1(P2+N)
P1+P2+N < P1.

The decoder now calculatesY1 = Y + βẐeq, thus

Y1 = X1 + X2 + Sc + Z − β(1 − α1)X1 + βα1(X2 + Z)

= (1 − β(1 − α1))X1 + (1 + βα1)X2 + Sc + Z(1 + βα1).

For β = 1
1−α1

, we have that

Y1 =
1

1 − α1
X2 + Sc +

1

1 − α1
Z.

The receiver calculates̃Y = (1 − α1)Y1, and hence

Ỹ =X2 + S̃c + Z,

whereS̃c = (1 − α1)Sc.

c) Stage III: The decoder calculatesY′′ = [α2Ỹ − D2] modΛ2. The equivalent channel is given by

Y′′ =
[

α2(X2 + S̃c + Z) − D2

]

modΛ2

=
[

V2 − (1 − α2)X2 + α2Z
]

modΛ2.
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Again V2 andX2 are independent. The rate achieved by user2 is given by

R2 =
1

n
I(V2;Y

′′) =
1

n

{

h(Y′′) − h(Y′′|V2))
}

=
1

n

{

h(Y′′) − h([(1 − α2)X2 + α2Z] modΛ2)
}

≥ 1

2
log2

(

P2

G(Λ2)

)

− 1

2
log2

(

2πe
(

(1 − α2)
2P2 + α2

2N
))

.

Using α2 = P2

P2+N and a lattices that are good for quantization, any rateR2 such that

R2 ≤ 1

2
log2

(

1 +
P2

N

)

(104)

is achievable.

From symmetry, the achievability of the second corner point(1
2 · log2(1+P1/N), 1

2 · log2(1+ P2

P1+N )) is achieved

by first decoding user2 and then decoding user1. The capacity region follows by using time sharing of these

corner points.

IX. EXTENSIONS

A. Strong Correlated Interferences

In this section we consider a generalized scenario for the doubly-dirty MAC (8), where the interference signals

are correlated. Specifically, the channel model is given by

Y = X1 + X2 + S̃1 + S̃2 + Z, (105)

whereS̃1 and S̃2 are interference signals with a joint Gaussian distribution, i.e.,




S̃1

S̃2



 ∼ N



0,





σ̃2
s1

ρσ̃s1
σ̃s2

ρσ̃s1
σ̃s2

σ̃2
s2







 (106)

where|ρ| < 1 is the correlation coefficient, and̃σ2
s1

and σ̃2
s1

are the variances of̃S1 and S̃2, respectively. For any

σ̃s1
, σ̃s2

, ρ, the capacity region of (105) is denoted byCCOR(σ̃s1
, σ̃s2

, ρ). The capacity region of the doubly-dirty

MAC (8) with independent Gaussian interferencesS1 and S2 is denoted byCDMAC(σs1
, σs2

). Clearly, we have

that CDMAC(σs1
, σs2

) ≡ CCOR(σs1
, σs2

, 0).

Generally, any joint Gaussian variables can be decomposed as

S̃1 = S1 + β1S0 (107)

S̃2 = S2 + β2S0 (108)

where S0 ∼ N (0, σ2
s0

), S1 ∼ N (0, σ2
s1

) and S2 ∼ N (0, σ2
s2

) are independent Gaussian variables, andβ1 =

sign(ρ)
√

|ρ|, β2 =
σ̃s2

σ̃s1

√

|ρ| andσ2
s0

= σ̃2
s1

. In this case, we have that

σ2
s1

= σ̃2
s1

(1 − |ρ|) (109)

σ2
s2

= σ̃2
s2

(1 − |ρ|). (110)
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The channel output can be expressed as

Y = X1 + X2 + S1 + β1S0 + S2 + β2S0 + Z (111)

= X1 + X2 + S1 + S2 + Sc + Z, (112)

whereSc , (β1 + β2)S0, henceS1, S2, Sc are Gaussian independent random variables.CCOM (σs1
, σs2

, σsc
) is

denoted to be the capacity region for the case that(S1, Sc) are known non-causally at encoder1, and(S2, Sc) are

known non-causally at encoder2. Clearly, we have thatCCOM (σs1
, σs2

, σsc
) = CCOR(σ̃s1

, σ̃s2
, ρ)

Lemma 10:For |ρ| < 1, in the limit of σ̃s1
, σ̃s2

→ ∞, we have that

CCOR(σ̃s1
, σ̃s2

, ρ) = CCOM (σs1
, σs2

, σsc
) = CDMAC(σs1

, σs2
), (113)

whereσ2
si

= σ̃2
si

(1 − |ρ|) for i = 1, 2.

Proof: For anyσ̃2
s1

, σ̃2
s2

, we have that

CDMAC(σ̃s1
, σ̃s2

) = CCOR(σ̃s1
, σ̃s2

, 0) (114)

⊆ CCOR(σ̃s1
, σ̃s2

, ρ) (115)

= CCOM (σs1
, σs2

, σsc
) (116)

⊆ CCOM (σs1
, σs2

, 0) (117)

= CDMAC(σs1
, σs2

), (118)

where (115) follows since correlation between the interferences can only increase the capacity region; (117) follows

since the capacity region increases forSc = 0. The proof follows since for̃σ2
s1

, σ̃2
s2

→ ∞, alsoσ2
s1

, σ2
s2

→ ∞, and

henceCDMAC(σs1
, σs2

) = CDMAC(σ̃s1
, σ̃s2

).

Lemma 10 implies that for jointly GaussiañS1 and S̃2 with |ρ| < 1 where σ̃s1
, σ̃s2

→ ∞, the capacity region

is independent of the correlation between the interferences. Therefore, the channel model in (105) is equivalent to

the “standard” doubly-dirty MAC (8) with uncorrelatedS1 andS2. Furthermore from Lemma 10, the case that we

have in addition toS1 andS2, a common interferenceSc which is known non-causally to both encoders, as shown

in Fig. 22, is also equivalent to doubly-dirty MAC (8) in the limit of strong interferencesS1 andS2.

B. K-User Case

The results in Section VI can be extended to theK-user case. For simplicity, we consider only the symmetric

case, i.e., all the users have equal power constraints. The channel model is given by

Y =

K
∑

i=1

Xi +

K
∑

i=1

Si + Z, (119)

where Z ∼ N (0, N), and the power constraint for each user isP . The interferences{Si}K
i=1 are strong and

independent, where thei-th interference is known non-causally only to the encoder of user i. Since the derivation

is a straightforward extension of the two-user case, only the final results are stated.
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Dec.

Enc. 1

Enc. 2

Z

Y Ŵ1

Ŵ2

S1

X1

X2

W1

W2

S2

Sc

Fig. 22: MAC with private and common interferences.

Corollary 7: In the limit of strong interference, the capacity region of (119) is contained in the following region:

K
∑

i=1

Ri ≤
1

2
log2

(

1 +
P

N

)

.

An achievable region for (119) is given by the set of all the rates satisfying

K
∑

i=1

Ri ≤ u.c.e

[

1

2
log2

(

1

K
+

P

N

)]+

.

As in the two-user case (Lemma 2), the factor of1/K inside the logarithm function stems from theK independent

self noises that result in this case. As a consequence, the rate loss between the outer bound and the inner bound

increases with respect toK, yet the rate loss is bounded by1/2 bit for any K.

X. SUMMARY

In this work the Gaussian doubly-dirty MAC was introduced, where each interference is known to a different

transmitter. An outer bound for the capacity region was derived and sufficient conditions were found under which

lattice-strategies meet the outer bound. It was shown that ascheme based on lattice strategies accomplishes

simultaneously the interference concentration and interference alignment to achieve these rates.

The additive doubly-dirty MAC is a special case of channels with distributed knowledge of the channel state

information among several transmitters. Unlike the special case treated in this paper, however, the rate loss with

respect to full knowledge of the channel state at the receiver may in general be large. For example, consider the

additive-multiplicativemodel:

Y = X1 + X2 + S1 · S2 + Z

whereS1 andS2 are known to the transmitters of user 1 and user 2, respectively. In this case, for strong interferences,

the uncertainty at the decoder cannot be resolved for any choice of encoders, which indicates that the capacity

tends to zero (while a fully informed receiver can clearly achieve the clean MAC capacity).

The asymmetric case was also considered, i.e., the Gaussian MAC with a single dirty user. In particular, for the

helper problem, sufficient conditions were found under whichlattice-strategies are optimal.
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We also provide a lattice-based transmission scheme, whichachieves the capacity region of the Gaussian MAC

with common interference.
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APPENDIX I

PROOF OFLEMMA 1 - OUTER BOUND FOR SINGLE DIRTY USER WITHGAUSSIAN INTERFERENCE

The bound forR2 trivially follows by revealingS1 to the decoder.

For the sum-rate bound, we assume that a genie reveals the message of user1 to user2 and vice versa, implying

that, in fact, both users intend to transmit a common messageW . An upper bound on the rate of this message

clearly upper boundsR1 + R2 for the independent messages case (W1 6= W2). Applying Fano’s inequality to the

common message rateR we have,

nR ≤ H(W ) = H(W |Y n) + I(W ; Y n) ≤ nεn + I(W ; Y n),

whereεn → 0 as the error probability (P (n)
e ) goes to zero. The following chain of inequalities can be easily verified.

I(W ; Y n) = h(Y n) − h(Y n|W )

≤ h(Y n) − h(Y n|W, Xn
2 ) (120)

= h(Y n) − h(Y n|W, Xn
2 , Sn

1 ) − I(Sn
1 ; Y n|W, Xn

2 ) (121)

≤ h(Y n) − h(Zn) − I(Sn
1 ; Y n|W, Xn

2 ) (122)

= h(Y n) − h(Zn) − h(Sn
1 ) + h(Sn

1 |W, Xn
2 , Y n) (123)

= h(Y n) − h(Zn) − h(Sn
1 ) + h(Xn

1 + Zn|W, Xn
2 , Y n) (124)

≤ h(Y n) − h(Zn) − h(Sn
1 ) + h(Xn

1 + Zn), (125)

where the equality in (123) follows from the fact thatSn
1 is independent of(Xn

2 , W ) and the three inequalities are a

consequence of the fact that conditioning reduces differential entropy. The lemma follows sinceS1 ∼ N (0, Q1) , we

have by the Cauchy-Schwarz inequality thath(Y n) ≤ n
2 log2 2πe(N +(

√
P1 +

√
P2 +

√
Q1)

2), andh(Xn
1 +Zn) ≤

n
2 log2 2πe(N + P1).

APPENDIX II

PROOF OFTHEOREM 2 - DOUBLY-DIRTY MAC FOR IMBALANCED SNRS( FOR P1

(

P1+N
P1

)2
≤ P2)

Here we complete the proof of Theorem 2 for the case thatP1

(

P1+N
P1

)2
≤ P2. We show achievability for the

point

(R1, R2) =

(

0,
1

2
log2

(

1 +
P1

N

))

(126)



39

Using the lattice-alignment transmission scheme of SectionV-B, Λ1 andΛ2 are scaled lattices, i.e.,Λ1 = Λr =

α1Λ andΛ2 = Λ (that isκ1 = κr = α1 andκ2 = 1). The second moments of the latticesΛ1 andΛ2 areσ2
1 = α2

1P2

andσ2
2 = P2, respectively, whereα1 will be determined later. We setV1 = 0, D2 = 0, α2 = γ = 1, β = 0 and

αr = α1, hence the encoders send

X1 = [−α1S1 + D1] modΛ1 (127)

X2 = [V2 − S2] modΛ2, (128)

whereV2 ∼ Unif(V2) carries the information of user2; D1 ∼ Unif(V1) is the dither signal. The receiver calculates

Y′ = [α1Y − D1] modΛ1. The equivalent channel is given by

Y′ =
[

α1(X1 + S1 + X2 + S2 + z) − D1

]

modΛ1 (129)

=
[

α1V2 + α1(X1 + S1) + α1Z − α1QΛ2
(V2 − S2) − D1

]

modΛ1 (130)

=
[

α1V2 − (1 − α1)X1 + α1Z − α1QΛ2
(V2 − S2)

]

modΛ1, (131)

where (130) follows from (128); (131) follows from (127).

SinceΛ1 = α1Λ andΛ2 = Λ (scaled lattices), we have thatα1QΛ2
(V2 − S2) ∈ Λ1, i.e., the interference signal

is aligned withΛ1. Hence, the elementα1QΛ2
(V2 − S2) disappears after the modulo-Λ1 operation. In this case,

the equivalent channel is given by

Y′ = [α1V2 − (1 − α1)X1 + α1Z] modΛ1, (132)

whereα1V2 ∼ Unif(V1). SinceV2 andX1 are independent, hence the rate achieved by user2 is given by

R2 =
1

n
I(V2;Y

′) =
1

n

{

h(Y′) − h(Y′|V2)
}

=
1

n

{

h(Y′) − h([(1 − α1)X1 + α1Z] modΛ1)
}

≥ 1

2
log2

(

P1

G(Λ1)

)

− 1

2
log2

(

2πe
(

(1 − α1)
2P1 + α1

2N
))

(133)

where in the last inequality we used the fact thatα1V2 has uniform distribution overV1 thenY′ is also uniform

overV1, and since modulo operation reduces the second moment and Gaussian distribution maximizes the entropy

for fixed second moment.

For P2 = P1

(

P1+N
P1

)2
, using the optimal MMSE factor, i.e.,α1 = P1

P1+N , and for lattice that is good for

quantization (46), i.e.,G(Λ) → 1/2πe asn → ∞, we get that any rate

R2 ≤ 1

2
log2

(

1 +
P1

N

)

, (134)

is achievable. Clearly, forP2 = P1

(

P1+N
P1

)2
the inner bound meets the outer bound (38). Likewise, forP1(

P1+N
P1

)2 ≤
P2, the outer bound (38) remains12 log2

(

1 + P1

N

)

, thus the outer bound is also achievable.

From (134) and (61), the following rate is achievable for the point (0, R2) where

R2 =

{

1
2 log2

(

1 + P1

N

)

, P1

(

P1+N
P1

)2
≤ P2

1
2 log2

(

1 + P2

N

)

, P2

(

P2+N
P2

)2
≤ P1

(135)
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As discussed at the beginning of the proof, also the point(R1, 0) where

R1 =

{

1
2 log2

(

1 + P2

N

)

, P2

(

P2+N
P2

)2
≤ P1

1
2 log2

(

1 + P1

N

)

, P1

(

P1+N
P1

)2
≤ P2

(136)

is achievable. The theorem follows since any rate pair in the straight line R1 + R2 = 1
2 log2

(

1 + min(P1,P2)
N

)

is

achievable using time sharing between (135) and (136) forN ≤ √
P1P2 − min(P1, P2) andP1 6= P2.

APPENDIX III

PROOF OFTHEOREM 3 - DOUBLY-DIRTY MAC FOR NEARLY-BALANCED SNRS

Clearly, it is only required to show the achievable region inside the upper convex envelope operation in (77),

since the region including the upper convex envelope can be achieved using time sharing.

We first consider the case thatP1 ≤ P2 ≤ P1

(

P1+N
N

)2
, and we show achievability for the rate pair(R1, 0) where

R1 =
1

2
log2

(

P1 + P2 + N

2N + (
√

P1 −
√

P2)2

)

.

Using the lattice-alignment transmission scheme of SectionV-B, Λ1 andΛ2 are scaled lattices, i.e.,Λ1 = Λr =

α1

α2
Λ andΛ2 = Λ (that isκ1 = κr = α1

α2
andκ2 = 1). The second moments of the latticesΛ1 andΛ2 areσ2

1 = α2
1

α2
2
P2

andσ2
2 = P2, respectively, whereα1 andα2 will be determined later. We setV2 = 0, γ = 1, β = α1

α2
andαr = α1,

hence the encoders send

X1 = [V1 − α1S1 + D1] modΛ1 (137)

X2 = [−α2S2 + D2] modΛ2, (138)

whereV1 ∼ Unif(V1) carries the information of user1; D1 ∼ Unif(V1) andD2 ∼ Unif(V2) are the dither signals.

The receiver calculatesY′ = [α1Y − D1 − βD2] modΛ1. The equivalent channel is given by

Y′ =
[

α1(X1 + S1 + X2 + S2 + Z) − D1 − βD2

]

modΛ1 (139)

=
[

V1 − (1 − α1)X1 + α1Z + α1(X2 + S2) − βD2

]

modΛ1 (140)

=
[

V1 − (1 − α1)X1 + α1Z + α1(1 − α2)S2 − (β − α1)D2 − α1QΛ2
(−α2S2 + D2)

]

modΛ1 (141)

=
[

V1 − (1 − α1)X1 + α1Z − α1

α2
(1 − α2)[−α2S2 + D2 − QΛ2

(−α2S2 + D2)] −
α1

α2
QΛ2

(−α2s2 + d2)
]

modΛ1

(142)

=
[

V1 − (1 − α1)X1 + α1Z − α1

α2
(1 − α2)X2 −

α1

α2
QΛ2

(−α2S2 + D2)
]

modΛ1, (143)

where (140) follows from (137); (141) follows from (138); (142) follows sinceβ = α1

α2
; (143) follows from (138).

SinceΛ1 = α1

α2
Λ and Λ2 = Λ (scaled lattices), we have thatα1

α2
QΛ2

(−α2S2 + D2) ∈ Λ1, i.e., the interference

signal is aligned withΛ1. Hence the elementα1

α2
QΛ2

(−α2S2 + D2) disappears after the modulo-Λ1 operation. In

this case, the equivalent channel is given by

Y′ =
[

V1 − (1 − α1)X1 + α1Z − α1

α2
(1 − α2)X2

]

modΛ1, (144)
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From the dithered quantization property (51),V1 andX1 are independent. Furthermore,X2 is independent ofV1

andX1, hence the rate achieved by user2 is given by

R1 =
1

n
I(V1;Y

′) =
1

n

{

h(Y′) − h(Y′|V1)
}

=
1

n

{

h(Y′) − h

(

[

(1 − α1)X1 + α1Z − α1

α2
(1 − α2)X2

]

modΛ1

)}

≥
[

1

2
log2

(

P1

G(Λ1)

)

− 1

2
log2

(

2πe

(

(1 − α1)
2P1 + α1

2N +

(

α1

α2

)2

(1 − α2)
2P2

))]+

where in the last inequality we used the fact thatV1 has uniform distribution overV1 thenY′ has also uniform

distribution overV1, and since modulo operation reduces the second moment and Gaussian distribution maximizes

the entropy for fixed second moment.

For α1

α2
=
√

P1

P2
and using lattices that are good for quantization (46), i.e., G(Λ) → 1/2πe asn → ∞, the optimal

α1 that maximizesR1 is given byα1 =
√

P1(
√

P1+
√

P2)
P1+P2+N , in this case we get that any rate

R1 ≤
[

1

2
log2

(

P1 + P2 + N

2N + (
√

P2 −
√

P1)2

)

]+

(145)

is achievable.

We now consider the case thatP2 ≤ P1 ≤ P2

(

P2+N
N

)2
. Again, we show achievability for the rate pair(R1, 0)

where

R1 =
1

2
log2

(

P1 + P2 + N

2N + (
√

P1 −
√

P2)2

)

.

Using the lattice-alignment transmission scheme of SectionV-B, Λ1 andΛ2 are scaled lattices, i.e.,Λ1 = Λ and

Λ2 = Λr = α2

α1
Λ (that isκ1 = 1 andκ2 = κr = α2

α1
). The second moments of the latticesΛ1 andΛ2 areσ2

1 = P1

and σ2
2 = α2

2

α2
1
P1, respectively, whereα1 and α2 will be determined later. We setV2 = 0, β = 1, γ = α2

α1
and

αr = α2, hence the encoders send

X1 = [V1 − α1S1 + D1] modΛ1 (146)

X2 = [−α2S2 + D2] modΛ2, (147)

whereV1 ∼ Unif(V1) carries the information of user1; D1 ∼ Unif(V1) andD2 ∼ Unif(V2) are the dither signals.

The receiver calculatesY′ = [α2y − D2 − γD1] modΛ2. The equivalent channel is given by

Y′ =
[

α2(x1 + S1 + X2 + s2 + Z) − D2 − γD1

]

modΛ2 (148)

=
[

(1 − α2)X2 + α2Z + α2(X1 + s1) − γD1

]

modΛ2 (149)

=
[

− (1 − α2)X2 + α2Z + α2[V1 + (1 − α1)S1 − QΛ1
(V1 − α1S1 + D1)] − (γ − α2)D1

]

modΛ2 (150)

=
[α2

α1
V1 − (1 − α2)X2 + α2Z − α2

α1
(1 − α1)[V1 − α1S1 + D1 − QΛ1

(V1 − α1S1 + D1)]

− α2

α1
QΛ1

(V1 − α1S1 + D1)
]

modΛ2 (151)

=
[α2

α1
V1 −

α2

α1
(1 − α1)X1 − (1 − α2)X2 + α2Z − α2

α1
QΛ1

(V1 − α1S1 + D1)
]

modΛ2 (152)



42

where (149) follows from (147); (150) follows from (146); (151) follows sinceγ = α2

α1
; (152) follows from (146).

SinceΛ1 = Λ andΛ2 = α2

α1
Λ (scaled lattices), we have thatα2

α1
QΛ1

(V1−α1S1 +D1) ∈ Λ2, i.e., the interference

is aligned withΛ2. Hence the elementα2

α1
QΛ1

(V1 −α1S1 +D1) disappears after the modulo-Λ2 operation. In this

case, the equivalent channel is given by

Y′ =

[

α2

α1
V1 −

α2

α1
(1 − α1)X1 − (1 − α2)X2 + α2Z

]

modΛ2, (153)

where α2

α1
V1 ∼ Unif(V2). From the dithered quantization property (51),V1 andX1 are independent. Furthermore,

X2 is independent ofV1 andX1, hence the rate achieved by user2 is given by

R1 =
1

n
I(V1;Y

′) =
1

n

{

h(Y′) − h(Y′|V1)
}

=
1

n

{

h(Y′) − h

(

[

(1 − α2)X2 + α2Z − α2

α1
(1 − α1)X1

]

modΛ2

)}

≥
[

1

2
log2

(

P2

G(Λ2)

)

− 1

2
log2

(

2πe

(

(1 − α2)
2P2 + α2

2N +

(

α2

α1

)2

(1 − α1)
2P1

))]+

where in the last inequality we used the fact thatα2

α1
V1 has uniform distribution overV2 thenY′ has also uniform

distribution overV2, and since modulo operation reduces the second moment and Gaussian distribution maximizes

the entropy for fixed second moment.

For α2

α1
=
√

P2

P1
and using lattices that are good for quantization (46), i.e., G(Λ) → 1/2πe asn → ∞, the optimal

α2 that maximizesR1 is given byα2 =
√

P2(
√

P1+
√

P2)
P1+P2+N , in this case we get that any rate

R1 ≤
[

1

2
log2

(

P1 + P2 + N

2N + (
√

P1 −
√

P2)2

)

]+

(154)

is achievable, which is identical to the case thatP1 ≤ P2 ≤ P1

(

P1+N
N

)2
(145). Therefore, the achievable rate of

the point(R1, 0) for N ≥ √
P1P2 − min(P1, P2) is given by.

(R1, 0) =

([

1

2
log2

(

P1 + P2 + N

2N + (
√

P1 −
√

P2)2

)

]+

, 0

)

. (155)

Due to the symmetry, it can be shown that the achievable rate of the point(0, R2) for N ≥ √
P1P2−min(P1, P2)

is given by

(0, R2) =

(

0,

[

1

2
log2

(

P1 + P2 + N

2N + (
√

P1 −
√

P2)2

)

]+)

. (156)

The theorem follows by using a time sharing between the achievable rate pairs in (155) and (156).

APPENDIX IV

PROOF OFLEMMA 3 - A UNIFORM OUTER BOUND FOR THE GAPζ

For anyP1, P2, N , the gap is upper bounded by

ζ(P1, P2, N) ≤ ζ(Pmin, Pmin, N). (157)
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where Pmin = min(P1, P2), i.e., the symmetric case whereP1 = P2 is the worst case. To see this, we fixP1

and varyP2 such thatP2 ≥ P1. The second term on the RHS of (78) is increasing inP2, while the first term is

a constant. Therefore, we get that the gapζ(P1, P2, N) is maximized forP1 = P2. Of course, for the opposite

condition, that isP1 ≤ P2, the maximum occurs again forP1 = P2.

Without loss of generality it can be assumed thatP1 ≤ P2 whereN >
√

P1P2 − min(P1, P2). From (157), we

have that

ζ(P1, P2, N) ≤ ζ(P1, P1, N) =
1

2
log2

(

1 +
P1

N

)

− u.c.e

{[

1

2
log2

(

1

2
+

P1

N

)

]+}

. (158)

Let us define thatx , P1

N , thus

ζ(P1, P1, N) =
1

2
log2 (1 + x) − u.c.e

{[

1

2
log2

(

1

2
+ x

)

]+}

, ζ̃(x), (159)

where the upper convex envelope is with respect tox. We also define the following function

f(x) ,
1

2
log2

(

1

2
+ x

)

. (160)

The function[f(x)]+ is not a convex -∩ function with respect tox. The pointx∗ is defined such that the upper

convex envelope of[f(x)]+ is achieved by time-sharing between the pointsx = 0 andx = x∗, therefore we have

that

∂f(x = x∗)
∂x

=
1
2 log2(e)
1
2 + x∗ =

1
2 log2

(

1
2 + x∗)

x∗ (161)

Therefore,

u.c.e
{

[f(x)]+
}

=

{

1
2 log2

(

1
2 + x

)

, x ≥ x∗

C∗x, 0 ≤ x ≤ x∗
(162)

whereC∗ ,
1

2
log2(e)
1

2
+x∗

. The value ofx∗ can be evaluated (numerically) from the equationC∗x∗ = 1
2 log2

(

1
2 + x∗),

which results thatx∗ ≈ 1.655.

a) For x ≥ x∗: ζ̃(x) is given by

ζ̃(x) =
1

2
log2

(

1 + x
1
2 + x

)

=
1

2
log2

(

1 +
1
2

1 + x

)

. (163)

Since ζ̃(x) is decreasing with respect tox, henceζ̃(x) is maximized forx = x∗.

b) For 0 ≤ x ≤ x∗: ζ̃(x) is given by

ζ̃(x) =
1

2
log2 (1 + x) − C∗x. (164)

The maximum ofζ̃(x) occurs atx∗ − 1
2 , hence we get that

ζ̃(x) ≤ ζ̃

(

x∗ − 1

2

)

=
1
2 log2

(

1
2 + x∗)

2x∗ . (165)

The lemma follows sincẽζ(x∗) ≤ ζ̃(x∗ − 1/2).
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APPENDIX V

LEMMA 11

The following lemma is useful in characterizing the entropy of the effective noise in lattice transmission schemes.

(46) and for AWGN channel decoding (47).

Lemma 11:Assume a sequence of latticesΛn with second momentP , that are simultaneously good for quantiza-

tion (46) (and covering) and for AWGN channel coding (47). LetU ∼ Unif(κV) independent ofZ ∼ N (0, NIn),

whereIn is ann×n identity matrix. For anyN < P andκ such thatκ2P + N = P − ε, for someε > 0, we have

that

lim
n→∞

1

n
h
(

[U + Z] modΛn

)

=
1

2
log2(2πeP ) − ε′, (166)

whereε′ may be made arbitrarily small by takingε to be sufficiently small.

Proof: Clearly 1
2 log2(2πeP ) is an upper bound since a white Gaussian random vector maximizes the

differential entropy under a power constraint. On the otherhand, the the entropy of the l.h.s. of (166) satisfies

h(U + Z modΛn) ≥ h(U + Z|QΛn
(U + Z)) (167)

= h(U + Z) − H(QΛn
(U + Z)). (168)

Now, sinceΛn is good for both channel coding and covering, it follows thatp0 = Pr(QΛn
= 0) → 1 asn → ∞

and furthermore that1nH(QΛn
) → 0.7 Moreover, by the entropy-power inequality [25], we have that

1

n
h(U + Z) ≥ 1

2
log2

(

2
2

n
h(U) + 2

2

n
h(Z)

)

=
1

2
log2

(

2
log2(

κ2P

G(Λn)
)
+ 2log2(2πeN)

)

=
1

2
log2

(

κ2P

G(Λn)
+ 2πeN

)

.

The lemma now follows sinceG(Λn) → 1
2πe asn → ∞.

APPENDIX VI

PROOF OFTHEOREM 4 - IMBALANCED SNRS FOR THEMAC WITH A SINGLE DIRTY USER

The converse part has been proved in corollary 1. In view of theouter bound (37) in corollary 1, it is sufficient

to show achievability forP2 = P1 + N andP1 = P2 + N .

We consider the case thatP2 = P1 + N . Using the lattice-alignment transmission scheme of Section V-B, Λ1

andΛ2 are scaled lattices, i.e.,Λ1 = Λr =
√

P1

P2
Λ andΛ2 = Λ (that isκ1 = κr =

√

P1

P2
andκ2 = 1). The latticeΛ

is both good for quantization (46) and good for AWGN channel coding (47). The second moments of the lattices

7For anyε > 0, since the covering diameter of the cells grows as
√

n (but no faster), there existsr large enough such that the contribution

to 1

n
H(QΛn) of cells outside a radius ofr

√
n is negligible for alln. On the other hand, inside this ball, the number of cells is exponentially

equal to(r2/P )n/2. Thus, 1

n
H(QΛn) ≤ 1

n

“

−p0 log p0 + (1 − p0) log(r2/P )n/2

”

+ ε.
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Λ1 andΛ2 areP1 andP2, respectively. We setV1 = 0, D2 = 0, γ = 1, α2 = 0, β = 0 andαr = α1 whereα1

will be determined later, hence the encoders send

X1 = [−α1S1 + D1] modΛ1

X2 = V2,
(169)

whereV2 ∼ Unif(V2) carries the information of user2; D1 ∼ Unif(V1) is the dither signal. From the dithered

quantization property (51), the transmitted signal has uniform distribution overV1, i.e.,X1 ∼ Unif(V1). The receiver

calculatesY′ = [α1Y − D1] modΛ1. The equivalent channel is given by

Y′ = [α1(X1 + X2 + S1 + Z) − D1] modΛ1

= [α1V2 − (1 − α1)[−α1S1 + D1 − QΛ1
(−α1S1 + D1)] + α1Z − QΛ1

(−α1S1 + D1)] modΛ1

= [α1V2 − (1 − α1)X1 + α1Z] modΛ1, (170)

whereX1 andV2 are independent andα1V2 ∼ Unif(V1). The scalarα1 is determined to be the optimal MMSE

factor, i.e.,α1 = P1

P1+N = P1

P2
, hence

E
{

[α1V2 − (1 − α1)X1 + α1Z]2
}

= P1.

For latticeΛ that is both good for quantization (46) and for AWGN channel coding (47), the rate achieved by user

2 is given by

R2 =
1

n
I(V2;Y

′) =
1

n

{

h(Y′) − h(Y′|V2))
}

(171)

=
1

n

{

h(Y′) − h([(1 − α1)X1 + α1Z] modΛ1)
}

(172)

≥ 1

2
log2 (2πeP1) −

1

2
log2

(

2πe
(

(1 − α1)
2P1 + α1

2N
))

− ε (173)

=
1

2
log2

(

1 +
P1

N

)

− ε. (174)

where (173) follows since modulo operation reduces the second moment and Gaussian distribution maximizes the

entropy for fixed second moment, and from Lemma 11 whereε → 0 for n → ∞.

Therefore, forP2 = P1 + N the inner bound meets the outer bound (37). Likewise forP2 ≥ P1 + N , the outer

bound (37) remains12 log2

(

1 + P1

N

)

, thus the outer bound is also achievable.

We consider the caseP1 = P2 +N . The same transmission scheme as in (169) is used, where nowα1 = αr = 1.

From (170), the equivalent channel is given by

Y′ = [V2 + Z] modΛ1. (175)

In this case we have that

E{[V2 + Z]2} = P2 + N = P1.
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For latticeΛ that is both good for quantization (46) and for AWGN channel coding (47), the rate achieved by user

2 is given by

R2 =
1

n
I(V2;Y

′) =
1

n

{

h(Y′) − h(Z modΛ1)
}

(176)

≥ 1

2
log2 (2πeP1) −

1

2
log2 (2πeN) − ε (177)

=
1

2
log2

(

P1

N

)

− ε (178)

=
1

2
log2

(

1 +
P2

N

)

− ε, (179)

where (177) follows since modulo operation reduces the second moment and Gaussian distribution maximizes the

entropy for fixed second moment, and from Lemma 11 whereε → 0 for n → ∞.

Therefore forP1 = P2 + N , the inner bound meets the outer bound (37). Likewise forP1 ≥ P2 + N , the outer

bound (37) remains12 log2

(

1 + P2

N

)

, thus the outer bound is also achievable.

APPENDIX VII

PROOF OFLEMMA 5 - NEARLY-BALANCED SNRS FOR THEMAC WITH A SINGLE DIRTY USER

Clearly, it is only required to prove the achievable rate inside the upper convex envelope operation (89), since

the region including the upper convex envelope may be achieved using time sharing.

Using the lattice-alignment transmission scheme of SectionV-B, Λ1 andΛ2 are scaled lattices, i.e.,Λ1 = Λr =
√

P1

P2
Λ and Λ2 = Λ (that is κ1 = κr =

√

P1

P2
and κ2 = 1). The latticeΛ is both good for quantization (46) and

good for AWGN channel coding (47). The second moments of the latticesΛ1 andΛ2 areP1 andP2, respectively.

We setV1 = 0, D2 = 0, γ = 1, α2 = 0, β = 0 and αr = α1 whereα1 will be determined later, hence the

encoders send

X1 = [−α1S1 + D1] modΛ1

X2 = V2, (180)

whereV2 ∼ Unif(V2) carries the information of user2; D1 ∼ Unif(V1) is the dither signal. The receiver calculates

Y′ = [α1Y − D1] modΛ1. The equivalent channel is given by

Y′ = [α1(x1 + X2 + S1 + Z) − D1] modΛ1

= [α1V2 − (1 − α1)[−α1S1 + D1 − QΛ1
(−α1S1 + D1)] + α1Z − QΛ1

(−α1S1 + D1)] modΛ1

= [α1V2 − (1 − α1)X1 + α1Z] modΛ1, (181)

The scalarα1 is determined such that the second moment ofα1V2 − (1 − α1)X1 + α1Z will be P1, hence

α2
1(P2 + N) + (1 − α1)

2P1 = P1, where

α1 =
2P1

P1 + P2 + N
, α∗

1. (182)
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For latticeΛ that is both good for quantization (46) and for AWGN channel coding (47), the rate achieved by

user2 is given by

R2 =
1

n
I(V2;Y

′) =
1

n

{

h(Y′) − h ([(1 − α∗
1)X1 + α∗

1Z] modΛ1)
}

(183)

≥ 1

2
log2 (2πeP1) −

1

2
log2

(

2πe((1 − α∗
1)

2P1 + α∗
1
2N)

)

+ ε (184)

=
1

2
log2





P1

P1(P2−P1+N)2+4P 2
1 N

(P1+P2+N)2



+ ε (185)

=
1

2
log2

(

1 +
4P1P2

(P2 − P1 + N)2 + 4P1N

)

+ ε (186)

where (184) follows since modulo operation reduces the second moment and Gaussian distribution maximizes the

entropy for fixed second moment, and from Lemma 11 whereε → 0 for n → ∞.

APPENDIX VIII

PROOF OFLEMMA 6 - A UNIFORM OUTER BOUND FOR THE GAPη

For givenP1 and P1 ≤ P2, the gapη(P1, P2, N) is decreasing with respect toP2. Therefore,η(P1, P2, N) ≤
η(P1, P1, N). In the same way, it can be shown that for givenP2 andP1 ≥ P2, η(P1, P2, N) ≤ η(P2, P2, N). As

a consequence, we have that

η(P1, P2, N) ≤ η(Pmin, Pmin, N), (187)

wherePmin = min(P1, P2).

Since the upper convex envelope in (78) can only decrease the gap, we have that

η(Pmin, Pmin, N) ≤ 1

2
log2

(

1 +
Pmin

N

)

− 1

2
log2

(

1 +
4P 2

min

N2 + 4PminN

)

(188)

≤ max
Pmin,N

1

2
log2

(

Pmin + N

N
· 4PminN + N2 + 4P 2

min

N2 + 4PminN

)

(189)

= max
Pmin,N

1

2
log2

(

(Pmin + N)(4Pmin + N)

(2Pmin + N)2

)

(190)

= max
Pmin,N

1

2
log2

(

(1 + Pmin/N)(1 + 4Pmin/N)

(1 + 2Pmin/N)2

)

. (191)

The proof follows since the maximum of the functionf(x) = (1+x)(1+4x)
(1+2x)2 occurs atx∗ = 1/2, andf(x∗) = 9/8.

APPENDIX IX

PROOF OFLEMMA 8 - CAPACITY REGION OFMAC WITH A SINGLE DIRTY USER AT HIGH SNR

We consider here the case thatP1 > P2. Using the lattice-alignment transmission scheme of Section V-B, Λ1

andΛ2 are scaled lattices, i.e.,Λ1 = Λr =
√

P1

P2
Λ andΛ2 = Λ (that isκ1 = κr =

√

P1

P2
andκ2 = 1). The latticeΛ

is both good for quantization (46) and good for AWGN channel coding (47). The second moments of the lattices
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Λ1 andΛ2 areP1 andP2, respectively. We setD1 = 0, D2 = 0 γ = 0, α2 = 0, β = 0 andαr = α1 = 1, hence

the encoders send

X1 = [V1 − S1] modΛ1 (192)

X2 = V2, (193)

whereV1 ∼ Unif(V1) andV2 ∼ Unif(V2) carry the information of user1 and user2, respectively. The receiver

calculatesY′ = Y modΛ1. The equivalent channel is given by

Y′ = [V1 + V2 + Z − QΛ1
(V1 − S1)] modΛ1 (194)

= [V1 + V2 + Z] modΛ1. (195)

The decoder uses successive decoding to reconstructV1 andV2 in (195). First the decoder decodesV1 where

V2 acts as a noise, in this case we get that

R1 =
1

2
log2

(

P1

P2 + N

)

,

is achievable. Then, the decoder subtracts the reconstruction of V1 and reduces the result modulo-Λ2, in this case

the equivalent channel is given by

Y′′ = [V2 + Z] modΛ2.

Hence, we get that

R2 =
1

2
log2

(

P2

N

)

,

is achievable.

Clearly at high SNR, i.e., forP1, P2 � N , this achievable rate pair coincides with the point(Rc
1, R

c
2) (36).

From Lemma 7, the rate pair(0, R2) = (0, 1
2 log2

(

P1

N

)

− o(1)) is also achievable at high SNR. Likewise, the point

(R1, 0) = (1
2 log2

(

1 + P1

N

)

, 0) is achievable for any SNR. The theorem follows since the regiondefined by the

time sharing between these three points coincides with the outer bound (34) at high SNR .

APPENDIX X

PROOF OFLEMMA 9 - ACHIEVABLE RATE REGION OFMAC WITH A SINGLE DIRTY USER

Using the lattice-alignment transmission scheme of SectionV-B, Λ1 andΛ2 are scaled lattices, i.e.,Λ1 = Λr =
√

P1

P2
Λ and Λ2 = Λ (that is κ1 = κr =

√

P1

P2
and κ2 = 1). The latticeΛ is both good for quantization (46) and

good for AWGN channel coding (47). The second moments of the latticesΛ1 andΛ2 areP1 andP2, respectively.

We setD2 = 0, γ = 1, α2 = 0, β = 0 andαr = α1 whereα1 will be determined later, hence the encoders send

X1 = [V1 − α1S1 + D1] modΛ1

X2 = V2, (196)
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where V1 ∼ Unif(V1) and V2 ∼ Unif(V2) are independent and carry the information of user1 and user2

respectively;D1 ∼ Unif(V1) is the dither signal. The receiver calculatesY′ = [α1Y−D1] modΛ1. The equivalent

channel is given by

Y′ = [α1(X1 + X2 + S1 + Z) − D1] modΛ1

= [V1 + α1V2 − (1 − α1)[V1 − α1S1 + D1 − QΛ1
(V1 − α1S1 + D1)] + α1Z − QΛ1

(V1 − α1S1 + D1)] modΛ1

= [V1 + α1V2 − (1 − α1)X1 + α1Z] modΛ1,

The rate achieved by user1 is given by

R1 =
1

n
I(V1;Y

′) =
1

n

{

h(Y′) − h(Y′|V1))
}

(197)

=
1

n

{

h(Y′) − h([α1V2 + (1 − α1)X1 + α1Z] modΛ1)
}

(198)

≥ 1

n

{

h(Y′) − min

{

1

2
log2(2πeP1), h(α1V2 + (1 − α1)X1 + α1Z)

}}

(199)

≥ 1

2
log2

(

P1

G(Λ1)

)

− 1

2
log2

(

2πe · min
{

P1, α
2
1P2 + (1 − α1)

2P1 + α2
1N
})

(200)

=
1

2
log2

(

P1

min
{

P1, α2
1P2 + (1 − α1)2P1 + α2

1N
}

)

− 1

2
log2 (2πeG(Λ1)) , (201)

where (199) follows sinceh(U mod Λ1) ≤ min(n
2 log2(2πeP1), h(U)) for any random vectorU; (200) follows

sinceY′ ∼ Unif(V1) thus h(Y′) = 1
2 log2

(

P1

Gn(Λ1)

)

, and since Gaussian distribution maximizes the entropy for

fixed variance. Since latticeΛ is good for quantization, i.e.,G(Λ) → 1/2πe asn → ∞, we get that any rate

R1 ≤ 1

2
log2

(

P1

min
{

P1, (1 − α1)2P1 + α2
1(N + P2)

}

)

(202)

is achievable. SinceV1 is reconstructed at the decoder with high probability, we can subtractV̂1 from Y′. i.e

Ỹ = [Y′ − V̂1] modΛ1 (203)

= [α1V2 − (1 − α1)X1 + α1Z] modΛ1. (204)

In order to reconstructV2, the receiver calculatesY′′ = [Ỹ] modΛ′
r, where the latticeΛ′

r has a second moment

ρ2P1, and ρ =
√

min(P1,(1−α1)2P1+α2
1(N+P2))

P1
. The latticeΛ1 is a sub-lattice ofΛ′

r, i.e., Λ1 and Λ′
r are nested

lattices. The equivalent channel is given by

Y′′ = [α1V2 − (1 − α1)X1 + α1Z] modΛ′
r. (205)
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Since the latticeΛ is both good for quantization (46) and good for AWGN channel coding (47), henceΛ′
r is both

good for quantization and for AWGN channel coding as well. Therefore, the rate achieved by user2 is given by

R2 =
1

n
I(V2;Y

′′) =
1

n

{

h(Y′′) − h(Y′′|V2))
}

(206)

=
1

n

{

h(Y′′) − h([(1 − α1)X1 + α1Z] modΛ′
r)
}

(207)

≥ 1

n
h(Y′′) − 1

2
log2

(

2πe
(

(1 − α1)
2P1 + α2

1N
))

(208)

≥ 1

2
log2

(

2πe · min(P1, (1 − α1)
2P1 + α2

1(P2 + N))
)

− 1

2
log2

(

2πe
(

(1 − α1)
2P1 + α2

1N
))

− ε (209)

=
1

2
log2

(

min(P1, (1 − α1)
2P1 + α2

1(P2 + N))

(1 − α1)2P1 + α2
1N

)

− ε, (210)

where (209) follows from Lemma 11, andε → 0 asn → ∞.
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