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Abstract

In Costa’s dirty-paper channeGaussian random binning able to eliminate the effect of interference which
is known at the transmitter, and thus achieve capacity. Vienée a generalization of the dirty-paper problem to a
multiple access channel setup, wheteictured (lattice-based) binningeems to be necessary to achieve capacity. In
the dirty-MAC, two additive interference signals are prasene known to each transmitter but none to the receiver.
The achievable rates using Costa’s Gaussian binning vénigith interference signals are strong. In contrast, it is
shown that lattice-strategies (“lattice precoding”) ca@hiave positive rates, independent of the interferenceepow
Furthermore, in some cases - which depend on the noise varemd power constraints - high-dimensional lattice
strategies are in fact optimal. In particular, they areroptiin the limit of high SNR - where the capacity region
of the dirty MAC approaches that of a clean MAC whose poweragegned by the minimum of the users’ powers
rather than their sum. The rate gap at high SNR betweendaitiategies and optimum (rather than Gaussian)
random binning is conjectured to b?logg(we/G) ~ 0.254 bit. Thus, the doubly-dirty MAC is another instance
of a network setting, like the #ner-Marton problem, where (linear) structured codingadgentially better than
random binning. Finally, it is shown that lattice strategere at mos0.167 bit from the capacity region for all
SNR. The results are also compared and contrasted tsittigée dirt multiple access channel case (considered by

other researchers), where lattice strategies and Gaussidom binning have similar performance.

Index Terms

Dirty paper coding, multiple access channel, channel stdtemation, lattice-strategies, interference caneella

tion, interference alignment, interference concentratio

. INTRODUCTION

A subclass of multiple-access channels (MAC) with siderimfation (SI) known at the transmitters is considered.
Figure 1 depicts the problem of interest, a two-user Gaudgia@ with two known interferences. The channel

output is given by
Y=X1+Xo+ 5 +5+7, (1)
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where Z is an additive white Gaussian noise, i2~ N (0, N), and X; and X, are the channel inputs from user
1 and user, respectively, which must satisfy the power constraiftsand P,. The interference signalS; and .S,
are known non-causally to the transmitters of usand user, respectively, but unknown to the receiver. We call
this setup thedoubly-dirty MAC
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Fig. 1: Doubly-dirty MAC.

This channel model generalizes Costa’s dirty-paper chdthhal a multiple access setup. In [1], Costa considered

the single-user case,
Y=X+S5+7 (2)

where the interference is assumed to be i.i.d. Gaussian,Si.ee (0, Q). He showed that the capacity of this
channel is% log,(1 + SNR), whereSNR, = %, independent of the interference pow@r Thus, the capacity is
the same as that of the “clean” (interference-free AWGN)ncleh and no loss is incurred by the presence of the
the interference. We will compare (and contrast) this Wwathwn result with effect of known interference on the
capacity region of the doubly-dirty MAC as well as some otfedated scenarios.

The proof of Costa [1] uses the general capacity formula ddrtwy Gel'fand and Pinsker [2] for channels with
(non-causal) side information at the transmitter. Theihtegue falls in the framework afandom binningwhich is
widely used in the analysis of multi-terminal source andnctgh coding problems. Using random binning for the
direct coding theorem, they obtainediagle lettercapacity expression (originally derived for the discretarmel

case) which involves an auxiliary random variable

Cep = max {I(U;Y)—-1(U;S)} (3)

p(u,z|s)
where the maximization is over all joint distributions oktform p(u, s, y, ) = p(s)p(u, x|s)p(y|x, s). Selecting

the auxiliary random variabl& to be

U=X+as, (4)
where X ~ N (0, P) is independent of, and takinga = PJFLN, maximizes (3), and the associated random binning

scheme is capacity achievihg

Although (3) was originally derived for the case of discrete memorybessinel, it holds also for continues signals.



A special case of the dirty MAC (1) was considered by Gel'famtl Pinsker in [3]. They showed that in the
noiseless caseN = 0), arbitrary large rate pair§R;, Ry) are achievable. For the generaV (> 0) case and
independent Gaussian interferences, they conjecturédnin@apacity region is the same as that of a “clean” MAC,
i.e., the standard Gaussian MAC with no interference. Therdadund in Section 1V shows that the capacity region
is in fact smaller.

An interesting observation we make in this work is that in lingit when both interference signals are strong,
Gaussian binning (i.e., the extension of Costa’s solutént¢ the two-user case) isnableto achievepositive
ratesover the doubly-dirty MAC of Fig. 1 (see Proposition 1 in Sectih This is in contrast not only to Costa’s
problem, but also to the “single dirt” MAC case (with one ifiégeence known to one user) and the common
interference case (one interference known to both usetsrevGaussian binning was shown to be optimal (or
nearly optimal) [4], [5], [3], [6]. Nevertheless, as we showthis work, lattice-strategies [7] achieve positive gate
over the doubly-dirty MAC by employingnterference concentratioand alignment

One-dimensional lattice-strategies provide a positiveough still sub-optimal single-lettersolution for the
rate region. We conjecture that this is, in fact, thestsingle-letter solution for the doubly-dirty MAC when the
interference is strong and the SNR is higiligh-dimensional lattice strategies - which can be regards a
special case of a multi letter solution - are strictly bets we show, they are in fact asymptotically optimal for
this problem, i.e., capacity achieving, under certain diows (e.g., high SNR).

The sum-rate gap between the one-dimensional and the higbrdional lattice schemes is thleaping gain8]
%logQ(Qwe/m) ~ 0.254 bit. Thus, the doubly-dirty MAC is an instance where lineade® (lattices) are strictly
better than any known single letter solution, i.e., beti@ntany random binning technique; see [9] for an extensive
discussion on this issue. A similar phenomenon was obsdrydtorner and Marton [10] in a distributed lossless
source coding problem (the modulo-two sum problem), wheey showed that the rate region achievable using
linear codes is optimal, and is superior to the “best knowglsi letter characterization” for the rate region.

Beyond the the central role that linearity plays in coding thee doubly-dirty MAC channel, we will observe
that the capacity region itself exhibits some interestihgracteristics. First, there is an inherent “power losshwit
respect to the clean MAC channel, i.e., the sum rate is gedehby the minimum (rather than the sum) of the
encoders’ powers. This follows from the outer bound presemeSection IV. A second phenomenon, which is
manifested at least in thachievableregion derived in Section VI, is the further (partial) losstbé “1” in the
capacity expressions. More specifically, the “1” is replabgda factor of1/ K, where K is the number of users.
While this observation is only based on our coding approachachievability results, we conjecture that this loss
is in fact inherent.

The paper is organized as follows. Section Il defines the dodioly-MAC, the MAC with a single dirty user
and the MAC with common interference. Section Ill gives a tbaeerview of the main concepts and insights

developed in the paper. Section IV derives outer bounds ferctipacity region of the doubly-dirty MAC and

2This approach may be interpreted as a degenerate form of randoingias we shall discuss in Section VI.



for the MAC with a single dirty user for the case of strongeifiérence. A brief review of lattice codes, and a
lattice-alignment transmission scheme are presented itio8&¢. The main result of this work, the near-optimality
of lattice strategies for the doubly-dirty MAC, is presahia Section VI. In Sections VII and VIII we study the
single dirt variants (MAC with a single dirty user and MAC tvitcommon interference) which were previously
treated in [5], [4], [3], [6]. Using the lattice strategiegmoach, we extend these previously derived results (which
assumed Gaussian interference of known power) to the caae afbitrary interference. Other extensions of these

problems are considered in Section IX. Section X concludepéper.

[l. PROBLEM FORMULATION
A. The General Memoryless Model

The channel model in (1) is a special case of a memoryless MAR twio channel stateS; € S; andS; € Ss,
which are known non-causally at the transmitters of usemnd user2, respectively. The stateS; and S, are
memoryless and independent with distributigris;) andp(s2), respectively. The channel transition probability is
p(y|z1,x2, 51, 52), WhereX; € &} and Xy € A, are the channel inputs, arld € ) is the channel output. The

channel is memoryless i.e.,

n

p(y|xi,x2,81,80) = [ [ Wil was, 514, 52), 5)
i=1

where bold face indicates vectors (of length The encoder outputs of usérand user2 are given by
x; = fi(w;,s;) for,i=1,2,

wherew; € W; are the transmitted messages. The achievable rates areeddiyaR; and R, where|W;| = 2"

and | \Ws| = 2nf2  The decoder reconstructs the transmitted messages, from the channel output, hence

(W1,2) = g(y)-

A single letter characterization for the capacity regiomas known; see [9], [11] for a more detailed discussion.
The best known achievable rate region for this channel, basatie random binning technique, was presented by
Jafar in [12], and it is given by the convex hull of all rate rsaiR;, R2) satisfying

Ry < I(Uy;Y|Uy) — I(Uy; Sh)
Ry < I(Ug; Y|Uy) — I(Us; S2) (6)
Ri+ Ry < I(U1,Us;Y) — I(Uy; S1) — 1(Uz; S2)
for somep(u1, ug, 1, 22|51, s2) = p(u1, x1|s1)p(uz, r2]s2).2 The case where there is only a single stseknown
to userl was treated by Kotagiri and Laneman in [5]. In this case, thglsiletter expression (6) reduces to the

8If the channel inputs and states have finite alphabets, then it is enougle o (8) auxiliary random variables with alphabets whose
cardinality is bounded byi4;| < |X;| + |S;| for i =1, 2.



convex hull of all rate pair§R;, R2) satisfying
Ry < I(Uy;Y|X2) — I(Uy; S1)
Ry < I(X2;Y|Uh) (7)
Ry + Ry < I(Uy, X9;Y) — I(Uy; 54).
for somep(uy, x1, x2|s1) = p(x2)p(ui, z1|s1). The common message capacily/y(= W>) was solved by Somekh-

Baruch et al. in [4]. Furthermore, the capacity region for tase of degraded messages was derived in [13],
[14].

B. The Gaussian Model

We now turn to the Gaussian channel case which is the focuseopaper. Specifically, consider the following
models:
1) Doubly-dirty MAC:

Y=X1+Xo0+51+5+72, (8)

where Z ~ N(0,N) is independent ofX;, X5, S1,S2, and where usei and user2 must satisfy the power
constraints: > | 22 < Py and 137 a2 < P, respectively; see Fig. 1. The interferencgs and S, are
known non-causally to the transmitters of udeand user2, respectively. The signal-to-noise ratio for each user
is defined aSNR; = % andSNRy = %. We consider the case sfrong interferenced.e., the interferences are

assumed to be eitherbitrary sequencesor independent Gaussian variables with unbounded vassanc
S?,NN(O:QZ)7 i:1727 Ql,Q2—>OO. (9)

Ideally, we wish to be able to cancel the effect ©f and S; regardless of their strength - just as in Costa’s
single-user case (2). However, as we shall see, this is matyal possible.

2) MAC with a single dirty user and the “helper problem”:
Y=X1+Xo0+5 +7 (20)

In this asymmetric case, shown in Fig. 2, useémows the interferencé; (informed user) and useéris not aware
of the interference (uninformed usek)

The “helper problem” is a special case of (10), where the mém user does not send any information, and its
sole role is to help the uninformed user.

3) MAC with common Interference [3], [6]:

Y=X1+Xo+ 5.+ 72 (12)

In this case, there is a single interfererfg,ewhich is known non-causally to both encoders, as shown in Fig.

“Note that under the strong interference assumption, (10) is not a kpasi of (8) because we cannot $gt= 0 in (8). Indeed, the
fact that only a single interference is present allows us to derive in ®e¢tioa better achievable rate region than for the doubly-dirty case.
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Fig. 2: MAC with a single dirty userI{ open corresponds to the helper problem).
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Fig. 3: MAC with common interference.

Remark The above models can also be extended by allowing commowmnamess (dither signals) at the encoders

and decoder.

[Il. OVERVIEW OF THEKEY CONCEPTS

In this section we introduce the main ideas in a nutshell fime special cases. For simplicity, we assume
throughout the limit of high SNR% — 00, in addition to the strong interference assumption (9). \&fgirb with

a simple interpretation of some known techniques for thglshuser dirty paper channel.

A. Single-User Dirty Paper Channel
The capacity of the dirty paper channel can be achieved usimgom binning. The single-letter expression for
the capacity is given in (3) which is maximized by the auxjlizariableU in (4) . At high SNR, this choice of

U is given byU = X + S. Hence, the achievable rate using random binning is given by

(
= hW(U|S) — h(U]Y)
= h(X) — h(X + S|Y)
= h(X) — h(Z]Y)
~ h(X) — h(Z)



where the approximatior: is due to the strong interference assumpt@n— oc. We call this solution “Costa

strategy” or “Gaussian random binning”.
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Fig. 4: Single-user: geometric view of random binning.

Random BinningTo translate the auxiliary variablé above into a random binning scheme (see, e.g., [2]), we
select~ 2" (U3Y) vectorsu} i.i.d. according to the distribution off, and partition them evenly int@™* bins,
whereR ~ I(U;Y) — I(U; S) (i.e., there are approximatefy/(Us5) vectorsu} in each bin). Each bin represents
a messag®’, and the encoder selects a vectdrin bin V' (i.e., in the message’s bin) which is jointly typical with
the side-informations}. With high probability there exists at least one sugh(for large n). This u} induces a
channel inputz} which in turn induces a channel outpyjt. The decoder decodes the message (Giry looking
for a vectoru} which is jointly typical withy}". With high probability there exists one and only one sug¢hwhich
is the true one (for large).

Since in our case the auxiliary variablelis= X + S, the channel output is given by = U + Z. Thus, the
selectedu? is in the vicinity (for large enough) of the channel output vectay within a distance of/nN, and
to the interference vector] within a distance of/nP, where the transmitted vectaf is the latter difference:

] = uf — sT.

Let Qv (s7) denote the vector? selected by the encoder to transmit the message{1,...,2"%}. Bin V thus

consists of all possible values th@i(-) can take for different} vectors. We can think o)y (-) as aquantizer

for ST with average “distortion’nP. The transmitted vectar?,
1 = Qv (st) — 5T,
can thus be interpreted as theantization erroy while the channel output,
y1 = Qu(st) + 27, (12)

is the superposition of the noise over the quantized value.

Fig. 4 describes the random binning technique in a qualéatanner. Thez-axis describes the collection of
the vectorsu}. Due to the randomness of the binning scheme, the pointsaireetessarily located on a uniform
grid. Each of the symbol&], o, x, , A represents a different bin. Again, due to the randomnesteftheme,

each bin has a possibly different pattern of points onakexis. The set of typical:]’s for a given vectors? is



represented by a bell shape of standard deviatiarP, while for a given vector} - by a bell shape of standard
deviationv/n.N.

Interference ConcentrationWillems [15] proposed the technique ofterference concentratiofor the causal
dirty paper (“dirty tape”) channel. Although the schemeub-®ptimal even at high SNR, it conveys the main idea
of canceling the interference using a structured codingreeh Willems suggested to dedicate half of the input
power to mitigate the interference effect and half of the @ow send the information. Specifically, the transmitted
signal is given by

X =V —[Smod A, (13)

whereV is now a real number, anfl mod A = S — Q(S) whereQ(S) is a uniform quantizer with step siz&,
ie.,Q(S)=A- L%J where|-| is the floor operation. The input powét is divided between the information signal
V' which is uniformly distributed over\, and the interference concentration operatfbmod A. Therefore, the

input power and step size are related hy= +/6P. The channel output is given by

Y = V4+QS)+7Z (14)
= V+Z+iA (15)

for some integet. The interference is thus concentrated on a discrete andronifirid with step size, i.e., on
the one-dimensional latticA = A - Z. By restricting the information-bearing signgl to an interval of size), it
can be reconstructed frol as if the channel wamterference-freeSince only half the power is used for carrying

the information, the achievable rate at high SNR is given by

1 P 1 2Te

where the second term is the loss of the shaping gain due tchérenel input being uniform rather than Gaussian.
Fig. 5 describes the interference concentration technifjoe.center of each cell is denoted &), where this

time they are located on @aniform grid A. The symbold], o, x, {, A represent modulation af(.S) by different

values ofV .5
P2 VN
- -
| | | |
| | | |
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Fig. 5. Single-user: geometric view of interference conedittn scheme.

*The modulation signal” can in general depend a@(S), although for ease of exposition it is not shown in (13).



Lattice Strategiesin [16], [7] the idea of lattice strategies was presentedvds shown how the transmitted
power can be exploited such that all the power goes effdgtizethe information signal. Specifically, using the

same notation as in (13), the transmitted signal is
X =[V =S mod A, a7)

where A = v/12P. SinceV is distributed uniformly overA, the transmitted signal uses the full power In this

case, the channel output is given by

Y = V-QV-S)+2Z2 (18)

= V+Z+iA (19)

for some integeri. Again, the residual interference is concentrated on tisereie set of valued, and it can
be completely eliminated if we restridf to an interval of sizeA. Furthermore, it was shown in [7] that using
high-dimensional lattice vector quantizers, and a sugtaitloice of/, the full (non-causal) dirty-paper channel
capacity -1 log (1 + %) - is achieved.

Fig. 6 illustrates the lattice strategies technique. Theereoit each cell are again located on a uniform gkid
as in interference concentration. Each of the informatiearing symbolg], ¢, o.A, however, corresponds now to
a shift A — V' of the uniform grid:

Qu(S)=Q(V +9) -V (20)

for some fixed valué” = v, and it can be decoded frony’ (modulo A) - the channel output modulo the grid step
size. Thus, lattice strategies amount tsteucturedform of the random binning technique discussed earlierheac

bin is alattice shift and all bins are shifts of theamelattice.
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Fig. 6: Single-user: geometric view of lattice strategies.

B. MAC with a Single Dirty Userq, = 0)

Taking the Costa strategy for user 1 (the informed user),atlndliary random variabld/; is given byU; =

Xi + S1, where X7 ~ N(0, P,) is independent of5;. For user 2 (uninformed user), the natural choicé/is=
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Xy ~ N (0, P»), independent of{; and.S;. Substituting in (6), and noting that = U; + X, + Z, we get that the
sum rate is given by

Ry + Ry = I(U, X2;Y) — I(Uy; 51)

hY) = h(Z)] — [n(U1) — h(X1)]
~ h(X}) — h(Z)

where the approximation follows sindgY’) ~ h

individual bounds in (6) imply alsd?; < %logg (

U1) = h(S1) for strong Gaussian interferenc@( — oc). The
informed user) serves as a helper, then

(
L) and (for high SNR)R, < 3 log, (£2). Hence, if user 1 (the

1 min(Pl, PQ)
R2 =~ 5 10g2 <N

is achievable at high SNR.

>
o>
&

Fig. 7: Two Users with a Singe DirtS@ = 0): geometric view of random binning.

Random binning for the MAC with single dirt can be thought sefaasuperposition of clean-paper transmission,

Xo, over dirty-paper transmission. The latter can be writte(sattingn = 1 for ease of notation)X; = Qv (S1) —
S1, whereQy (+) is a quantizer with “distortion’P; for S;. See Fig. 7.

We can equivalently use lattice strategies instead of nanbimning, in which case a bin is a lattice shift—V,

as in (20). In the helper cadé degenerates, and we have only one bin which is the uniforch(grilattice)A. In
this case)attice strategies reduce to interference concentration
C. Doubly Dirty MAC

In all problems we have seen so far, capacity can be achiesig either the random binning technique [1]

or lattice-strategies [7]. In the doubly-dirty MAC, howeyvdattice structure is essential to achieve or approach
capacity.
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Consider the doubly-dirty MAC (8), wherg; ~ N(0,Q1) and Sy ~ N (0,Q2) are independent. We shall first
show that Costa’s strategy (4) is not efficient in the limit obeg interference and high SNR. We substitute

U =X1+51
(21)
U = X3+ 52

in Jafar’s inner bound (6), whet®, ~ N (0, P;) and X3 ~ N (0, P,) are independent.
Proposition 1 (Costa’s strategies in Jafar's inner bounde sum-rate of (6) for the auxiliary random variables

(21) is bounded from above by

Ry + Ry < [h(S1 + S2) — h(S1) — h(S2) + T +0(1)]" — 0 (22)

Q1,Qa—o0

wherel' £ Llog,(2mefi2), ando(1) — 0 as @1, Q2 — oo.

Proof: From (6) we get that

Ri+ Ry = [I(Uy,Us;Y) — I(Uy; S1) — I(Us; So)] ™ (23)
= [h(Y) = B(Y|U1,Us) — h(Uy) + h(U1]81) — h(Us) + h(Us|Ss)] " (24)

= [M(Y) = h(Z) — h(U1) — h(Us) + h(X1) + h(X2)] " (25)

< [A(Y) = h(S1) — h(S2) + h(X1) + h(X2) — h(Z)]" (26)

= [M(Y) = h(S1) — h(S2) +T]* (27)

< [A(S1 + Sa) — h(S1) — h(S2) + T + o(1)] " (28)

where (25) follows sinc&” = Uy + U, + Z and sinceh(U;|S;) = h(X;) for i = 1,2; (26) follows sinceh(S;) >
h(U;); (27) follows from the definition of the constalit£ 1 log,(2mef2E2); (28) follows sinceh(Y) < h(S; +

Sa) + o(1) as @1, Q2 — oo. The lema follows sincé (S, + S2) — h(S1) — h(S2) — —o0 asQ1, Ry — oo. O
Thus, the random binning scheme corresponding to this clodi€g andUs does not achieve any positive rate
To understand this failure, observe that the channel ofi@)tcan be written as (setting again= 1 for simplicity

of notation)
Y = Qv,(51) + Qv,(S2) + 2

whereQy, (S1) = Uy and Qy,(S2) = Us. If the binsQy, () and Qv, () have no structure, and if they are spread
over a large region in the interference domain (since therfietence is strong), then the range of their set sum
Qv,(-) + Qv,(-) tends to be dense. See Fig. 8 for the bin labeledbb¥ig. 9 further illustrates the effect of
increasing the size of bin. Thus the immunity to noise is lost, and the bins cannot be agtdrom the channel
output.

To overcome this failure, we would like to have the propehstt

Qv, (1) + Q,(S2) = Qv (S1 + S2)

for someV, i.e., that the order of quantization and summation can lehanged. In other words, we require the

range ofQy, (1) andQy,(-) to be a lattice - a set which is closed under addition.
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Fig. 8: Doubly dirty MAC: bottom axis shows the reflection of kirof the two users on the decoder.
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Fig. 9: Doubly dirty MAC: geometric view of random binning -dreasing the range of bin

With this motivation in mind, consider now lattice strategjifor the doubly-dirty MAC where only usércarries
information and use? serves as a helper. Both transmitters usestirae latticevhere P, = P, = P. The encoders
send

X1 = [Vl — Sl mod A] (29)
X2 = [—SQ mod A], (30)
whereA = /12P. Thus, usee (helper) performs interference concentration (with respeits known interference)
while userl uses lattice strategies. In this case, the channel outmiven by
Y=V-QWVi—-5)—-Q(-5)+Z=Vi+Z+iA (31)

for some integei. since the sum of two uniform grids is a uniform grid, the desil interference is concentrated
and alignedon the same set of discrete valuég @s shown in Fig. 10.
As in the point-to-point case, it/ is restricted to an interval of sizA then the interference is completely

eliminated; if we use high dimensional lattices instead stalar lattice, then a rate of

;m@(ﬁ) (32)
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Fig. 10: Doubly-dirty MAC: geometric view of lattice straieg.

can be achieved. Note that this is almost the full capacityhefclean MAC: we loose only the (nhon-coherent)
summation of the powers of the two transmitters.
Can random binning approach this rate? Indeed, if we subsstib Jafar’'s inner bound (6) the auxiliary random

variables

where A; = /12P;, then we obtain the rates correspondingtee-dimensionalattice strategies. This amounts to

the capacity in (32), up to a loss ehaping gain[8]:

1 | 2me
— 10 —_— .
2 %82\ 12

We conjecture that this loss of the single-letter expres$f) is unavoidable at high SNR.

To summarize, we have seen that structured (linear) codamg @ key role in the doubly-dirty MAC channel. A
formal derivation based on multi-dimensional latticesnfsabackground on which is given in Section V) is carried
out in Section VI. In Section VI we also extend the analysis toegal SNR and discuss the (conjectured) loss of
the “1” in the capacity expression, which was mentioned m lthitroduction.

We have also seen that the capacity of the doubly-dirty MA@nctel (as well as that of the uninformed user
in the MAC with a single dirty user) is governed by the powertloé weaker of the users. This observation is

substantiated in the next Section where it is proved that flosver loss” is unavoidable.

IV. OUTER BOUNDS FOR THEDIRTY MAC

We establish an outer bound for the capacity region of thes&ian MAC with a single dirty user (10), and then
this result is used to obtain an outer bound for the doubtyydMAC (8).
Theorem 1 (Outer bound for single dirty u&gr In the limit of strong interference, the capacity region loé t

MAC with a single dirty user (uset) (10) is contained in the following region:

1 10g2 <1 + mm(Pl, PQ))

R <3 N

IN

(34)

1 P
Ri+ Ry < 510g2 <1+N>
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The outer bound in Theorem 1 indicates that in the limit of girorterference, the sum-rate of Gaussian MAC
with a single dirty user is limited by the power of the inforthaser P;, where in the clean MAC the optimal
scheme gains the sum of the users powers, thadt is- P». In the sequel we show that in the limit of strong
interference the Gaussian doubly-dirty MAC is limited byn( Py, P).

For the case of Gaussian interference, the outer bound €% piso be derived by taking the lImiQ( — oo)
of the common message capacity in [4]. To keep the papeiceathined, we provide below a direct proof of the
outer bound, based on Lemma 1 below.

Consider the MAC with a single dirty user (10), with GaussiaterferenceS; with finite variance, i.eS; ~
N(0,Q). For this case, an outer bound for the capacity region isngimethe following lemma.

Lemma 1 (Outer bound for the single dirty user with Gaussidarfarence): For finite Gaussian interferenég ~

N(0,@1), the capacity region of the MAC with a single dirty user (usg(10) is contained in the following region:

1 Py
Ry < §log2 <1+ N>

35
R 1 (N+(\/P1+\/P2+\/Ql)2) (P1+N) (35)
1+ Ry < B log, 0 : N
1
Proof: The proof is given in Appendix I. O

We note that the outer bound still holds if we let encotleand the decoder share common randomness (dither).
Clearly, the outer bound (35) for thedividual rateof user2 can not be exceeded by applying common randomness.
Additionally, since common randomness does not result ineatgr capacity fofixed probabilisticchannels with

Sl at the transmitter [17], also the outer bound for skien-ratecan not be exceeded by using common randomness.

Assume that the interference has an infinite variance,@e.~ oo. We have tha% logo(N + (VP + VP +
VQ1)?) < (31logy Q1 + o(1)) whereo(1) — 0 asQ; — oo for fixed P;, P,. Hence, in this case the outer bound
for the sum-rate (35) becomes

R+ Ry < %logQ <1 + i;) +o(1).
As a consequence, the individual rate for u2es bounded from above b, < %logz (1 + %) +o(1).

The outer bound of Theorem 1 now follows since the capacityrefgir an arbitrary interference cannot be greater
than the capacity region with Gaussian interference of unted variance. This is because arbitrary interference
contains, as a special case, the set of typical sequenceaussi@an interference (of any variance).

The outer bound is depicted in Fig. 11 and in Fig. 12 f4r < P, and for P, > P,, respectively, where
C(z) £ 3 -logy(1 4 ). In Fig. 12, the corner pointR§, RS) is given by

i = Los, (2)
RS = %logg (1—1—];[2) .

The outer bound in Theorem 1 is specialized to lieéper problem in the following corollary.

(36)

Corollary 1 (Outer bound for the helper problemlf only user 2 (the uninformed user) sends a message (i.e.,

Ry = 0) in the single dirty user model (10), then for strong intezfece, an upper bound for the raf® is given
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C(%) clean MAC

Ri+ Ry = C(%)

- Rl
C(

z|3

)

Fig. 11: Outer bound for MAC with a single dirty user (udgrfor P, < P».

o Ry, By)

clean MAC

Ri+ Ry =C(%)

Fig. 12: Outer bound for MAC with a single dirty user (uggrfor P, > P».

by
Ry < %logz <1 + mm(]];l,Pg) (37)
The outer bound (34) for the single dirty user case is also dardaound for the doubly-dirty MAC, provided
that S; and S, are strong interferences. Clearly, the intersection ofdbter bounds for a MAC with a single
interferenceS; known to userl (34), and a MAC with a single interferenc® known to user2 (where P, and
P, switch roles in (34)) gives the following tighter outer baufor the doubly-dirty MAC.

Corollary 2 (Outer bound for the doubly-dirty MACY-or strong interferences, the capacity region of the doubly
dirty MAC (8) with S; and .S, independent is contained in the following region:

1 in(Py, P
Ri+ Ry < ;log <1+mm(N1’2> (38)

From Theorem 1, the outer bound for the doubly dirty MAC holdsdbr the case that encoderencoder2 and
the decoder share a dither signal. In Figure 13, the outerdéamthe doubly-dirty MAC region is plotted.
Gel'fand and Pinsker in [3] showed that in the noiseless case-=(0), arbitrarily large rate pairéR;, Ry) are

achievable. For the general cagé > 0) and independent Gaussian interferences, they conjectiiae the capacity
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Ry

C(min{Pth}) Ri+ Ry = C(min{]I\D;,PQ}>
N
= Iy
C(mm{]I;LPQ})

Fig. 13: Outer bound for the doubly-dirty MAC in Fig. 1.

region is the same as that of the MAC with no interferenceaftlMAC). The outer bound for the doubly-dirty
MAC (38) as shown in Figure 13 disproves their conjecture. Tin® sapacity of the clean MAC is given by
%logZ(l + %). For the case thaP, = P, the loss of the doubly-dirty MAC is at leag8tdB with respect to
the clean MAC.

V. LATTICE ALIGNMENT
A. Preliminary: Lattices

An n-dimensional lattice\ is a discrete group in the Euclidian spd&e which is closed with the respect to the

addition and reflection operations (ovR). The lattice may be specified by
A={\=G-i:ieZ"}, (39)

whereG is ann x n real valued matrix called the lattice generator matrix. Aeatoof the lattice is any translation
of the original latticea + A wherea € R".

The nearest neighbor quantiz@n (-) associated with\ is defined by
Qa(x) =X A if[x—\|<|x—=N|, VNeEA, (40)

where|| - || denotes Euclidian norm. The Voronoi region of a lattice pains the set of all points iR that are
closer (in Euclidian distance) ta than to any other lattice point. Specifically, the fundameRtabnoi region is

defined as the set of all points that are closest to the origin
V={xeR":Qp(x) =0}, (41)
where ties are broken arbitrarily. The modulo lattice operatith respect toA is defined as

x modA = x — Qp(x). (42)
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The modulo lattice operation satisfies the following disttile property
[x mod A + y] modA = [x + y] modA. (43)

The second moment of a lattice is given by

i Jy, |Ix[Pdx

2
oA = V ,

(44)

whereV is the volume of the fundamental Voronoi region, i.E.= fvo dx (the same for all Voronoi regions of

A). The normalized second moment is given by

2

G(A) = V"ZA/n (45)

The normalized second moment is always greater th@me. It is known [18] that for sufficiently large dimension
there exist lattices that are good for quantization (thestcés are also known as good lattices for shaping [19]),

in the sense that for any> 0
logy(2meG(A)) < e, (46)

for large enough. In addition, there exist lattices with second momeénthat aregood for AWGN channel coding
satisfying [19]

Pr(X ¢ V) < ¢, where X ~ N (0, (P —¢)I,), Ve > 0, (47)

where I, is ann x n identity matrix.
The differential entropy of an-dimensional random vect® which is distributed uniformly over the fundamental

Voronoi cell, i.e.,D ~ Unif(V) is given by [18]

h(D) = logy(V)

o2 n/2
_b@<G&Q

= 5105 (i)

~ glogQ (27T€J/2\) ,

where the last (approximate) equality holds for latticest #re good for quantization.

B. Lattice-Alignment Transmission Scheme

We present a general lattice-based transmission schenuh wilili be specialized to the Gaussian doubly-dirty
MAC (in Section VI) and for the MAC with a single dirty user (in Smn VII).
In the following transmission scheme, encodexnd encode? use the latticeg\; and A,, with second moments

P, and P, and fundamental Voronoi regiong and )., respectively. We further require that the two lattices are
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identical up to scalingThat is,

A1 = KlA (48)
A2 = FEQA (49)

for some real numbers; and - to be specified.

The encoders transmit the following signals as shown in Fig. 14

X1 = [Vl — 197 + Dl] mod A;
(50)
X9 = [Vg — 9SSy + DQ] mod Ao,

where aq, a0 € [0,1]; Vi € Unif(V;) and V, € Unif(),) are independent and carry the information of user
1 and user2, respectively. The encoders use independent (pseudosmgndither signalsD; ~ Unif(V;) and
D, ~ Unif()s), whereD; is known to encodet and to the decoder, arld, is known to encode? and to the

decoder, as shown in Fig. 14. From the dithered quantizatiopegpty [18],
X; ~ Unif(V;) for any V; = v;, fori=1,2 (51)

whereX; independent oV;, and hence the power constraints are satisfied.
The decoder uses a lattide. = kA, which is another scaled version &f and reduces moduld; the term
o, Y — ’)/Dl — /BDQ, i.e.,

Y’ = [0, Y — yD; — D3] mod A, . (52)

The scalarsyy, as, o, k1, k2, Ky, 3,7 and the basic latticd will be determined in each scenario in the sequel.
The main advantage of the lattice-alignment transmissi@avealis its robustness. Unlike in the random binning
technique, the achievable rates of the lattice-alignmeheme are oblivious to the exact distributions of the
interferences. Hence, this scheme remains applicablerlitrary interference sequences.
In the above lattice-alignment transmission scheme, isgimed that the information-bearing signdls, Vo
are uniformly distributed over the basic cell of the appraigr shaping lattice (also known as coarse lattice [20]).
Of course, it is possible to use a nested lattice structuna §0] whereV{, V5 belong to fine lattices and the

coarse lattices are nested in these fine lattices, i.e., we &anested lattice chain with two nesting ratios.

VI. THE DouBLY-DIRTY MAC

In this section we present lattice-alignment transmissidreme of Section V for the Gaussian doubly-dirty MAC
(8). We derive conditions for optimality as well as (when tanditions do not apply) a uniform bound for the
gap-to-capacity. The results formalize the presentatioBdntion Ill, as well as utilize multi-dimensional lattices
and extend the scope to general SNR.

As discussed in Section Ill, while the capacity of the singder dirty paper can be achieved both by using
random binning [1] or using lattice-strategies [7], in theubdly-dirty MAC, random binning results in a strictly

smaller achievable rate region with respect to that obthimeng lattice strategies.
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Fig. 14: Lattice-alignment transmission scheme.

It turns out that the gap in SNR between the two users plays atenle in the analysis. More specifically,
when the SNR gap is large (“imbalanced case”), ¥lSNR;SNR; — min(SNR;, SNRy) > 1, the capacity region
is fully determined. A natural extension is the high SNR regjwhere the capacity is also fully characterized. For
the “nearly balanced” case, i.e., WhefsNR;SNR, — min(SNR1, SNRy) < 1, we obtain achievable regions using
lattice-alignment transmission schemes, and derive aetsal bound on the gap to capacity. In this case the lattice-
alignment scheme looses the “1” in the capacity expressioa,to the accumulation of two self noise components
(rather than one self noise in the single-user dirty papse ¢4]). This loss is avoided in the “imbalanced case”

by pre-inflatingthe lattice of the user with the redundant power. We shallrbegth the latter case.

A. Imbalanced Doubly-Dirty MAC

In the following theorem, we provide conditions under whialtice-strategies are optimal.

Theorem 2 (Imbalanced SNRsJuppose thatV < /P, P, — min(P;, P») for P, # P,. The capacity region of
the doubly-dirty MAC (8) in the limit of strong interferensaneets the outer bound of Corollary 2, and is given
by the set of all rate pair6R;, R2) satisfying

1 in(Py, P
R1+RQS§10g2 <1+mln(1,2)>.

N
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Proof: The converse part has been proved in Corollary 2. In this pnafhow achievability for the case

where userl is a helper for useg, i.e., for the point

(R, Ry) = (0, %logz (1 + Hﬁn(?’&)» , (53)

where N < PP, — min(P;, P») and P, # P,. We present here the achievability of (53) for the case where
2

Py (%) < P;. While the achievability of (53) for the case wheRe (W)2 < P, is proved similarly and

is given in Appendix II.

Clearly from the symmetric betweeR, and P in (53) also the point

(Rl,RQ) = (; 10g2 <1 -+ rnln(i]l;@) 70) y (54)

can be achieved. In view of the outer bound (38) in Corollarth2 theorem follows by time sharing between (53)
and (54).

In order to achieve (53) wheré, (%)2 < P, we apply the lattice-alignment transmission scheme of
Section V-B.A; and A, are scaled lattices, i.eA; = A and Ay = A, = azA for someA (that isx; = 1 and
K2 = K, = ag). The second moments of the latticks and A, ares? = P, ando3 = o3 P, respectively, where

a9 Will be determined later. We s&f; =0, a; = 8 =1 anda,. = v = ag, hence the encoders send

X; = [—Sl +D1} modA1 (55)

Xy = [Va— a2Ss + Ds] modAs,, (56)

whereV, ~ Unif(V,) carries the information of us&; D; and D, are the dithers signal whed®; ~ Unif(};)
and D, ~ Unif(V,). Userl mitigates the influence of the interference sigBalby quantizingS; with respect to
the shifted latticeA; + D;. It is equivalent to using theoncentrationtechnique originally proposed by Willems
[15].

The receiver calculate¥’ = [a2(Y — D;) — D3] mod A,. The equivalent channel frofW, to Y’ is given by

Y = [ag(xl+sl+xg+sg+Z—Dl) —Dz} mod A, (57)
- [aQ[XQ 4S5+ Z] — Ds — asQy, (—S1 + Dl)] mod A, (58)
= [V2 = (1 - a2)Xz + 027 — 02Qn, (=81 + D1)| mod A, (59)

where (58) follows from (55); (59) follows from (56).
SinceA; = A and A, = as A (scaled lattices), we have thatQa, (—S; +D1) € Ay i.e., the interference signal
is aligned withA,. Hence, the elementaQa, (—S1 + D1 ) disappears after the modulor operation. In this case,

the equivalent channel is given by

Y = Vo — (1 — OéQ)XQ + asZ modAg. (60)
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From the dithered quantization property (5V); and X, are independent. The ter(i — a2)X2 is known as the

self noisg[7] which is due to usek. The rate achieved by useris given by

R, ff(vg, - {h h(Y'|Va)}

l {h (1 —a2)Xs + aZ)] mOdAg)}
n

P 1
= 5 10g2 (C;([iﬂ) — 5 10g2 (2776 ((1 - a2)2P2 + OZ%N))

where in the last inequality we used the fact tNatis unform over), thenY’ is also uniform oved,, and since

modulo operation reduces the second moment and Gausstaibudisn maximizes the entropy for fixed second

moment.
2
For P, = P, (%) , using the optimal MMSE factor for user i.e.,as = 525 +N, and for lattice that is good
for quantization (46), i.eG(A) — 1/2me asn — oo, we get that any rate
1 I
Ry < ilogg <1+ N)a (61)

is achievable. Clearly, foP; = P, (%)2 the inner bound meets the outer bound (38). LikewisePL;ch’%)2 <
Py, the outer bound (38) remairislog, (1 + £2), thus the outer bound is also achievable.

The proof is completed in Appendix Il for the case ttl%;t(#)2 < Ps.

L]

In the above lattice-alignment scheme, the “strong us&e (tser with higher power constraint) effectively uses

= 1 (the scalar factor which multiplies the interference at éreoder (55)). Therefore, this user performs
interference concentration which does not contribute alitiadal self noise term in (60). This technique can be
viewed aspre-inflatedlattice transmission by the strong user.

Furthermore, an additional property of the above schemeiglie users use ttsamedattice A (up to scaling), and
therefore the residual interferences are aligned, andrcéurm be eliminated. Hence, the lattice-base transmission

simultaneously accomplishésterference concentratioandinterference alignment

B. Nearly Balanced Doubly-Dirty MAC

We now derive an inner bound for the “nearly balanced” casere/N > /P, P, — min(P;, P»). For simplicity,
we first consider the symmetric (“exactly balanced”) case, P, = P, = P for any N.
Using the lattice-alignment transmission scheme of Secd#@with A1 = As = A, = A (that isk; = ky =

kr = 1) wherea; = as = o, = « and 8 = v = 1, the encoders send
X; = [Vl —aSy + Dl] mod A (62)
Xy = [Vg —aSy + DQ] modA, (63)

where V1, V, ~ Unif(V) are independent and carry the information of usesnd user2, respectively. Since

D;,D,; ~ Unif(V) are independent dither signals, from the dither prop&ity X, ~ Unif(V), and hence the
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power constraints are satisfied. In this case, the decodéves gy
Y = [O[Y —Dq — DQ] modA. (64)

The equivalent mod- A MAC is given in the following lemma.
Lemma 2 (The equivalemhod A MAC): The equivalent channel using the encoders (62) and (63) amd th
decoder (64) is given by

Y = [Vl £V, zeq} mod A, (65)
where
Zey = [_ (1—a)X;—(1—a)Xy+ aZ} mod A, (66)

and Z., is independent oV; and V;, whereX;, X, are the self noises which are mutually independent, and
independent o, V1,V

Proof: The equivalent channel is given by
Y = [a(xl +S1+Xs+ Sy +Z) - Dy —DQ} mod A (67)
- {vl FVo—(1-a)X; — (1-a)Xs+ az} mod A, (68)
where (67) follows sinc&” = X; + 51 + X» + S2 + Z; and (68) follows from (62) and (63). Due to the dithers,
the vectorsVy, Vi, X, X, are independent, and also independenZofTherefore,Z., is independent oV,

andVs. 0

From the moduldA equivalent channel (65) and (66), the achievable sum-gatgven by

Ri+ Ry = %I(Vl, Vo, Y/) (69)
= {h(Y) ~ h(Y'[V1, V) (70)
% (h(Y (1 — )Xy + (1 — a)Xs + aZ] modA)} (71)
+
>[50 (GfA)) - §logs (2ne(®N +2(1 - ?P) | (72
1 P 1 "
— 5108 (oo o) - 30w @recia)] 73)

where (72) follows sinceY’ has uniform distribution oved’, and since modulo operation reduces the second
moment and Gaussian distribution maximizes the entropyifxed second moment.

Like in the single-user case [7], the problem of finding the mptic when the lattice dimension goes to infinity
amounts to finding the value af that minimizes the mean squared error of the effective ntése, i.e., of

—(1—-a)X; — (1 — )Xz + aZ, hence

opt _ aMMSE _ 2P2fN7 (74)
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For the optimalx and for a lattice that is good for quantization, i.e., for @#hG(A) — 1/2me asn — oo, we get
that any rate pair satisfying
1 1 P\1"
< | Z 4
Ri+ Ry < [2 log, <2 + N)]

is achievable, whergr]t £ max(z,0). Clearly, using a time sharing argument the following ratas be achieved

1 1 P\17"
Ry + Ry <wu.cee { [2 log, <2 + N)} } , (75)

whereu.c.e is the upper convex envelope with respect%o Compared to the outer bound (38), the partial loss
of the “1” inside the logarithmic function (instead of one)due to the presence bko independent self noises
X, and X, that we have in the equivalent channel model as shown in LemniNogetheless, this technique is
asymptotically optimal at high SNR, sindeg (3 + &) ~log (%) as & — .

At low SNR, i.e.,SNR < 1/2 (—3dB), pure (infinite dimensional) lattice-strategies cannot achiewg positive
rates as shown in Fig. 15. Hence, time sharing is requireddsgtwthe pointSNR = 0 and SNR*, which is a
solution of the following equation

df(SNR)  f(SNR)

dSNR ~ SNR ’
where f(z) = 1 logy (5 +z). Numerical evaluation gives th&NR* ~ 1.655. At low SNR, i.e.,SNR — 0 the inner

bound is given byR; + Ry ~ 0.425% while the outer bound is given b§; + Ry ~ 0.721%, hence the gap between
the outer bound and the inner bound is bounded by approXynatedB. In Fig. 15, we also evaluate numerically
the achievable rates for one dimensional lattice strasefilee dashed curve), which is given in (71) wheras
a scalar lattice withG(A) = & using the optimak for each SNR (which is not necessarily the MMSE factor).
Like for the infinite dimensional case, time sharing also impeothe achievable rates of pure one dimensional
lattice strategies. Clearly, the achievable rates of irfidiitmensional lattice strategies are strictly higher thaa o
dimensional lattice strategies when applying time shaasghown in Fig. 15.

We now return to consider the general “nearly-balancedeécashereN > /P, P, — min(Py, P) for general
Py, P,.

Theorem 3 (Nearly-balanced SNR§uppose thatV > /P, P, — min(Py, P»). An achievable region for the
doubly-dirty MAC (8) is given for any interferences by the sé rate pairs(R;, R2) satisfying

N
} : (76)

Proof: The proof is given in Appendix I O

+
} ) (77)

1
Ri+ Ry < u.c.e{ [ log,

( Pr+ P+ N )
2

2N + (VP = V)

where the upper convex envelope is with respecPtand P;.

For the symmetric case, i.eP; = P, the region becomes

Lo (22U [ (L4
5 logs =uceqy|glog |5+ 5

Ri + Ry = u.ce { 5N
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Fig. 15: Achievable sum-rate faf, = P5.

which coincides with that in (75). FaN = /P, P, — min(P;, P,) the expression in (77) coincides with that in
Theorem 2.
Unfortunately, as can be seen from Theorem 3, there is a gagéeetthe inner bound and the outer bound for

the “nearly balanced” case. We now derive a uniform boundhisxdap. ForN > /P, P> — min( Py, %), the gap

N
} : (78)

Lemma 3:Let z* be the solution of the equati% = log.(z+1/2). For anyP;, P», N, the gap( (P, P>, N)

between the outer bound (38) and the inner bound (77) is defined

1 in(P, P 1 P+P,+N
C(PlaPQ;N)éQIOg2<1+Hun(1’2)>uce{[210g2< 1+ 12+ )

N 2N + (VP = VP)?

The following lemma provides a uniform upper bound €¢®;, P>, N).

is bounded by
logs (% + az*)

C(P1, P, N) < e

~ 0.167 bit, (79)

where equality holds foP; = P, = P, and% =z* — 0.5 ~ 1.155.
Proof: The proof is given in Appendix IV O
The solutionz* is evaluated numerically and it is equal 1®55.
From the proof of Lemma 3, the gap is bounded by the symmetrie, ¢&s,((P1, P>, N) < ((Puin, Pmin, N)
whereP,,i, = min(P;, P»). In Fig. 16, the upper bound for the gafP, P, N) is depicted with respect 8N\NR = %.
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Fig. 16: Outer bound fo¢ (P, P, N).

The above bound describes a uniform outer bound for the(d#p, P>, N) which is tight for the case that

P, = P,. A tighter outer bound for the gap in the asymmetric case, e+ P, can be derived [21]. Let us define
Prax £ max(Py, Py) (80)
Prin = min(Py, Py), (81)

and p?2 £ Ppax/Pmin, hencep > 1. The bound find the worst gap for fixed power ratiphence there is such a

ratio that the bound is tight. The outer bound for the gap isvshim Fig. 17 with respect t. For i = 1, i.e.,

P, = P, the gap is equal t0.167 bit. The following lemma is due to Mustafa Kesal.
Lemma 4 Kesal [21]): For any P, and P, the gap((Pi, P>, N) is upper bounded by

1 1
Q(Pl,PQ,N) Sc*logg(e)—glogz(ec*)—§, (82)
whereC* is defined as follow:
"= 4 f(0)] (83)
~ dp? V=Y
)

0 = 84
C* (84)

! (W2 +1)0+1

= —1 _—_—

whered £ Lw=. For anyy equality in (82) holds fol = ;1= — 1.

Proof: The proof can be found in [22] O



26

0.2

0.18 i

0.16

0.14

0.12

0.1

bit

0.08

0.06

0.04

0.02

Fig. 17: Outer bound for the gaf{ P, P», N).

C. Doubly-Dirty MAC at High SNR

We now observe that although there is a gap for the “nearlgrizald” case between the inner and outer bounds,
the gap vanishes at high SNR and hence the capacity regiomigletely determined in this limit. Indeed, for fixed
Py, P, which are not equal, if we take the noise powérto zero, we enter (eventually) the imbalanced regime.
We next formally show that the outer bound is indeed tightigh ISNR (even wherP?, = P,) as a direct corollary
to Lemma 2.

Corollary 3: At high SNR and in the limit of strong interferences, the cdtyaegion of the doubly-dirty MAC
(8), is given by the set of all rate paif#;, Rs) satisfying

min(Ph P2)> _ 0(1)7

~ (86)

1
Rl"‘RQS §log2 (1+

whereo(1) — 0 asmin(P;, P») — oo.
Proof: Using Lemma 2 withoe = 1 and takingA to be a lattice (that is good for quantization) with second

moment equal tanin(Py, P»), we get the equivalent channel
Y — [Vl £ Vy+Z| mod A, (87)

for which the sum raté log, (%) is achievable, and hence (86) holds at high SNR. O

VIlI. MAC WITH A SINGLE DIRTY USER

In this section, a lattice-based transmission scheme septed for the Gaussian dirty MAC with a single dirty

user (10), see Fig. 2. Clearly we could apply the scheme fodthbly-dirty case as presented in the previous
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section. However, we will see that some of the “loss of thesg® (75), may be avoided in the present case, taking
advantage of the presence obiagle interference. This in turn translates to a single self-nc@@ponent (rather
than two as in the doubly-dirty case).

For the case of Gaussian interference, the results obtaintts section coincide with previous works [4], [5],
[23], which were based on random binning. We extend the tesolarbitrary interference (rather than Gaussian
with known variance).

The results in this section are derived using the lattiogratient transmission scheme of Section V. However,
here the requirement that; and A, are equal up to scaling is not necessary. Furthermore, thamefl user could
use any code that is good for both quantization and chanmihgowhile the uniformed user could use any code
that is good for channel coding (for instance, a Gaussiaemook).

As in the previous section, the tightness of the results mgpen the gap between the SNRs, i.e., on how
“balanced” the SNRs are. The precise conditions on the gapiffeecdt from the previous section. This difference
is due to the non-presence of the second interference whihlces the constraints on the transmission scheme.

We now say that the SNR gap is large (“imbalanced case”) wB&mR,; — SNRy| > 1, in which case the
capacity region is fully determined. The “nearly balancedse is now defined bj{sNR; — SNRy| < 1, for which
we obtain achievable regions using lattice-alignmentdmginsion schemes, and derive a universal bound on the
gap to capacity which isighter than the one obtained for the doubly-dirty MAC scenario &dWe begin by
treating the helper problem where only the uninformed user d message to transmit, and then consider the full

rate region.

A. The Helper Problem

We now consider thdelper problemwhere only usee, the uninformed user, has a message to send and the
informed user (uset) helps user to transmit at the highest possible rate, i.e., a rate pathefform (0, Ry) is
considered. The upper bound for this case is given in coyollain the following theorem, we present the capacity
for the helper problem, for the “nearly-balanced” case wher< |P, — P|.

Theorem 4 (Imbalanced SNRsJuppose thalv < | P, — P»| in a MAC with a single dirty user (10). In the limit
of strong interference, the capacity of the helper problergiven by

1 min( P, P
Chelper(Ph P2) = 5 10g2 (1 + (]\;2)> : (88)

Proof: The proof is given in Appendix VI. O
For |P, — P»| < N, we derive the following inner bound.

Lemma 5 (Nearly-balanced SNRSSuppose thatP; — P,| < N. The capacity of théwelper problemsatisfies

1 4P, Py
e erP7P7N 2 <L 71 1 , 89
Chlp ( 1, 472 ) UCB{Z 0g2( +(P2—P1+N)2+4P1N>} ( )

where the upper convex envelope is with respecPtand P,. For P, = P, = P, this inner bound reduces to

1 4SNR
> u.c. — —_
Chelper(SNR) > u.c.e { 5 log, (1 + SNR <4SNR n 1)) } , (90)
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where the upper convex envelope is with respeNR = %.
Proof: The proof is given in Appendix VII. O
Although the function inside the upper convex envelope ajp@n in (89) is non-negative, by examining its
Hessian matrix [24] it can be shown that this function is mmtwexN for any P; and P (also in (90) the function
inside the upper convex envelope operation is not convéar any SNR).
The above inner bound can be also expressed in terrddBf,;, £ min(SNR1, SNRy) and ASNR = |[SNR; —

SNRg/, in this case we have that

(91)

1 4SN min N min N
Chelper(SNRmin,ASNR) > u.c.e {210g2 (1 + SNR (S R + AS R)) } '

(ASNR + 1)2 + 4SNRynin

outer bound

T
cP/MN) . \ -
v

inner bound

N |

C(P,N)

R2 [bit/channel use]

Fig. 18: Inner bound versus outer bound for the helper prolitan; > N.

In Fig. 18, the outer bound and the inner bound for the capadithe helper problem are depicted for various
values of Py, P», N. As indicated in Lemma 5, there is a gap between the inner bf@@dand the outer bound

(37) for |P, — P»| < N. This gap is defined as

1 in(P, P 1 AP, P
NP1, Py, N) 2 3 log, <1+mm(1’2)> —u.c.e{210g2 <1+( L2 >} (92)

N PQ—P1+N)2—|—4P1N
In the following lemma a uniform upper bound for the ga@;, P>, N) is derived.

Lemma 6:For |P, — P»| < N, the gapn(Pi, P, N) (92) is upper bounded by
3
NP1, Poy N) < 0(Prmin, Pmin, V) < logs(3) — 5 ~ 0.085 bit,

where Py = min(Py, Ps).
Proof: The proof is given in Appendix VIII. O
We now show that at high SNR, i.e?;, P> > N and for|P; — P;| < N, the achievable rat&),.i,.. (89) meets
asymptotically the outer bound (37).
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Lemma 7:In the limit of strong interference, the capacity of the leglproblem at high SNR is given by

1 min(Py, P
Chelper = 5 IOgQ (1 + (]\[12>> - 0(1)7 (93)

whereo(1) — 0 as P, P, — oo for fixed N.
Proof: The lemma trivially follows by combining the outer bound givim Corollary 1 and noticing that (93)

is achievable by Corollary 3. O

The pure lattice-strategies approach is not optimal at low SNR in teipdr problem, i.e. the upper convex
envelope strictly increases the achievable rate in theehgypoblem. In order to see that, consider the case of
P, = P, = P. We now observe that time sharing can achieve higher ratasgihre lattice-strategies transmission
(the expression inside the upper convex envelope in (9033uMe that the users coordinate their transmissions
only for 1/§ of the time ¢ > 1), while the rest of the time the users stay silent. During tth@smission period
(1/0), user2 transmits with powew P, while userl transmits during half of the transmission perioﬁ)( with
powerdP — N, and during the rest of the time, with? + N. In this way, the users satisfy the power constraints.

The achievable rate of useris given by

1 1 oP 1 1 0P - N
Ry = 25-210g2<1+N)+26-2log2<1+ N )

1 P P

Numerical evaluation shows that this expression is maxthifor 6 = 1.832%, and the rate is given by, =

0.324-SNR, which is higher than achievable rate using pure latticatagies in (90) as shown in Fig. 19. However,
this scheme is feasible only f&\NR < 1.832 sinced > 1.

For SNR — 0, this inner bound behaves like(SNR), while the inner bound in (90) behaves lik& SNR?).
On the other hand, the outer bound (37) %R — 0 is limgngr— 3 logs(14+SNR) & 0.721- SNR which behaves
like O(SNR) as the inner bound.

B. Capacity Region at High SNR

While the capacity region for the MAC with a single dirty ugd0) is not known in general, the following
theorem determines the capacity region at high SNR, i.e.nwheP, > N.
Lemma 8:In the limit of strong interference, the capacity region otydMAC with a single dirty user (10) and

high SNR, is given by

N

1 P
Ry < 510g2 <1 + ]\?> —o(1)

) P (94)
Ry + Ry <  logy (1 + 1) —o(1),

2 N
whereo(1) — 0 as P, P, — oc.
Proof: When P, < P», the lemma follows by combining the outer bound given in Tkeorl and noticing

that (94) is achievable by Corollary 3. The proof for the c&se> P, is given in Appendix IX. O
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Fig. 19: Inner bounds and outer bound for helper problem atIoR.

C. Achievable Rate Region

We now derive an achievable rate region using lattice-basatmission for any?;, P>, N. The same region
was derived using random binning in [5].

Lemma 9: An achievable rate region for the MAC with a single dirty ugg®) is given by
R = cl conv U R(a1) ¢, (95)

and

1 P1
R(ar) ={ (Ri,Ry): Ry <=1
(c1) {( b R): Rusglogy <min(P1,(1—a1)2P1+a§(N+P2))>

(96)
R, < }10 min(Py, (1 — a1)?P; + a2 (P2 + N))
2= 082 (1—a1)?P, +a2N
wherecl and conv are the closure and the convex hull operations, respegtivel
Proof: The proof is given in Appendix X O

This expression is a general form which describes the adbiievate region of the MAC with a single dirty user
(10). It includes the achievable rate of the helper probleen, the point(0, R,) for any P, P», N, and also the
capacity region at high SNR.

We now explore the behavior of the achievable rate regiogiipé in Lemma 9 for several cases with respect

to P, Py, N:
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Fig. 20: Inner bound versus outer bound in the MAC with a sirdjiey user.

a) ForP; < P,—N: ltis easily verified that the poir(t?; =  log,(1+P;/N),0) can be achieved when usgis
silent, i.e., X2 = 0 while userl performs point-to-point dirty-paper coding (DPC), whicmdze implemented
using lattice-strategies precoding. Furthermore, in Thaotdt was shown that foP; < P, — N, user2 can
achieve the rateé?, = 1 log,(1 + P/N), and thus the point0, k> = 3 log,(1 + Pi/N)) is also achievable.
Therefore, time sharing between these two points achiewesuter bound (34) as shown in Fig. 20a.
Corollary 4: In the limit of strong interference, foP, < P, — N the capacity region of the MAC with a

single dirty user (10), is given by

1 P
R+ Ry < B log, <1 + N> . (97)
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b) For P, > P, — N: This case refers to Fig. 20b-20d. We define the following rate pa

=
N ¥
>
O |
5}
09
Do
N
—_
+

This rate pair is located on the outer bound (34) as shown inZBilg-20d. To see that, it can be verified that
R} 4 Ry = 3logy(1+ Py/N) and Ry < §logy(1 + min(P;, P2)/N). On the other hand, using; = 52\
in (96) (Lemma 9), this rate pair can be achieved. Therefoeerdke pair( R}, R5) belongs to the boundary
of the capacity region.
Corollary 5: In the limit of strong interference, and fdt, > P, — N, the rate pairf R}, R;) belongs to the
boundary of the capacity region in MAC with a single dirty ugg0).
The rate pair(R7, R3) corresponds to the vertex point where the inner bound andutter bound depart
from each other as shown in Fig. 20b-20d. The behavior of theeaable region versus the outer bound is
shown in Fig. 20b forP, — N < P; < P,. In this case, the gap between the inner bound and the outedbo
is maximal for the helper problem, i.e., the poiiit R2), which is bounded byog,(3) — 3/2 ~ 0.085 bit
(Lemma 6). In Fig. 20c, the inner bound and the outer boundPfox:. P; < P, + N are depicted.

c) For P, + N < P;: We define the following rate pair

1 P
o) A
= -]
Ry 5 1082 <P2+N>
1 P
R = 210g2<1+N>.

Clearly, this rate pair is located on the boundary of the omhtand (34). On the other hand, using = 1

in (96) (Lemma 9), this rate pair can be achieved, as shown inZeid. In fact, it is the maximal achievable
rate that usel can transmit while use2 transmits at its highest rate, = 3 - logy(1 + P/N).

Corollary 6: In the limit of strong interference, and faf + N < P; the rate painR{, R3) belongs to the
boundary of the capacity region in MAC with a single dirty ugg0).

VIIl. MAC wiTH COMMON INTERFERENCE

In this section we consider the MAC with common interfere(it®). The states. is known non-causally to both

users. The channel model is given by
Y=X1+Xo0+ 5.+ Z, (98)

where Z ~ N(0, N). The power constraints ar%azzl:l z3, < P, for i = 1,2. In [3], it was shown that as in

the point-to-point writing on dirty paper problem, the caiparegion of the dirty MAC is the same as that of the
interference-free Gaussian MAC (clean MAC), i.e, the cépaegion is a pentagonal region [25]. This is unlike
the MAC with a single dirty user problem (Section VII), wheteetcapacity of the uninformed user is limited by

the minimum power between the users.
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The comer poin{ Ry, Ry) = (3 - logy(1+ 555), 3 - loga (1 + P»/N)) of the pentagon is achieved by applying
DPC twice for each user [6]. As in the point-to-point case,dhbgiliary random variables are setlp = X1 +a1.5.
whereX; and.S; are independent, and, = X5 + asS. where S, = (1 —a1)S., and X2 and S, are independent.

a) Writing on dirty paper for uset - the channel is given by
Y:X1+Sc+Zeq7 (99)

where Z., = X, + Z, thus Z,, is independent ofX; and S.. Using oy = Hﬁ.ﬁ, userl can achieve
Ry = % -logy (1 + Pfﬁ).

b) Writing on dirty paper for use® - the equivalent channel is given by

Y=Y -U =X+ 8.+ Z, (100)

where S, = (1 — a1)S.. Usingas = PQIEN user2 can achieveR, = 1 -logy(1 + P2/N).
We now present how to achieve the capacity region of Gausdid@ with common interference (98) using

lattice-strategies. Specifically, we derive a transmissidmesie for the corner point of the pentagQR,, R2) =

(3 logy(1+ lejiN)’ 3 -logy(1+ P»/N)) using lattice-strategies. Usérand user use the lattices\; and A, with
second moment®; and P, respectively. Specifically, the encoders send
X1 :[Vl — 1S, + Dl] mod A; (101)
Xy Z[Vg — aQSC + DQ] mod Ao, (102)
whereS, = (1 — a1)S.. The vectorsV; ~ U(V;) carries the information of userfor i = 1,2. The dither signals
D; and D, are independent, wher®,; ~ U(V;) is known at the encoder of usérand to the decoder, and

Dy ~ U(V7) is known at the encoder of userand to the decoder as well. From the dither quantization ptppe

the power constraints are satisfied.

/ﬁl Phase |
(&5} = ’ N
— y 1

L w MOD Ay DEC 1

Phase II + —

vy
Zegq
MOD Aq
~ ” .
[ ()y () mopas Y e pEc2 [ e
1-— (65} @2 -
d- Phase III

Fig. 21: Decoder for MAC with common interference.

The information-bearing signald/; andV,, are reconstructed using a three-stage decoder as showg. iB1Fi
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Stage | The decoder calculat€g’ = [«; Y — D] mod A;. The equivalent channel is given by
Y = [al(Xl + X5+ S, +Z) — DI] mod A,
- [Vl (1 — )Xy + o (Xa + Z)] mod A;.
From the dither quantization property,; and X; are independent. The rate achieved by user given by
Ry = —I(Vl,Y’ = —{h Y') — h(Y'|V1))}

%{h ([(1 = o1)Xy + o1 (X2 + Z)] mod Ay) }

> %logg (G{;\ll)> - %logg (2me ((1 — a1)*P1 + o (P> + N))) .

Using a; = Phjﬁ and lattices that are good for quantization, i@&A;) — 1/2me asn — oo, any rate

R; such that

1 P
< —
Ry < ; log, <1 + 5o N> (103)

is achievable. As a consequence, the decoder can recdnstrueith high probability.

Stage It The decoder reconstructs the effective noise, i.e.,

A~

Zeg = [Y' — V1] mod A,
= |:— (1 — Ctl)Xl + Oél(XQ + Z) mod A;.
Furthermore, with high probability we have thﬁgq =—(1—-a1)X; +a1(Xe + Z), since%E{H —(1-
a1) X1 + a1 (Xz + Z)|2} = 2N <
The decoder now calculatéé; =Y + ﬁZeq, thus
Y =X +Xo+S.+Z - 3(1 — )Xy + far(Xe + Z)

= (1 — ﬁ(l — al))Xl + (1 + ﬁal)XQ + Sc + Z(l + ﬂal).
For 3 = ——, we have that

1
X2+Sc+ Z.

Y, =
! 1—041 1—0&1

The receiver calculate¥ = (1 — a;)Y1, and hence
Y =X, +S,.+Z,

whereS, = (1 — a;)S..

c) Stage It The decoder calculat€g” = [agY — D3] mod A,. The equivalent channel is given by

Y = [042 (XQ + gc + Z) - DQ] mod A,

= |:V2 — (1 — OCQ)XQ + O[QZ:| mod As.
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Again V5, and X, are independent. The rate achieved by ser given by

Ry = ~I(VaY") = - {A(Y") — h(Y"[V2)}

= T {A(Y") ~ B((1 - 02)Xs + 2] mod Ag))

1 P 1
> §log2 (G(A22)> - §log2 (2me ((1 - )Py + a%N)) :

Using as = Pfﬁ and a lattices that are good for quantization, any Fatesuch that

1 P
R < log, (1 + N) (104)

is achievable.
From symmetry, the achievability of the second corner pgjntog,(1+ Py /N), & -logy (1 + Plpﬁ)) is achieved
by first decoding use® and then decoding usdr. The capacity region follows by using time sharing of these

corner points.

IX. EXTENSIONS
A. Strong Correlated Interferences

In this section we consider a generalized scenario for thublgedirty MAC (8), where the interference signals

are correlated. Specifically, the channel model is given by
Y:X1+X2—|-;§1+S2—|—Z, (105)

where S; and S, are interference signals with a joint Gaussian distribytice.,

S 52 05,05
T N (106)
Sy pGs,Gs, 02

where|p| < 1 is the correlation coefficient, angf, and2 are the variances o, and S, respectively. For any
Gs,,0s,, p, the capacity region of (105) is denoted 8yor(ds,,0s,,p). The capacity region of the doubly-dirty
MAC (8) with independent Gaussian interferencgsand Sy is denoted byCparac(os,,0s,). Clearly, we have

thatCprrac(os,,0s,) = Ccor(os,,0s,,0).

Generally, any joint Gaussian variables can be decompaosed a

S1 =81+ 5150 (107)
Sy = Sy + 3250 (108)

where Sy ~ N(0,02), S ~ N(0,0%) and S, ~ N(0,0%) are independent Gaussian variables, ahd=

S1

sign(p)/Ipl, B2 = £2+/|p| ando2 =2 . In this case, we have that

0% =& (1 - |p) (109)

S1

oz, = a5,(1—|p]). (110)

S2
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The channel output can be expressed as

Y =X1+Xo+ 51+ 5150+ S92+ 5250+ Z (111)

=X1+Xo+51+85+5.+ 7, (112)

where S. = (831 + (32)So, henceSi, Ss, S. are Gaussian independent random varialles; s (os,, 0s,,0s,) IS
denoted to be the capacity region for the case tfatS.) are known non-causally at encodgrand (.S, S.) are
known non-causally at encoder Clearly, we have tha€con(os,, 0s,, 0s.) = Ccor(Gs,, Ts,, p)

Lemma 10:For |p| < 1, in the limit of 55,, 55, — oo, we have that

CCOR<551 5 652) P) = CCOM(Usl y 0549 Usc) = CDMAC(Usl , 0-32)7 (113)

whereo? =52 (1 — |p|) for i =1,2.

Proof: For any&2 ,52 , we have that

8177 827

Cpmac(0s,,0s,) = Ccor(Ts,,0s,,0) (114)
C Coor(Gs,,0s,:p) (115)
= Ccom(0s,,0s,,0s,) (116)
C Ccom(os,,0s,,0) (117)
= Cpmac(0s,,0s,), (118)

where (115) follows since correlation between the interfiees can only increase the capacity region; (117) follows

since the capacity region increases fr= 0. The proof follows since fo62 ,52 — oo, alsoo? , 02 — oo, and

henceCprrac(os,,0s,) = Copmac(Gs,, s, )- =
Lemma 10 implies that for jointly Gaussia$y and S, with |p| < 1 whereas,,,55, — o0, the capacity region

is independent of the correlation between the interferentherefore, the channel model in (105) is equivalent to

the “standard” doubly-dirty MAC (8) with uncorrelates} and.S;. Furthermore from Lemma 10, the case that we

have in addition taS; and.S,, a common interferenc€. which is known non-causally to both encoders, as shown

in Fig. 22, is also equivalent to doubly-dirty MAC (8) in theniit of strong interference$; andSs.

B. K-User Case

The results in Section VI can be extended to fiaiser case. For simplicity, we consider only the symmetric

case, i.e., all the users have equal power constraints. Tdmmehmodel is given by
K K
Y= X;+> Si+7 (119)
=1 =1

where Z ~ N(0,N), and the power constraint for each userfis The interferenceqS;}X , are strong and
independent, where thieth interference is known non-causally only to the encodeauser:. Since the derivation

is a straightforward extension of the two-user case, orgyfital results are stated.



37

St

7%} X1

— Enc.1
‘ \ )
R & U R N B el
, // N, i

X2

Wa

— Enc.2 ‘
y z

Sa

Fig. 22: MAC with private and common interferences.

Corollary 7: In the limit of strong interference, the capacity region bf9) is contained in the following region:
K
1 P
R, < -1 1+—.
; =5 0%2( + N)
An achievable region for (119) is given by the set of all theesasatisfying

K +
1 1 P
E 1 R, <u.c.e [2 log, (K + Nﬂ )
1=
As in the two-user case (Lemma 2), the factoi pf( inside the logarithm function stems from théindependent

self noises that result in this case. As a consequence, thdoss between the outer bound and the inner bound

increases with respect t&, yet the rate loss is bounded hy2 bit for any K.

X. SUMMARY

In this work the Gaussian doubly-dirty MAC was introducediere each interference is known to a different
transmitter. An outer bound for the capacity region wasweeriand sufficient conditions were found under which
lattice-strategies meet the outer bound. It was shown thatheme based on lattice strategies accomplishes
simultaneously the interference concentration and ieterfce alignment to achieve these rates.

The additive doubly-dirty MAC is a special case of channels with disttéaliknowledge of the channel state
information among several transmitters. Unlike the spetdae treated in this paper, however, the rate loss with
respect to full knowledge of the channel state at the recenay in general be large. For example, consider the
additive-multiplicativemodel:

Y=X1+Xo+51-5+72

whereS; andS; are known to the transmitters of user 1 and user 2, respbctinghis case, for strong interferences,
the uncertainty at the decoder cannot be resolved for anicehaf encoders, which indicates that the capacity
tends to zero (while a fully informed receiver can clearlyiage the clean MAC capacity).

The asymmetric case was also considered, i.e., the Gaus#@nhwith a single dirty user. In particular, for the

helper problem, sufficient conditions were found under whattice-strategies are optimal.
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We also provide a lattice-based transmission scheme, wathreves the capacity region of the Gaussian MAC

with common interference.
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APPENDIXI

PROOF OFLEMMA 1 - OUTER BOUND FOR SINGLE DIRTY USER WITHGAUSSIAN INTERFERENCE

The bound forR; trivially follows by revealing$; to the decoder.

For the sum-rate bound, we assume that a genie reveals tlsageesf uset to user2 and vice versa, implying
that, in fact, both users intend to transmit a common mesgEgé\n upper bound on the rate of this message
clearly upper bound®2; + R» for the independent messages cadg & Ws). Applying Fano’s inequality to the

common message rafe we have,
nR< HW)=H(WI[Y") +I(W;Y") < nen, + I(W;Y™),

wheree,, — 0 as the error probabilityl{e(")) goes to zero. The following chain of inequalities can belgasirified.

I(W3Y™) = h(Y") = h(Y"[W)
< h(Y™) — h(Y™|W, X2) (120)
= h(Y") — h(Y"|W, X3, ST) — I(ST; Y"|W, X3) (121)
< h(Y™) = W(Z™) — I(S]; Y™ W, XP) (122)
= h(Y"™) — h(Z™) — h(S}) + h(S}|W, X2, Y™) (123)
— h(Y™) — h(Z") — h(S}?) + h(X] + Z"|W, X5, Y™) (124)
< h(Y™) = W(Z"™) — h(SP) + h(X] + Z™), (125)

where the equality in (123) follows from the fact thit is independent of X3, W) and the three inequalities are a
consequence of the fact that conditioning reduces difteaieentropy. The lemma follows sincg ~ N (0, Q1) , we
have by the Cauchy-Schwarz inequality th&t™) < Z log, 2me(N + (VP + /P2 ++/Q1)?), andh(X] + Z™) <

5 logy 2me(N + Py).

APPENDIXII
PROOF OFTHEOREM 2 - DOUBLY-DIRTY MAC FOR IMBALANCED SNRS( FOR P; <P1+N) < P)

Here we complete the proof of Theorem 2 for the case Ria<[P1+N) < P,. We show achievability for the

point

(Ry, Ry) = (0, % log, (1 + ?)) (126)
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Using the lattice-alignment transmission scheme of Sedfi@ A, and A, are scaled lattices, i.eA; = A, =
a1 andAy = A (that isk; = k, = a1 andks = 1). The second moments of the latticks and A area% = a%Pg
and a% = P,, respectively, wherey; will be determined later. We s&; =0, D, =0, a0 =y =1, =0 and
o, = a1, hence the encoders send

X; = [—qul + Dl] mod A, (127)
Xy = [VQ — SQ] mod AQ, (128)
whereVy, ~ Unif(V,) carries the information of us€; D; ~ Unif(V;) is the dither signal. The receiver calculates

Y’ = [anY — Dy] mod A,. The equivalent channel is given by

Y = [al(xl +S1+Xo+So4z)— Dl} mod A, (129)
- [OQVQ Far(Xi +81) + a1Z — a1Qn, (Vs — Sz) — Dl} mod A, (130)
= |:051V2 — (1 — al)Xl + o2 — OélQA2(V2 — Sg):| modAl, (131)

where (130) follows from (128); (131) follows from (127).

SinceA; = ap A and A, = A (scaled lattices), we have thatQ,, (V2 — S2) € A4, i.e., the interference signal
is aligned withA;. Hence, the element;QA, (V2 — S2) disappears after the modulor operation. In this case,
the equivalent channel is given by

Y = [a1V2 — (1 — Oq)Xl + OL1Z] mOdAl, (132)

wherea; V, ~ Unif(V;). SinceV, andX; are independent hence the rate achieved by usemiven by

Ro *I(Vg, - {h h(Y'[V3)}
%{h 1—a1)X1+a1Z] modAl)}
25 log2 <G§\11)> — %logz (2me ((1 — a1)?P1 + a1’N)) (133)

where in the last inequality we used the fact thaV, has uniform distribution oveV; thenY’ is also uniform
overV, and since modulo operation reduces the second moment amsi@a distribution maximizes the entropy

for fixed second moment.

For P, = P, (P1+N> , using the optimal MMSE factor, i.eq; = plpﬁ- and for lattice that is good for

quantization (46), i.e7(A) — 1/2me asn — oo, we get that any rate

1 P
Ry < 10g2< +J\}> (134)

is achievable. Clearly, faP, = P (%) the inner bound meets the outer bound (38). LikewiseP[eir%)2 <
P;, the outer bound (38) remair#log2 (1 + %) thus the outer bound is also achievable.
From (134) and (61), the following rate is achievable for tloénp(0, R2) where
2
R {%10g2(1+};}), Pl<%) < P
2 pr—

2 (135)
3 log, (1‘1‘%), Py <%) <P
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As discussed at the beginning of the proof, also the p@iit 0) where

2
R {%10g2(1—|—1]3\§), P2<%) <P
1 =

136
Llogy (142, P (BN) <P (%)
logy (1+ %), P P > 172

is achievable. The theorem follows since any rate pair in treght line Ry + Ry = %logQ (1 + %) is
achievable using time sharing between (135) and (136)Mof /P, P>, — min(Py, P,) and P, # P».

APPENDIX I

PROOF OFTHEOREM 3 - DOUBLY-DIRTY MAC FOR NEARLY-BALANCED SNRs

Clearly, it is only required to show the achievable regioside the upper convex envelope operation in (77),
since the region including the upper convex envelope carchiewed using time sharing.
We first consider the case thRf < P, < P; (W)Q, and we show achievability for the rate paR,,0) where

}10 ( P+ P+ N >
2 2 2N + (\/Pl — v/ P2)2 ’

Using the lattice-alignment transmission scheme of Sedii@) A, and A, are scaled lattices, i.eA; = A, =

Ry =

g—;A andA; = A (thatisk; = Kk, = g—; andky = 1). The second moments of the latticks and A, arec? = %Pg
ando? = P,, respectively, where;; andas will be determined later. We s8f; =0,y =1, 8 = g—; anda, = aj,
hence the encoders send
X; = [Vl — 191 + Dl] modA1 (137)
Xy = [—OQSQ + Dg] mod AQ, (138)

whereV; ~ Unif(V;) carries the information of usdr, D; ~ Unif(V;) andD4 ~ Unif(Vs) are the dither signals.

The receiver calculate¥’ = [a; Y — D; — SD2] mod A;. The equivalent channel is given by

Y = _Oél (Xl +S1+ X9+ Sy + Z) —D; — /BD21| modA; (139)
= _Vl — (1 — Ozl)Xl + o2 + O[l(XQ + Sg) — ﬁD2:| mod A, (140)
= |Vi—(1-a1)X; +aZ +ai(l — a2)S2 — (8 — a1)D2 — a1Qn, (—2S2 + Dz)} mod Ay (141)
B (6 [0
= |Vi—-(1-a1)X1 +Z - 072(1 — a2)[—a2S2 + D2 — Qp,(—0a2S2 + D2)] — OT;QAz(—OQSZ + d2)] mod Ay
(142)
I 051 o51
=|Vi—-(1—-a)Xy+Z— 07(1 —ag)Xg — oTQAz(_OQSQ + Dg)} mod Ay, (143)
o 2 2

where (140) follows from (137); (141) follows from (138);42) follows sinces = g—;; (143) follows from (138).
SinceA; = g—;A and A, = A (scaled lattices), we have thggQAz(—aQSQ + D3) € Ay, i.e., the interference
signal is aligned withA;. Hence the eIemergiQAg(—agsz + Dy) disappears after the modulo- operation. In

this case, the equivalent channel is given by

Y = Vi — (1 — Oél)Xl + o2 — ﬂ(1 — a2)X2:| modA;, (144)
a2
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From the dithered quantization property (5V); and X; are independent. FurthermoiX; is independent oV
and X, hence the rate achieved by ugeis given by

R = (Vl, — {h Y’\Vl)}

SR 3\

{h(Y/) — h([(l — 041)X1 + o2 — %(1 — CYQ)X21| modA1> }

2
S e )

where in the last inequality we used the fact that has uniform distribution oveV; then’Y’ has also uniform

+

distribution over);, and since modulo operation reduces the second moment amsi@a distribution maximizes
the entropy for fixed second moment.
For g—; = 1/% and using lattices that are good for quantization (46), ¢A) — 1/27e asn — oo, the optimal

a1 that maximizesR; is given bya; = %, in this case we get that any rate

R <

(145)

11 P1 —‘y—PQ + N
— 10
2 %2\ oN + (VP — VP1)?

is achievable.
We now consider the case thes < P, < P, (P2+N) Again, we show achievability for the rate pdiR;,0)

where

1 Pi+P,+ N
R — ( L+ Py + >

—1lo
2 2 \oN + (VP — VP)?

Using the lattice-alignment transmission scheme of Sedfi@) A; and A, are scaled lattices, i.e); = A and
A=A, = g—fA (thatisky =1 and ko = Kk, = g—f). The second moments of the latticks and A, are o% =P
and a% = %Pl, respectively, wherey; and az will be determined later. We sé&¢, = 0, 8 = 1, v = 22 and

o, = a9, hence the encoders send
X; = [Vl — 191 + Dl] mod A; (146)
Xy = [—QQSQ + DQ] mod AQ, (147)

whereV; ~ Unif(V;) carries the information of usdr, D; ~ Unif(V;) andD4y ~ Unif(Vs) are the dither signals.

The receiver calculate¥’ = [azy — Dy — yD1] mod A,. The equivalent channel is given by
Y = _CYQ(Xl +S1+ Xo + 89 + Z) — Dy — ’}/Dl:| mod A, (148)
= (1 — OéQ)XQ + aoZ + Oéz(Xl + Sl) — ’}/Dl} mod A, (149)

= [ — (1 — a2)X2 + asZ + OéQ[Vl + (1 — Oq)sl — QA1 (V1 — 1581 + Dl)} — (’)/ — OQ)D1:| mod A, (150)

"o a
= OT?V1 —(1— )Xy + aZ — 07?(1 —a1)[V1 —ai1S1 + D1 = Qa, (Vi — 151 4 Dy

- %QAI(Vl —a1S; + Dy)| modA, (151)

= |:a Vi — Cki(l — Oél)Xl (1 — O[Q)XQ + gl — %QAl (V1 — qul + Dl)} mOdAQ (152)
1 1
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where (149) follows from (147); (150) follows from (146);51) follows sincey = £2; (152) follows from (146).
SinceA; = A andAy = g—jA (scaled lattices), we have thg;QAl(Vl —a1S1+ D) € Ay, i.e., the interference
is aligned withA,. Hence the eIemer{t’)%QA1 (Vi —a1S; + D) disappears after the modulo, operation. In this

case, the equivalent channel is given by

v [042\71 =~ 201 a)X; — (1 a2)Xs + asZ| modAs, (153)

aq aq

where g2 Vy ~ Unif()s). From the dithered quantization property (5Y), andX; are independent. Furthermore,
X, is independent oV, and Xy, hence the rate achieved by ugeis given by

Ri = S1(ViY') = = {(H(Y) = h(Y'[V1)}
= l {h(Y/) — h([(l — OéQ)XQ + sl — %(1 — Oél)Xl} mOdA2> }

n aq

2
st (thg) o o oo () 0 o)

where in the last inequality we used the fact t@;atv‘l has uniform distribution ovey, thenY’ has also uniform

+

distribution over),, and since modulo operation reduces the second moment amsbi@a distribution maximizes
the entropy for fixed second moment.
For &2 = ,/% and using lattices that are good for quantization (46), G¢A) — 1/2mwe asn — oo, the optimal

ae that maximizesR; is given bya, = M, in this case we get that any rate

P+P+N
+
1 P+ P+ N >
R <|zlo 154
2 g2<2N+(\/ﬁ—\/E)2 s

is achievable, which is identical to the case tffat< P, < P, (W)2 (145). Therefore, the achievable rate of

the point(R;,0) for N > /P, P, — min(P;, P») is given by.

+
1 Pr+P+ N
R1,0)={|=1 0]. 155
( 1, ) ( 2 0g9 <2N+(\/ﬁ1—\/ﬁ2)2> ) > ( )
Due to the symmetry, it can be shown that the achievable fateeqoint(0, R2) for N > /P, P, —min(Py, P»)

is given by

.
B 1 o Pi+P,+ N
(1) = (0’ [21 o (o (v V) ) (159)

The theorem follows by using a time sharing between the aahlewate pairs in (155) and (156).

APPENDIX IV

PROOF OFLEMMA 3 - A UNIFORM OUTER BOUND FOR THE GAR|

For any P, P», N, the gap is upper bounded by

C(P17P27N) SC(PmiuminaN)‘ (157)
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where Py, = min(Py, P»), i.e., the symmetric case wher® = P, is the worst case. To see this, we fi%
and vary P, such thatP, > P;. The second term on the RHS of (78) is increasingn while the first term is
a constant. Therefore, we get that the gap’, P>, N) is maximized forP, = P,. Of course, for the opposite
condition, that isP; < P», the maximum occurs again fdf, = Ps.

Without loss of generality it can be assumed tiat< P, where N > /P, P, — min(Py, P,). From (157), we

have that
+
1 P1 1 1 Pl
< S L) el |- Syt ,
(P, P2, N) < ((P1, P, N) 210g2 (1+ N) UCG{ [2108;2 <2 + N> } (158)
Let us define that = &1, thus
1 1 1 -
¢(P,P,N) = §log2 (I1+2z)—u.ce { [2 log, <2 —i—x) } 2 ((z), (159)

where the upper convex envelope is with respect.tdVe also define the following function

f(z) 2 %logg (; + ;c) : (160)
The function[f(z)]* is not a convex 1 function with respect tac. The pointz* is defined such that the upper
convex envelope off(x)]" is achieved by time-sharing between the points 0 andz = z*, therefore we have
that

Of(=a*) flogs(e)  §logy (5 + ")

= = 161
Therefore,
Llog, (2 +2), > p*
n.c.e {{f(x)]—&—} _ 5 10g9 (2 55) r =X (162)
C*z, 0<z<z*
whereC* £ %. The value ofrx* can be evaluated (numerically) from the equat{cic* = %1og2 (% + :c*)

which results thatt* ~ 1.655.

a) Forz > z*: ((z) is given by

~ 1 14+ _1 %
C(x) = 210g2 (%—l—x) = 2log2 <1+ 1—|—x)' (163)

Since((x) is decreasing with respect g hence((z) is maximized forz = 2*.

b) For0 <z < z*: {(x) is given by

&(z) = %mg? (1+42)—C*z. (164)
The maximum of¢ (x) occurs atz* — 3, hence we get that
- ~ 1 1log, (l + x*)
< *_ ) =—2"°2\2 "/
() << <:v 2) o (165)

The lemma follows since(z*) < {(z* — 1/2).
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APPENDIXV
LEMMA 11

The following lemma is useful in characterizing the entropyhe effective noise in lattice transmission schemes.
(46) and for AWGN channel decoding (47).

Lemma 11:Assume a sequence of latticks with second momenpP, that are simultaneously good for quantiza-
tion (46) (and covering) and for AWGN channel coding (47). Lt Unif(x)) independent oZ ~ N(0, N1,,),
wherel, is ann x n identity matrix. For anyN < P andx such that?P + N = P — ¢, for somee > 0, we have
that

hm,lh(nj+-Z]modAﬂ)::%kg2@wep)—ec (166)

n—oo n
wheree¢’ may be made arbitrarily small by takinrgto be sufficiently small.
Proof: Clearly %logz(Qﬂ'BP) is an upper bound since a white Gaussian random vector nmeedgnthe
differential entropy under a power constraint. On the otheand, the the entropy of the l.h.s. of (166) satisfies
h(U +ZmodA,) > h(U + Z|Q4, (U + Z)) (167)
=h(U+Z)—H(Qx, (U+ 7). (168)
Now, sinceA,, is good for both channel coding and covering, it follows that= Pr(Qs, = 0) — 1 asn — o

and furthermore that H(Q,,) — 0.” Moreover, by the entropy-power inequality [25], we havettha
10g2 <2%h(U) 4 Q%h(Z))
10g2 (210&(;(11;)) + 210g2(27reN)>

k2P
= —1 ——— 4+ 2weN | .
2 °g2<G<An>+ e )

The lemma now follows sinc&'(A,) — 5= asn — oo. O

2me

vz >
n

— NN

APPENDIX VI

PROOF OFTHEOREM4 - IMBALANCED SNRS FOR THEMAC WITH A SINGLE DIRTY USER

The converse part has been proved in corollary 1. In view ofotlter bound (37) in corollary 1, it is sufficient
to show achievability for’, = P, + N and P, = P, + N.

We consider the case thah, = P; + N. Using the lattice-alignment transmission scheme of Secdd3, A,
and A, are scaled lattices, i.eA; = A, = %A andAs = A (that sk = k, = % andrks = 1). The latticeA

is both good for quantization (46) and good for AWGN chanrading (47). The second moments of the lattices

"For anye > 0, since the covering diameter of the cells grows,as (but no faster), there existslarge enough such that the contribution
to L H(Qa,) of cells outside a radius of,/n is negligible for alln. On the other hand, inside this ball, the number of cells is exponentially
equal tO(TQ/P)n/Q' Thus'leH(QAn) < % (7190 log po + (1 — po) log(TQ/P)n/Q) + e
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A1 and A, are P, and P, respectively. We seV; =0, Dy =0,y =1, a3 =0, 8 =0 anda,, = a; Whereay
will be determined later, hence the encoders send
X; = [—a181 + Dl] mod A,
(169)
X9 = Vg,
where Vy ~ Unif(Vs) carries the information of use&r; D; ~ Unif();) is the dither signal. From the dithered
quantization property (51), the transmitted signal hasoumi distribution oveV;, i.e., X; ~ Unif(V;). The receiver

calculatesY’ = [«; Y — D3] mod A;. The equivalent channel is given by
Y = [Ozl(Xl + X9+ S1 + Z) — D1] mod A;
= [041V2 — (1 — 041)[—04181 + D1 — QAI(—ouSl + Dl)] + qu — QAI(—OqSl + Dl)] modA1
= [041V2 — (1 — Oél)Xl + 041Z] mod Al7 (170)

whereX; and 'V, are independent and; V, ~ Unif(V;). The scalak; is determined to be the optimal MMSE

factor, i.e.,a; = P1P+1N = %, hence

E{[Oé1V2 — (1 — Oél)Xl + 041Z]2} = P.

For lattice A that is both good for quantization (46) and for AWGN chanraading (47), the rate achieved by user

2 is given by
Ry = LI(V5Y') = © {h(Y') ~ h(Y'[V2))} (a71)
= {B(Y") = h([(1 ~ 01)X + 01Z] mod )} (172)
> %logQ (2meP;) — %mg2 (2me ((1 — a1)*Pr + a1®N)) — ¢ (173)
= %logQ (1 + ?) —c (174)

where (173) follows since modulo operation reduces therseoooment and Gaussian distribution maximizes the
entropy for fixed second moment, and from Lemma 11 where 0 for n — oc.

Therefore, forP, = P; + N the inner bound meets the outer bound (37). LikewiseHpr> P; + N, the outer
bound (37) remaing log, (1 + %), thus the outer bound is also achievable.

We consider the casB, = P, + N. The same transmission scheme as in (169) is used, wherenewx, = 1.

From (170), the equivalent channel is given by
Y = [V2 + Z] modA;. (175)

In this case we have that

E{[Vo2+Z?}=P,+ N =P,.
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For lattice A that is both good for quantization (46) and for AWGN chanraading (47), the rate achieved by user

2 is given by
Ry = SI(Va; Y') = - {h(Y’) — h(Z modAy)) (176)

n n

> %logQ (2mePy) — %logz (2meN) — ¢ a77)
1 P

= 5 log, (J\;) —¢ (178)
1 P

= 5 log (1 + A?) — (179)

where (177) follows since modulo operation reduces therseoooment and Gaussian distribution maximizes the
entropy for fixed second moment, and from Lemma 11 where 0 for n — oc.
Therefore forP, = P, + N, the inner bound meets the outer bound (37). Likewisepe> P, + N, the outer

bound (37) remain% log, (1 + %) thus the outer bound is also achievable.

APPENDIX VII

PROOF OFLEMMA 5 - NEARLY-BALANCED SNRS FOR THEMAC WITH A SINGLE DIRTY USER

Clearly, it is only required to prove the achievable ratddashe upper convex envelope operation (89), since
the region including the upper convex envelope may be aeHiesing time sharing.

Using the lattice-alignment transmission scheme of Sedii@) A, and A, are scaled lattices, i.eA; = A, =

LA and Ay = A (that isk; = K, = /5 and sy = 1). The latticeA is both good for quantization (46) and
good for AWGN channel coding (47). The second moments of ttiedg A; and A, are P, and P», respectively.
We setV; =0,D, =0,y=1, a2 =0, 8 =0 anda,, = a1 wherea; will be determined later, hence the

encoders send

X; = [—a1S1+ Dyl modA,

Xy, = Vo, (180)
whereVsy ~ Unif (V) carries the information of us@; D; ~ Unif(),) is the dither signal. The receiver calculates
Y’ = [anY — Dy] mod A;. The equivalent channel is given by

Y’ = [a1(x1 + X2 +S1 + Z) — Dy] modA,
=[a1Va— (1 —a1)[—a1S1 + D1 — Qa, (—a1S1 + D1)] + a1Z — Qa, (—1S1 + D1)] mod Ay
=Ja1Va — (1 —a1)X1 + a1 Z] modAy, (181)
The scalara; is determined such that the second momenigVy — (1 — a1)X1 + oy Z will be Py, hence

a?(Py+ N) + (1 — a1)?P1 = P1, where

2P1 N

_ 2P A 182
PR+ N M (182)

aq
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For lattice A that is both good for quantization (46) and for AWGN chanradling (47), the rate achieved by

user2 is given by

1
Ry = ~I(Vy;Y') = — {h (1 - a})X; + @}Z] modA;)} (183)

1

> 3 logy (2mePy) — B log2 (2776((1 —a})?P + aTQN)> +e (184)
1 P

=3 logy | i —panprary | T€ (185)

(Pi+P,+N)?

1 4P P,

=1 1
2 Og?( (P, — P, + N)? +4P1N> e (186)

where (184) follows since modulo operation reduces therstoooment and Gaussian distribution maximizes the

entropy for fixed second moment, and from Lemma 11 where 0 for n — oc.

APPENDIX VIII

PROOF OFLEMMA 6 - A UNIFORM OUTER BOUND FOR THE GAR)
For given P, and P, < P, the gapn(P;, P2, N) is decreasing with respect #,. Therefore,n(Py, P>, N) <
n(Pi, P1,N). In the same way, it can be shown that for givenand P, > P, n(Py, P2, N) < n(Py, Po, N). As
a consequence, we have that

U(P17P27N) (PmlH7Pmln7N) (187)

where Ppin = min(Pl, PQ).

Since the upper convex envelope in (78) can only decreaseajnewse have that

1 Poin 1 4P,
n(Pmin, Pmin, N) S — 10g2 <1 —+ N ) — = 10g2 ( —N2 T 4Pm1nN> (188)
1 Pin + N 4PninN + N2 4+ 4P2.
< 1 min 189
= PN 82 ( N NZ + 4PN (189)
1 (Pmin+N)(4Pmin+N)>
= lo 190
Py 2082 ( (2Pin + N)? (190)
1 1+ Ppin/N)(1 + 4Pyin /N
_ 10g2 (( + mln/ )( =+ ;nln/ )> (191)
Prin,N 2 (1+2Pm1n/N)

The proof follows since the maximum of the functigitz) = % occurs atz* = 1/2, and f(z*) = 9/8.

APPENDIX X

PROOF OFLEMMA 8 - CAPACITY REGION OF MAC WITH A SINGLE DIRTY USER AT HIGH SNR
We consider here the case that > P,. Using the lattice-alignment transmission scheme of Secdd, A
and A, are scaled lattices, i.eh\; = A, = %A andA; = A (that isk; = &, = % andry = 1). The latticeA

is both good for quantization (46) and good for AWGN chanrading (47). The second moments of the lattices
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A1 and A, are P; and P, respectively. We seébD; =0, D3 =0~v=0, a2, =0, =0 anda, = a7 = 1, hence

the encoders send
X; = [Vl — Sl] modA1 (192)
Xy = Vy, (193)

whereV; ~ Unif(V;) and V, ~ Unif(Vs) carry the information of uset and user2, respectively. The receiver

calculatesY’ =Y modA;. The equivalent channel is given by

Y = [Vl + Vo +Z — QA1 (Vl — Sl)} modA; (194)

= [Vl + Vo + Z] modA;. (195)

The decoder uses successive decoding to reconffueind Vs in (195). First the decoder decod®§ where

V, acts as a noise, in this case we get that

1 P
= — 1 _—
B =3 log, <P2+N> ’
is achievable. Then, the decoder subtracts the reconstnuctiV; and reduces the result modula; in this case

the equivalent channel is given by
Y" = [V3 + Z] modAs.

Hence, we get that
1 P
Ry = ilogz <N> ;

Clearly at high SNR, i.e., fo;, P, > N, this achievable rate pair coincides with the poif, RS) (36).

is achievable.

From Lemma 7, the rate paff, R») = (0, 3 log, (&) —o(1)) is also achievable at high SNR. Likewise, the point
(R1,0) = (5log, (1+ %) ,0) is achievable for any SNR. The theorem follows since the regigined by the
time sharing between these three points coincides with titer dound (34) at high SNR .

APPENDIX X

PROOF OFLEMMA 9 - ACHIEVABLE RATE REGION OFMAC WITH A SINGLE DIRTY USER

Using the lattice-alignment transmission scheme of Sedii@) A, and A, are scaled lattices, i.eA; = A, =
LA and Ay = A (that isk) = K, = /5 and kg = 1). The latticeA is both good for quantization (46) and
good for AWGN channel coding (47). The second moments of ttiedg A; and A, are P, and P, respectively.

We setDy, =0, v =1, as =0, § =0 anda,, = a3 wherea; will be determined later, hence the encoders send

X; = [Vl — 0151 + Dl] mod A;

Xy = Vy, (196)
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where V; ~ Unif(V;) and Vo ~ Unif(V,) are independent and carry the information of useand user2
respectivelyD; ~ Unif()V;) is the dither signal. The receiver calculat®5= [«; Y —D;] mod A;. The equivalent
channel is given by
Y = [Oél(Xl + X9+ S1+ Z) — Dl] mod A,

=[Vi+aVo—(1—)[Vi—a1S1 + D1 — Qp, (Vi —a1S1 + Dy)] + a1 Z — Qa, (V1 — 1 S1 + Dy)] mod Ay

= [Vl + a1 Vy — (1 — Oél)Xl + OqZ] mOdAl,

The rate achieved by useris given by

Ri= I(ViY) = © {h(¥') ~ h(Y'[V1))} (197)

= - {H(Y)) bl Va + (1 - 01)X + onZ] modAy) (198)

> % {h(Y’) ~ min {; logy(27ePL), h(ar Va + (1 — an) X1 + a1Z)}} (199)

> %mg2 (GR> — 11og2 (2me - min {P,aiPy + (1 — a1)?PL + o N }) (200)
(A1) 2

_ %ng (min T (1131_ e agN}> - %mgQ (2reG(AY)) (201)

where (199) follows sincéi(U mod A1) < min(% logy(2mePr), h(U)) for any random vectolU; (200) follows
since’Y’ ~ Unif(V;) thus h(Y’) = 3 log, (%) and since Gaussian distribution maximizes the entropy for

fixed variance. Since lattica is good for quantization, i.eG/(A) — 1/2we asn — oo, we get that any rate

1 P,
Ry < ; log ( ; ) (202)

min {Pl, (1 — a1)2P1 + a%(N -+ PQ)}

is achievable. Sinc&/ is reconstructed at the decoder with high probability, we sabtractV; from Y. i.e

Y = [Y' — V] modA, (203)
= [CM1V2 — (1 — al)Xl + a1Z] modA;. (204)

In order to reconstrucVs, the receiver calculate¥” = [Y] mod A/, where the lattice\’. has a second moment

p2P1, andp = \/mi“(Pl’(1’0‘1)2131*“%”“32)). The lattice A, is a sub-lattice ofA’, i.e., A; and A/ are nested

1

lattices. The equivalent channel is given by

Y” = [OélVQ — (1 — Oél)Xl + OélZ] mOd A;ﬂ (205)
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Since the lattice\ is both good for quantization (46) and good for AWGN chanraliog (47), hencé\! is both

good for quantization and for AWGN channel coding as well. reéfare, the rate achieved by uskis given by

Ro— %I(Vg; Y") = % [R(Y") — h(Y"[V2))) (206)
_ % (h(Y") = h([(1 — 01)X; + a1Z] mod A’)} (207)
> %h(Y”) - %mg2 (2me (1 — o1)®P1 + a4 N)) (208)

1 1

> B log, (2me - min(Py, (1 — 1)?P, + a3 (P + N))) — B logy (2me ((1 — )P + a%N)) —€ (209)
1 min(Pl, (1 — a1)2P1 + Oé%(Pg + N))

= 5 logy 2 2 %
2 (1 — 0[1) Pl + alN

(210)

where (209) follows from Lemma 11, ard— 0 asn — oo.
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