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Abstract

Costa’s celebrated ”writing on dirty paper” (WDP) shows that the power-
constrained channel Y = X + S + Z, with Gaussian Z, has the same capacity
as the standard AWGN channel Y = X + Z, provided that the ”interference” S
(no matter how strong it is) is known at the transmitter. While this ability for
perfect interference cancelation is very appealing, it relies heavily on the Gaussian-
ity of the (unknown) noise Z. We construct an example of “bad” noise for writing
on dirty paper, namely, “difference set noise”. If the interference S is strong, then
difference-set noise limits the WDP capacity to at most 2 bits. At the same time,
like in the AWGN case, the zero-interference capacity grows without bound with
the input constraint. Thus almost 100 % of the available capacity is lost in WDP in
the presence of difference-set noise. This high capacity loss is due to the “entropy
amplification property” (EAP) of noise with an aperiodic probability distribution.
Using the EAP and the duality between WDP and Wyner-Ziv source coding, we
also give an example of dramatic rate-loss in quantizing encrypted source.

Keywords: side information, writing on dirty paper, the Wyner-Ziv setup, difference
sets.

1 Introduction

In Costa’s writing on dirty paper (WDP) [6], a channel encounters two independent
sources of additive white Gaussian noise. One source, Sn, is known to the transmitter
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non-causally and will be referred to as interference. The other source, Zn, is not directly
known to any part of the system and will be called simply noise. The input, xn, can
depend on the interference sequence Sn and on nR independent information bits, and
must satisfy a power constraint,

∑
x2

i ≤ nP . Finally, the output is

Y n = xn + Sn + Zn.

Costa showed that the capacity (highest achievable R with vanishing decoding error
probability) of WDP is given by

CG
WDP =

1

2
log

(
1 +

P

N

)

bits/channel use,1 where N is the variance of each unknown noise sample Zi.
An important property of WDP is that the capacity does not depend on the vari-

ance of the interference S. Thus, the capacity would be the same if there were no
interference, or, equivalently, if the interference were also known at the receiver. This
“interference cancellation property” is particularly interesting as unlike the receiver, a
power constrained transmitter cannot simply subtract the interference. Extensions of
Costa’s result show that the interference cancellation property also holds more generally,
in that the capacity of WDP does not depend on the distribution of the interference S
(i.e., it can be non-Gaussian or even arbitrarily varying) if [3, 10] and only if [4] the
noise Z is Gaussian2. Furthermore, for general distribution of the noise Z the difference
between WDP capacity and the zero-interference capacity is at most 1/2 bit/channel use
provided only that E[Z2

i ] ≤ P (i.e., the noise can be general but must be less powerful
than the input) [20]. In the general framework, we refer to the difference between WDP
capacity and zero-interference capacity as the loss resulting from the interference.

These results may give the impression that having side information (the interference)
at the transmitter can be (almost) as efficient as having it at the receiver. In fact, the
recent popularity of coding techniques for WDP [2], the related Gaussian Wyner-Ziv
problem [18, 19], and general algebraic binning for network communications settings
[21] heavily rely on small loss. However, in the general setting of channels with side
information (SI), there may be a large gap between the transmitter-SI capacity [16, 11]
and the receiver-SI capacity (e.g., [17]). Examples of a large gap can be generated using
a discrete modulo-additive noise channel with state-dependent noise, i.e., Y = X + ZS,
where ZS is conditionally independent of X given S [9]. Note that in such channels the
gap can be positive (and large) even without an input constraint.

The objective of this work is to show that also in the basic input-constrained additive
state setting, Y = X +S +Z, the encoder is sometimes unable to use the SI efficiently if
the receiver does not have access to it. In contrast to the conditions for zero or small loss,
the noise Z must be non-Gaussian and more “powerful” than the input. Furthermore, the
noise cannot be periodic, since periodicities can be overcome using the lattice-strategies
that are successful in the Gaussian case; at the same time it must be relatively sparse
(so the zero-interference capacity can be high), yet dense enough to make a strong,
negative impact on the WDP capacity. Thus, we consider strong interference S, so that
its knowledge at the receiver has the most benefit, and irregular noise Z. In a previous
paper [5], we constructed such a noise distribution and demonstrated that the loss in

1Logarithms throughout the paper are base 2.
2The “only if” part holds for a certain large class of transmitters.
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causal WDP (also known as “writing on dirty tape”) is at least one-half of the zero-
interference capacity.

In this paper, we strengthen the results of [5] in two ways. First, we extend the
analysis to non-causal WDP, for which capacity is potentially higher. Second, we find a
family of irregular noise distributions for which the WDP capacity is bounded by a small
constant (≈ 2 bits/channel use), while the zero-interference capacity can be arbitrarily
large. Thus almost 100 % of the capacity is lost in WDP compared to the fully informed
system case (or equivalently, compared to the zero-interference case). In addition, we
construct a “dual” source coding problem with a large gap between the decoder-SI rate-
distortion function (the Wyner-Ziv function) and the conditional (encoder + decoder-SI)
rate-distortion function.

Our main tool in the new results is the identification of structured irregular noise,
namely, difference set noise. A difference set is an algebraic notion, describing a subset
D of a group G for which D ∩ (D + g) has the same number of elements for all shifts
g 6= 0. We focus on a variation on this notion, namely, sets with unique differences, where
|D∩ (D + g)| ≤ 1, and we refer to a uniform distribution over such a set as difference set
noise or aperiodic noise. In Section 2, we identify the “entropy amplification property”
(EAP) of additive difference set noise. In Section 3 we derive a simplified formula for
the WDP capacity for strong interference and general noise. In Section 4 we apply this
formula to the case of difference-set noise; we use the EAP to separate the effects of the
noise and the input distribution, which allows us to derive our main result regarding the
capacity loss in WDP. Finally, in Section 5 we derive a parallel result for the rate loss in
the Wyner-Ziv problem.

2 Entropy Amplification Property

In this section we examine the behavior of the entropy of an independent sum of discrete
random variables. It is well known that independent addition increases entropy in a sub-
linear way [8]. That is, for any independent random variables X and Z in an additive
group G,

H(X) ≤ H(X + Z) ≤ H(X) + H(Z) (1)

where X + Z means addition of the two variables in G. Both inequalities above follow
from the convexity (∩) of the entropy function. The upper bound is a special case of the
fact that for any function f of the pair (x, z), and in particular for addition, the entropy
of f(X, Z) is less than or equal to the joint entropy of X and Z, which in the independent
case is equal to their entropy sum [8]. The lower bound follows since conditioning can only
reduce the entropy, and in the independent case the conditional entropy H(X + Z|Z)
is equal to H(X) [8]. The latter inequality becomes equality if and only if X + Z is
statistically independent of Z, a condition that can be interpreted as if the channel from
Z to X + Z “masks” Z completely so H(X + Z)−H(X) = I(Z; Z + X) = 0.

Our main interest, however, is in the tightness of the upper bound; or at least, in
achieving approximately

H(X + Z) ≈ H(X) + H(Z). (2)

Equality in (2) holds if and only if both X and Z can be obtained from their sum (i.e.,
the sum is “invertible”) with probability one. Such a situation happens, e.g., if the
distribution of X is sparse so that the spacing between any two points where X gets
positive probability is larger than, say, ∆, while the distribution of Z is concentrated
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invertible-sum partially invertible

partially invertible full ambiguity

Figure 1: Cases of invertibility and ambiguity given the sum.

within an interval of size ∆. This invertibility condition is not met if both X and Z
are concentrated in an interval, or if their support is periodic with the same period. See
Figure 1.

Is there a “universal entropy amplifier”? That is, can we find a single Z such that (2)
holds for any X? Clearly, we cannot hope to satisfy that without some limitation on the
support of X; e.g., uniform distribution has the maximum entropy (the logarithm of the
alphabet size) so its entropy cannot increase further by addition. Also, exact equality in
(2) cannot hold uniformly, because for every Z we can find an X such that the ambiguity
in X given X + Z is not quite zero. Nevertheless, there exist sufficiently sparse and
non-periodic distributions of Z, such that with a suitable limitation on the support of
X, (2) holds up to a small constant gap. Such “aperiodic distributions” are related to
the notion of a difference set.

2.1 Difference Set

We say that a subset Z of an Abelian group G has unique differences if for all non-zero
d ∈ G the equation

z1 − z2 = d

has at most one solution for z1, z2 ∈ Z. This is equivalent to saying that the intersection
of Z with its shift either contains one point or is empty:

|Z ∩ (Z + d)| ≤ 1 ∀ d 6= 0. (3)

One example of a set with unique differences is Z = {2k : 1 ≤ k ≤ n} for any n, where
the group G is the integers. This follows since 2k1 − 2k2 = 2j1 − 2j2 if and only if k1 = j1

and k2 = j2. A special example of unique differences is when the equation z1 − z2 = d
has exactly one solution, i.e.,

|Z ∩ (Z + d)| = 1 ∀ d 6= 0. (4)

For example, the set {0, 1, 4, 6} in the group of integers modulo 13 has a unique (ordered)
pair with difference d for every d in {1, . . . , 12}. See Table 1. Such a set is known as a
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i 0 1 4 6
j
0 * 1 4 6
1 12 * 3 5
4 9 10 * 2
6 7 8 11 *

Table 1: A difference table for the planar difference-set of size 4 in the group of integers
modulo 13. (Here α = 31 + 1 = 4 and so |G| = 4(4 − 1) + 1 = 13). Every non-zero
difference d = i− j corresponds to a unique pair (i, j) in the group.

planar difference set, and is the largest possible set with unique differences for a fixed
(finite) G. In fact, we can bound the size of a set Z with unique differences by

|Z|(|Z| − 1) ≤ |G| − 1, (5)

and equality holds if and only if Z is a planar difference set. 3 Although it is not true
that a set satisfying (4) exists in every finite group, it is interesting to note that for any
prime p and integer m, a planar difference set exists with size α = pm + 1 in the group
of integers modulo α(α − 1) + 1; see e.g. [1]. The modulo-13 group in Table 1 is the
case p = 3 and m = 1. These examples demonstrate that arbitrarily large sets with
unique differences exist, and that their size is roughly the square root of the group size
(for planar difference sets) or smaller.

In the context of set sums, the bounds on the entropy of an independent sum in (1)
are analogous to

|X | ≤ |X + Z| ≤ |X | · |Z| (6)

where
X + Z = {x + z : x ∈ X , z ∈ Z}.

For finite sets, equality in the upper bound occurs if and only if for any y there is at
most one pair x ∈ X , z ∈ Z satisfying x + z = y. As we shall see below, if Z has unique
differences, then the upper bound is “relatively tight”, up to a factor of 2, for any X
whose size is smaller than or equal to |Z|+ 1.

2.2 Entropy Amplification by Aperiodic Noise

When viewed as noise in an additive noise channel, uniform distribution over a set Z with
unique differences amplifies the output entropy as much as possible for a large class of
input distributions. Note that uniform distribution over Z is aperiodic in the sense that
its autocorrelation function,

∑
i P (i)P (i+d), is upper bounded by 1/|Z|2 for all non-zero

shifts d, which is the smallest possible bound. We thus call Z ∼ Unif(Z) aperiodic noise.
The following lemma gives a precise statement of the Entropy Amplification Property
(EAP) of aperiodic noise.

3By the unique differences property, every ordered pair (z1, z2) corresponds to a different difference
d = z1 − z2; thus the number of possible (non-zero) differences in G, which is |G| − 1, is greater than
or equal to the number of ordered pairs in Z, which is |Z|(|Z| − 1). The reverse inequality holds if an
ordered pair in Z exists for every (non-zero) difference d, as indeed implied by (4).
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z 0 1 4 6
x
0 0 1 4 6
3 3 4 7 9
6 6 7 10 12
9 9 10 0 2
12 12 0 3 5

Table 2: Sum table of the set X = {0, 3, 6, 9, 12} and the planar difference-set Z =
{0, 1, 4, 6} in the modulo-13 group of Table 1. The sum 0 appears three times in the
table; 3,4,6,7,9,10 and 12 appear twice; 1,2,5 appear once; and 8 and 11 do not appear
at all.

Lemma 1. (EAP) Let Z ⊆ G have unique differences as defined in (3), and let Z be
uniformly distributed on Z (i.e., Z is aperiodic noise). Then, for any random variable
X in G that is statistically independent of Z and whose support size |X | is bounded from
above by |Z|+ 1, the entropy of X + Z is lower bounded by

H(X + Z) ≥ H(X) + H(Z)− |X | − 1

|Z| log(2)

≥ H(X) + H(Z)− 1bit. (7)

Lemma 1 implies that the ambiguity in the pair (X, Z) given the sum X+Z is at most
one bit on the average. For example, consider X and Z which are uniformly distributed
over the set X = {0, 3, 6, 9, 12} and the planar difference-set Z = {0, 1, 4, 6}, respectively,
in the group of integers modulo 13. Table 2 shows that most sums x + z result from two
different pairs (x, z), so the ambiguity in the pair given the sum is indeed 1 bit; for three
sums the ambiguity is zero, while in one case (given x + z = 0) there are three different
pairs so the ambiguity is log(3) ≈ 1.585 bit. Explicit calculation gives

H(X + Z) = −7
2

20
log

( 2

20

)
− 3

1

20
log

( 1

20

)
− 3

20
log

( 3

20

)
≈ 3.3842 bit (8)

which is indeed larger than H(X) + H(Z) − 1 ≈ 2.32 + 2 − 1 = 3.32 bit. Furthermore,
using (8) we can calculate the (average) conditional entropy of the pair given the sum:

H(X,Z|X + Z) = H(X) + H(Z)−H(X + Z) ≈ 0.94 bit

which is indeed smaller than 1 bit. We shall discuss a case of equality in the EAP in the
next subsection.

Another interesting corollary of Lemma 1 concerns the tightness of the upper bound
on the size of a set sum in (6). Specifically, by a maximum entropy argument we have
on the one hand H(X + Z) ≤ log |X +Z| for any distribution on X. On the other hand,
we have H(Z) = log |Z|, and for X ∼ Unif(X ) we have H(X) = log |X |. Substituting in
(7), we obtain that the size of the sum of a set with unique differences and an arbitrary
set of smaller size is always greater than or equal to half their size product:

|X + Z| ≥ |Z| · |X |
2

. (9)
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A A A
B B B

C C C
D D D

0 1 2 3 4 5 6 . . .

(A)

A A A
B B B
C’ C C’

D D D
0 1 2 3 4 5 6 . . .

(B)

Figure 2: Unstructured sets satisfying the constraint in (11). (A) before modification.
(B) after modification.

Thus, a set with unique differences is a “universal size amplifier” under set addition.

Proof. of Lemma 1: Let us define α = |Z|, β = |X |, X = {x1, . . . , xβ}, and pi =
Pr(X = xi). Let us also define the random variable Y = X + Z, and define Yi = xi +Z,
i = 1, . . . , β, so Yi is a shift of Z by xi, and |Yi| = α for all i. Given X = xi, Y is
uniformly distributed on Yi. Hence we can write the distribution of Y as

Pr(Y = y) =

β∑
i=1

Pr(X = xi) Pr(Y = y|X = xi) =

β∑
i=1

pi

α
1{y∈Yi} (10)

where 1{·} denotes indicator function. Note that {y ∈ Yi} is equivalent to {y − xi ∈ Z}.
Since Z has unique differences, we have from (3)

|Yi| = α, |Yi ∩ Yj| ≤ 1, i, j = 1, . . . , β, i 6= j. (11)

In order to provide a lower bound on H(Y ), let us consider the distribution (10) under
the constraint that Y1, . . . ,Yβ must satisfy (11) (but these sets are not necessarily related
to the underlying Z and X ). See Figure 2 (A) where all set pairs intersect at exactly one
point (A and B at y = 2, A and C at y = 2, A and D at y = 3, B and C at y = 2, B and
D at y = 1, and C and D at y = 4). We claim that

(Claim 1) with the constraint (11), a collection of sets {Yi} that minimizes H(Y ) satisfies
that each y is in at most two of the Yi’s.

If this property is not satisfied, then there exists a point which is common to three or
more sets; assume (without loss of generality) that y0 is in Y1, . . . ,Yn where β ≥ n ≥ 3.
In the example of Figure 2(A), the A, B and C sets intersect at y0 = 2 so n = 3. We
shall show that we can reduce the entropy of Y by decreasing the number of intersections
at y0 to two, without violating the constraint (11), and without generating new points
with three or more intersections. Specifically, since β ≤ α + 1 and since the Yi’s must
satisfy (11), there exists at least n − 2 points y in each Yi, for 1 ≤ i ≤ n, which belong
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y α Pr(Y = y) α Pr(Y ′ = y)

y0 p1 + p2 + · · ·+ pn p1 + p2

a removed point in Yi pi 0
a point in Yi to which a point in Yj is modified pi pi + pj

Table 3: Comparison of the distributions of Y and Y ′ in the proof of the entropy ampli-
fication property.

to this Yi alone, i.e., y /∈ Yk for k = 1, . . . , β, k 6= i. 4 In the example of Figure 2(A), the
lonely point in the A set is y = 6, in the B set it is y = 0 and in the C set it is y = 5.
Thus, we can modify these n(n− 2) points and the point y0 into n(n− 1)/2 points that
are in exactly two of the Yi’s in Y1, . . . ,Yn. In the example of Figure 2, we modified
the C set as shown in Figure 2(B), where the point y = 2 became y = 0 and the point
y = 5 became y = 6. Note that these n(n− 1)/2 two-set intersections consist of all pairs
of sets in {Y1, . . . ,Yn}; hence the probabilities (10) of the modified points y consist of
the values { 1

α
(pi + pj) : 1 ≤ i < j ≤ n}. Let Y ′ have the distribution (10) with these

modified sets; see Table 3. Then,

α(H(Y )−H(Y ′))

=
∑

1≤i<j≤n

(pi + pj) log(pi + pj)−
(

n∑
i=1

pi

)
log

(
n∑

i=1

pi

)
− (n− 2)

n∑
i=1

pi log pi

=
n∑

i=1

pi log

∏
j 6=i(pi + pj)

pn−2
i

(∑n
j=1 pj

)

> 0, (12)

where the inequality follows since for each i the term in the log is greater than 1 (the
numerator is equal to the denominator plus additional positive terms). By repeating this
process a finite number of times (with each step reducing entropy as in (12)), we obtain
a collection of sets {Yi} with each y in at most two Yi’s. This proves Claim 1 above.

We also claim that a minimizing solution satisfies (11) with equality for all i, j =
1, . . . , β, i.e.,

(Claim 2) a collection of sets {Yi} that minimizes H(Y ) satisfies |Yi ∩ Yj| = 1 for all i 6= j.

To see why, note that if after the modification above there are any remaining pairs of
sets with Yi ∩ Yj = ∅, then we can further reduce the entropy while still satisfying (11)
by changing a point yi ∈ Yi to a point yj ∈ Yj where both yi and yj are not in any other
sets (such points exist since β ≤ α + 1), thus obtaining one point with the probability

4To see why, suppose we start with the set Y1 and add the sets Y2, . . . ,Yβ sequentially, while noting
at each stage which point of Y1 (if any) intersects the new Yi. (We say that the point is “covered” by the
new Yi.) If each new intersection occurs at a different point, then there will be at most β − 1 points of
Y1 covered, and therefore at least α−β +1 points which are in Y1 alone. If there are m “re-coverings” in
this process (i.e., m is the number of stages in which the new Yi intersects a point of Y1 which is already
covered), then there will be at least α − β + 1 + m points which are in Y1 alone. Since we assumed
that Y1, . . . ,Yn intersect at y0, there must be at least n − 2 re-coverings; substituting m ≥ n − 2 and
β ≤ α + 1, we get that there are at least α − β + 1 + m ≥ n − 2 points which are in Y1 alone. Since
the same argument applies to all the sets Y1, . . . ,Yn, each one of them must have at least n− 2 points
which are not in any other Yi.
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sum pi + pj. After this process is complete, the graph of transition distribution from X
to Y has the following properties: each x ∈ X is connected to α points y with branch
probabilities 1/α; each y ∈ G is connected to at most two x’s (by Claim 1); and each
pair x and x′ in X are connected to each other through exactly one y (by Claim 2). We
thus have a total of β(β − 1)/2 points y connected to exactly two x’s (all pairs from X ),
leaving out αβ − β(β − 1) points y (that is, α− (β − 1) in the span of each x) which are
connected to a single x. It follows that the minimizing distribution under the constraint
(11) has the following form:

Pr(Y ∗ = y) =

{
pj

α
for α− β + 1 values of y for each 1 ≤ j ≤ β,

pi+pj

α
for one y for each 1 ≤ i < j ≤ β,

(13)

and the entropy of this distribution lower bounds our quantity of interest, i.e., H(X+Z) =
H(Y ) ≥ H(Y ∗).

In order to study the entropy of the random variable Y ∗, let us define E as a binary
random variable that takes the vlaue E = 1 if Y ∗ falls into the first case of (13), and
takes the value E = 2 if Y ∗ falls into the second case of (13). We have

Pr(E = 1) =
α− β + 1

α
,

and since E is a function of Y ∗, we have H(Y ∗) = H(Y ∗, E) = H(E) + H(Y ∗|E). Thus

H(Y ∗) = HB

(β − 1

α

)
+

α− β + 1

α
H(Y ∗|E = 1) +

β − 1

α
H(Y ∗|E = 2) (14)

where HB denotes the binary entropy. It is easy to verify that

H(Y ∗|E = 1) = H(X) + log(α− β + 1).

As for the second case, note that

Pr(Y ∗ = y|E = 2) =
pi + pj

β − 1
for one y for each 1 ≤ i < j ≤ β. (15)

The entropy of this distribution satisfies

H(Y ∗|E = 2) ≥ H(X) + log(β − 1)− log 2. (16)

To see this, we can take the convex combination of two reorderings of copies of the
distribution of X. In particular, define two β(β − 1)-dimensional distributions

P a =
1

β − 1
[p1 p1 . . . p1 p2 p2 . . . p2 . . . pβ pβ . . . pβ], (17)

and

P b =
1

β − 1
[p2 p3 . . . pβ p1 p3 . . . pβ . . . p1 p2 . . . pβ−1]. (18)

That is, P a has β−1 copies of p1, then β−1 copies of p2 and so forth. On the other hand,
P b has every value pj except p1 in the first β−1 places, then every value pj except p2 in the
second β−1 places, and so forth. We see that H(P a) = H(P b) = H(X)+log(β−1). On
the other hand, H((P a +P b)/2) = H(Y ∗|E = 2)+log 2. The inequality (16) can be seen
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by combining these equalities with the inequality H((P a+P b)/2) ≥ (H(P a)+H(P b))/2
by the concavity of entropy. Combining the minimum entropy property of Y ∗ and (14)-
(16) above, we conclude the proof of Lemma 1 by computing

H(X + Z) ≥ H(Y ∗) (19)

≥ log α + H(X) +
β − 1

α
log 2. (20)

In the next subsection we will see that this lower bound can in fact hold with equality.

2.3 Tightness in the EAP

Combining the upper bound of (1) with the EAP (7), we see that for X and Z satisfying
the conditions of the EAP lemma

H(X) + H(Z) ≥ H(X + Z) ≥ H(X) + H(Z)− |X | − 1

|Z| bit. (21)

We now show that the lower bound above (the EAP) can be tight while the upper
bound above can be made as tight as desired by choosing a large enough set with unique
differences. Let Z be a set with unique differences and let Z1 and Z2 be independent
random variables each uniformly distributed on Z. Furthermore, let Y+ = Z1 + Z2 and
Y− = Z1 − Z2 (with addition and subtraction in the underlying group G). The EAP
applies to Y+ and Y− since Z1 is aperiodic noise and the support of Z2 (or −Z2) is less
than |Z|+ 1. We first compute that

H(Y+) = 2 log |Z| −
(

1− 1

|Z|
)

, (22)

which is exactly the lower bound in the EAP. To see (22), notice that if z1,1 + z1,2 =
z2,1 + z2,2 with zi,j ∈ Z, then unique differences implies that {z1,1, z1,2} = {z2,1, z2,2} and
thus Pr(Y+ = y) ≤ 2/|Z|2 for all y. Indeed, Pr(Y+ = y) = 2/|Z|2 for |Z|(|Z| − 1)/2
values of y (once for each distinct pair in Z) and Pr(Y+ = y) = 1/|Z|2 for |Z| values of
y (once for each element of Z). On the other hand,

H(Y−) =

(
2− 1

|Z|
)

log |Z|, (23)

which can be made arbitrarily close to the upper bound in the EAP by choosing suffi-
ciently large set Z. To see (23), we note that Pr(Y− = 0) = 1

|Z| and that Pr(Y− = y) = 1
|Z|2

for all non-zero y with non-zero probability.
We have not only shown tightness in the EAP, but we have shown that the difference

between the sum-entropy and the difference-entropy of two i.i.d. random variables Z1 and
Z2 can be arbitrarily close to 1 bit:

|H(Z1 + Z2)−H(Z1 − Z2)| ≈ 1 bit.
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2.4 Extension to Un-restricted Set Size

One drawback of the EAP lemma is the restriction on the support of X. Since the
size of a set with unique differences is upper bounded by ≈

√
|G| (achieved by the case

of a planar difference set), this also limits the EAP to X’s with support size ≈
√
|G|.

Nevertheless, Lemma 2 below gives a lower bound on the entropy of X + Z which can
be optimized for a specific distribution of X.

In order to circumvent the restriction on the size of X in the EAP, we consider
a quantization K(·) of the group G. This quantizer groups |Z| points of G together
according to

K(g) =

⌊
π(g)

|Z|
⌋

, g ∈ G, (24)

where b·c is the round-down operation, and π(·) is some permutation of G to be optimized
later. We refer to the groupings formed by K(·) as K-bins, e.g., the set K−1(1) is the
first K-bin.

Lemma 2. (Extended EAP) Let Z be aperiodic noise as in Lemma 1. For any inde-
pendent random variable X and any quantizer K(·) as above,

H(X + Z) ≥ H(X) + H(Z)−H(K(X))− 1bit. (25)

The best (tightest) lower bound is achieved by a quantizer K(·) which minimizes the
entropy of K(X). By majorization theory [14], a permutation π(·) in (24) for which the
probabilities Pr(X = π(i)) for i = 1, . . . , |G| are in a non-increasing (or non-decreasing)
order results in a distribution of K(X) which majorizes that of any other permutation;
hence this K(·) is the minimum-entropy quantizer. Note that for such a permutation, if
|X | ≤ |Z|, then H(K(X)) = 0, and Lemma 2 coincides with Lemma 1.

Proof. Using the chain rule for the joint entropy H(X + Z, K(X)), we have

H(X + Z) = H(X + Z|K(X)) + H(K(X))−H(K(X)|X + Z)

≥ H(X|K(X)) + H(Z)− |Z| − 1

|Z| + H(K(X))−H(K(X)|X + Z)

≥ H(X) + H(Z)−H(K(X))− 1bit. (26)

Here, the first inequality follows by Lemma 1 since, given K(X) = k, the size of the
support of X is at most |Z|, so the conditions of the lemma are satisfied; the second
inequality follows since H(K(X)|X +Z) ≤ H(K(X)), and since K(X) is a deterministic
function of X so H(X|K(X)) + H(K(X)) = H(X).

3 WDP Capacity with Strong Interference

We turn to the second part of this paper, which deals with cases of high rate loss in side
information problems. The next two sections are devoted to the “dirty-paper” channel.
We start with a definition of the problem, followed by a simple characterization of the
WDP capacity in the case of general unknown noise and strong interference. In the next
section we then use this characterization for the case of aperiodic unknown noise, and
apply the EAP to derive an upper bound for the resulting WDP capacity.
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We consider a discrete version of WDP in which addition is done modulo some given
integer L, with results in the alphabet AL = {1, . . . , L}:

Y n = xn + Sn + Zn

where additions are modulo L. The interference Sn and the noise Zn are both indepen-
dent, identically distributed (i.i.d.) sequences with respective marginal distributions, PS

and PZ , and Sn is known at the encoder prior to encoding. We focus on the case of strong
interference in which the distribution PS is uniform on AL. Instead of a power constraint,
we require that each input symbol xi be drawn from some constraint set C ⊂ AL:

xi ∈ C.

A WDP system consists of two components. The first is a rate-R blocklength-n
encoder, which takes a message M consisting of nR bits and the interference sequence
Sn and creates the constrained input sequence as Xn = fn(M,Sn), where each component
Xi is in the constrained set C. The other component is a decoder, which estimates the
message from the output sequence, M̂ = gn(Y n). A rate R is achievable if there exists
a sequence of rate-R encoders and decoders such that the probability of decoding error,
Pe = Pr {gn (Y n) 6= M}, can be made as small as desired. The capacity is the supremum
of all achievable rates and is written CWDP(L, C, PZ , PS).

The comparison zero-interference system uses the same noise distribution PZ and
input constraint set C, but the interference does not play a role, i.e., Y = x + Z. Thus,
for this system, the encoder is of the form Xn = fn(M). The zero-interference capacity
is defined as above and is written CZI(L, C, PZ). It is straightforward to see that (see,
e.g., [8]),

CZI(L, C, PZ) = sup
PX

H(X + Z)−H(Z), (27)

where the maximization is over distributions PX on C, and where X is independent of Z.
By the general Gelfand-Pinsker capacity formula, [11], the WDP capacity is given by

CWDP(L, C, PZ , PS) = sup
U,X

{
I(U ; Y )− I(U ; S)

}
(28)

with Y = X + S + Z, where the maximization is over all random variables (X,U) such
that (S,X, U) are independent of Z, and X is in C. In fact, as shown in [11] it is enough
to maximize over U and functions f such that X = f(U, S) is in C. We call such (X, U)’s
admissible pairs. This general formula for CWDP involves maximization over a conditional
distribution (PU |S) and a function (f(·)). But the assumption of strong interference allows
us to derive a simpler expression, involving an unconditional distribution and a function.

Lemma 3. (Strong Interference Capacity) For PS uniformly distributed on AL, i.e.,
strong interference,

CWDP(L, C, PZ , PS) = sup
PV , Q(·)∈QC

{
H(V )−H(Q(V ) + Z)

}
, (29)

where the maximization is over distributions PV on AL such that V is independent of Z,
and over functions Q : AL → AL belonging to the set

QC = {Q : Q(v)− v ∈ C for all v ∈ AL}.
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The proof is given below after we make a few comments. Equation (29) is similar
to the formula for the capacity if the side information can only be used causally (the
“dirty-tape” problem) [10, Thm. 1]. In the causal case the capacity is the same as (29),
except that PV is constrained to be uniform over AL:

Ccausal
WDP = H(U)− inf

Q∈QC
H(Q(U) + Z), (30)

where U ∼ Unif(AL). It is interesting to note that for a continuous channel in the
extreme case of high signal-to-noise ratio, the optimum function Q(·) in either of the
capacity expressions above tends to take discrete values hence can be regarded as a
quantizer. Thus a good choice for Q in (29) and (30) is roughly a minimum entropy
quantizer [10].

The negative term in (29) is the entropy of the sum of independent random variables;
if Z is a difference-set noise, then by the EAP this term is large and almost cancels
out completely the first entropy term. This would be the key for showing small WDP
capacity in the next section.

Proof. Every admissible pair (U,X) in (28) gives a lower bound for CWDP. Specifically,
let us substitute U = (S − V ) and X = Q(V )− V , where V, Q(v) achieve the maximum
in (29), and where V is statistically independent of (S, Z). By the conditions of the
maximization (29), X ∈ C, so (U,X) is admissible pair as desired. We also have for this
pair and any PS

I(U ; Y )− I(U ; S) = H(U |S)−H(U |Y ) (31)

= H(S − V |S)−H(S − V |Q(V )− V + S + Z) (32)

= H(V )−H(Q(V ) + Z|Q(V )− V + S + Z) (33)

≥ H(V )−H(Q(V ) + Z) (34)

= C∗(L, C, PZ), (35)

where C∗(L, C, PZ) denotes the right hand side of (29), and where the inequality above
follows since conditioning reduces entropy (with equality for a uniform S). This estab-
lishes the “direct” part, i.e., for any PS

CWDP(L, C, PZ , PS) ≥ C∗(L, C, PZ). (36)

We now turn to prove the reverse inequality for PS uniform over AL. For arbitrary PV

and Q(·), let us define

F (PV , Q) = H(V )−H(Q(V ) + Z) (37)

where V is independent of Z, so the RHS of (29) is given by

C∗(L, C, PZ) = sup
PV ,Q∈QC

F (PV , Q). (38)

For any admissible pair (U,X = f(U, S)) in (28), we can write

I(U ; Y )− I(U ; S) =
{

H(S|U)−H(Y |U)
}
−

{
H(S)−H(Y )

}
(39)

≤ H(S|U)−H(Y |U) (40)

= EU

{
H(S|U = u)−H(f(u, S) + S + Z|U = u)

}
(41)

= EU

{
F (PS|U=u, Q̃u)

}
(42)

≤ sup
PV ,Q∈QC

F (PV , Q), (43)
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where the function Q̃u in (42) is defined as Q̃u(S) = f(u, S) + S. The first inequality
above follows since S is uniform, so its entropy (log L) is the largest among all random
variables in AL. To justify the second inequality, note that conditioned on any U = u,
we have that Q̃u(S)−S is in C; thus we can think of (S, Q̃u) as an admissible pair (V,Q)
in the right hand side of (29), so F (PS|U=u, Q̃u) is bounded for every u by its maximum
C∗(L, C, PZ) of (38). By the Gelfand-Pinsker formula (28), this establishes the “converse
part” CWDP(L, C, PZ , PS) ≤ C∗(L, C, PZ) for a uniform S. Combining with the direct
part (36), this proves the lemma.

4 Rate Loss in WDP in the Presence of Difference-

Set Noise

Aperiodic (noise) distributions arise as extreme cases in the investigation of the rate
loss in side-information problems. Two side-information settings which attracted much
attention are channel coding with additive interference known at the encoder (or in
its popular name “writing on dirty paper”) [11, 6], and lossy source coding with side-
information at the decoder (called “the Wyner-Ziv problem”) [18]. In this section we
focus on the former setting. We use the EAP above to show that WDP in the presence of
planar difference-set noise suffers a large capacity loss with respect to the zero-interference
case.

Our main result, regarding the WDP and the zero-interference capacities defined in
Section 3 above, is summarized in Theorem 1 below.

Theorem 1. (Upper Bound for CWDP) Let S be strong interference (i.e., PS is
uniformly distributed on AL). For any aperiodic unknown noise (i.e., PZ uniform on a
set Z with unique differences (3)), and for any constraint set C,

CWDP ≤ 1 + log

(
L

α2
+

β

α

)
bit, (44)

where β = |C| and α = |Z|. In particular, if Z is a planar difference-set noise (i.e., Z is
a planar difference-set) and β ≤ α, then

CWDP ≤ 2bit. (45)

On the other hand,

CZI ≥ log β − β − 1

α
≥ log β − 1bit (46)

provided β ≤ α + 1.

Hence the capacity loss in the presence of planar difference-set noise is at least log β−3
bit (provided β = |C| ≤ α = |Z|). Since we can choose α (and hence β) arbitrarily large,
this loss can be arbitrarily large, and approach 100 % of the available capacity.

Proof. The bound on the zero-interference capacity follows directly from (27) and Lemma 1
by making the input distribution PX uniform over the constraint set. In this case,

CZI(L, C, PZ) ≥ H(X) + H(Z)− β − 1

α
−H(Z) (47)

= log β − β − 1

α
. (48)
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We now turn to the WDP capacity with strong interference (29) and provide an
upper bound on H(V )−H(Q(V ) + Z) for any allowable distribution PV and quantizer
Q(·) ∈ QC. By the extended-EAP (Lemma 2), we see that

H(Q(V ) + Z) ≥ H(Q(V )) + H(Z)−H(K(Q(V )))− 1 bit

for any grouping K(·) into bins of size α. We shall optimize the permutation π(·) used in
the definition of K(·) in (24) later. Since H(V ) = H(Q(V )) + H(V |Q(V )), this implies
that

H(V )−H(Q(V ) + Z) ≤ H(V |Q(V )) + H(K(Q(V )))−H(Z) + 1bit. (49)

In order to upper bound (49), let us write the probability of each value of Q as

pi = Pr(Q = qi) (50)

and let us also define

ri =
|Q−1(qi)|

L
, (51)

which is the probability of qi if PV were uniform over AL. Let us next define pK-mean
i =

Pr(K(Q(V )) = k)/α where k is the bin index of qi, i.e.,

pK-mean
i =

1

α

∑

i′∈K−1(K(qi))

pi′ . (52)

That is, pK-mean
i is the average of the probabilities of the points of Q in the same K-bin

as qi. Note that pK-mean
i is identical for all i in the same K-bin. We can compute the

distribution of K(Q(V )) as

Pr(K(Q(V )) = k) =
∑

i:qi∈K−1(k)

pi (53)

=
∑

i:qi∈K−1(k)

pK-mean
i (54)

= αpK-mean
i , ∀i : qi ∈ K−1(k), (55)

where the last equality follows since pK-mean
i is constant for all qi in the same K-bin. It

follows from (53) and (55) that

H(K(Q(V ))) =
∑

i

pi log
1

αpK-mean
i

. (56)

We can also upper bound H(V |Q(V )) using

H(V |Q(V )) ≤
∑

i

pi log |Q−1(qi)| (57)

=
∑

i

pi log Lri. (58)

The bound follows since given Q(V ) = qi, the conditional distribution that maximizes the
entropy is uniform over the Lri values in Q−1(qi). Combining (49) with the expressions
above and substituting H(Z) = log α, we see that

H(V )−H(Q(V ) + Z) ≤
∑

i

pi log

(
ri

pK-mean
i

)
+ log

(
L

α2

)
+ 1 bit. (59)
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Using the log-sum inequality [8], we bound the first term above by

∑
i

pi log
ri

pK-mean
i

=
∑

i

pi log

(
pi·ri

pK-mean
i

)

pi

(60)

≤ log

(∑
i

pi · ri

pK-mean
i

)
. (61)

To bound the sum inside the log, consider a permutation π(·) in the definition of K(·)
in (24) so that rπ(i) is a non-increasing sequence. Although this choice of π(·) does not
necessarily minimize the entropy of K(Q(V )) in (49) (see the discussion after Lemma 2),
it will allow us to get the desired bound. With this permutation, the first K-bin has the
α largest cells of Q (= the α most probable qi’s according to the sequence r), the second
K-bin has the second α largest cells of Q, and so forth. Notice that rπ(1) (and hence each

ri) is at most β
L
. This follows from the constraint that Q(v) − v ∈ C for all v, and thus

each quantization cell Q−1(q) contains at most β elements. We can write the sum inside
the log as

∞∑
i=1

pi · ri

pK-mean
i

= α

∞∑
n=0

(n+1)α∑
i=nα+1

pπ(i)

αpK-mean
π(i)

· rπ(i) (62)

≤ α
(
rπ(1) +

1

α

∞∑
i=1

rπ(i)

)
(63)

≤ α
β

L
+ 1. (64)

The first inequality follows because for each n the inner sum can be viewed as a weighted
average over the r’s in a window of size α after the permutation; since the sequence
rπ(1), rπ(2), . . . is non-increasing, this weighted average can be upperbounded for all n ≥ 1
by a uniform average of the r’s in the previous window, and for n = 0 (the first window)
by rπ(1) . The second inequality follows since as explained above rπ(1) ≤ β/L, and the
sum of ri’s is one. Combining (59), (61) and (64), we get that for any PV and admissible
function Q(·),

H(V )−H(Q(V ) + Z) ≤ log

(
α

β

L
+ 1

)
+ log

(
L

α2

)
+ 1 (65)

= log

(
β

α
+

L

α2

)
+ 1 bit. (66)

This holds for any aperiodic noise, i.e., for any Z with unique differences, and for any
constraint set C. In particular, if Z is a planar difference-set, then L ≤ α2 (see (5)), and
in view of Lemma 3 the desired 2 bit bound on CWDP follows.

5 Rate Loss in the Wyner-Ziv Problem Revisited

The Gelfand-Pinsker (channel coding with side-information) setting, [11], and the Wyner-
Ziv (source coding with side-information) setting, [18], are widely considered as “dual”, in
accordance with Shannon’s concept of source-channel coding duality. See, e.g., [7, 21, 15]
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and the references therein. However, there are several indications to the contrary. One
aspect in which the behavior of the two settings seems different is the rate loss relative
to the complete information case. Specifically, in the Wyner-Ziv problem, for r-th power
distortion measures the extra rate relative to the case where the side information is
available to both the encoder and the decoder is upper bounded by a small constant,
e.g., 0.5 bit for r = 2 (MSE) [19]. On the other hand, in the previous section we saw
that in writing on dirty paper, the capacity loss for not knowing the interference at the
decoder can be unbounded if the noise is irregular, e.g., if the noise is uniform over a
difference set.

Does this seemingly very different behavior of the rate loss in the two settings contra-
dicts source/channel duality? In fact, it turns out that this “duality gap” is a matter of
interpretation. Specifically, the rate loss in the Wyner-Ziv problem may be unbouded for
an irregular distortion measure. Thus, the distortion measure in the Wyner-Ziv problem
plays a role dual to the noise in writing on dirty paper, perhaps against the more natural
view of the distortion measure as the counterpart of the channel input cost function. This
observation provides another angle for the general framework for source/channel duality
developed for side information problems [7, 15].

We consider below a special case of the Wyner-Ziv problem called “quantizing en-
crypted source” [13]. For this special setting we construct an example for unbounded
rate loss, using an irregular distortion measure based on a difference set.

5.1 Quantizing Encrypted Source

We consider the situation of quantizing an encrypted source X +K, where K (the “key”)
is statistically independent of the clean source X and is known only to the decoder. The
decoder outputs the reconstruction X̂, which is required to satisfy a given distortion
constraint relative to X. We assume that X,K and X̂ belong to an additive group G,
and define the quantization error as the difference X̂ − X, where all subtractions and
additions are modulo the group G. Since the distortion measure is only a function of
the quantization error, i.e., d(x, x̂) = d(x − x̂), and since K is known at the decoder,
reconstructing the clean source as X̂ with some distortion is equivalent to reconstructing
the encrypted source as X̂ + K with the same distortion. Therefore, this setting is
equivalent to the standard Wyner-Ziv problem if we view X + K as the source and K as
the side information.

We further assume that K is uniform over G, and the decoder has access to another
correlated source W , where K is statistically independent of (X,W ). As shown in [19],
the Wyner-Ziv rate-distortion function of X + K when (K,W ) is known at the decoder
is equal to the additive rate-distortion function of X given W :

RWZ
X+K|K,W (D) = Radd

X|W (D)

where
Radd

X|W (D) = min
N

I(X; X + N |W ).

Here, I(X; X +N |W ) denotes the conditional mutual information between X and X +N
given W , and the minimization is over all additive noises N (i.e., N independent of
(X, W )) satisfying E{d(f(W,X + N)−X)} ≤ D for some function f(·) (i.e., such that
the best estimate of X from X + N and W satisfies the distortion constraint D).
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The reference setting is when both the encoder and the decoder have access to K
and W . The optimum performance is characterized in this case by the conditional rate-
distortion function, which is given by (see [19]),

RX+K|K,W (D) = RX|W (D) = min
U

I(X; U |W )

where the minimization is over all random variables U (jointly distributed with (X,W ))
who satisfy the distortion constraint D.

Clearly RWZ
X+K|K,W (D) cannot be smaller than RX+K|K,W (D). It was shown in [19]

that the loss in the Wyner-Ziv setting, defined as the excess rate of the Wyner-Ziv
rate-distortion function above the conditional rate-distortion function, is bounded by a
universal constant which is independent of the source/side-infromation distribution. This
constant is given by the “min-max capacity”

C∗ = C∗(d,D) = min
N

max
U

I(U ; U + N) (67)

where U and N are statistically independent, and the maximization and minimization
are over all U and N who satisfy Ed(U) ≤ D and Ed(N) ≤ D. As mentioned above, for
real alphabets and r-th power distortion measures C∗ varies between 0.5 and 1 bit. For
a (finite) additive group G, the min-max capacity is upper bounded for any difference
distortion measure d by

C∗ ≤ 0.5 log |G|. (68)

To see that, note that H(U +N) is upper bounded by H(U)+H(N) and also by log |G|;
while under the constraint E{d(U)} ≤ D, the entropy H(U) is upper bounded by the
maximum entropy [8]

Hmax(d,D) = max
Z: E{d(Z)}≤D

H(Z).

It follows that for any U , minN I(U ; U + N) is upper bounded by the minimum between
Hmax(d,D) and log |G|−Hmax(d,D), which is clearly at most 0.5 log |G|. Equality in (68)
holds if and only if there exist (maximum-entropy) random variables U and N satisfying
the distortion constraint, for which H(U + N) = H(U) + H(N) = log |G|.

We next construct an example of a source and distortion measure for which both C∗

and the rate loss approach 0.5 log |G|. In this example W is binary, and the source X is
a mixture of two components: given W = 1 it is uniform over a set Z ⊂ G, while given
W = 2 it is uniform over the whole alphabet G. The source mode indicator W equals
2 with probability ε and 1 with probability 1 − ε. (Note that due to the encryption,
the encoder cannot guess the mode of the source by observing X + K.) The distortion
constraint is such that the quantization error X̂ − X must belong to the set −Z (the
reflection of Z), that is, the distortion measure is of the form

d(x, x̂) =

{
0, x̂− x ∈ −Z
∞, x̂− x 6∈ −Z.

The conditional rate-distortion function of the source is zero for W = 1 (by mapping
every value of X to zero), while for W = 2 it is log(|G|)− log(|Z|) (realized by an additive
noise test channel with noise uniform over −Z). Thus

RX|W (D) = ε
[
log |G| − log |Z|

]
.
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As for the Wyner-Ziv function in this setup, since the mixture source X has a uniform
component (assuming ε > 0), the noise in the test channel above must belong to the
set −Z (otherwise the distortion in the case W = 2 would be infinite). Thus, the best
possible noise is uniform over −Z, and we get

Radd
X|W (D) = (1− ε)

[
H(UZ − U ′

Z)− log |Z|
]

+ ε
[
log |G| − log |Z|

]

where UZ and U ′
Z are statistically independent and uniform over the set Z. Comparing

the two rate-distortion functions, we conclude that the rate loss for not having (K,W )
at the encoder is given in this case by

RWZ
X+K|K,W (D)−RX|W (D) = (1− ε)

[
H(UZ − U ′

Z)− log |Z|
]
.

Now, if we choose Z to be a planar difference set, then for a large group we have |Z| ≈√
|G| (see (5)), and from the asymptotic tightness of the EAP (Section 2.3), H(UZ−U ′

Z) ≈
H(UZ) + H(U ′

Z) ≈ log |G|. We thus proved the following theorem.

Theorem 2. (Maximum rate loss in WZ coding) We can choose ε, G and Z in
the example above such that the rate loss approaches the min-max capacity bound (68).
Specifically, the conditional rate distortion function RX|W (D) is arbitrarily small, while
the Wyner-Ziv rate distortion function RWZ

X+K|K,W (D) is arbitrarily close to 0.5 log |G|.
Hence, the rate loss in the Wyner-Ziv setting above is close to 100% of the rate,

similarly to the situation described in Theorem 1 regarding the capacity loss in WDP.

6 Discussion

In this paper, we introduced difference set noise (DSN), and we demonstrated that it
contains the necessary irregularity to produce large loss for writing on dirty paper. Ad-
mittedly, this loss seems to rely quite heavily on the EAP, which in return relies on the
special structure of DSN. Yet on the positive side, we can expect that for more “stan-
dard” noise models the loss for writing on dirty paper would be small. Furthermore, the
machinery in the proof (in particular Lemma 3) can assist in designing WDP schemes
for general noise distributions.

There are several other interesting applications of difference sets and DSN. One is
their role in the “dual” problem of source coding with side information (the Wyner-Ziv
problem), which we briefly investigated in the last section. We can also use DSN to
construct examples of large capacity loss in the broadcast setting, e.g., for the loss of
sum-rate due to lack of cooperation between the receivers (for background, see [12]).
Another use of difference sets is in constructing expander graphs. For example, consider
the bi-partite graph G ∈ G × G, in which (x, y) ∈ G if y − x ∈ Z. Then, every input is
connected to α = |Z| outputs, and for a difference set Z, every set of β ≤ α + 1 inputs
is connected to at least αβ/2 outputs (see the corollary in (9) after the EAP lemma).
Finally, the EAP could be used to guarantee output entropy in a variety of situations.

Our main result concerned a discrete version of WDP with a “hard” input constraint.
We would like to extend these results to continuous alphabets and average input con-
straints. One analogous situation with continuous alphabets (but still with a hard input
constraint) would be to let the interference S to be uniform over [0, 1], and let the noise Z
be DSN (in the alphabet AL) divided by L plus a random variable uniform over [0, 1/L].
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Then, for a peak input constraint, 0 ≤ x ≤ β/L, the capacities should behave similarly
to those in Theorem 1. Since β ≤ α and L ≈ α2, we see explicitly that the signal to
noise ratio must be small in order for the loss to be large, which agrees with the results
of [20].
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List of Tables

1. A difference table for the planar difference-set of size 4 in the group of integers
modulo 13. (Here α = 31 + 1 = 4 and so |G| = 4(4− 1) + 1 = 13). Every non-zero
difference d = i− j corresponds to a unique pair (i, j) in the group.

2. Sum table of the set X = {0, 3, 6, 9, 12} and the planar difference-set Z = {0, 1, 4, 6}
in the modulo-13 group of Table 1. The sum 0 appears three times in the table;
3,4,6,7,9,10 and 12 appear twice; 1,2,5 appear once; and 8 and 11 do not appear at
all.

3. Comparison of the distributions of Y and Y ′ in the proof of the entropy amplifica-
tion property.
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List of Figures

1. Cases of invertibility and ambiguity given the sum.

2. Unstructured sets satisfying the constraint in (11). (A) before modification. (B)
after modification.
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List of Footnotes

1. Logarithms throughout the paper are base 2.

2. The “only if” part holds for a certain large class of transmitters.

3. By the unique differences property, every ordered pair (z1, z2) corresponds to a
different difference d = z1 − z2; thus the number of possible (non-zero) differences
in G, which is |G|− 1, is greater than or equal to the number of ordered pairs in Z,
which is |Z|(|Z| − 1). The reverse inequality holds if an ordered pair in Z exists
for every (non-zero) difference d, as indeed implied by (4).

4. To see why, suppose we start with the set Y1 and add the sets Y2, . . . ,Yβ sequen-
tially, while noting at each stage which point of Y1 (if any) intersects the new Yi.
(We say that the point is “covered” by the new Yi.) If each new intersection occurs
at a different point, then there will be at most β−1 points of Y1 covered, and there-
fore at least α−β +1 points which are in Y1 alone. If there are m “re-coverings” in
this process (i.e., m is the number of stages in which the new Yi intersects a point
of Y1 which is already covered), then there will be at least α − β + 1 + m points
which are in Y1 alone. Since we assumed that Y1, . . . ,Yn intersect at y0, there must
be at least n− 2 re-coverings; substituting m ≥ n− 2 and β ≤ α + 1, we get that
there are at least α − β + 1 + m ≥ n − 2 points which are in Y1 alone. Since the
same argument applies to all the sets Y1, . . . ,Yn, each one of them must have at
least n− 2 points which are not in any other Yi.
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