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Abstract—In the setting of a Gaussian channel without power
constraints, proposed by Poltyrev in 1994, the codewords ear
points in an n-dimensional Euclidean space (an infinite con-
stellation) and the tradeoff between theirdensity and the error
probability is considered. The normalized log density (NLD plays
the role of the communication rate, and capacity as well as
error exponent bounds for this setting are known. This work
considers the infinite constellation setting in the finite bbck-
length (dimension) regime. A simplified expression for Poitrev’s
achievability bound is found and it is shown to be closely
related to the sphere converse bound and to a recently proped
achievability bound based on point processes. The bounds ar
then analyzed asymptotically for growingn: for fixed NLD the
bounds turn out to be extremely tight compared to previous
error exponent analysis. For fixed error probability €, it is shown
that the gap of the highest achievable NLD to the optimal NLD

(Poltyrev’s capacity) is approximately \/;Qfl(s), where Q is
the standard complementary Gaussian c.d.f., thus extendgthe
channel dispersion analysis to infinite constellations. Gmections
to the error exponent of the power constrained Gaussian chamel
and to the volume-to-noise ratio as a figure of merit are discssed.
Finally, the new tight bounds are compared to state-of-theart
coding schemes.

Index Terms—Infinite constellations, Gaussian channel,
Poltyrev setting, Poltyrev exponent, finite blocklength, dspersion,
precise asymptotics.

I. INTRODUCTION

C

(b) A non-lattice infinite constella-
tion

(a) A lattice

Fig. 1. Examples for 2-dimensional infinite constellatio®@nly a finite
section of the IC is shown.

Probably the most important example for an IC is a lattice (se
Fig. 1). Examples for shaping regions include a hypersphere
in n dimensions, and a Voronoi region of another lattice [2].
In 1994, Poltyrev [3] studied the model of a channel with
Gaussian noise without power constraints. In this settirgg t
codewords are simply points of the infinite constellation in
the n-dimensional Euclidean space. The analog to the number
of codewords is the density of the constellation points (the
average number of points per unit volume). The analog of the
communication rate is the normalized log density (NLD¥

ODING schemes over the Gaussian channel are tr}ﬁlog . The error prObabllltyln this Setting can be thOUght of
ditionally limited by the average/peak power of thés the average error probability, where all the points ofithe

transmitted signal [1]. Without the power restriction (or &ave equal transmission probability (precise definitiaioiv

similar restriction) the channel capacity becomes infjrabece

later on in the paper). The problem of channel coding over

one can space the codewords arbitrarily far apart from eaéhs is also related to the classic problem of sphere packing
other and achieve a vanishing error probability (even for 4f€€, €.g. Conway and Sloane [4]), where the centers of the
infinite number of codewords per dimension). However, mar3acked spheres can be thought of as an IC.

coded modulation schemes take an infinite constellatiop (IC Poltyrev established the “capacity” of the setting, i.ag t
and restrict the usage to points of the IC that lie within sontétimate limit for the NLD §, which is denoted™ and given
n-dimensional form in Euclidean space (a ‘shaping’ regiony 3 log ==, where o> denotes the noise variance per
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dimension. Random coding, expurgation and sphere packing
error exponent bounds were derived, which are analogous
to Gallager’s error exponents in the classical channelragpdi
setting [5], and to the error exponents of the power-coirstch
additive white Gaussian noise (AWGN) channel [6], [5].
Recently, Poltyrev’s capacity and achievability exposemtre
re-derived using a random point process approach [7].

In classical channel coding, the channel capacity gives
the ultimate limit for the rate when arbitrarily small error
probability is required, and the error exponent quantiffes t
speed at which the error probability goes to zero as the
dimension grows, where the rate is fixed (and below the
channel capacity). The error exponent, as its name suggests

1Logarithms are taken w.r.t. to the natural basend rates are given in
nats.
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only quantifies the exponential asymptotic behavior of thbat the second derivation results in Poltyrev’'s bound [3],
error probability. Analysis of the sub-exponential termasw presented in a simpler form enabling easy evaluation and
done only for certain rates and for certain channels withfarther analysis. We use a classical technique that bounds
symmetric structure (see Dobrushin [8, p. 4] and referencid® error probability by the sum of the probability that the
therein). This type of analysis is asymptotic in natureth@i noise leaves a certain region (a sphere), and the prolyadsflit
the capacity nor the error exponent theory can tell what éror for noise realization within that sphere. This tecfuei is

the best achievable error probability with a given r&end used by Poltyrev in [3] (see also [12]) but its roots are in the
block lengthn. A big step in the non-asymptotic directionclassical works of Shannon [6] and Gallager [13]; sometimes
was recently made by Polyanskiy et al. [9], where explicitis called “Gallager’s first bounding technique” [14]. Westi
bounds for finiten were derived. In the same paper, anotheterive thetypicality bound(Theorem 1), which is based on a
asymptotic question is discussed: Suppose that the (cadgwasimple ‘typicality’ decoder (close in spirit to that usedthe
error probability is fixed to some value Let R.(n) denote standard achievability proofs [15]). It shows that therésiex
the maximal rate for which there exist communication scremiC’s with NLD § and error probability bounded by

with codelength and error probability at most As n grows, " n

R.(n) approaches the channel capadity and the speed of P. < PIP(n,8) £ eV + Pr{|Z] > 1}, ()

convergence is quantified by [10][9] whereV,, £ r(%z/in denotes the volume of andimensional
% lo sphere with unit radius [4] an@ denotes the noise vector.
—1 gn Lo
R.(n) =C - ZQ (e)+0 ( " ) 5 (1)  The bound holds for any > 0, and the value minimizing the

_ . S bound is given byr = o\/n(1+ 26" — 24). Evaluating this
whereQ (") is the inverse of th€)-function, i.e. the comple- pound only involves 1D integration, and the simple exprssi
mentary standard Gaussian cumulative distribution fonéti s amenable to precise asymptotic analysis. We then present
The constant’, termed the channel dispersion, is the variangg new derivation of Poltyrev's bound, which enables simpler
of the information densityi(z;y) = 10%% for a  evaluation and closed-form optimization. We show thateher
capacity-achieving distribution. This result holds ?os(diete exist IC’s with error probability bounded by
memoryless channels (DMC'’s), and was recently extended -
to the (power constrained) AWGN channel [11][9]. Morep, < PEMLB(n,(s) S emsvn/ fr(F)FdF 4+ Pr {||Z]| > r},
refinements of (1) and further details can be found in [9]. 0 3)

ere fr(-) is the pdf of the nornj|Z|| of the noise vector.

e bound, which is based on the maximum likelihood (ML)
ecoder, holds for any > 0, and the value minimizing the
ound is given by

In this paper we take an in-depth look at the unconstrain é“
Gaussian channel where the block length (dimension) i€fini
(analogously to finite block-length channel coding [9]). W
first re-derive Poltyrev’s original bound for the achievabtror
probability [3] in order to obtain a much simpler form that r=reg 2 e 0V, (4)
enables easy evaluation and comparison to a recently pgdpos
bound by Anantharam and Baccelli [7]. We then analyZdote thatr.q, called theeffective radiuof the lattice (or IC),
the new expressions for the achievability bounds and the $gthe radius of a sphere with the same volume as the Voronoi
called sphere bound (converse bound), and obtain asympt&€ll of the lattice (or the average volume of the Voronoisel
analysis of the lowest achievable error probability for dixethe IC). Poltyrev [3] obtained an equivalent bound indirectly
NLD & which greatly refines Poltyrev's error exponent result§) @ more complex form (see (24) and Theorem 3 below) and
In addition, we analyze the behavior of the highest NLEerefore could not find the optimal expression fom (4).
when the error probability is fixed. We show that the behavid¥e therefore denote the bound in (3) (with the optimé&iom
demonstrated in (1) for DMC’s and the power constraindd)) the Maximum Likelihood Boundor simply MLB. Note
AWGN channel carries on to the unconstrained AWGN chaff1at evaluating the ML bound involves 1D integration only,
nel as well. We demonstrate the tightness of the results b@d since the ML bound gives the exact value of Poltyrev's
analytically and numerically, and compare to state-ofdfte Pound with optimization w.r.tr (Theorem 3), the simplicity
coding schemes. does not come at the price of a weaker bound. The derivation

The main results in the paper are summarized below. Of the typicality and ML bounds is based on lattices (and the
Minkowski-Hlawka theorem [16][17]). Because of the regula
structure of lattices, these results hold in the strongess®f

. . md’:lximal error probability.
The capacity and error expone_nt rgsults n [3] are base In [7] a new achievability bound was derived for the setting,
on a bound_that holds for any finite @_mensmn However, based on point processes under random additive displace-
th|s_ bound is ha_rd to calculate exp"c'.“y_ (alt_houg_h_can bl%ents, and the achievable error exponents were re-derived.
easily evaluated in the corresponding limit) since it irves Our derivation reveals the connection to this bound at finite

opiimization and 3-d|men3|o_nal_mtegratlon_ . . CFlimensions: we show that it is tightly connected to the ML
We propose two new derivations for achievability bounds

at f|n|te dlmenSIOH that are eaS'er to evaluate It turns OUBNote that the average volume of the Voronoi cells is not ak,vm”_

R defined, as in general there may exist cells with infinite r@u See III-E for
2e.Qz) & \/% [ et /24t more detalils.

A. New Derivation for Finite-Dimensional Bounds
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bound (3). Although for average error probability the bounfactor (equal to2 — €2(9"~9)) compared to a sub-exponential
in [7] is slightly better, when maximal error probability isterm in Poltyrev’s error exponent analysis. One corollaoyrf
of interest, (3) is superior. We then quantify the differencour result is that ford > é.., the polynomial prefactor of
between the bounds (Theorem 4). the error probability isn®), wheren(s) £ —1e2(0"~9)

In the converse part we base our results on the wdll between0 and —1. The typicality bound turns out to be

known sphere bound [18][3][19], i.e. on the fact that theveaker, but still vanishes exponentially fast:

error probability is Iower_ bounded by the probability thIaEF . o w1 14287 —9)

noise leaves a sphere with the same volume as a Voronoi cell. P;%(n,0) =e ¢ N . 206" — ) (9)
For lattices (and more generally, for IC’s with equal-vokim nn

Voronoi cells), it is given by whereE, (§) is thetypicality exponentdefined later on, which

is lower thanE,.(§).
P> PEB(n,é) 2 Pr{||Z|| > e} (5) 9)

We extend the validity of the sphere boundany IC, and C. Asymptotic Analysis: Fixed Error Probability

to the stronger sense afverageerror probability (Theorems  For a fixed error probability value, let 8.(n) denote the
5 and 6). Therefore our results hold for both average apgaximal NLD for which there exists an IC with dimension
maximal error probability, and for any IC (lattice or not). ,, and error probability at most. We shall be interested
Note that since the optimal value forin the ML bound in the asymptotic behavior ob.(n). This type of analysis
(3) is exactlyr., the difference between the ML upper boungor infinite constellations has never appeared in liteetftio
and the sphere lower bound is the left term in (3). This fage best of the authors’ knowledge). In the current paper we
enables a precise evaluation of the best achievablesee ytilize central limit theorem (CLT) type tools (specifigalthe
Section IV. Berry-Esseen theorem) to give a precise asymptotic asabysi
d-(n), aresult analogous to the channel dispersion [10][11][9]
B. Asymptotic Analysis: Fixed NLD in channel coding. Specifically, we show (Theorem 13) that

The asymptotics of the bounds on the error probability
were studied by Poltyrev [3] using large deviation techeigu dc( \/762
and error exponents. The error exponent for the unconstiai
AWGN is defined in the usuaI manner:

+—10gn+0( ) (20)

rﬁy the similarity between (1) and (10) we identify the consta
% as the dispersion of infinite constellations. This fact can b

E(d) £ lim — 1ng (n,d), (6) intuitively explained in several ways:
e « The dispersion as the (inverse of the) second derivative
(assuming the limit exists), Wher@e(”ﬁ) is the best er- of the error exponentfor DMC’s and for the power
ror probability for any IC with NLD 4. Poltyrev showed constrained AWGN channel, the channel dispersion is
that the error exponent is bounded by the random coding given by the inverse of the second derivative of the error
and sphere packing exponeri.(d) and E,,(d) (defined exponent evaluated at the capacity [9]. Straightforward

later on), which are the infinite constellation counterpart  (ifferentiation of the error exponer(&) (which near
of the similar exponents in the power constrained AWGN.  the capacity is given by, (8) = E,(8)) verifies the

The random coding and sphere packing exponents coincide yg|ye of i.

when the NLD is above the critical NLId.,, also defined , The unconstrained AWGN channel as the high-SNR
later on. However, even when the error exponent bounds AWGN channelWhile the capacity of the power con-

coincide, the optimal error probabilit§. (n, §) is known only strained AWGN channel grows without bound with the
up to an unknown sub-exponential term (Wthh can be, for  SNR, the error exponent attains a nontrivial limit if we
examplen'®®, or worse, e.gev™). We present a significantly keep the gap to capacity fixed. This limit is the error

tighter asymptotic analysis using a more delicate (andcgire  exponent of the unconstrained AWGN channel (as noticed
approach. Specifically, we show (Theorem 7) that the sphere in [2]), where the distance to capacity is replaced by the

bound is given asymptotically by NLD distance tos*. By this analogy, we examine the
(n )_§€2<6 ) high-SNR limit of the dispersion of the AWGN channel
PS5B(n,§) = e "B (9 1T (7) (given in [11][9] by & (1 — (1 + SNR)~2)) and arrive,

o2(67-8) _ 1’

as expected, at the value éf
wherea = b means that — 1. We further show (Theorems

8 - 11) that the ML bound is given by D. Volume-to-Noise Ratio (VNR)
e "B ) 217”17 0 < decr; Another figure of merit for lattices (that can be defined
PMLB () §) = e~ nE(8) \/8_ 8 =0, for general IC's as well) is the volume-to-noise ratio (VNR)
e L [ ) which generalizes the SNR notion [19] (see also [20]). The

nm
(2762(5* 5))

L~

28 _1)" 0 <6 <8".  VNR guantifies how good a lattice is for channel coding over
(8) the unconstrained AWGN at some given error probabditit

As a consequence, for NLD abowk.., where E.(§) = is known that for any: > 0, the optimal (minimal) VNR

E,,(d), P.(n,d) is known asymptotically up t@ constant of any lattice approache$ when the dimensiom grows

——
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(see e.g. [20],[21]). We note that the VNR and the NLD ameoise variance? (per dimension). The additive noise shall be
tightly connected, and deduce equivalent finite-dimeraiordenoted byZ = [Z, ..., Z,]*. An instantiation of the noise
and asymptotic results for the optimal VNR (Theorem 14). vector shall be denoted by = [z1, ..., z,]7.
For s € S, let P.(s) denote the error probability whesn

The rest of the paper is organized as follows. In Sectionwas transmitted. When the maximum likelihood (ML) decoder
we define the notations and review previous results. In Ses-used, the error probability is given by
tion Il we derive the new typicality and ML bounds for the o
optimal error probability of finite dimensional IC’s, and we Pe(s) =Pr{s +Z ¢ W(s)}, (47
refine the sphere bound as a lower bound on the averageerelV(s) is theVoronoi regionof s, i.e. the convex polytope
error probability for any finite dimensional IC. In Sectiovi | of the points that are closer tothan to any other point’ € S.
the bounds are analyzed asymptotically with the dimensidfie maximal error probability is defined by
Wh_ere the NLD is fixed, to derive asymptotic bqunds that PMX(S) £ sup Py (s), (18)
refine the error exponent bounds. In Section V we fix the error seS
probability and study the asymptotic behavior of the optimang the average error probability is defined by
achievable NLD withn. We use normal approximation tools .
to derive the dispersion theorem for the setting. In Secibn Pe(8) = hfffip Eo[Pe(s)]- (19)
we compare the bounds from previous sections with the
performance of some good known infinite constellations. m
Section VII we discuss the VNR and its connection to the
NLD 4. We conclude the paper in Section VIII.

The following related quantities, define the optimal perfor
ance limits for IC’s.
Definition 2 (Optimal Error Probability and Optimal NLD):

« Given NLD valueéd and dimensiom, P.(n,d) denotes

Il. DEFINITIONS AND PREVIOUS RESULTS the optimal error probability that can be obtained by any

A. Notation IC with NLD § and a finite dimension.
We adopt most of the notations of Poltyrev’s paper [3]: Let « Given an error probability valueand dimensiom, J.(n)
Cb(a) denote a hypercube iR" denotes the maximal NLD for which there exists an IC
a with dimensionn and error probability at most.
Cb(a) £ {X € R™ s.t. Vilzi| < 5} : (11)  clearly, these two quantities are tightly connected, and an

nonasymptotic bound for either quantity gives a bound fer th
other. However, their asymptotic analysis (with— o) is
different: for fixedd < 8%, it is known thatP. (n, §) vanishes
Ball(r) £ {x € R" s.t. ||x| <}, (12) exponentially withn. In this paper we will refine these results.
For a fixed error probability, it is known thatd.(n) goes to
6" whenn — co. In this paper we will show that the gap to

Let Ball(r) denote a hypersphere IR™ and radiusr > 0,
centered at the origin

and let Bal(y, r) denote a hypersphere R" and radius- >

0, centered ay € R" §* vanishes liké O (1/,/n), see Section V.
Ball(y,r) 2 {x € R" s.t. |[x —y| <7} (13)
LetS be an IC. We denote by/ (S, a) the number of points B. Measuring the Gap from Capacity
in the intersection ofCh(a) and the ICS, i.e. M(S,a) £  suppose we are given an IEwith a given densityy (and
[S(1Cb(a)|. The density ofS, denoted byy(S), or simply NLD & = L log~), used for information transmission over the
7, measured in points per volume unit, is defined by unconstrained AWGN with noise varianeé. The gap from
. M(S,a) optimality can be quantified in several ways.
V(S) = hfljgp - (14) Knowing that the optimal NLD (for — oo) is ", we may
) _ ) ) consider the difference
The normalized log density (NLDJ is defined by
1 Ad=6" -6, (20)
— a
0 =10(5) = n log. (15) which gives the gap to capacity imats, where a zero gap
It will prove useful to define the following: means that rate-wise, capacity is attained. Alternatjvielis

Definition 1 (Expectation over points in a hypercub&pt COmmon in communication to measure the ratio between the

E.[f(s)] denote the expectation of an arbitrary functip(s), noise variance that is tolerable (in the capacity sensd) tivi

6725

f:8 — R, wheres is drawn uniformly from the code pointsgiven NLD 4, given by $—, and the actual noise varianeé

—28%*

that reside in the hyperculiéhb(a): (equal toS—). This ratio is given by
1 —26
£ __ - a e 2%/(2me) 2(8* —9)
EL/6) 2 e 2 ) (16) pe LT 2o, (21)
s€SNCHa)

4Formally, fr, = O(gn) shall mean thaBe>0,ny>0-Yn>ng | frl < ¢ gn.
. .. Similarly, f, < O(gx) shall thaBe>0,n0>0-Yns>ng-fn < ¢ gn. |
Throughput the paper, an IC will _be used for transm|ss!oa{g'ln3i't%rn¥ f{z Z_O(éi ))r:esnsT;:ng (S‘(i;f;) and fn Z (%(J;n)_sﬁa”gmegn
of information through the unconstrained AWGN channel witthat bothf,, = O(g,) and g, = O(f) hold.
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For lattices, the terme—2% is equal tov?/”, wherewv is the C. Previous Work
volume of a Voronoi cell of the lattice. Thereforewas termed
the Volume-to-Noise RatiQ/NR) by Forney et al. [19] (where
it is denoted bya?(A,s?)). In [7] the VNR is denoted by
a?. The VNR can be defined for general IC's as well. |
is generally abovel (below capacity) and approachésat
capacity. It is often expressed in dBi.e.

Bounds on the optimal performance at finite dimensions
have been studied in the past, mainly in Poltyrev’s original

aper [3]. However, those bounds are hard to evaluate and
0 analyze. Existing asymptotical analysis only considbes
error exponent, i.e. the speed of exponential decay of the
s bounds. !n thi§ paper the bognds are re—derived in_a novel
e /gzwe) — 10log,, 25" ) =~ 8 686A8. (22) way and in a simpler form_ (which allpvv_ easier eyaluatlon and

o insight), and the asymptotical analysis is greatly impcbaed

Note that the VNR appears under different names and scalirgygended.
in the literature. Poltyrev [3] defined the quantii@g;—‘s and

called it the Generalized SNR (and also denoted ifubyin The following non-asymptotic achievability bound can be
certain cases the latter definition is beneficial, as it can B&itilled from Poltyrev's paper [3]. It is shown (in a from

vie\_/ved as the dual of the normalized second moment (NSM),itable for finite blocklength analysis) that for any- 0,
which atn — o~ approache% (see [20] and [21]).

101log,

2r
An alternative way to quantify the gap from optimal per-  Pe(n,9) S6"5nVn/ w" ' Pr{Z € D(r,w)}dw
formance is based on the fact that the Voronoi regions of an v
optimal IC (atn — oo) become sphere-like. For example, + Pr{||Z]| > r}, (24)
the sphere bound (the converse bound) is based on a sp
with the same \_/olume as the Voronoi cells of _the I_C (€. @atis cut off by a hyperplane at a distari¢efrom the origin.
sphere with radius.g). As n grows, the Voronoi regions of

th timal IC (that achi i) b | ¢ In [3] it is stated that the optimal value fer(the one that
€ optima (that achieves capacity) becomes closer 0ma|§imizes the upper bound) is given by the solution to an

sphere with squared radius that is equal to the mean squ re gral equation, and it is shown thatras- oo, the optimal
radius of the noiseyo?. Therefore a plausible way to measure : '

2 *
o= . satisfies’— — 52¢2(9" =% However, no explicit expression
the gap from optimality would be to measure the ratio betwee n o P b

n ; . X
. : O the optimalr is iven, so in order to compute the bound
the squared effective radius of the IC and the expected equa{ he op " g : pute.
i . . or finite values ofn one has to numerically optimize w.rt.
noise amplitude, i.e.

(in addition to the numerical integration). In order to deri
A T e=28y, M the error exponent result, Poltyrev [3] used the asymp(btit
T ho? 2 (23)  suboptimalyr = 67—6 [ -deri i
no no ptimal)r = /noe . In this paper we re-derive this
This quantity was called “Lattice SNR” in [18], and “Voronoi bound using a different technique in order to get a simpler
to-Noise Effective Radius Ratio” (squared) in [22]. Simija bound and a closed-form expression for the optimizingt
to the VNR , this ratio also approachdsat capacity, and is €ach dimension (see Theorem 2).
also often expressed in dB. However, the two measures (21Recently , Anantharam and Baccelli [7] (see also [23]) used
and (23) are not equivalent. For a given gap in dB, differeppint processes under random additive displacements &r ord
IC densities (and NLD's) are derived, and onlyras+ co the to construct new ensembles of codes that are applicable for
measures coincide (this can be seen by approxim#fingsing Poltyrev’s setting (and also extended the model for general
the Stirling approximation). In the current paper, whemeve stationary-ergodic additive noise channels). Specificilivas
state a gap from capacity in dB, we refer to (22), which is tlghown that the following error probability is achieved [4.E

WS[’GD(T, w) denotes the section of the sphere with radius

gap (21) in dB. (64)]:
The finite-dimensional results in Section Il are specific fo s [T —em0pny
PPPP(p §) 2 1— n d 25
eachn and can be written as a function of either the NAD ¢ n. o) /0 ( ¢ ) Jr(r)dr, (25)

or the ratio (23). However, the asymptotic analysis in S&cti

IV and V depends on the selected measure. Specifically,
Section IV we study the behavior of the error probabilit
with n — oo whered is fixed. This is equivalent to fixing
the ratio (21) (but not (23)). While the exponential behavi
of the bounds on the error probability is the same wheth
we fix (21) or (23), the sub-exponential behavior differs. |

Section V we are interested in the behavior of the gap (2 d that i P deriving Polt
with n — oo for fixed error probability. Equivalent results jnf@ndom processes thal IS used for re-deriving Fo yrewsiex

N f1h tio (23 be derived using th § @atiqn exponent. Here we show that The bounds (3) and (25)
erms of the ratio (23) can be derived using the same too are tightly connected: (25) outperforms Poltyrev’'s boudd)(

5For A8 measured in bits we would get the familiar 6.02 dB/bit indteaand our ML bound (3) for the average error probability, but it
of 8.686 dB/nat in (22). o _is not directly applicable when the maximal error probaypili

It is interesting to note that although we choose to stickhwiite gap in . fi In thi dard . s
nats and to the ratio (21), the term (23) will pop out in theragtpotic analysis S OF Interest. In t IS case, S_tan ard expurgation tectgsqu
in Section IV. weaken (25) and (3) is superior.

vy#erefR(r) is the pdf of the norm of the noise vector. The
uperscriptppp stands for Poisson point process, on which
he achievability result is based (see [7] and referenc#smwi
cIor details). This result was used in order to re-derive the
lgpltyrev’s random coding exponent (but the authors of [7]
were not interested in the finite-dimensions performanfsp
own in [7] is another achievability bound based on Matérn
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The converse bound used in [3], which will be used in thaefined in (6). The nonasymptotic bounds in the previous sub-
current paper as well, is based on the following simple factsection can lead to upper and lower bounds on the exponent.
Let W(s) be the Voronoi region of an IC poirt, and let The asymptotic evaluation of Poltyrev’s achievability bdu
Sw (s) denote a sphere with the same volume/ass). Then (24) is hard: in [3], in order to provide a lower bound on the
the error probabilityP. (s) is lower bounded by error exponent, a suboptimal value foris chosen for finite
n (r=/noe=(®"=%). The resulting bound is the random

Pe(s) =2 Pr{Z & Sws}, (26) coding exponent for this setting,.(4), given by

whereZ denotes the noise vector. 8 — 6+ %10g £, 6 < 8.

This simple but important bound, known as tephere E.(6)={ 1 [62(5*_5) —1-2(8"—8)], b <6<
bound or the sphere packing bouridis based on the fact 8’ Fy >7§*7
that the pdf of the noise vector has spherical symmetry and N (28)
decreases with the radius (see, e.g. [18][24]). An immediaihered,, = 3 log .
corollary is the following bound for lattices (or more gealéy, An upper bound on the error exponent is the sphere packing
any IC with equal-volume Voronoi cells): exponent. It is given by [3]:
Po(n,6) > PSP(n,8) £ Pr{|Z] > rea} = |  fr(')dr, E.,(8) = % 20— -], (29

Tetf
) ) _ (27)  \vhich is derived from the sphere bound (see [3, Appendix C]).
wherer.g is the radius of a hypersphere with the same volume-l-he upper and lower bounds on the error exponent only hint
as a Voronoi cell, angdz(r) is the pdf of the norm of the noiseon the value ofP, (n, &):

vector, i.e. a (normalized) Chi distribution with degrees of
freedom. e B @) o)) < P (p, §) < e EE)FL)  (30)
Note that this bound holds for any poist in the IC, E h h bound incid b h
therefore it holds for the average error probabiliy(n, d) ven when the error exponent bounds coincide @ ove the
critical NLD 4.,.), the optimal error probabilityP. (n, d) is

(and trivially for the maximal error probability as well)n| .
@nown only up to an unknown sub-exponential term. In Sec-

[3] the argument is extended to IC’s which do not necessaril L : . .
obey the constant volume condition in the following manne on IV we present a significantly tighter asymptotic anys
and show, for example, that at NLD abovde,., P.(n,d) is

first, it is claimed that there must exist a Voronoi regionhwit )
known, asymptotically, up ta constant factar

volume that is at less than the average volumd, so the ¢ ‘ * oth hod b qi
bound holds forP™**(S). In order to apply the bound to For N!‘D ar away fromd™ other methods can be used in
order to improve the bounds on the error exponent. Poltykv [

the average error probability, a given ICwith average error i ) ,
probability = is expurgated to get another I€ with maximal proposed an expurgation method in which an error exponent
bound (analogous to that of Gallager [5]) is derived and

error probability at mosge. Applying the previous argument . 1
for the maximal error probability oS’ gives a bound on IMPrOVes upork, (§) for rates belowsc, = dc, —5 log 2. The

" : here packing can also be improved as follows: the (makimal
the average error probability &. The expurgation process,SIO . ; -
in addition to the factor of 2 in the error probability, alscE"™Or Probability of any IC is lower bounded by the probapili
incurs a factor of 2 loss in the density When evaluating that the noise is closer to the closest competing codeword,

the asymptotic exponential behavior of the error proba/oili"e' QW(?C_’)) Wpﬁre? is the Im'n'ml;m dcljstanct? be?W.ee”
these factors have no meaning; but if we are interested (asgw two pq|nts. lere or;) an;(/j owerh ound on tbe brq_lmmur:n
the case in this paper) in accurate bound values for finjte istance gives a lower bound on the error probability. The

and in the asymptotic behavior 6f (), these factors weaken most reIe_vant _pound on the mi_nimum distance was obtained
the sphere bound significantly. In Section Il we show th:ﬁ}y Kabatianskil and Levenshtein [25] (see also Conway and

(27) holds verbatim for any finite dimensional IC, and for th%loane [4, Ch. 1]). Combining the above, the upper bound on
average error probability as well. the error exponent can be improved (this method was already

The sphere bound (27) is not given as an explicit closeal-JggeSteOI _in [2_3])‘ F_urt_her improvements can be obta_ined
form as it includes a 1D integral that can be evaluat the straight-line principle [5], where any line connag

numerically. An alternative for the numerical integratioas the sphere pagklngd ulpper:_ bound and ?\n)I/I t())th_er boun((jj 1S
proposed in [18], where the integral was transformed intoﬁfg anlupper OUQB' n td|s pa}[pe:hwe sha N € mrt]erestt(:] in
sum of n/2 elements allowing the exact calculation of th values around., and up to ne capacily (where the
bound. However, this alternative to numerical integratioes exponential bound§ are tight), and therefore do not_ elqbora
not shed any light on the asymptotic behavior of the bourfd! thgse l(.)W'NL_D Improvements. For a recent appllcz.;\tlon of
with growing n. the finite dimensional tools developed here for the expisgat

bound, see [26].

The error exponeriE(d) for the unconstrained AWGN was
[1l. BOUNDS FORFINITE DIMENSIONAL IC’s

"The connection to sphere packing comes from the simple Featt dne In this section we ana|yze the optimal performance of

cannot pack spheres in a space whose volume is less thannthef solumes finite di . | infini llati in G . .
of the spheres. However, we prefer the term sphere boundptd eonfusion inite dimensional Infinite constellations In Gaussian 80Is

with the problem of sphere packing [4]. We present two achievability bounds, both based on lattices
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The first bound is based on a simple ‘typicality’ decoder, Since Pr{Z < Ball(A,7) N Ball(r)} = 0 for any A s.t.
and the second one based on the ML decoder. Both boufidy > 2r we may apply the MH theorem to (33) and deduce
result in simpler expressions than Poltyrev’s bound (24 T that for any~ > 0, there must exist a latticA with density
first bound is simpler to derive but proves to be weakey, s.t.

Nevertheless, it is sufficient for achieving Poltyrev’s aaity

with exponentially vanishing error probability (althougfith a Z Pr{Z < Ball(\,r) nBall(r)}

sub-optimal exponent), and can also be used in order toeleriv xca\ {0}

the dispersion of infinite constellations in a simpler manne

see Section V. For these reasons we include this bound in the S V/n Pr{Z c Ball(A,r) NBall(r)} dX.  (35)
paper. The second bound gives the exact value of the bound

as Poltyrev’s (24), without the need for 3D integration and aNe further examine the resulting integral:

additional numeric optimization, but only a single 1D intelg

(which can be analyzed further - see Section IV). We then / Pr{Z ¢ Ball(\, ) N Ball(r)} dA

compare to the recent achievability bound by Anantharam and R ’

Baccelli [7]. As for converse bounds, we extend the validity _ / / Fa(z)dzd
of the sphere bound to the most general case of IC’s (not I Ball\,~)NBallr) z
only those with equal-volume Voronoi cells) and averagererr
probability. < / / fz(z)dzd\
n JBal(\,r)
A. Typicality Decoder Based Bound = Vur™. (36)

Theorem 1:For anyr > 0, ) ) . L
B & né<r m Combined with (33) we get that there exist a latticevith
P.(n,8) < P, 7 £e™Vur" +Pr{||Z]| > r}, (31) density~, for which

and the optimal value for is given by

P.(A) <AVpr™ +Pr{||Z]| > r}, 37
r*:a\/m. (32) (A) <7 +Pr{[|Z]| > r} (37)

Proof: Let A be a lattice that is used as an IC fowherer >0 and~y = ¢™® can be chosen arbitrarily.
transmission over the unconstrained AWGN. We consider aThe optimal value for- follows from straightforward opti-
suboptimal decoder, and therefore the performance of thzation of the RHS of (37): we first write
optimal ML decoder can only be better. The decoder, called
a typicality decoder shall operate as follows. Suppose that 1 « r?

) € A is sent, and the point = )\ + z is received, where is Pr{||z] > r} = Pr{_2 Z zZi > ﬁ} '
the additive noise. Let be a parameter for the decoder, which =t

will be determined later on. If there is only a single point iRye note that the surds Y2, Z2 is a sum ofn i.i.d. standard
the ball Bally, ), then this will be the decoded word. If thereg 5 ,ssian RV's, which is g(actzly@? random variable with:

are no codewords in the ball, or more than one codeword d'%grees of freedom. The pdf of this RV is well known, and
the ball, an error is declared (one of the code points is cr‘nos&ven by ’

at random). 2

It is easy to see that the average error probability of achatti o () = 2 xn/271671/2’
A (with the typicality decoder) is bounded by g I'(n/2)

Pe(A) <Pr{Z ¢ Ball(r)} whereT'(-) is the Gamma function. Equipped with this, the

+ Y Pr{zeBal(\r)nBall(r)}, (33) RHS of (37)becomes
AeA\{0} 0 o_n/2

whereZ denotes the noise vector. We now use the Minkowski- eV P 4+ /2 2 n/2=1,-z/2
Hlawka theorem [17][16]%, which states that for any : > T(n/2)

R™ — R, a nonnegative integrable function with bounded o _ )
support, and for every, > 0, there exist a latticeA with Differentiating w.r.t.r and equating to zero gives
det A = v~ that satisfie

o FN <y [ FVdA (34)

AeA\{0} R~

2r 2772, N
—_— n/2_1 T 202 = O
2T "7 ’

_ _ _ from whichr = o/n(1 + 26* — 26) follows immediately. m
8The MH theorem is usually written as (34) with amdded to the RHS that . L .
is arbitrarily small (e.g. [16, Lemma 3, p. 65], and [17, Then 1, p. 200]). Note that the thresholdin the typicality bound is rate (NLD)
The version (34) follows from a slightly improved versiontbé theorem due dependent, and therefore slightly generalizes the stdndar
tTohifr%?{ g“ﬁ” ggg]ed the Minkowski-Hlawka-Siegel (MHBgorem, see [17, notion of a typicality decoder where the threshold is fixed
9det A denotes the determinant of the generating matrix of thicéatt. (See e.g. the AWGN capacity achlevablllty proof in Cover and

It is equal to the volume of a Voronoi cell of the lattice (seey. [20]) Thomas [15]).

ne v,y —
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B. ML Decoder Based Bound Note that the last integral has a bounded support (w}.t.

The second achievability proof is based on the ML decod@ce _it is alwgys zero ifiAl| > 2r". Therefore we can apply
(using a different technique than Poltyrev [3]). We shovetat the Mlnkowskl-HIaWka.theorem asin Theorem 1 and get that
on (Theorem 3) that the resulting expression is equivakent Pr @1y 7 > 0 there exists a latticé with densityy, whose
Poltyrev's bound (24) without the need for optimization.tw.r €TOF Probability is upper bounded by
r. P.(A)

Theorem 2 (A simplified form of Poltyrev’s resulor o
anyr > 0 and dimensiom, there exist a latticé\ with error gy/ / fr(r)Pr{X € Ball(Z, ||Z|) | |Z|| = 7} drdX
probability AER™ JO

+ Pr{||Z]] > r*}.

r By switching the order of integration in the first term of the
£ e"5Vn/ fr(F)f"dr + Pr{||Z|| > r}, (38) expression we observe that the (now inner) integral is equal
0 to the volume of am-dimensional ball of radius. Therefore

Pe(nv 6) S PeMLB(na 6)

and the optimal value for is given by the term is given by, fOT fr(r)r™dr, which leads to (38).
. 6t ,—1/n To find the optimal value for (the one that minimizes the
rt=reg =¢ OV, /" (39)  RHS of (38)), we see that:
Before we turn to the proof, note that this specific value / >~ o\ g
Pr{||Z = dr. 41
for » gives a new interpretation to the bound: the term r{llzl > r} - Tr(r)dr (41)

Pr{[|Z|| > r} is exactly the sphere bound (26), and the othg§jferentiating the RHS of (38) w.r.t- in order to find the
term can be thought of as a ‘redundancy’ term. minimum gives

Proof: Suppose that the zero lattice point was sent, and
the noise vector iz € R™. An error event occurs (for a ML "V fr(r)r™ — fr(r) =0, (42)
decoder) when there is a nonzero lattice poire A whose
Euclidean distance ta is less than the distance between the
zero point and noise vector. We denote &ithe error event,

ndr* = reg = eV, /™ immediately follows. [

condition on the radiust of the noise vector and get C. Equivalence of the ML bound with Poltyrev's bound
In Theorems 1 and 2 we presented two upper bounds on
Pe(A) =Pr{€} = the error probability that were simpler than Poltyrev'syaonal
=Er[Pr{€||Z| = R}] bound (24). For example, in order to compute Poltyrev's
oo bound, one has to apply 3D numerical integration, and numer-
:/O fr(r)Pr{& | ||Z]| = r}dr ically optimize w.r.t.r. In contrast, the simplified expression

- for the bound in Theorem 2 requires only a single integration
< / frR(N)Pr{& | ||Z|| = 7} dr + Pr{||Z| > r*}, and the optimal value for has a closed-form expression so
0 no numerical optimization is required.

(40) It appears that the simplicity of the bound in Theorem 2
where the last inequality follows by upper bounding theéoes not come at a price of a weaker bound. In fact, it proves
probability by 1. It holds for anyr* > 0. to be equivalent to Poltyrev’s bound:

We examine the conditional error probability: Theorem 3:Poltyrev’s bound (24) for the error probability

is equivalent to the ML bound from Theorem 2. Specifically,
Pri{&€||Z]| =r} or v
n/ w" ' Pr{Z € D(r,w)}dw :/ fr(p)p™dp (43)
=pr¢ U 1z-M<lzl | 1zl =r 0 0

AEAN{0} for anyr > 0.

Proof: One possible proof is by elementary calculus
< Z Pr{|z - Al < |z] [ 2] = 7} (see [27, Appendix B]). Here we show a shorter and elegant
AEM{0} proofi® Let W be a random vector distributed uniformly on

= Z Pr{\ e Ball(Z, |Z]) | |Z|| =}, the n-dimensional Ball2r). Consider the expression
rem (2r)" Pr{||Z - W|| < |1Z]| <7} (44)

where the inequality follows from the union bound. Pluggin

into the left term in (40) gives %valuating (44) by conditioning w.r.{Z|| = p gives the RHS

of (43), and evaluating it by conditioning w.rfW| = w
r gives the LHS of (43). [
| el 30 PrixeBal@ |zl | 1Z] = Noges;

ASAVOY o Proving (43) shows that both bounds are equivalent,

_ Z /r* fa(r) Pr () € BA(Z, |ZI) | 2] = r}dr regardless of the value of Consequently, the optimal
0

AeA\{0} 10The short proof is due to a comment by an anonymous reviewer.
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value forr in Poltyrev's bound is also found. In [3] the (47) is worse than the ML bound, which is therefore consid-
optimal value (denoted theméc*(n, J9)) was given as the ered the best known bound for maximal error probability.
solution to an integral equation, and was only evaluated|t is interesting to note that the bourf??(n,§) can be

asymptotically.

also achieved with Poltyrev's original random constructio

« In principle, one may take Theorem 3 with Poltyrev'selying on themutualindependence between the codewords.
bound (Eqg. (24) above) and arrive at the result of Th&vhen using lattice constructions, the MH theorem provides
orem 2. However, without Theorem 2 it is difficult toa random-like code, but only in the sense that the number of
simply come up with the equivalence as in Theorem $nonzero) lattice codewords in any region is proportionahe
Moreover, the proof of Theorem 2 reveals the intuitioRolume of this region, which is only a necessary condition fo
behind the simplified expression (38): the decision radiwsutual independence. For lattices, the MH theorem esdigntia
r can be thought of as depending on the noise radiygovides onlypairwise independence. It would be interesting
where in the typicality decoder (Theorem 1) it is fixed.to find out whether the stronger bound can be achieved by

lattices, or that the gap betwedi??(n, §) and PMLB(n, §)

D. Connections between the ML bound and the Poisson poifidue to the MH proof scheme. This is left for further work.

process achievability

It appears that alternative achievability bound (25) far thE
IC setting proposed by Anantharam and Baccelli [7] gives 3,
slightly better bound at finite dimensions (but for averagere

probability only). It is closely related to the ML bound:
Theorem 4:For any dimensiom and for anyé, the ratio
betweenPM LB and PPPP can be bounded as
PMLB(p §) 1
1< -2 < = 1.58.
- PPPP(n,§) — -
Proof: Sincer™; = (e"°V,,)~* we may rewrité! the ML
bound as

(45)

- fr(r)dr

Teff

Teff
PMLB(p §) = / "V, fr(r)rdr +
0

_/0 min (e"‘sVnr", 1) fr(r)dr. (46)

Recall thatP?#?(n, 8) = [;° (1 - e*e"a""vn) fr(r)dr. The
theorem follows since for any > 0, 1 < % <(1-
e~1)~L, [ |

We have just shown that generalyPPPP(n,d) <
PMLB(n_§). However, it is important to note tha@???(n, §)

holds only for the average error probability (which is commo,,qjume is given by the inverse of the density, €S) =
for all random-coding type proofs) while the ML bound (and

Poltyrev’s bound) are based on lattices (and the MH theore
and therefore hold for the maximal error probability as wel
In order to apply the technique of [7] for the maximal error
probability case, a standard expurgation approach can be
taken (see, e.g. [5] and specifically, [9, Eq. (220)]). In its

version for infinite constellation and applied ®°°?(n,d),

the expurgation argument shows that the following maximgl ivial to show that sPa)

error probability can be achieved:

pPPpP
Pe,max

1
(n,8) = min 7 PPPP <n, o+ - log

T>1

71>. (47)

T —

We omit the technical (and standard) details of the expiogat

process.

At the end of the current section we numerically compa
the bounds, and it is demonstrated that the expurgated bound P.(S) > SPRu(S)) = SPRY 1) = P5B(n, 8).

1Note that the form (46) reveals the similarity between the iund and

the RCU bound from [9, Theorem 16].

= The Sphere Bound for Finite Dimensional Infinite Constel-
lations

The sphere bound (27) applies to infinite constellationk wit
fixed Voronoi cell volume. Poltyrev [3] extended it to gerlera
IC’s with the aid of anexpurgationprocess, without harming
the tightness of the error exponent bound. When the dimensio
n is finite, the expurgation process incurs a non-negligités |
(a factor of 2 in the error probability and in the density). In
this section we show that the sphere bound apphiglout
any lossto general finite dimensional IC’s and average error
probability. We first concentrate on IC’s with bounded-vaoki
Voronoi cells:

Definition 3 (Regular IC’s):An IC § is calledregular, if
there exists a radiugy, > 0, s.t. for alls € S, the Voronoi
cell W(s) is contained in Balls, ro).

For s € S, we denote by(s) the volume of the Voronoi
cell of s, |IW(s)|. Now let v(S) denote the average Voronoi
cell volume of a regular IC, i.e.

v(S) £ liminf E,[v(s)].

a—r 00

(48)

It can be easily shown that for a regular I the average
1
v(8)"
For brevity, let SPBv) denote the probability that the noise
Egctorz leaves a sphere of volume With this notation, the
phere bound reads
P, (s) > SPR(v(s)), (49)
and holds for any individual point € S. Also note that it
is a convex function ob. We
now show that (49) holds for the average volume and error
probability as well:
Theorem 5:Let S be a regular (finite dimensional) IC with
NLD 4, and letv(S) be the average Voronoi cell volume &f
(so the density ofS is v = v(S)~!). Then the average error
Iperobability of S is lower bounded by

(50)

Proof: We start with the definition of the average error
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probability and get is better. In both cases the typicality bound has a weaker
exponent. These observations are corroborated analytical

Pe(S) = lim sup Eq[Fe(s)] in Section IV below. In addition, the bounds based on the

a— 00
(a) Poisson point process [7] are also shown. As expected, the
> limsup E,[SPB(v(s))] bound PPPP(n, 8) only slightly outperforms the ML bound
®) e (see Theorem 4). It is also shown that the expurgated version
> lim sup SPEE,[v(s)]) pPEp. (n,8) (which holds for maximal error probability) is
a—o0 worse than the ML bound (which holds for maximal error
© spa(han_lgf Eq[v(s)]) probability in its original form since it is based on latt®)e
= SPHv(S)). (51) IV. ANALYSIS AND ASYMPTOTICS ATFIXED NLD §

(a) follows from the sphere bound for each individual |n this section we analyze the bounds presented in the
points € S, (b) follows from the Jensen inequality and theyrevious section with two goals in mind:
convexity of SPB:), and(c) follows from the fact that SPE) 1) Derive tight analytical bounds (that require no integra-
is monotone decreasing and continuous. u tion) that allow easy evaluation of the bounds, both
As a consequence, we get that the sphere bound holds for upper and lower.
regular IC’s as well, without the need for expurgation (as in 2) Analyze the bounds asymptotically (for fixef) and
[3D)- refine the error exponent results for the setting.

In IV-A we present the refined analysis of the sphere bound.

So far the discussion was constrained to regular IC's only,, . SB . .
This excludes constellations with infinite Voronoi regiqesy. ?g:‘r:i;?;‘?sge{ﬁeb&inggungglﬂ? £%Sﬁggt2e di‘sz:n?ié?g\t/ciglrc
’ e

contains points only in half of the space), and also corsstell
tions in which the density oscillates with the cube sizéand above and below.,. In IV-B we focus on the ML bound

. . boveé... The tight results from IV-A and IV-B reveal that
the formal limity does not exist). We now extend the proof OEab 5. th timal babilit ) is K
the converse for any IC, without the regularity assumption oved,,) the optimal error probability’. (n, ) is known

The proof is based on the following regularization process:?vs_ycm?rtlolt{(;_%"y gpfotg :‘;ﬁ?ﬁ;aml_fi%o; dTS:lO\'; dls;::(jsgsd n
Lemma 1 (Regularization)Let S be an IC with densityy ’ W u u cr !

- IV-E we consider the special case &f= d.,.. Note that the
and average error probabilit§.(S) = . Then for any¢ > 0 : . et e
there exists aegular IC S’ with densityy’ > ~/(1 + £), and Poisson point process based bound (25) is slightly harder to

o analyze using these todfs However, since it is very closely
average error probability. (S') = &’ < (1 +¢).
Proof: Appendix A. - related to the ML bound, one may use any of the results for the

Theorem 6 (Sphere Bound for Finite Dimensional IC's): ML bound combined with Theorem 4 above. In IV-F we study

Let S be a finite dimensional IC with density. Then the the asymptotics of the typicality bourfd” (n, 6) and in IV-G

- . we analyze the ML bound with set tor = \/noe® —9 instead
average error probability of is lower bounded by of r.¢, and quantify the effect of selecting this suboptimal

P.(S) > SPRy 1) = P5B(n, d) (52) value as was done in [3].

Proof: Let¢ > 0. By the regularization lemma (Lemma 1) The fact that the ML bound behaves differently above and

H !/ H / !/
t;e? e1X|sts a\r/?/gular :STVP\:Ith v Z;{g‘%é’ antdf;e(f) < below §.,. can be explained by the following. Consider the
e(S)(1 +£). We apply Theorem and get tha first term in the ML bounde™®V;, [ fr(r)r™dr. Loosely

P.(S)(1+¢&) > P.(S") > SPBy~!) > SPR((1+ ¢)y~!),  speaking, the value of this integral is determined (foréary
by the value of the integrand with the most dominant expanent
or 1 Whené > 4., the dominating value for the integral is at
P(S) = 1—+§SPB((1 +77h, r = reg. FOrd < &, the dominating value is approximately
) ] ) at r = v2no2. Note that this value does not depend &n
for all £ > 0. Since SPB) is continuous, we may take theg, he dependence i comes from the terra”® alone, and

limit £ — 0 and get to (52). ®  the exponential behavior of the bound is of a straight line.
Since we are interested in more than merely the exponential
F. Numerical Comparison behavior of the bound, we use more refined machinery in order

Here we numerically compare the different bounds fdP analyze the bounds. _ _ _

the infinite constellation setting. As shown in the previous Poltyrev [3] used an expurgation technique in order to
subsection, the bounds in (24) and Theorem 2 are equivaléfitorove the error exponent for lower NLD values (below
However, as discussed above, Poltyrev [3] used a suboptifiat = 8~ —log2). The expurgation exponent was re-derived in
value forr. The results are shown in Figures 2 and 3. THe] using a Matérn point process. Although, as noted before
exponential behavior of the bounds (the asymptotic slope igfthis paper we shall only be interested in the region around
the curves in the log-scale graph) is clearly seen in thedmgur , _ _ _ _

. 12Indeed, the first step in analyzing the bound (25) in ordertaia the
at NLD aboved,, all the bounds dlsplay the same eXponer'érror exponent in [7] was to weaken it to a form similar to thé kbund -
while for NLD below 4., the exponent of the sphere boundee [7, Appendix 10.3].
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Fig. 2. Numerical evaluation of the bounds #r= —1.5nat with 2 = 1 (0.704db from capacity). From bottom to top: Solid - the sphisound (26).

Thin dashed - the Poisson point process based bound (25).-Gna ML-based ac*hievability bound (Theorem 2). Thin bladke expurgated Poisson point
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Fig. 3. Numerical evaluation of the bounds #@r= —2nat with o2 = 1 (5.05db from capacity). From bottom to top: Solid - the sphleound (26). Thin
dashed - the Poisson point process based bound (25). GrayMltkbased achievability bound (Theorem 2). Dashed - the Murid with the suboptimal
r= \/ﬁae‘s**‘s. Thin black - the expurgated Poisson point process baseddb@ly). Dot-dashed - the typicality-based achievabiliputd (Theorem 1).
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d.r up to the capacity (where the exponential behavior is e
known), the refined tools used here can also be applied to
the expurgation bound in order to analyze its sub-expoakenti
behavior. This idea has been recently pursued in [26].

A. Analysis of the Sphere Bound .

The sphere bound (26) is a simple bound based on the geom-
etry of the coding problem. However, the resulting expi@ssi
given by an integral that has no elementary form, is generall
hard to evaluate. There are several approaches for evajuati
this bound:

« Numeric integration is only possible for small - moderate
values ofn. Moreover, the numeric evaluation does not
provide any hints about the asymptotical behavior of the
bound.

« Tarokh et al. [18] were able to represent the integral in
the bound as a sum of/2 elements. This result indeed
helps in numerically evaluating the bound, but does not
help in understanding its asymptotics.

« Poltyrev [3] used large-deviation techniques to derive the
sphere packing error exponent, i.e.

1
lim - log P.(n,d) < E,y(9)

IEEE TRANSACTIONS ON INFORMATION THEORY, to appear

The upper bound (55) on the sphere bound has no
direct meaning in terms of bounding the error probability
P.(n,d) (since the sphere bound is a lower bound).
However, it used for evaluating the sphere bound itself
(i.e. to derive (56)), and it will prove useful inpper
boundingP.(n, d) in Theorem 8 below.

A bound of the type (55), i.e. an upper bound on the
probability that the noise leaves a sphere, can be derived
using the Chernoff bound as was done by Poltyrev
[3, Appendix B]. However, while Poltyrev's technique
indeed gives the correct exponential behavior, it falls
short of attaining the sub-exponential terms, and theeefor
(55) is tighter. Moreover, (55) leads to the exact precise
asymptotics (56).

« (56) gives an asymptotic bound that is significantly tighter

than the error exponent term alone. The asymptotic form
(56) applies to (53), (54) and (55) as well.

« Note thatp* is a measure that can also quantify the gap

from capacity (see 1I-B). It is an alternative 8§ =

8" —6 (or tou = 229). The measures are not equivalent,
but asn — oo we havep* = ¢2(6"=9) 4 (1), see (63)
and (64) below.

Proof of Theorem 7: The sphere bound can be written

n—00 . explicitly as
2—62(5*_6)—1—25*—5}. - _nj2 poo
B ( ) PESB(TL,(S) _ 2-3pn/ / p%71efnp/2dp (57)
The error exponent, as its name suggests, only hints F(%) o*
on the exponential behavior of the bound, but does not T (g riff)
aid in evaluating the bound itself or in more precise __\22¢ (58)
asymptotics. r (%) 7

Here we derive non-asymptotic, analytical bounds based @i are T(

A

a,z) [Zt*"te~tdt is the upper incomplete

the sphere bound. These bounds allow easy evaluation of g€yma function (see e.g. [28, Sec. 8.2]). Bounds and asymp-
bound, and give rise to more precise asymptotic analysis f8fics of I' (4, z) have been studied extensively in literature

the error probability (wheréd is fixed). .
Theorem 7:Let r* 2 rog = =%V, /", p* 2 it and

T £ %. Then for any NLD§ < &* and for any

dimensionn > 2, the sphere bound®?%(n,é) is lower
bounded by

* n % 2 2
PEP(n,8) 2 " P2t T Q) (53)

en(5*75)en/267%p* 1
pr—1+2 1+71-2)’ (54)
upperbounded by
n(6*—68) n/2 —%p*
PSB(n,8) < (55)

pr—1+2
and for fixedd, given asymptotically by

—nE\p((s) (nﬂ)_%€2(6 -
e s

P 9) = AT

(140 (=)).
(56)
Before the proof, some notes are in order:

o Eq. (53) provides a lower bound in terms of tlig

(see e.g. [28, Sec. 8],[29] and references therein). Homeve
for our needs both arguments Bf-,-) are large but are not
exactly proportional. In addition, the results we presegrieh
include non-asymptotic bounds (i.e. (54) and (55)) thatcdre
independent interest. We therefore analyze the integr@n
explicitly:

Lemma 2:Letn > 2 andz > 1 — % Then the integral
[.° p2~te="P/2dp can be bounded from above by

R 2rFe %
Flemm 2y < 2 59
/z P € p_n(a:—l—l-%) (59)
and from below by
o0 ” " . T2
\/z\ p?*lefnP/dez 2x2e 2 exp |:7:| nﬂ- 2Q(T)
(60)

2rze s 1
61
_n(a:—l—i-%)(l—i—TQ)’ (61)
Té n(m—l-ﬁ-%)

2(n—2)
Proof: Appendix B.

where
[ ]

function, and (54) gives a slightly looser bound, but is Utilizing the result of the lemma, (53) follows by plugging

based on elementary functions only.

(60) into (57) withz = p*. It can be shown thgt* > 1 for
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all § < " so the conditionz > 1 — 2 is met. (54) follows B. Analysis of the ML Bound Abow,
similarly using _(61) and the definition @. The upper bound | order to derive the random coding exponddi(d),
(55) follows using (59). _ _ Poltyrev’s achievability bound (24) was evaluated asyrpto
To derive (56) we first note the following asymptotic resultscally by setting a suboptimal valug/noe=("~9 for the
parameterr. While setting this value still gives the correct
/2 2me\"™? 1 1 - : : -
- Y el - ol = 62) exponential behavior of the bound, a more precise analisis (
31(3) n vnm n the current and following subsections) using the optiméalea
for r as in Theorem 2 gives tighter analytical and asymptotic

a5y —2/n results. )
Pt = 67”2 Theorem 8:Let 7* 2 reg = =%V, /™ and p* 2 Letg
no Then for any NLD¢$ and for any dimensiom > 2 where
= 2878 ()t/m (1 +0 (i>) (63) 1—2 < p* <2—2, the ML boundP~5(n, ) is upper
n? bounded by
. 1 log?n * , o+
— 20678 (14 2 g 64 n(6*—8) ,n/2,—2p
(& < +n Og(nﬂ')+0( n2 )>, ( ) PeMLB(n,é)g e i 26 *6 — (67)
2-p=2)(rr-1+2)
F a2 lower bounded by (68) and (69) at the bottom of the page,
T = M and ford.. < d < &%, given asymptotically by
2(n—2)
MLB
T e log P77 (n,d) )
=/ = (6 — 1) 1+0 = @(\/ﬁ) —nE,(8) —12067-8)
2 n - (n) (1 +0 (lg—”)) (70)
(65) (2 — €2(87-9)) (e2(67-8) — 1) n '

Eq. (62) follows from the Stirling approximation for the Some notes regarding the above results:
Gamma function (see, e.g. [28, Sec. 5.11]). Eq. (63) follows« For largen, the conditionp* < 2 — % translates to the

from (62) and the definition of*. (64) follows by writing fact thatd., < 8. p* > 1 — 2 holds for all§ < 6.
(nm)t/m = ewlos(n™) and the Taylor approximation. (65) The case o < §* is addressed later on in the current
follows directly from (64). The terme~2#" can be evaluated, section.
using (54) and (55), as « The lower bounds (68) and (69) have no direct meaning in
o N 265 | s s) ) terms of bounding the error probabili#.(n, d) (since
e 2P =e 2°¢ (nm)~2¢ (1 +0 (logT")) . they lower bound an upper bound). However, they are
(66) useful for evaluating the achievability bound itself (i.e.

to derive (70)).

Plugging (64), (65) and (66) into (54) and (55), along with , (70) gives an asymptotic bound that is significantly tighter
the definition ofE;, (), leads to the desired (56). u than the error exponent term alone. It holds abéve

In Fig. 4 we demonstrate the tightness of the bounds and only, where belowd.. and exactly atd.. we have
precise asymptotics of Theorem 7. In the figure the sphere Theorems 10 and 11 below. The asymptotic form (70)
bound is presented with its bounds and approximations. The applies to (67), (68) and (69) as well.
lower bound (53) is the tightest lower bound (but is based on  proof of Theorem 8: The proof relies on a precise
the non-analyti€) function). The analytic lower bound (54) isgnalysis of the ML bound:
slightly looser than (53), but is tight enough in order toider .
the precise asymptotic form (56). The upper bound (55) of the nd " n *
sphere bound is also tight. The error exponent itself (witho c V”/O fr(rjrtdr+ Pri||Z]| >} (71)

the sub-exponential terms) is clearly way off, compared® t1he gecond term is exactly the sphere bound, for which we
precise asymptotic form (56). may utilize Theorem 7. The only non closed-form term in the
2
first term can be written ag(n, <% ), wherey(-, -) is the lower

720-2
* * 2
PeMLB(TL,(s) > en(5 —é)en/2e—np /2 [6@2/2 ;L;;Q(\I/) +e'r2/2 nn_ﬂ'zQ(T) (68)
“ . 1 1 1 1
> pn(87=08) ;n/2,—np* /2 . . 69
>e e'’e 2—/)*—1—% 1+\I!_2+p*—1+% Trr 2|’ (69)

w, 2

2vp* V2(n—2) °

where
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Sphere bound®>?

0100 .~~~

0.05C

Upper bound (55) ~s

=
= 0.0201 e
[
g
& Lower bound (54)
o
£ o.o10-

0.005-

0.0021

0.001 — ; — — — ‘ ‘ !

100 200 300 400 50C
Dimension r
Fig. 4. Numerical evaluation of the sphere bound and its Uswand approximation in Theorem 7 vs the dimensiorHere§ = —1.5nat and o2 = 1

(0.704db from capacity). The tight bounds (53), (54) and (8&d to the asymptotic form (56). The error exponent teromelis evidently way off compared

to (56).

incomplete gamma function [28, Sec. 8.2]. As in the analysis

of the sphere bound, here too both arguments(ef-) grow

together withn but are not exactly proportional. Therefore

we cannot use existing analysis of this function (e.g. [28;.S
8],[29] and references therein) but need to analyze thgjiate
explicitly. We first rewrite [ fr(r)r"dr as

*

P 2 n—1
/ e me/2pn 1
0

2

Lemma 3:Let 0 < = < 2 — >. Then the integral

Jo e "?/2p"1dp is upper bounded by

x 2xn€7nm/2 B 1 =z
—np/2 n—1 < _ n(l n 2)
femreans g (1 )

" (73)

n *
_en5 Vnen/QO_ann

(72)

and is lower bounded by

¥ [2
/ e—np/an—ldp > xne—nz/2e\112/2 —FQ(\I/) (74)
0 nx

2Ine—nm/2 1

> . 75
Tn(2-z+2) 149 (73)
A \/E(Q_I"'%)
where¥ = —sm
Proof: Appendix B. [ ]

To prove the upper bound (67) we use (73) with= p* to

bound (72), and (55) to bound the sphere-bound term to get:

e"5Vn/ Fr(r)yrdr +Pr{|Z] > r*}
0
(8 =8) /2, 50" (6" —8)n/2,— 0"

pr—1+2

< G
which immediately leads to (67).
In order to attain the lower bound (68) we use (74) with
x = p* and (53) to bound the sphere-bound term. The analytic
bound (69) follows from (75). The asymptotic form (70)

follows by the fact thatl = ©(y/n), and by plugging (64)
and (65) into the analytical bounds (67) and (69). ]

In Fig. 5 we demonstrate the tightness of the bounds and
precise asymptotics in Theorem 8. In the figure the ML bound
is presented with its bounds and approximations. The image
is similar to the Fig. 4, referring to the sphere bound. The
lower bound (68) is the tightest lower bound (but is based on
the non-analyti@) function). The analytic lower bound (69) is
slightly looser than (68), but is tight enough in order toiger
the precise asymptotic form (70). The upper bound (67) of the
sphere bound is also tight. The error exponent itself (witho
the sub-exponential terms) is clearly way off, compared® t
precise asymptotic form (70).

C. Tightness of the Bounds Abodg.
Theorem 9:For §.,. < § < " the ratio between the upper
and lower bounds o, (n,d) converges to a constant, i.e.
PMLEB(p_§) 1 * 40 logn .
P5B(n, §) (2 —e206"-9)) n

(76)
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s LS. Asymptotic form (70
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Fig. 5. Numerical evaluation of the ML bound and its boundd approximation in Theorem 8 vs the dimensianHered = —1.5nat (0.704db from

capacity). The tight bounds (67), (68) and (69) lead to thengsotic form (70). The error exponent term alone is evijemiay off compared to (70).

Proof: The proof follows from Theorems 7 and 8. Note We first rewrite the integral to the form
that the result is tighter than the ratio of the asymptotitrif® " N
(56) and (70) (i.eO(*2) and notO(%)) since the term / lefn(p/%logp)dp — / g(p)e P dp, (80)
that contributes théog®n term ise~2#" which is common o P 0
for both upper and lower bounds. whereg(p) 2 % andG(p) 2 p/2 — log .
When n grows, the asymptotical behavior of the integral

D. The ML Bound Belov.., is dominated by the value of the integrandgat 2 (which
Here we provide the asymptotic behavior of the ML boun@inimizesG (p)). This is formalized by Laplace’s method of
at NLD valuesbelows..,. integration (see, e.g. [30, Sec. 3.3)):
Theorem 10:For anyé < é.., the ML bound satisfies z G
CeEL(8) / glp)e " Pdp
PMLBm 5y =S (1+0(1)). 77) 0
e ’ V/ n G5 2
2mn =g(pe @) 92G(p) (1 +0 (%))
Proof: We start as in the proof of Theorem 2 to have N ap2 lo=5
* 1 27
T — ~n(l-log2) 1
e"5Vn/ fr(r)r"dr 2¢ n-i 1+0(3))
0
_ ﬁenévsan(2w)—%nn /p e—np/2pn—ldp. (78) which leads to (79). |
2 0 Before we apply the result of the lemma to (78), we note
; . * 5-8) _
We continue by approximating the integral as follows: thz;\téwhcgneveré is below the criticald.,, p* > ¢*® ~9) =
Lemma 4:Let = > 2. Then the integralf” ¢~"/2,"~1dp 2¢2(9r=3) > 9 for all n. Therefore for alln we have
: . 0
can be approximated by 262(8cr—9)

/ efnp/Qpnfldp
‘ —np/2 n—1 _ 27 —non 1 0

e Pt dp = e 2 (1—!—0(;)). (79) o

0

< / e—np/Qpn—ldp
Proof: The proof relies on the fact that the integrand is Y
maximized at the interior of the intervf), z]. Note that the < / e 12y,
result does not depend an “Jo
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We apply Lemma 4 to both sides of the equation and conclu@e Asymptotic Analysis ofPML5 with Poltyrev's r =
that N

p" /2 1 m . In Poltyrev’s proof of the random coding exponent [3], the
/0 e PN dp = [ —meT"2 (1+0(3)).  (81) suboptimal value for was used, cf. Section Il above. Instead
_ _ ~ ofthe optimalr = reg = e~3V,/™, he chose = /noed 9.
The proof of the theorem is completed using the approximatigs Figures 2 and 3 above we demonstrated how this suboptimal
(62) for V.. _choice ofr affects the ML bound at finite. In the figures, it
It should be noted that the sphere bound part of the achigy-shown that for§ = —1.5nat (aboves..,) the loss is more
ability bound vanishes with a stronger expondit((d)), and  gjgnificant than ford = —2nat (below 8.,). Here we utilize

therefore does not contribute to the asymptotic value. B hq tachniques used in the current section in order to peovid

In Fig. 6 we demonstrate the tightness of the preciggymptotic analysis of the ML bound with the suboptimal
asymptotics in Theorem 10. Here too the precise asymptoligq by that explain this phenomenon.

form is significantly tighter than the error exponent only. Theorem 12:The ML boundPMEE, with r = \/noe®” =9,

denotedPMZB (n, §), is given asymptotically as follows:

E. The ML Bound ab., Foré.. <& < 4",

In previous subsections we provided asymptotic forms for PMLB(n, §)
the upper bound otP.(n, d), for § > d. and ford < .,

o 1
(Theorems 8 and 10 respectively). Unfortunately, neitheot = "B m
rem holds ford.., exactly. We now analyze the upper bound at 1
d.,, and show that its asymptotic form is different at this point + T ] } (1+0(2)) (86)
As a consequence, at the critical NLD, the ratio between the V(e ) -1
upper and lower bounds dp.(n, 8) is of the order of/n (this — o—nEr(9) 1
pp (n,6) R/ ( e NG (1+0o(%)). @

ratio aboved,, is a constant, and belod., the ratio increases
exponentially since the error exponents are different). for & < 8.,

PMLB(p §) = ¢ nE-(9) —217m 1+0(3)),

Theorem 11:At § = é.,, the ML bound is given asymp- (88)

totically by

and foré = é..,,
PEIMLB (n7 6(:7‘)

PMIB (1, 5,,) = B0 L [1 n i} (1+0(2)).

e~ "Er(dcr) T log(nme?) log? Jn NG
_& T eelnme) log®n B
2w [ 2n + n } (1 +0 ( n )) (89)
(82) Notes:
e "Er(8er) logn o Foré > §.., PMEB(n,§) is indeed asymptotically worse
- Sy (1 +O( W )) (83) than PMLE with the optimalr = rer (38), see (70).
_ Specifically, the choice of = \/noe® ~% only balances
Proof: Appendix C. ]

the exponents of the two expressions of the bound (38),
while leaving the sub-exponential terms unbalanced -
see (86). The optimal selection = r.g¢ balances the

. 2(8* —8)
sub-exponential terms to the order of z¢ , see

In Fig. 7 we demonstrate the tightness of the precise
asymptotics of Theorem 11.

F. Asymptotic Analysis of the Typicality Bound

The typicality upper bound orP.(n,d) (Theorem 1) is
typically weaker than the ML-based bound (Theorem 2). In *
fact, it admits a weaker exponential behavior than the rando
coding exponenE,.(d). Define thetypicality exponenE, ()
as

E,(5) 2 5" — 6 — %log(l 126" —8).  (84)
We can then show that for any < &, the typicality bound
is given asymptotically by

Theorem 8. This in fact quantifies the asymptotic gap
between the bounds, as seen in the Fig. 2.

For & < 4., the selection of the suboptimal has no
asymptotic effect, as seen by comparing (88) and (77).
This corroborates the numerical findings presented in
Fig. 3.

o Foré = ¢, the asymptotic form of the bound is changes

by a constant (compare (89) and (82),(83)), and the
correction term in the approximation tighter.

The technical proof is similar to the proof of Theorems 8-11

and is omitted.

e "E®) 1 4 2(6* - §)
Vnrm 2(8" = 6)

PTB(n,é) = (1+0(%)). (85)

V. ASYMPTOTICS FORFIXED ERRORPROBABILITY

The technical proof is based on similar arguments to thoseln the previous section we were interested in the asymptotic

of Theorem 8 and is omitted. The error expon&atd) is
illustrated in Figure 8. As seen in the figu®,(d) is lower
thanE,.(9) for all 4.

behavior of P.(n, d) when the NLDJ is fixed. We now turn
to look at a related scenario where the error probabiliig
fixed, and we are interested in the asymptotic behavior of the
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Fig. 6. Numerical evaluation of the ML bound and its appraadion in Theorem 10 vs the dimension Hered = —1.8nat (3.31db from capacity). The

precise asymptotic form (77) is clearly tighter than theoeexponent only.
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0.001 e
=2 eanT.(Sw.)
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] Loose asymptotic form (83)
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Fig. 7. Numerical evaluation of the ML bound &t= é., (3.01db from capacity) and its approximations in Theorenvd the dimensiom. The asymptotic

10C

form (82) is tighter than the simpler (83). Both forms appmoate the true value of the ML bound better than the error egpbterm alone.
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Fig. 8. Error exponents for the unconstrained AWGN chanfbk typicality error exponenE;(§) (dot-dashed) vs. the random coding exponEm{d)
(dotted) and the sphere packii®, (5) (solid). The noise variance? is set to 1.

optimal achievable NLD, denotedl.(n), with n — co. This which tightly approximate$.(n). In addition, the term (91)
setting parallels the channel dispersion type resultd9][3}L, is also depicted, which only loosely approximades$n). The
Problem 2.1.24], and is strongly related to the dispersibn chosen error probability for the figure is= 0.01.
the power constrained AWGN channel [11][9].

Before proving the theorem, let us discuss the result. By the
similarity of Equations (1) and (90) we can isolate the canst
% and identify it as the dispersion of the unconstrained AWGN

Let ¢ > 0 denote a fixed error probability value. Clearlygetiing. This fact can be intuitively explained from severa
for anye, §.(n) approaches the optimal NLB" asn — o©.  girections.

Here we study the asymptotic behavior of this convergence. 5o interesting property of the channel dispersion theorem

Theorem 13:For a fixed error probabilit, the optimal 1y is the following connection to the error exponent. Under
NLD d.(n) satisfies, form — oo, some mild regularity assumptions, the error exponent can be
approximated near the capacity by

2
E(R) = [(Clntl
The proof (presented in sub-section V-C below) is based 2V
on an asymptotic analysis of the finite-dimensional bounsghere V' is the channel dispersion. The fact that the error
derived in Section Ill. Specifically, the converse bound (aexponent can be approximated by a parabola with second
upper bound in (90)) is based on the sphere bound (5). Ttierivatives; was already known to Shannon (see [9, Fig. 18]).
achievability part (a lower bound in (90)) is based on the MILhis property holds for DMC’s and for the power constrained
bound (38). The weaker typicality bound is also useful fo"dWGN channel and is conjectured to hold in more general
deriving a result of the type (90), but in a slightly weakecases. Note, however, that while the parabolic behaviohef t

A. The Dispersion of Infinite Constellations

d.(n) =6" — %Q’l(a) + %logn—l- O <%) . (90)
: (92)

form - the typicality bound can only lead to exponent hints that the gap to the capacity should behave as
1 1 0] (ﬁ) the dispersion theorem cannot be derived directly
0:.(n) > 0" —4/ %Q”(a) + 0 <ﬁ> . (91) from the error exponent theory. Even if the error probapilit

was given bye "E() exactly, (1) cannot be deduced from

In Fig. 9 we show the bounds @i (n) that are derived from (92) (which holds only in the Taylor approximation sense).
the finite dimensional bounds oR.(n,d) given in Sec. lll, Analogously to (92), we examine the error exponent for the
along with the asymptotic form (90), derived in this sectiorunconstrained Gaussian setting. For NLD values above the
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Fig. 9. Bounds and approximations of the optimal NBD(n) for error probabilitye = 0.01. Here the noise variance? is set tol.

critical NLD 6., (but belowd™), the error exponent is givengiven (in nat? per channel use) by

by [3: P(P+2)
—25 Vawen = P12

E(8) = < + 6+ = log 2n0°. (93)
dmeo 2 This term already appeared in Shannon’s 1959 paper on the
) . o AWGN error exponent [6], where its inverse is exactly the
By straightforward differentiation we get that the secongecond derivative of the error exponent at the capacity (i.e
derivative (w.r.t.d) of E(d,0%) atd = 8" is given by2, (92) holds for the ANGN channel). It is therefore no surprise
so according to (92), it is expected t_hat the d_ispersion fHat by takingP — oo, we get the desired value df, thus
the unconstrained AWGN channel will bg. This agrees completing the analogy between the power constrained AWGN
with our result (90) and its similarity to (1), and extendgng its unconstrained version. This convergence is quite fa

the correctness of the conjecture (92) to the unconstraingey s tight for SNR as low as0dB (see Fig. 10).
AWGN setting as well. It should be noted, however, that our

result provides more than just proving the conjecture:eher
also exist examples where the error exponent is well definBd A Key Lemma
(with second derivative), but a connection of the type (3) ¢ In order to prove Theorem 13 we need the following
only be achieved asymptotically with— 0 (see, e.g. [32]). straightforward lemma regarding the norm of a Gaussian
Our result (90) holds for any finite, and also gives the exactyector.
Llogn term in the expansion. Lemma 5:Let Z = [Z1,..., Z,]" be a vector ofn zero-

Another indication that the dispersion for the unconstdin mean, independent Gaussian random variables, each with
setting should b& comes from the connections to the powevarianceo?. Let » > 0 be a given arbitrary radius. Then the
constrained AWGN. While the capacié/log(l + P), where following holds for any dimensiom:
P denotes the channel SNR, is clearly unbounded witlthe 9 9

A r° —no 6T

form of the error exponent curve does have a nontrivial limit ‘Pr{||z|| >r}—Q <7>‘ < =, (95)
as P — oco. In [2] it was noticed that this limit is the error o*V2n Vin
exponent of the unconstrained AWGN channel (sometim@gere
termed the ‘Poltyrev exponent’), where the distance to the X2_1
capacity is replaced by the NLD distance &5. By this ‘7
analogy we examine the dispersion of the power constrained
AWGN channel at high SNR. In [9] the dispersion was foundor a Standard Gaussian RY.

(94)

T=E

3
] ~ 3.0785, (96)
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08— We determine: s.t. Pr(|Z|| > r) =¢ |1 — ﬁ and~y s.t.
" sl _ 1 AV = % This way it is assured that the error probability
% ; 1 is not greater than the requiret{l — \/Lﬁ + % = ¢e. Now
s 0.4 / 1 definea,, s.t.r? = no?(1+a,,) (note that- implicitly depends
o / 1 onn as well).
g 0'3: / ] Lemma 6: «,,, defined above, is given by
g 02} j 5 1
2 / | an = \ﬁcﬁ(a) +0 (—) : (99)
5 o0.1f / 1 n n

i ] Proof: By constructiony is chosen s.t.
%0 5% 20 10 o 10 20 w0 s o 1
SNR[dB] Pr(||Z]|* > r°) =€ {1 — %] . (100)

Fig. 10. The power-constrained AWGN dispersion (94) (Jolid. the By the definition ofa,,,
unconstrained dispersion (dashed)

1
2 2 _ o
Pr(|Z||* > no*(14+an)) =¢ [1 \/ﬁ} . (101)
Proof: LetY; = Zg;\% - Itis easy to verify thaE[Y;] = 0 By L emma 5,
and thatVAR[Y;] = 1. Let S,, & \/LE >, Yi. Note thatS, ) )
also has zero mean and unit variance. It follows that Pr([|Z]" > no™(1 + an))
n _0 no?(1 + ay) — no? 40 1
Pr{||Z|| >r}_Pr{szzr2} - o2/on m
oz P ?(Vf3ee) +o (55)
_ = — Qi —_— .
_Pr { S, > ﬂ} . 5 N
a2y/2n ) )

S, is a normalized sum of i.i.d. variables, and by the centrgombmed with (101), we get
limit theorem converges to a standard Gaussian random vari- 1 n 1
ables. The Berry-Esseen theorem [33, Ch. XVI.5] quantifies ¢ [1 - %] =Q ( 50%) +0 (ﬁ) ; (102)
the rate of convergence in the cumulative distribution fiorc
sense. In the specific case discussed in the lemma we getOr 1

2 2 2 2 e+ 0 <—) =Q <\/§an> . (103)

pef{s, 2 -o|T ] |< L @ Vi 2
o2\/2n 02v/2n 4D

o o Taking Q~1(-) of both sides, we get
whereT = E[|Y;|?]. Note thatT is independent of?2, finite,

and can be evaluated numerically to abduit785. [ ] \/gan _o (E 40 (%)) . (104)
n

' pr iyl r By the Taylor approximation of) 1( + around 0
Xl | u =0,
roof of Direct part: Wy ¢ Yy € x) T

Let ¢ denote the required error probability. We shall prove - 1
the existence of an IC (more specifically, a lattice) withoerr —a,=Q ' (e)+0 <—> , (105)
probability at most and NLD satisfying (90). 2 v

It is instructive to first prove a slightly weaker version ofr
(90) based on the typicality decoder (Theorem 1). This shows . \/? 1 1 106
that the weaker typicality bound is sufficient in order toy&o An = nQ ()+0 ’ (106)

n
a dispersion theorem (i.e. that the gap to capacity is g(axcternaS required. -

by y/ 2@ (). While easier to derive, this will show the g far, we have shown the existence of a latticeith error
existence of lattices with NLD = §* — /- Q~'(¢)+0 (1). Pprobability at most. The NLD is given by

2n

Proving the stronger result (90) is more technical and will 1

proven afterwards using the ML achievability bound (Theore 0= " logy

2). 1 | €
R

Recall the achievability bound in Theorem 1: for ang 0 logn 1
there exist lattices with NLDY and error probabilityP, that =——logV, —logr - —— + —loge
. n 2n n
is upper bounded by

1 1 logn 1
=——1 ‘/n__1 2 1 n)| — ——
P. <AVur™ +Pr{||Z] > r}. (98) —~log 5 loglno™(1 + ax)]

—1 .
2n +n 08
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V., can be approximated by Stirling approximation for they r = y/no?(1 + a,,) and have
Gamma function as

Vno?(1+am,)
dr
1 1 2re 1 / Tr(PF
_1OgVn: —lOg———l gn+o . (107) -n/2,,n 1+«
n 2 n n2 n / " —nr/2=n—1 j~
=0 —F e T dr
Lzl Jo
We therefore have 9—n/2,n 2(1+a )ne—n(1+an)/z
<g" n
' 1 1 SOTE (e 2)
6= —5 log(2mea?) — B log(l+ ay,) + O <E> (108) ., 27/ 2pn genlos(ltan) g—n(ltan)/2
=0 s
@ 5 11 . 0 1 109 I [5] n(l—an—32)
- Y Ty og(1 +an) + n (109) where the inequality follows from Lemma 3. Therefore the
term in (114) can be bounded by
®5_ Ly vo(l (110)
B 2 " n 1 V/no?(1+an)
© 1 1 - log/ fr(F)Fdr
=5 — \/%Q_l(a) +0 <E> , (111) L
< B logo® — $log2 +logn + log(1 + ay,) — (1 + )
where(a) follows from the definition of6*, (b) follows from + 1 log 1 1
the Taylor approximation fotog(1 + «,,) arounda,, = 0 n BT[] (1—an —2)

and from the fact that,, = O(1//n), and(c) follows from (@) 1 1 1 1
Lemma 6. This completes the achievability part based on the™ IOgU + 3 logn+ jan — 5;logn + 0 (5) -

typicality decoder. (a) follows from the Taylor expansion dbg(1 + &) at& =0
and from the fact thatv, = O(f) Plugging back to (114)

combined with Lemma 6 completes the proof of the direct
In order to prove the stronger achievability result that fitg, .

(90) we follow the same steps with the ML achievability

bound. By Theorem 2 we get that for any> 0 there exista  Proof of Converse Part;

lattice with densityy and error probability upper bounded by Lete > 0, and let{S,}, . be a series of IC's, where for
eachn, P.(S,) < e. Our goal is to upper bound the NL®,

T e of S,, for growing n.
Pe < 7Vn/0 fr(F)"dr + Pr{||Z] > r} . (112) By the sphere bound we have
e > P.(S,) > Pr{||Z] > "}, (115)
Now determiner s.t. Pr(||Z]] > r) = ¢ [1 - ﬁ} andy  wherer* = e~V /™. By Lemma 5,
s.t. vV, for fr(F)F™dr = % Again, it is assured that the 2 _ o2 6T
error probability is upper bounded lay Definea,, s.t.7? = e 2 Pr{||Z]| >} > @Q < o2\/2n > ok (116)
2
o (1+ an). whereT is a constant. It follows by algebraic manipulations

The resulting density is given by that

vk fR e (113) 5. <__1og<1+\fcz (e+—)>

- = logV — 10g(n02)

and the NLD by

5 1 1 By the Taylor approxma‘uon oIog(l + ) atz = 0 and of
=5, 087 Q(y) aty = ¢, and by the approximation (107) faf,,
1 1 1 1 T -
_ﬁloge—%logn—ﬁlogvn—ﬁlog/o fr(F)F™dr 6, < %Q_l( )——1og%
1 o 2me 1 Io /\/n(l-&-an) Fa(P)imdi 4+ O (1) 1 ) 210 1
= —— _— = — r)rdr =). — - = —
5 08— n go R - +2nogn 2og(ncr)+ ~
(114) By the definition ofd™ we finally arrive at
where the last equality follows from the approximation (L07 5, <& — iQ‘l (o) + 1 logn + O (l) ’
for V. 2n 2n n

We repeat the derivation as in Eq. (72) whetds replaced as required. [ ]
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V1. COMPARISON WITHKNOWN INFINITE decoder where the Leech lattice performance is based on
CONSTELLATIONS the ML decoder).

The approximation (90) no longer holds formally for the

case of normalized error probability. This follows since

the correction term in (90) depends on the error probabil-

ity. Nevertheless, as appears in Fig. 13, the approximation

appears to still hold.

In this section we compare the bounds derived in this paper®
with the actual performance of some known IC's.

We start with the low dimensional IC’s, which include
classic sphere packings: the integer lattice, the hexdgona
lattice, the packing®y, Fs, BWis and the leech latticd o,

(see Conway and Sloane [4]). In low dimensions we present VII. VOLUME-TO-NOISE RATIO ANALYSIS

Mon.te Carlp 5|mglat|on resultg based on the ML. decoder. The VNR 1, defined in (21), can describe the distance from
In higher dimensions we consider low density lattice cod%s

(LDLC) [34] with dimensionsn — 100,300,500 and 1000 ptimality for a given IC and noise variance, and we say that

. : o an IC S operating at noise levet? is in fact operating at
Sggj:?snfodr ?gebek?s; In ([:iérg]ensmn— 127 we present the VNR p. Equivalently, we can define the VNR as a function of
127 .

. , _ e IC and the error probability: For a given i and error
In Fig. 11 we show the gap to (Poltyrev’s) capacity (;g.;obabilityg let u(S EF; be defixed as fcﬂlows:
the low dimensional IC's, where the error probability is s€t ' ’ 25(5)

-

to e = 0.01. As seen in the figure, these low dimensional WS, e) 2
IC’s outperform the best achievability bound (Theorem 2). A ’ 2mec?(e)’

n =1, the integer lattice achieves the sphere bound (and |geres2(c) is the noise variance s.t. the error probability is

essentially, the only lattice for = 1). exactly . Note thaty(S, ) does not depend on scaling of
the IC S, and therefore can be thought of as a quantity that

From the presentation of Fig. 11 it is difficult to comparglepends only on the ‘shape’ of the IC.

IC’s with different dimensions. For example, the hexagonal We now define a related fundamental quantityc), as the

lattice closer to the capacity than the lattifg, and also the minimal value ofu(S, ) among alln-dimensional IC’s. It is

gap to the sphere bound is smaller. Obviously this does n@fown that for any0 < ¢ < 1, y,(¢) — 1 asn — oo [20].

mean thatD, is inferior. To facilitate the comparison betweenye now quantify this convergence, based on the analysis of

different dimensions we propose the following compariso®. (n).

Set a fixed value for the error probability for= 1 denoted |t follows from the definitions ofu,,(¢) and . (n) that the

1. Then define, for each, the normalized error probability following relation holds for anyr?:

(117)

En £1- (1 — El)n. 6—255(71)

pin(e) = = 2070 ), (118)

. . - . 2
Using this normalization enables the true comparison batwe 2meo

IC’s with different dimensions. The achieved gap to capacifnote thatd.(n) implicitly depends orv? as well). We may
with a normalized error probability remains the same whédherefore use the results in the paper to understand theibeha

a scheme is used sdytimes, and the block length become§f #n(€). For example, any of the bounds in Theorem 1,
k - n. For example, the integer lattice maintains a consgantheorem 2 or the sphere bound (26) can be applied in order to
for any n with the normalized error probability, as oppose@0und ., (¢) for finite n ande. Furthermore, the asymptotic

to the case presented in Fig. 11, where the performarR@havior ofu,(¢) is characterized by the following:
decreasesin Fig. 12 we plot the same data as in Fig. 11 for heorem 14:For a fixed error probabilitp < ¢ <1, The
normalized error probability with; = 10~. We also plot the OPtimal VNR z,,(¢) is given by

normalized error probability itself for reference. In Fi§j3 2 1 1

we present the performance of IC’s in higher dimensions pn(e) =1+ \/;Q (e) - 510%7”'0 (g) (119)
(again, with normalized error probability and = 107?). Proof: In Theorem 13 we have shown that for given
The included constellations are the leech lattice again (fgnd02 thé optimal NLD4 is given by

reference), LDLC withn = 100, 300, 500, 1000 and degrees '

5,6,7,7 respectively (cf. [34] and [36] for more details on sk 1 1 1

the construction of LDLC and the degree). For LDLC’s, the 9:(n) =" - \/;Q () + 5, logn+0 (ﬁ) - (120
figure shows simulation results based on a suboptimal I‘Wﬁereé*
complexity parametric iterative decoder [36]. In additiove
present the performance of the packifig:7[35] (which is a

1 1
-2 1Og 2meqg? "
According to (118) we write

multilevel coset code [19]). _ \/? 11y ol
Several notes are in order: tn(E) = exp nQ ©) n O8N n

« At higher dimensions, the performance of the presented 2 1 1
IC’s no longer outperforms the achievability bound. =1+ \/;Q (e) = logn + O <E)

« Itis interesting to note that the Leech lattice replicated 4
times (resulting in an IC ak = 96) outperforms the (121)
LDLC with n = 100 (but remember that the LDLC where the last step follows from the Taylor expansioretf
performance is based on a low complexity suboptimal [ ]
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Fig. 11. Low-dimensional IC’s for coding over the unconistedl AWGN. The error probability is set to= 0.01.
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nel Setting in the finite dimension regime. We prOVided tWeommentS and Suggestions for shorter proofs_
achievability bounds and extended the converse bound@phe

bound) to finite dimensional IC’s. Our best achievability APPENDIXA
bound (the ML bound) was shown to be equivalent to a PROOF OF THEREGULARIZATION LEMMA

bound by Poltyrev, but has a simpler form. Our derivation  Proof of Lemma 1:Our first step will be to find a hyper-
reveals that this is the best known bound for maximal errgubeCh(a..), so that the density of the points &N Cb(a..)
probability. For average error probability, we show tha¢ thand the error probability of codewords&nCh(a,) are close
bound recently proposed in [7] is better at finite dimensiorgough toy and e, respectively. We then replicate this cube
by a multiplicative factor bounded by.58. We then analyzed in order to get a regular IC. The idea is similar to that used in
these bounds asymptotically in two settings. In the firsiregt [3, Appendix C], where it was used for expurgation purposes.
where the NLD (which is equivalent to the rate in classifs discussed in Ill-E above, we wish to avoid expurgation

channel coding) was fixed, we evaluated the (bounds on thgpcess that weakens the bound for finite dimensional IC's.
error probability when the dimensiom grows, and provided By the definition of P.(S) and~(S),

asymptotic expansions that are significantly tighter theose

in the existing error exponent analysis. In the secondnggtti ~(S) = lim sup &n’a) = lim sup (‘i’ b),
the error probability is fixed, and we investigated the optimal a=roo 470 b>a

achievable NLD for growing:. We showed that the optimal e = P.(S) = limsup L Z P.(s)
NLD can be tightly approximated by a closed-form expression a—oo M(S,a) s€SNCHa)

and the gap to the optimal NLD vanishes as the inverse of the 1

square root of the dimension The result is analogous to the = alijgo sup m Z Pe(s).

channel dispersion theorem in classical channel codind, an b>a 7 seSNCHb)

agrees with th(_a i_nterpretation of the un_constrained SPUD | ot =vItfandr. =1+ % By definition of the limit,
the high-SNR limit of the power cons_tram_ed AWGN channelnere must existi, large enough s.t. for every > ag, both
The approach and tools developed in this paper can be ugggh-

to extend the results to more general noise models, and also M(S,b) 1

to finite constellations. T > . (122)
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Fig. 12. Top: performance of different constellations (eitaionsl — 24) for normalized error probability, witk; = 10~5. Bottom: the normalized error
probability.

and By (123) we get that
sup 1 Z P.(s) <e- . (123) _ Z P.(s)
b>a M(S,b) M(S, ax)
s€ESNCH(b) SESNCHax)
1
< sup ———— P.(s
| 5 | <5 iy 2 )
Define A sit. Q(A/o) = ¢ - 5, and definean as the s€SNCHb)
solution to % =+/1+¢&. Let apmax = max{ag,an}. <ETe

According to (122), there must exist > dmax .t Now consider thdinite constellationG = S N Cb(a.). For

s € G, denote byP%(s) the error probability ofs when G
M(S,ax) 1 is used for transmission with Gaussian noise. SiGce S,

ar >’Y'T_v' (124) clearly P%(s) < P.(s) for all s € G. The average error
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Fig. 13. Performance of different constellations (dimensi24 — 1000) for normalized error probability, witlk; = 1075,

probability for G is bounded by k > 0, Cb(ax) contains exactly2k — 1)™ copies ofG, and
1 1 therefore
PG 2 S POs) < Y Pu(s) <. (125) M(S, @) G2k — 1) le
G| =, Gl =, _ = . = . (128)
s€ s€ ap ap (asx + 2A)™
We now turn to the second part - constructing an IC from For anya > 0, let k* be the minimal integek s.t. a; > a.
the codeG. Clearly,

Define the ICS’ as an infinite replication off with spacing

of 2A between every two copies as follows: Qg1 = G — (0 +28) <@ < G- (129)
S 2 {stl (120 iseGleZ,y, (126 oo
- * ‘ ’ nts M(S',ag«—1) - M(S',a) < M(S', ag~) (130)
whereZ,, denotes the integer lattice of dimensian a™ am o am ’
Now consider the error probability of a poise S’ denoted and
by PS'(s). This error probability equals the probability of |G| Ape_q - M(S',a) < |G| aps (131)
decoding by mistake to another codeword from the same copya, + 2A)" an an = (@ +2A)" an

of G or to a codeword in another copy. By the union boun(éy taking the limita — oo of (131), we get that the limit

we get that o o exists and is given by
Py (s) < P7(s) +Q(A/o). (127) , . M(S,a) G|
, i ~¥(S§) = lim = . (132)
The right term follows from the fact that in order to make a a—oo  a” (as +2A)"
mistake to a codeword in a different copy@f the noise must |t follows that
have an amplitude of at lea&t. The average error probability . lel
overS' is bounded by () = CEIND
Po(8') < Po(G) +Q(A/0) S &7 +Q(A/0) = £(1+§) _l6l e
a? (a. + 2A)"
as required, where the last equality follows from the deénit (a) 1 a n
of 7. and A. > 7(S)— <ﬁ>
The density of points in the new IC enclosed within a cube , Ty \ O
of edge sizea, + 2A is given by |G|(a. + 2A)~ ™. Define (2) ~(S) 1 (133)

ar = (a« +2A)(2k — 1) for any integerk. Note that for any 1+
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where (a) follows from (124) and(b) follows from the and the definition off. [ |
definitions ofr,,aa and from the fact thata < a.. . .
It remains to show that the resulting I& is regular, i.e. Proof of Lemma 3: We rewrite the integrand as“(”)

that all the Voronoi cells can be bounded in a sphere withereG(p) = —np/2+ (n—1)logp. SinceG(p) is concave,

some fixed radiusy. Let s be an arbitrary point inS’. By it is upper bounded its first order Taylor approximation at an

construction (see (126)), the points point. We choose the tangent at= z. We denote by (p)
the first order Taylor approximation at that point, and get

0 in§’ (wh . ) - G(p) < Gilp) £ G(z) + G'(x)(p —x),  (137)
are also inS’ (wheree; denotes the vector of in the i- R N

th coordinate, and the rest are zeros). We therefore coacllmqereG_ (p) - Ga(p) -2 +T Eq. (73) then follows by
that the Voronoi cellV (s) is contained in the hypercuber ~ calculating fy e*(”)dp explicitly. -

Cb(a. + 2A), and is clearly bounded within a sphere of radius SOmMe extra effort is required in order to prove the lower

{s+£ (ax +2A)e;li =1,...,n}

ro 2 /n(a. +24A). m bound (74). We first switch variables= p~! and get
e P2 =1y = / ex o n+1)lo u) du.
APPENDIX B /0 P P 1z p( 2u ( )log
PROOF OFINTEGRAL BOUNDING LEMMAS (138)
Proof of Lemma 2:Define We lower bound the exponent as follows:
n_q1 _n n np _n_
F(p) = log {W 'e ”/2} :(5—1)1ogp—7, 5 — (n+1)logu
n
so thatp? ~le="P/2 = exp[F(p)]. Let Fi (p) and Fy(p) be the = ~ 5, T (n +1)(logz — log(1 + uz — 1))
first and second order Taylor series Bfp) aroundp = =z, (@ n
respectively, i.e. > ~ou T (n+1)(logz — (uz — 1))
®)
Fi(p) = a+ B(p — x); > —%( 22?2 — 3ux +3) + (n+ 1)(logz — (uz — 1)).

F — 4 _ 2 _ 27
2(p) =a+flp—a) —rlp-a) (a) follows from the fact thatog(1 + &) < ¢ for all £ € R.

where (b) follows from the fact that% < -3¢+3forall & >1
£ (ﬁ - 1) logz — = (which follows from the fact thaté — 1)* > 0).
“=\3 08T T T Now the dependence on the integration variable is only
ga 7 —1 _n, guadratic in the exponent, thus the integral bound can be
o 2’ presented as & function in order to have (74) as required
YS! (similarly to the proof of (53) in Lemma 2). Eq. (75) follows
T=\ 92 by applying the lower bound (136) on tkig function. ]
We note that for any > 0, APPENDIXC
& EVALUATING THE ML BOUND AT 4§,
£ 9 <log(1+¢8) <¢. (134) Proof of Theorem 11We start as in the proof of Theorem
It follows that for all p > = we haveFs(p) < F(p) < Fi(p), 2 t0 have )
or - - - e”‘s"Vn/ fr(r)r™dr
/ ng(p)dp < / p%—le—np/de < / eFl (P)dp . 0 ) o
T T T (135) — —6”6‘/7120'”(271')_771”/ e—np/an—ldp.
2 0

The upper bound (59) follows immediately from the right
inequality in (135), where convergence occurs only for-

— 2, hence the condition. Similarly, from the left inequality o _ 2 _
of (135) we have / e P2 pr 1dP:/ e "2 pn~Ydp

We evaluate the integral in two parts:

0 0
[e’e] [e7e] p*
/ eF(P)dp > / 6F2(P)dp + / e—np/Qpn—ldp. (139)
T T 2
= exp (a + ﬁ—i) VT (i) _ The termf02 e~"/2p"=1dp can be evaluated by the Laplace
dr T V2 method, as in the proof of Lemma 4. The difference is that
Plugging back the values far, 3 andr leads to (60). Finally, the exponent is minimized with zero first derivative at the
(61) follows from a well known lower bound for th€) boundary pointp = 2, which causes the integral to be
function: evaluated to half the value of the integral in Lemma 4, i.e.

1 2 1 2 s
> —z/2 —np/2 n—1 — —non 1
Q(z) > o (1+z2) Vz >0 (136) /0 e P dp 1/—2ne 2" (140 (%)). (140
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The second term in (139) requires some extra effort. We firgt]
upper bound it as follows:

*

P P 1
/ efnp/2pn*1dp < / 5e’"2”dp = 567”2"@* -2),
9 2

using the fact that in the integration interyal> 2 and since
e~"P/2p" is maximized atp = 2. With (64) we have

5

P 1
/ efnp/Qpnfldp < 567n2n(p* _ 2)
2

_ ¢ngn1og(nm) (1+0(kz)).
n
The integral can also be lower bounded as follows:
o
/ e—np/Qpn—ldp
2
(@ P
> i e—np/andp
p*
QL7 w627y,
p* 2
(o) 1 n_-n 87 1 1 1 p =2 log?n
T 7<5_ - vR o (=)
__on 7n10g(nﬂ') logn
= greTn 2T (1+0(ﬁ)).

(a) follows sincep < p*. (b) follows from the fact thatip/2+
nlogp > nlog2 — Z(p — 2)? for all p > 2 (which follows
from (134)). (¢) follows from the Taylor expansio®(§) =

1

2

—=+0(£?) and sincep* —2 = O(*%%). In total we get

5

/p efnp/2p"71dp — 2n67n10g(n7r) (1 +0 (lo%)) )
2 n "

Combined with (140) we have

*

p
/ efnp/2pn71dp
0

2 P
— / e—np/2pn—1dp+ / e—np/2pn—1dp
0 2

= one™ {\/;jt @] (1+O (@))

The approximation (62) fo¥/,, finally yields

e”‘s"Vn/ fr(r)rdr
0

1
— e_nEr((scT) _

Voo =] (o).

2
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and the proof is completed by adding the asymptotic form (5@?1

of the sphere bound & = §.,.
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