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Abstract—In the setting of a Gaussian channel without power
constraints, proposed by Poltyrev in 1994, the codewords are
points in an n-dimensional Euclidean space (an infinite con-
stellation) and the tradeoff between theirdensity and the error
probability is considered. The normalized log density (NLD) plays
the role of the communication rate, and capacity as well as
error exponent bounds for this setting are known. This work
considers the infinite constellation setting in the finite block-
length (dimension) regime. A simplified expression for Poltyrev’s
achievability bound is found and it is shown to be closely
related to the sphere converse bound and to a recently proposed
achievability bound based on point processes. The bounds are
then analyzed asymptotically for growingn: for fixed NLD the
bounds turn out to be extremely tight compared to previous
error exponent analysis. For fixed error probability ε, it is shown
that the gap of the highest achievable NLD to the optimal NLD

(Poltyrev’s capacity) is approximately
√

1

2n
Q−1(ε), where Q is

the standard complementary Gaussian c.d.f., thus extending the
channel dispersion analysis to infinite constellations. Connections
to the error exponent of the power constrained Gaussian channel
and to the volume-to-noise ratio as a figure of merit are discussed.
Finally, the new tight bounds are compared to state-of-the-art
coding schemes.

Index Terms—Infinite constellations, Gaussian channel,
Poltyrev setting, Poltyrev exponent, finite blocklength, dispersion,
precise asymptotics.

I. I NTRODUCTION

CODING schemes over the Gaussian channel are tra-
ditionally limited by the average/peak power of the

transmitted signal [1]. Without the power restriction (or a
similar restriction) the channel capacity becomes infinite, since
one can space the codewords arbitrarily far apart from each
other and achieve a vanishing error probability (even for an
infinite number of codewords per dimension). However, many
coded modulation schemes take an infinite constellation (IC)
and restrict the usage to points of the IC that lie within some
n-dimensional form in Euclidean space (a ‘shaping’ region).
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(a) A lattice (b) A non-lattice infinite constella-
tion

Fig. 1. Examples for 2-dimensional infinite constellations. Only a finite
section of the IC is shown.

Probably the most important example for an IC is a lattice (see
Fig. 1). Examples for shaping regions include a hypersphere
in n dimensions, and a Voronoi region of another lattice [2].

In 1994, Poltyrev [3] studied the model of a channel with
Gaussian noise without power constraints. In this setting the
codewords are simply points of the infinite constellation in
then-dimensional Euclidean space. The analog to the number
of codewords is the densityγ of the constellation points (the
average number of points per unit volume). The analog of the
communication rate is the normalized log density (NLD)δ ,
1
n log γ. The error probability in this setting can be thought of
as the average error probability, where all the points of theIC
have equal transmission probability (precise definitions follow
later on in the paper). The problem of channel coding over
IC’s is also related to the classic problem of sphere packing
(see, e.g. Conway and Sloane [4]), where the centers of the
packed spheres can be thought of as an IC.

Poltyrev established the “capacity” of the setting, i.e., the
ultimate limit for the NLDδ, which is denotedδ∗ and given
by 1

2 log
1

2πeσ2 , where σ2 denotes the noise variance per
dimension1. Random coding, expurgation and sphere packing
error exponent bounds were derived, which are analogous
to Gallager’s error exponents in the classical channel coding
setting [5], and to the error exponents of the power-constrained
additive white Gaussian noise (AWGN) channel [6], [5].
Recently, Poltyrev’s capacity and achievability exponents were
re-derived using a random point process approach [7].

In classical channel coding, the channel capacity gives
the ultimate limit for the rate when arbitrarily small error
probability is required, and the error exponent quantifies the
speed at which the error probability goes to zero as the
dimension grows, where the rate is fixed (and below the
channel capacity). The error exponent, as its name suggests,

1Logarithms are taken w.r.t. to the natural basee and rates are given in
nats.
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only quantifies the exponential asymptotic behavior of the
error probability. Analysis of the sub-exponential terms was
done only for certain rates and for certain channels with a
symmetric structure (see Dobrushin [8, p. 4] and references
therein). This type of analysis is asymptotic in nature: neither
the capacity nor the error exponent theory can tell what is
the best achievable error probability with a given rateR and
block lengthn. A big step in the non-asymptotic direction
was recently made by Polyanskiy et al. [9], where explicit
bounds for finiten were derived. In the same paper, another
asymptotic question is discussed: Suppose that the (codeword)
error probability is fixed to some valueε. Let Rε(n) denote
the maximal rate for which there exist communication schemes
with codelengthn and error probability at mostε. Asn grows,
Rε(n) approaches the channel capacityC, and the speed of
convergence is quantified by [10][9]

Rε(n) = C −
√

V

n
Q−1(ε) +O

(

logn

n

)

, (1)

whereQ−1(·) is the inverse of theQ-function, i.e. the comple-
mentary standard Gaussian cumulative distribution function2.
The constantV , termed the channel dispersion, is the variance
of the information densityi(x; y) , log PXY (x,y)

PX(x)PY (y) for a
capacity-achieving distribution. This result holds for discrete
memoryless channels (DMC’s), and was recently extended
to the (power constrained) AWGN channel [11][9]. More
refinements of (1) and further details can be found in [9].

In this paper we take an in-depth look at the unconstrained
Gaussian channel where the block length (dimension) is finite
(analogously to finite block-length channel coding [9]). We
first re-derive Poltyrev’s original bound for the achievable error
probability [3] in order to obtain a much simpler form that
enables easy evaluation and comparison to a recently proposed
bound by Anantharam and Baccelli [7]. We then analyze
the new expressions for the achievability bounds and the so-
called sphere bound (converse bound), and obtain asymptotic
analysis of the lowest achievable error probability for fixed
NLD δ which greatly refines Poltyrev’s error exponent results.
In addition, we analyze the behavior of the highest NLD
when the error probability is fixed. We show that the behavior
demonstrated in (1) for DMC’s and the power constrained
AWGN channel carries on to the unconstrained AWGN chan-
nel as well. We demonstrate the tightness of the results both
analytically and numerically, and compare to state-of-the-art
coding schemes.

The main results in the paper are summarized below.

A. New Derivation for Finite-Dimensional Bounds

The capacity and error exponent results in [3] are based
on a bound that holds for any finite dimensionn. However,
this bound is hard to calculate explicitly (although can be
easily evaluated in the corresponding limit) since it involves
optimization and 3-dimensional integration.

We propose two new derivations for achievability bounds
at finite dimension that are easier to evaluate. It turns out

2i.e. Q(x) , 1√
2π

∫∞

x
e−t2/2dt.

that the second derivation results in Poltyrev’s bound [3],
presented in a simpler form enabling easy evaluation and
further analysis. We use a classical technique that bounds
the error probability by the sum of the probability that the
noise leaves a certain region (a sphere), and the probability of
error for noise realization within that sphere. This technique is
used by Poltyrev in [3] (see also [12]) but its roots are in the
classical works of Shannon [6] and Gallager [13]; sometimes
it is called “Gallager’s first bounding technique” [14]. We first
derive thetypicality bound(Theorem 1), which is based on a
simple ‘typicality’ decoder (close in spirit to that used inthe
standard achievability proofs [15]). It shows that there exist
IC’s with NLD δ and error probability bounded by

Pe ≤ PTB
e (n, δ) , enδVnr

n + Pr {‖Z‖ > r} , (2)

whereVn , πn/2

Γ(n/2+1) denotes the volume of ann-dimensional
sphere with unit radius [4] andZ denotes the noise vector.
The bound holds for anyr > 0, and the value minimizing the
bound is given byr = σ

√

n(1 + 2δ∗ − 2δ). Evaluating this
bound only involves 1D integration, and the simple expression
is amenable to precise asymptotic analysis. We then present
a new derivation of Poltyrev’s bound, which enables simpler
evaluation and closed-form optimization. We show that there
exist IC’s with error probability bounded by

Pe ≤ PMLB
e (n, δ) , enδVn

∫ r

0

fR(r̃)r̃
ndr̃ + Pr {‖Z‖ > r} ,

(3)
wherefR(·) is the pdf of the norm‖Z‖ of the noise vector.
The bound, which is based on the maximum likelihood (ML)
decoder, holds for anyr > 0, and the value minimizing the
bound is given by

r = reff , e−δV −1/n
n . (4)

Note thatreff , called theeffective radiusof the lattice (or IC),
is the radius of a sphere with the same volume as the Voronoi
cell of the lattice (or the average volume of the Voronoi cells of
the IC3 ). Poltyrev [3] obtained an equivalent bound indirectly
in a more complex form (see (24) and Theorem 3 below) and
therefore could not find the optimal expression forr in (4).
We therefore denote the bound in (3) (with the optimalr from
(4)) the Maximum Likelihood Bound, or simply MLB. Note
that evaluating the ML bound involves 1D integration only,
and since the ML bound gives the exact value of Poltyrev’s
bound with optimization w.r.t.r (Theorem 3), the simplicity
does not come at the price of a weaker bound. The derivation
of the typicality and ML bounds is based on lattices (and the
Minkowski-Hlawka theorem [16][17]). Because of the regular
structure of lattices, these results hold in the stronger sense of
maximal error probability.

In [7] a new achievability bound was derived for the setting,
based on point processes under random additive displace-
ments, and the achievable error exponents were re-derived.
Our derivation reveals the connection to this bound at finite
dimensions: we show that it is tightly connected to the ML

3Note that the average volume of the Voronoi cells is not always well-
defined, as in general there may exist cells with infinite volume. See III-E for
more details.
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bound (3). Although for average error probability the bound
in [7] is slightly better, when maximal error probability is
of interest, (3) is superior. We then quantify the difference
between the bounds (Theorem 4).

In the converse part we base our results on the well
known sphere bound [18][3][19], i.e. on the fact that the
error probability is lower bounded by the probability that the
noise leaves a sphere with the same volume as a Voronoi cell.
For lattices (and more generally, for IC’s with equal-volume
Voronoi cells), it is given by

Pe ≥ PSB
e (n, δ) , Pr{‖Z‖ > reff}. (5)

We extend the validity of the sphere bound toany IC, and
to the stronger sense ofaverageerror probability (Theorems
5 and 6). Therefore our results hold for both average and
maximal error probability, and for any IC (lattice or not).

Note that since the optimal value forr in the ML bound
(3) is exactlyreff , the difference between the ML upper bound
and the sphere lower bound is the left term in (3). This fact
enables a precise evaluation of the best achievablePe, see
Section IV.

B. Asymptotic Analysis: Fixed NLD

The asymptotics of the bounds on the error probability
were studied by Poltyrev [3] using large deviation techniques
and error exponents. The error exponent for the unconstrained
AWGN is defined in the usual manner:

E(δ) , lim
n→∞

1

n
logPe(n, δ), (6)

(assuming the limit exists), wherePe(n, δ) is the best er-
ror probability for any IC with NLD δ. Poltyrev showed
that the error exponent is bounded by the random coding
and sphere packing exponentsEr(δ) and Esp(δ) (defined
later on), which are the infinite constellation counterparts
of the similar exponents in the power constrained AWGN.
The random coding and sphere packing exponents coincide
when the NLD is above the critical NLDδcr, also defined
later on. However, even when the error exponent bounds
coincide, the optimal error probabilityPe(n, δ) is known only
up to an unknown sub-exponential term (which can be, for
examplen100, or worse, e.g.e

√
n). We present a significantly

tighter asymptotic analysis using a more delicate (and direct)
approach. Specifically, we show (Theorem 7) that the sphere
bound is given asymptotically by

PSB
e (n, δ) ∼= e−nEsp(δ)

(nπ)−
1
2 e

2(δ∗
−δ)

e2(δ
∗−δ) − 1

, (7)

wherea ∼= b means thatab → 1. We further show (Theorems
8 - 11) that the ML bound is given by

PMLB
e (n, δ) ∼=















e−nEr(δ) 1√
2πn

, δ < δcr;

e−nEr(δ) 1√
8πn

, δ = δcr;

e−nEr(δ)(nπ)−
1
2
e2(δ

∗
−δ)

(2−e2(δ∗
−δ))(e2(δ∗

−δ)−1)
, δcr < δ < δ

∗.

(8)
As a consequence, for NLD aboveδcr, where Er(δ) =
Esp(δ), Pe(n, δ) is known asymptotically up toa constant

factor (equal to2− e2(δ
∗−δ)) compared to a sub-exponential

term in Poltyrev’s error exponent analysis. One corollary from
our result is that forδ > δcr, the polynomial prefactor of
the error probability isnη(δ), where η(δ) , − 1

2e
2(δ∗−δ)

is between0 and −1. The typicality bound turns out to be
weaker, but still vanishes exponentially fast:

PTB
e (n, δ) ∼= e−nEt(δ) 1√

nπ
· 1 + 2(δ∗ − δ)

2(δ∗ − δ)
(9)

whereEt(δ) is thetypicality exponent, defined later on, which
is lower thanEr(δ).

C. Asymptotic Analysis: Fixed Error Probability

For a fixed error probability valueε, let δε(n) denote the
maximal NLD for which there exists an IC with dimension
n and error probability at mostε. We shall be interested
in the asymptotic behavior ofδε(n). This type of analysis
for infinite constellations has never appeared in literature (to
the best of the authors’ knowledge). In the current paper we
utilize central limit theorem (CLT) type tools (specifically, the
Berry-Esseen theorem) to give a precise asymptotic analysis of
δε(n), a result analogous to the channel dispersion [10][11][9]
in channel coding. Specifically, we show (Theorem 13) that

δε(n) = δ
∗ −

√

1

2n
Q−1(ε) +

1

2n
log n+O

(

1

n

)

. (10)

By the similarity between (1) and (10) we identify the constant
1
2 as the dispersion of infinite constellations. This fact can be
intuitively explained in several ways:

• The dispersion as the (inverse of the) second derivative
of the error exponent:for DMC’s and for the power
constrained AWGN channel, the channel dispersion is
given by the inverse of the second derivative of the error
exponent evaluated at the capacity [9]. Straightforward
differentiation of the error exponentE(δ) (which near
the capacity is given byEr(δ) = Esp(δ)) verifies the
value of 1

2 .
• The unconstrained AWGN channel as the high-SNR

AWGN channel:While the capacity of the power con-
strained AWGN channel grows without bound with the
SNR, the error exponent attains a nontrivial limit if we
keep the gap to capacity fixed. This limit is the error
exponent of the unconstrained AWGN channel (as noticed
in [2]), where the distance to capacity is replaced by the
NLD distance toδ∗. By this analogy, we examine the
high-SNR limit of the dispersion of the AWGN channel
(given in [11][9] by 1

2

(

1− (1 + SNR)−2
)

) and arrive,
as expected, at the value of1

2 .

D. Volume-to-Noise Ratio (VNR)

Another figure of merit for lattices (that can be defined
for general IC’s as well) is the volume-to-noise ratio (VNR),
which generalizes the SNR notion [19] (see also [20]). The
VNR quantifies how good a lattice is for channel coding over
the unconstrained AWGN at some given error probabilityε. It
is known that for anyε > 0, the optimal (minimal) VNR
of any lattice approaches1 when the dimensionn grows
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(see e.g. [20],[21]). We note that the VNR and the NLD are
tightly connected, and deduce equivalent finite-dimensional
and asymptotic results for the optimal VNR (Theorem 14).

The rest of the paper is organized as follows. In Section II
we define the notations and review previous results. In Sec-
tion III we derive the new typicality and ML bounds for the
optimal error probability of finite dimensional IC’s, and we
refine the sphere bound as a lower bound on the average
error probability for any finite dimensional IC. In Section IV
the bounds are analyzed asymptotically with the dimension
where the NLD is fixed, to derive asymptotic bounds that
refine the error exponent bounds. In Section V we fix the error
probability and study the asymptotic behavior of the optimal
achievable NLD withn. We use normal approximation tools
to derive the dispersion theorem for the setting. In SectionVI
we compare the bounds from previous sections with the
performance of some good known infinite constellations. In
Section VII we discuss the VNR and its connection to the
NLD δ. We conclude the paper in Section VIII.

II. D EFINITIONS AND PREVIOUS RESULTS

A. Notation

We adopt most of the notations of Poltyrev’s paper [3]: Let
Cb(a) denote a hypercube inRn

Cb(a) ,
{

x ∈ R
n s.t. ∀i|xi| <

a

2

}

. (11)

Let Ball(r) denote a hypersphere inRn and radiusr > 0,
centered at the origin

Ball(r) , {x ∈ R
n s.t. ‖x‖ < r}, (12)

and let Ball(y, r) denote a hypersphere inRn and radiusr >
0, centered aty ∈ R

n

Ball(y, r) , {x ∈ R
n s.t. ‖x− y‖ < r}. (13)

Let S be an IC. We denote byM(S, a) the number of points
in the intersection ofCb(a) and the ICS, i.e. M(S, a) ,

|S⋂Cb(a) |. The density ofS, denoted byγ(S), or simply
γ, measured in points per volume unit, is defined by

γ(S) , lim sup
a→∞

M(S, a)
an

. (14)

The normalized log density (NLD)δ is defined by

δ = δ(S) , 1

n
log γ. (15)

It will prove useful to define the following:
Definition 1 (Expectation over points in a hypercube):Let

Ea[f(s)] denote the expectation of an arbitrary functionf(s),
f : S → R, wheres is drawn uniformly from the code points
that reside in the hypercubeCb(a):

Ea[f(s)] ,
1

M(S, a)
∑

s∈S∩Cb(a)

f(s). (16)

Throughout the paper, an IC will be used for transmission
of information through the unconstrained AWGN channel with

noise varianceσ2 (per dimension). The additive noise shall be
denoted byZ = [Z1, ..., Zn]

T . An instantiation of the noise
vector shall be denoted byz = [z1, ..., zn]

T .
For s ∈ S, let Pe(s) denote the error probability whens

was transmitted. When the maximum likelihood (ML) decoder
is used, the error probability is given by

Pe(s) = Pr{s+ Z /∈ W (s)}, (17)

whereW (s) is theVoronoi regionof s, i.e. the convex polytope
of the points that are closer tos than to any other points′ ∈ S.
The maximal error probability is defined by

Pmax
e (S) , sup

s∈S
Pe(s), (18)

and the average error probability is defined by

Pe(S) , lim sup
a→∞

Ea[Pe(s)]. (19)

The following related quantities, define the optimal perfor-
mance limits for IC’s.

Definition 2 (Optimal Error Probability and Optimal NLD):

• Given NLD valueδ and dimensionn, Pe(n, δ) denotes
the optimal error probability that can be obtained by any
IC with NLD δ and a finite dimensionn.

• Given an error probability valueε and dimensionn, δε(n)
denotes the maximal NLD for which there exists an IC
with dimensionn and error probability at mostε.

Clearly, these two quantities are tightly connected, and any
nonasymptotic bound for either quantity gives a bound for the
other. However, their asymptotic analysis (withn → ∞) is
different: for fixedδ < δ

∗, it is known thatPe(n, δ) vanishes
exponentially withn. In this paper we will refine these results.
For a fixed error probabilityε, it is known thatδε(n) goes to
δ
∗ whenn → ∞. In this paper we will show that the gap to

δ
∗ vanishes like4 O (1/

√
n), see Section V.

B. Measuring the Gap from Capacity

Suppose we are given an ICS with a given densityγ (and
NLD δ = 1

n log γ), used for information transmission over the
unconstrained AWGN with noise varianceσ2. The gap from
optimality can be quantified in several ways.

Knowing that the optimal NLD (forn → ∞) is δ
∗, we may

consider the difference

∆δ = δ
∗ − δ, (20)

which gives the gap to capacity innats, where a zero gap
means that rate-wise, capacity is attained. Alternatively, it is
common in communication to measure the ratio between the
noise variance that is tolerable (in the capacity sense) with the
given NLD δ, given by e−2δ

2πe , and the actual noise varianceσ2

(equal to e−2δ∗

2πe ). This ratio is given by

µ ,
e−2δ/(2πe)

σ2
= e2(δ

∗−δ). (21)

4Formally,fn = O(gn) shall mean that∃c>0,n0>0.∀n>n0 .|fn| ≤ c ·gn.
Similarly, fn ≤ O(gn) shall mean that∃c>0,n0>0.∀n>n0 .fn ≤ c · gn. In
addition,fn ≥ O(gn) means−fn ≤ O(−gn) andfn = Θ(gn) shall mean
that bothfn = O(gn) andgn = O(fn) hold.
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For lattices, the terme−2δ is equal tov2/n, wherev is the
volume of a Voronoi cell of the lattice. Thereforeµ was termed
theVolume-to-Noise Ratio(VNR) by Forney et al. [19] (where
it is denoted byα2(Λ, σ2)). In [7] the VNR is denoted by
α2. The VNR can be defined for general IC’s as well. It
is generally above1 (below capacity) and approaches1 at
capacity. It is often expressed in dB5, i.e.

10 log10
e−2δ/(2πe)

σ2
= 10 log10 e

2(δ∗−δ) ∼= 8.686∆δ. (22)

Note that the VNR appears under different names and scalings
in the literature. Poltyrev [3] defined the quantitye

−2δ

σ2 and
called it the Generalized SNR (and also denoted it byµ). In
certain cases the latter definition is beneficial, as it can be
viewed as the dual of the normalized second moment (NSM),
which atn → ∞ approaches 1

2πe (see [20] and [21]).

An alternative way to quantify the gap from optimal per-
formance is based on the fact that the Voronoi regions of an
optimal IC (at n → ∞) become sphere-like. For example,
the sphere bound (the converse bound) is based on a sphere
with the same volume as the Voronoi cells of the IC (i.e. a
sphere with radiusreff ). As n grows, the Voronoi regions of
the optimal IC (that achieves capacity) becomes closer to a
sphere with squared radius that is equal to the mean squared
radius of the noise,nσ2. Therefore a plausible way to measure
the gap from optimality would be to measure the ratio between
the squared effective radius of the IC and the expected squared
noise amplitude, i.e.

ρ ,
r2eff
nσ2

=
e−2δV

−2/n
n

nσ2
. (23)

This quantity was called “Lattice SNR” in [18], and “Voronoi-
to-Noise Effective Radius Ratio” (squared) in [22]. Similarly
to the VNRµ, this ratio also approaches1 at capacity, and is
also often expressed in dB. However, the two measures (21)
and (23) are not equivalent. For a given gap in dB, different
IC densities (and NLD’s) are derived, and only asn → ∞ the
measures coincide (this can be seen by approximatingVn using
the Stirling approximation). In the current paper, whenever we
state a gap from capacity in dB, we refer to (22), which is the
gap (21) in dB.

The finite-dimensional results in Section III are specific for
eachn and can be written as a function of either the NLDδ
or the ratio (23). However, the asymptotic analysis in Sections
IV and V depends on the selected measure. Specifically, in
Section IV we study the behavior of the error probability
with n → ∞ whereδ is fixed. This is equivalent to fixing
the ratio (21) (but not (23)). While the exponential behavior
of the bounds on the error probability is the same whether
we fix (21) or (23), the sub-exponential behavior differs. In
Section V we are interested in the behavior of the gap (20)
with n → ∞ for fixed error probability. Equivalent results in
terms of the ratio (23) can be derived using the same tools6.

5For ∆δ measured in bits we would get the familiar 6.02 dB/bit instead
of 8.686 dB/nat in (22).

6It is interesting to note that although we choose to stick with the gap in
nats and to the ratio (21), the term (23) will pop out in the asymptotic analysis
in Section IV.

C. Previous Work

Bounds on the optimal performance at finite dimensions
have been studied in the past, mainly in Poltyrev’s original
paper [3]. However, those bounds are hard to evaluate and
to analyze. Existing asymptotical analysis only considersthe
error exponent, i.e. the speed of exponential decay of the
bounds. In this paper the bounds are re-derived in a novel
way and in a simpler form (which allow easier evaluation and
insight), and the asymptotical analysis is greatly improved and
extended.

The following non-asymptotic achievability bound can be
distilled from Poltyrev’s paper [3]. It is shown (in a from
suitable for finite blocklength analysis) that for anyr > 0,

Pe(n, δ) ≤enδnVn

∫ 2r

0

wn−1 Pr{Z ∈ D(r, w)}dw

+ Pr{‖Z‖ > r}, (24)

whereD(r, w) denotes the section of the sphere with radiusr
that is cut off by a hyperplane at a distancew

2 from the origin.
In [3] it is stated that the optimal value forr (the one that

minimizes the upper bound) is given by the solution to an
integral equation, and it is shown that asn → ∞, the optimal
r satisfiesr2

n → σ2e2(δ
∗−δ). However, no explicit expression

for the optimalr is given, so in order to compute the bound
for finite values ofn one has to numerically optimize w.r.t.r
(in addition to the numerical integration). In order to derive
the error exponent result, Poltyrev [3] used the asymptotic(but
suboptimal)r =

√
nσeδ

∗−δ. In this paper we re-derive this
bound using a different technique in order to get a simpler
bound and a closed-form expression for the optimizingr at
each dimension (see Theorem 2).

Recently , Anantharam and Baccelli [7] (see also [23]) used
point processes under random additive displacements in order
to construct new ensembles of codes that are applicable for
Poltyrev’s setting (and also extended the model for general
stationary-ergodic additive noise channels). Specifically, it was
shown that the following error probability is achieved [7, Eq.
(64)]:

P ppp
e (n, δ) ,

∫ ∞

0

(

1− e−enδrnVn

)

fR(r)dr, (25)

wherefR(r) is the pdf of the norm of the noise vector. The
superscriptppp stands for Poisson point process, on which
the achievability result is based (see [7] and references within
for details). This result was used in order to re-derive the
Poltyrev’s random coding exponent (but the authors of [7]
were not interested in the finite-dimensions performance).Also
shown in [7] is another achievability bound based on Matérn
random processes that is used for re-deriving Poltyrev’s expur-
gation exponent. Here we show that The bounds (3) and (25)
are tightly connected: (25) outperforms Poltyrev’s bound (24)
and our ML bound (3) for the average error probability, but it
is not directly applicable when the maximal error probability
is of interest. In this case, standard expurgation techniques
weaken (25) and (3) is superior.
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The converse bound used in [3], which will be used in the
current paper as well, is based on the following simple fact:

Let W (s) be the Voronoi region of an IC points, and let
SW (s) denote a sphere with the same volume asW (s). Then
the error probabilityPe(s) is lower bounded by

Pe(s) ≥ Pr{Z /∈ SW (s)}, (26)

whereZ denotes the noise vector.
This simple but important bound, known as thesphere

bound or the sphere packing bound7 is based on the fact
that the pdf of the noise vector has spherical symmetry and
decreases with the radius (see, e.g. [18][24]). An immediate
corollary is the following bound for lattices (or more generally,
any IC with equal-volume Voronoi cells):

Pe(n, δ) ≥ PSB
e (n, δ) , Pr{‖Z‖ > reff} =

∫ ∞

reff

fR(r
′)dr′,

(27)
wherereff is the radius of a hypersphere with the same volume
as a Voronoi cell, andfR(r) is the pdf of the norm of the noise
vector, i.e. a (normalized) Chi distribution withn degrees of
freedom.

Note that this bound holds for any points in the IC,
therefore it holds for the average error probabilityPe(n, δ)
(and trivially for the maximal error probability as well). In
[3] the argument is extended to IC’s which do not necessarily
obey the constant volume condition in the following manner:
first, it is claimed that there must exist a Voronoi region with
volume that is at less than the average volumeγ−1, so the
bound holds forPmax

e (S). In order to apply the bound to
the average error probability, a given ICS with average error
probabilityε is expurgated to get another ICS ′ with maximal
error probability at most2ε. Applying the previous argument
for the maximal error probability ofS ′ gives a bound on
the average error probability ofS. The expurgation process,
in addition to the factor of 2 in the error probability, also
incurs a factor of 2 loss in the densityγ. When evaluating
the asymptotic exponential behavior of the error probability
these factors have no meaning; but if we are interested (as in
the case in this paper) in accurate bound values for finiten,
and in the asymptotic behavior ofδε(n), these factors weaken
the sphere bound significantly. In Section III we show that
(27) holds verbatim for any finite dimensional IC, and for the
average error probability as well.

The sphere bound (27) is not given as an explicit closed-
form as it includes a 1D integral that can be evaluated
numerically. An alternative for the numerical integrationwas
proposed in [18], where the integral was transformed into a
sum of n/2 elements allowing the exact calculation of the
bound. However, this alternative to numerical integrationdoes
not shed any light on the asymptotic behavior of the bound
with growingn.

The error exponentE(δ) for the unconstrained AWGN was

7The connection to sphere packing comes from the simple fact that one
cannot pack spheres in a space whose volume is less than the sum of volumes
of the spheres. However, we prefer the term sphere bound, to avoid confusion
with the problem of sphere packing [4].

defined in (6). The nonasymptotic bounds in the previous sub-
section can lead to upper and lower bounds on the exponent.

The asymptotic evaluation of Poltyrev’s achievability bound
(24) is hard: in [3], in order to provide a lower bound on the
error exponent, a suboptimal value forr is chosen for finite
n
(

r =
√
nσe−(δ∗−δ)

)

. The resulting bound is the random
coding exponent for this settingEr(δ), given by

Er(δ) =







δ
∗ − δ + 1

2 log
e
4 , δ ≤ δcr;

1
2

[

e2(δ
∗−δ) − 1− 2(δ∗ − δ)

]

, δcr ≤ δ < δ
∗;

0, δ ≥ δ
∗,

(28)
whereδcr = 1

2 log
1

4πeσ2 .
An upper bound on the error exponent is the sphere packing

exponent. It is given by [3]:

Esp(δ) =
1

2

[

e2(δ
∗−δ) − 1− 2(δ∗ − δ)

]

, (29)

which is derived from the sphere bound (see [3, Appendix C]).
The upper and lower bounds on the error exponent only hint

on the value ofPe(n, δ):

e−n(Esp(δ)+o(1)) ≤ Pe(n, δ) ≤ e−n(Er(δ)+o(1)). (30)

Even when the error exponent bounds coincide (above the
critical NLD δcr), the optimal error probabilityPe(n, δ) is
known only up to an unknown sub-exponential term. In Sec-
tion IV we present a significantly tighter asymptotic analysis
and show, for example, that at NLD aboveδcr, Pe(n, δ) is
known, asymptotically, up toa constant factor.

For NLD far away fromδ
∗ other methods can be used in

order to improve the bounds on the error exponent. Poltyrev [3]
proposed an expurgation method in which an error exponent
bound (analogous to that of Gallager [5]) is derived and
improves uponEr(δ) for rates belowδex , δcr− 1

2 log 2. The
sphere packing can also be improved as follows: the (maximal)
error probability of any IC is lower bounded by the probability
that the noise is closer to the closest competing codeword,
i.e. Q(d/(2σ)) where d is the minimum distance between
any two points. Therefore any lower bound on the minimum
distance gives a lower bound on the error probability. The
most relevant bound on the minimum distance was obtained
by Kabatianskii and Levenshtein [25] (see also Conway and
Sloane [4, Ch. 1]). Combining the above, the upper bound on
the error exponent can be improved (this method was already
suggested in [23]). Further improvements can be obtained
by the straight-line principle [5], where any line connecting
the sphere packing upper bound and any other bound is
also an upper bound. In this paper we shall be interested in
NLD values aroundδcr and up to the capacity (where the
exponential bounds are tight), and therefore do not elaborate
on these low-NLD improvements. For a recent application of
the finite dimensional tools developed here for the expurgation
bound, see [26].

III. B OUNDS FORFINITE DIMENSIONAL IC’ S

In this section we analyze the optimal performance of
finite dimensional infinite constellations in Gaussian noise.
We present two achievability bounds, both based on lattices:
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The first bound is based on a simple ‘typicality’ decoder,
and the second one based on the ML decoder. Both bounds
result in simpler expressions than Poltyrev’s bound (24). The
first bound is simpler to derive but proves to be weaker.
Nevertheless, it is sufficient for achieving Poltyrev’s capacity
with exponentially vanishing error probability (althoughwith a
sub-optimal exponent), and can also be used in order to derive
the dispersion of infinite constellations in a simpler manner -
see Section V. For these reasons we include this bound in the
paper. The second bound gives the exact value of the bound
as Poltyrev’s (24), without the need for 3D integration and an
additional numeric optimization, but only a single 1D integral
(which can be analyzed further - see Section IV). We then
compare to the recent achievability bound by Anantharam and
Baccelli [7]. As for converse bounds, we extend the validity
of the sphere bound to the most general case of IC’s (not
only those with equal-volume Voronoi cells) and average error
probability.

A. Typicality Decoder Based Bound

Theorem 1:For anyr > 0,

Pe(n, δ) ≤ PTB
e , enδVnr

n + Pr {‖Z‖ > r} , (31)

and the optimal value forr is given by

r∗ = σ
√

n(1 + 2δ∗ − 2δ). (32)

Proof: Let Λ be a lattice that is used as an IC for
transmission over the unconstrained AWGN. We consider a
suboptimal decoder, and therefore the performance of the
optimal ML decoder can only be better. The decoder, called
a typicality decoder, shall operate as follows. Suppose that
λ ∈ Λ is sent, and the pointy = λ+ z is received, wherez is
the additive noise. Letr be a parameter for the decoder, which
will be determined later on. If there is only a single point in
the ball Ball(y, r), then this will be the decoded word. If there
are no codewords in the ball, or more than one codeword in
the ball, an error is declared (one of the code points is chosen
at random).

It is easy to see that the average error probability of a lattice
Λ (with the typicality decoder) is bounded by

Pe(Λ) ≤Pr {Z /∈ Ball(r)}
+

∑

λ∈Λ\{0}
Pr {Z ∈ Ball(λ, r) ∩ Ball(r)} , (33)

whereZ denotes the noise vector. We now use the Minkowski-
Hlawka theorem [17][16]8, which states that for anyf :
R

n → R
+, a nonnegative integrable function with bounded

support, and for everyγ > 0, there exist a latticeΛ with
detΛ = γ−1 that satisfies9.

∑

λ∈Λ\{0}
f(λ) ≤ γ

∫

Rn

f(λ)dλ. (34)

8The MH theorem is usually written as (34) with anε added to the RHS that
is arbitrarily small (e.g. [16, Lemma 3, p. 65], and [17, Theorem 1, p. 200]).
The version (34) follows from a slightly improved version ofthe theorem due
to Siegel, often called the Minkowski-Hlawka-Siegel (MHS)theorem, see [17,
Theorem 5, p. 205].

9det Λ denotes the determinant of the generating matrix of the lattice Λ.
It is equal to the volume of a Voronoi cell of the lattice (see,e.g. [20])

Since Pr {Z ∈ Ball(λ, r) ∩ Ball(r)} = 0 for any λ s.t.
‖λ‖ > 2r we may apply the MH theorem to (33) and deduce
that for anyγ > 0, there must exist a latticeΛ with density
γ, s.t.

∑

λ∈Λ\{0}
Pr {Z ∈ Ball(λ, r) ∩ Ball(r)}

≤ γ

∫

Rn

Pr {Z ∈ Ball(λ, r) ∩ Ball(r)} dλ. (35)

We further examine the resulting integral:

∫

Rn

Pr {Z ∈ Ball(λ, r) ∩ Ball(r)} dλ

=

∫

Rn

∫

Ball(λ,r)∩Ball(r)
fZ(z)dzdλ

≤
∫

Rn

∫

Ball(λ,r)
fZ(z)dzdλ

= Vnr
n. (36)

Combined with (33) we get that there exist a latticeΛ with
densityγ, for which

Pe(Λ) ≤ γVnr
n + Pr {‖Z‖ > r} , (37)

wherer > 0 andγ = enδ can be chosen arbitrarily.
The optimal value forr follows from straightforward opti-

mization of the RHS of (37): we first write

Pr {‖Z‖ > r} = Pr

{

1

σ2

n
∑

i=1

Z2
i >

r2

σ2

}

.

We note that the sum1
σ2

∑n
i=1 Z

2
i is a sum ofn i.i.d. standard

Gaussian RV’s, which is exactly aχ2 random variable withn
degrees of freedom. The pdf of this RV is well known, and
given by

fχ2
n
(x) =

2−n/2

Γ(n/2)
xn/2−1e−x/2,

whereΓ(·) is the Gamma function. Equipped with this, the
RHS of (37) becomes

enδVnr
n +

∫ ∞

r2

σ2

2−n/2

Γ(n/2)
xn/2−1e−x/2.

Differentiating w.r.t.r and equating to zero gives

nenδVnr
n−1 − 2r

σ2

2−n/2

Γ(n/2)
(r2/σ2)n/2−1e−

r2

2σ2 = 0,

from whichr = σ
√

n(1 + 2δ∗ − 2δ) follows immediately.
Note that the thresholdr in the typicality bound is rate (NLD)
dependent, and therefore slightly generalizes the standard
notion of a typicality decoder where the threshold is fixed
(see e.g. the AWGN capacity achievability proof in Cover and
Thomas [15]).
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B. ML Decoder Based Bound

The second achievability proof is based on the ML decoder
(using a different technique than Poltyrev [3]). We show later
on (Theorem 3) that the resulting expression is equivalent to
Poltyrev’s bound (24) without the need for optimization w.r.t.
r.

Theorem 2 (A simplified form of Poltyrev’s result):For
any r > 0 and dimensionn, there exist a latticeΛ with error
probability

Pe(n, δ) ≤ PMLB
e (n, δ)

, enδVn

∫ r

0

fR(r̃)r̃
ndr̃ + Pr {‖Z‖ > r} , (38)

and the optimal value forr is given by

r∗ = reff = e−δV −1/n
n . (39)

Before we turn to the proof, note that this specific value
for r gives a new interpretation to the bound: the term
Pr {‖Z‖ > r} is exactly the sphere bound (26), and the other
term can be thought of as a ‘redundancy’ term.

Proof: Suppose that the zero lattice point was sent, and
the noise vector isz ∈ R

n. An error event occurs (for a ML
decoder) when there is a nonzero lattice pointλ ∈ Λ whose
Euclidean distance toz is less than the distance between the
zero point and noise vector. We denote byE the error event,
condition on the radiusR of the noise vector and get

Pe(Λ) = Pr{E} =

= ER [Pr {E | ‖Z‖ = R}]

=

∫ ∞

0

fR(r) Pr {E | ‖Z‖ = r} dr

≤
∫ r∗

0

fR(r) Pr {E | ‖Z‖ = r} dr + Pr{‖Z‖ > r∗},
(40)

where the last inequality follows by upper bounding the
probability by1. It holds for anyr∗ > 0.

We examine the conditional error probability:

Pr {E | ‖Z‖ = r}

= Pr







⋃

λ∈Λ\{0}
‖Z− λ‖ ≤ ‖Z‖

∣

∣

∣

∣

∣

∣

‖Z‖ = r







≤
∑

λ∈Λ\{0}
Pr {‖Z− λ‖ ≤ ‖Z‖ | ‖Z‖ = r}

=
∑

λ∈Λ\{0}
Pr {λ ∈ Ball(Z, ‖Z‖) | ‖Z‖ = r} ,

where the inequality follows from the union bound. Plugging
into the left term in (40) gives
∫ r∗

0

fR(r)
∑

λ∈Λ\{0}
Pr {λ ∈ Ball(Z, ‖Z‖) | ‖Z‖ = r} dr

=
∑

λ∈Λ\{0}

∫ r∗

0

fR(r) Pr {λ ∈ Ball(Z, ‖Z‖) | ‖Z‖ = r} dr.

Note that the last integral has a bounded support (w.r.t.λ)
since it is always zero if‖λ‖ ≥ 2r∗. Therefore we can apply
the Minkowski-Hlawka theorem as in Theorem 1 and get that
for any γ > 0 there exists a latticeΛ with densityγ, whose
error probability is upper bounded by

Pe(Λ)

≤γ

∫

λ∈Rn

∫ r∗

0

fR(r) Pr {λ ∈ Ball(Z, ‖Z‖) | ‖Z‖ = r} drdλ

+ Pr{‖Z‖ > r∗}.
By switching the order of integration in the first term of the
expression we observe that the (now inner) integral is equal
to the volume of ann-dimensional ball of radiusr. Therefore
the term is given byVn

∫ r∗

0
fR(r)r

ndr, which leads to (38).
To find the optimal value forr (the one that minimizes the

RHS of (38)), we see that:

Pr {‖Z‖ > r} =

∫ ∞

r

fR(r̃)dr̃. (41)

Differentiating the RHS of (38) w.r.t.r in order to find the
minimum gives

enδVnfR(r)r
n − fR(r) = 0, (42)

andr∗ = reff = e−δV
−1/n
n immediately follows.

C. Equivalence of the ML bound with Poltyrev’s bound

In Theorems 1 and 2 we presented two upper bounds on
the error probability that were simpler than Poltyrev’s original
bound (24). For example, in order to compute Poltyrev’s
bound, one has to apply 3D numerical integration, and numer-
ically optimize w.r.t.r. In contrast, the simplified expression
for the bound in Theorem 2 requires only a single integration,
and the optimal value forr has a closed-form expression so
no numerical optimization is required.

It appears that the simplicity of the bound in Theorem 2
does not come at a price of a weaker bound. In fact, it proves
to be equivalent to Poltyrev’s bound:

Theorem 3:Poltyrev’s bound (24) for the error probability
is equivalent to the ML bound from Theorem 2. Specifically,

n

∫ 2r

0

wn−1 Pr{Z ∈ D(r, w)}dw =

∫ r

0

fR(ρ)ρ
ndρ (43)

for any r > 0.
Proof: One possible proof is by elementary calculus

(see [27, Appendix B]). Here we show a shorter and elegant
proof:10 Let W be a random vector distributed uniformly on
then-dimensional Ball(2r). Consider the expression

(2r)n Pr {‖Z−W‖ ≤ ‖Z‖ ≤ r} . (44)

Evaluating (44) by conditioning w.r.t.‖Z‖ = ρ gives the RHS
of (43), and evaluating it by conditioning w.r.t.‖W‖ = w
gives the LHS of (43).
Notes:

• Proving (43) shows that both bounds are equivalent,
regardless of the value ofr. Consequently, the optimal

10The short proof is due to a comment by an anonymous reviewer.
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value forr in Poltyrev’s bound is also found. In [3] the
optimal value (denoted thered

∗
c(n, δ)) was given as the

solution to an integral equation, and was only evaluated
asymptotically.

• In principle, one may take Theorem 3 with Poltyrev’s
bound (Eq. (24) above) and arrive at the result of The-
orem 2. However, without Theorem 2 it is difficult to
simply come up with the equivalence as in Theorem 3.
Moreover, the proof of Theorem 2 reveals the intuition
behind the simplified expression (38): the decision radius
r can be thought of as depending on the noise radius,
where in the typicality decoder (Theorem 1) it is fixed.

D. Connections between the ML bound and the Poisson point
process achievability

It appears that alternative achievability bound (25) for the
IC setting proposed by Anantharam and Baccelli [7] gives a
slightly better bound at finite dimensions (but for average error
probability only). It is closely related to the ML bound:

Theorem 4:For any dimensionn and for anyδ, the ratio
betweenPMLB

e andP ppp
e can be bounded as

1 ≤ PMLB
e (n, δ)

P ppp
e (n, δ)

≤ 1

1− e−1
∼= 1.58. (45)

Proof: Sincerneff = (enδVn)
−1 we may rewrite11 the ML

bound as

PMLB
e (n, δ) =

∫ reff

0

enδVnfR(r)r
ndr +

∫ ∞

reff

fR(r)dr

=

∫ ∞

0

min
(

enδVnr
n, 1
)

fR(r)dr. (46)

Recall thatP ppp
e (n, δ) =

∫∞
0

(

1− e−enδrnVn

)

fR(r)dr. The

theorem follows since for anyx > 0, 1 ≤ min{1,x}
1−e−x ≤ (1 −

e−1)−1.

We have just shown that generallyP ppp
e (n, δ) ≤

PMLB
e (n, δ). However, it is important to note thatP ppp

e (n, δ)
holds only for the average error probability (which is common
for all random-coding type proofs) while the ML bound (and
Poltyrev’s bound) are based on lattices (and the MH theorem)
and therefore hold for the maximal error probability as well.
In order to apply the technique of [7] for the maximal error
probability case, a standard expurgation approach can be
taken (see, e.g. [5] and specifically, [9, Eq. (220)]). In its
version for infinite constellation and applied toP ppp

e (n, δ),
the expurgation argument shows that the following maximal
error probability can be achieved:

P ppp
e,max(n, δ) , min

τ>1
τP ppp

e

(

n, δ +
1

n
log

τ

τ − 1

)

. (47)

We omit the technical (and standard) details of the expurgation
process.

At the end of the current section we numerically compare
the bounds, and it is demonstrated that the expurgated bound

11Note that the form (46) reveals the similarity between the MLbound and
the RCU bound from [9, Theorem 16].

(47) is worse than the ML bound, which is therefore consid-
ered the best known bound for maximal error probability.

It is interesting to note that the boundP ppp
e (n, δ) can be

also achieved with Poltyrev’s original random construction,
relying on themutual independence between the codewords.
When using lattice constructions, the MH theorem provides
a random-like code, but only in the sense that the number of
(nonzero) lattice codewords in any region is proportional to the
volume of this region, which is only a necessary condition for
mutual independence. For lattices, the MH theorem essentially
provides onlypairwise independence. It would be interesting
to find out whether the stronger bound can be achieved by
lattices, or that the gap betweenP ppp

e (n, δ) andPMLB
e (n, δ)

is due to the MH proof scheme. This is left for further work.

E. The Sphere Bound for Finite Dimensional Infinite Constel-
lations

The sphere bound (27) applies to infinite constellations with
fixed Voronoi cell volume. Poltyrev [3] extended it to general
IC’s with the aid of anexpurgationprocess, without harming
the tightness of the error exponent bound. When the dimension
n is finite, the expurgation process incurs a non-negligible loss
(a factor of 2 in the error probability and in the density). In
this section we show that the sphere bound applieswithout
any lossto general finite dimensional IC’s and average error
probability. We first concentrate on IC’s with bounded-volume
Voronoi cells:

Definition 3 (Regular IC’s):An IC S is called regular, if
there exists a radiusr0 > 0, s.t. for all s ∈ S, the Voronoi
cell W (s) is contained in Ball(s, r0).

For s ∈ S, we denote byv(s) the volume of the Voronoi
cell of s, |W (s)|. Now let v(S) denote the average Voronoi
cell volume of a regular IC, i.e.

v(S) , lim inf
a→∞

Ea[v(s)]. (48)

It can be easily shown that for a regular ICS the average
volume is given by the inverse of the density, i.e.γ(S) = 1

v(S) .
For brevity, let SPB(v) denote the probability that the noise

vectorZ leaves a sphere of volumev. With this notation, the
sphere bound reads

Pe(s) ≥ SPB(v(s)), (49)

and holds for any individual points ∈ S. Also note that it
is trivial to show that SPB(v) is a convex function ofv. We
now show that (49) holds for the average volume and error
probability as well:

Theorem 5:Let S be a regular (finite dimensional) IC with
NLD δ, and letv(S) be the average Voronoi cell volume ofS
(so the density ofS is γ = v(S)−1). Then the average error
probability ofS is lower bounded by

Pe(S) ≥ SPB(v(S)) = SPB(γ−1) = PSB
e (n, δ). (50)

Proof: We start with the definition of the average error
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probability and get

Pe(S) = lim sup
a→∞

Ea[Pe(s)]

(a)

≥ lim sup
a→∞

Ea[SPB(v(s))]

(b)

≥ lim sup
a→∞

SPB(Ea[v(s)])

(c)
= SPB(lim inf

a→∞
Ea[v(s)])

= SPB(v(S)). (51)

(a) follows from the sphere bound for each individual
point s ∈ S, (b) follows from the Jensen inequality and the
convexity of SPB(·), and(c) follows from the fact that SPB(·)
is monotone decreasing and continuous.
As a consequence, we get that the sphere bound holds for
regular IC’s as well, without the need for expurgation (as in
[3]).

So far the discussion was constrained to regular IC’s only.
This excludes constellations with infinite Voronoi regions(e.g.
contains points only in half of the space), and also constella-
tions in which the density oscillates with the cube sizea (and
the formal limitγ does not exist). We now extend the proof of
the converse for any IC, without the regularity assumptions.
The proof is based on the following regularization process:

Lemma 1 (Regularization):Let S be an IC with densityγ
and average error probabilityPe(S) = ε. Then for anyξ > 0
there exists aregular IC S ′ with densityγ′ ≥ γ/(1 + ξ), and
average error probabilityPe(S ′) = ε′ ≤ ε(1 + ξ).

Proof: Appendix A.
Theorem 6 (Sphere Bound for Finite Dimensional IC’s):

Let S be a finite dimensional IC with densityγ. Then the
average error probability ofS is lower bounded by

Pe(S) ≥ SPB(γ−1) = PSB
e (n, δ) (52)

Proof: Let ξ > 0. By the regularization lemma (Lemma 1)
there exists a regular ICS ′ with γ′ ≥ γ/(1+ξ), andPe(S ′) ≤
Pe(S)(1 + ξ). We apply Theorem 5 toS ′ and get that

Pe(S)(1 + ξ) ≥ Pe(S ′) ≥ SPB(γ′−1) ≥ SPB((1 + ξ)γ−1),

or
Pe(S) ≥

1

1 + ξ
SPB((1 + ξ)γ−1),

for all ξ > 0. Since SPB(·) is continuous, we may take the
limit ξ → 0 and get to (52).

F. Numerical Comparison

Here we numerically compare the different bounds for
the infinite constellation setting. As shown in the previous
subsection, the bounds in (24) and Theorem 2 are equivalent.
However, as discussed above, Poltyrev [3] used a suboptimal
value for r. The results are shown in Figures 2 and 3. The
exponential behavior of the bounds (the asymptotic slope of
the curves in the log-scale graph) is clearly seen in the figures:
at NLD aboveδcr, all the bounds display the same exponent,
while for NLD below δcr the exponent of the sphere bound

is better. In both cases the typicality bound has a weaker
exponent. These observations are corroborated analytically
in Section IV below. In addition, the bounds based on the
Poisson point process [7] are also shown. As expected, the
boundP ppp

e (n, δ) only slightly outperforms the ML bound
(see Theorem 4). It is also shown that the expurgated version
P ppp
e,max(n, δ) (which holds for maximal error probability) is

worse than the ML bound (which holds for maximal error
probability in its original form since it is based on lattices).

IV. A NALYSIS AND ASYMPTOTICS ATFIXED NLD δ

In this section we analyze the bounds presented in the
previous section with two goals in mind:

1) Derive tight analytical bounds (that require no integra-
tion) that allow easy evaluation of the bounds, both
upper and lower.

2) Analyze the bounds asymptotically (for fixedδ) and
refine the error exponent results for the setting.

In IV-A we present the refined analysis of the sphere bound.
While the sphere boundPSB

e will present the same asymptotic
form for anyδ, the ML boundPMLB

e has a different behavior
above and belowδcr. In IV-B we focus on the ML bound
aboveδcr. The tight results from IV-A and IV-B reveal that
(aboveδcr) the optimal error probabilityPe(n, δ) is known
asymptotically up to a constant factor. This is discussed in
IV-C. In IV-D we focus on the ML bound belowδcr, and in
IV-E we consider the special case ofδ = δcr. Note that the
Poisson point process based bound (25) is slightly harder to
analyze using these tools12. However, since it is very closely
related to the ML bound, one may use any of the results for the
ML bound combined with Theorem 4 above. In IV-F we study
the asymptotics of the typicality boundPT

e (n, δ) and in IV-G
we analyze the ML bound withr set tor =

√
nσeδ

∗−δ instead
of reff , and quantify the effect of selecting this suboptimal
value as was done in [3].

The fact that the ML bound behaves differently above and
below δcr can be explained by the following. Consider the
first term in the ML bound,enδVn

∫ reff
0 fR(r)r

ndr. Loosely
speaking, the value of this integral is determined (for largen)
by the value of the integrand with the most dominant exponent.
When δ > δcr, the dominating value for the integral is at
r = reff . For δ < δcr, the dominating value is approximately
at r =

√
2nσ2. Note that this value does not depend onδ,

so the dependence inδ comes from the termenδ alone, and
the exponential behavior of the bound is of a straight line.
Since we are interested in more than merely the exponential
behavior of the bound, we use more refined machinery in order
to analyze the bounds.

Poltyrev [3] used an expurgation technique in order to
improve the error exponent for lower NLD values (below
δex = δ

∗−log 2). The expurgation exponent was re-derived in
[7] using a Matérn point process. Although, as noted before,
in this paper we shall only be interested in the region around

12Indeed, the first step in analyzing the bound (25) in order to obtain the
error exponent in [7] was to weaken it to a form similar to the ML bound -
see [7, Appendix 10.3].
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δcr up to the capacity (where the exponential behavior is
known), the refined tools used here can also be applied to
the expurgation bound in order to analyze its sub-exponential
behavior. This idea has been recently pursued in [26].

A. Analysis of the Sphere Bound

The sphere bound (26) is a simple bound based on the geom-
etry of the coding problem. However, the resulting expression,
given by an integral that has no elementary form, is generally
hard to evaluate. There are several approaches for evaluating
this bound:

• Numeric integration is only possible for small - moderate
values ofn. Moreover, the numeric evaluation does not
provide any hints about the asymptotical behavior of the
bound.

• Tarokh et al. [18] were able to represent the integral in
the bound as a sum ofn/2 elements. This result indeed
helps in numerically evaluating the bound, but does not
help in understanding its asymptotics.

• Poltyrev [3] used large-deviation techniques to derive the
sphere packing error exponent, i.e.

lim
n→∞

− 1

n
logPe(n, δ) ≤ Esp(δ)

=
1

2

[

e2(δ
∗−δ) − 1− 2(δ∗ − δ)

]

.

The error exponent, as its name suggests, only hints
on the exponential behavior of the bound, but does not
aid in evaluating the bound itself or in more precise
asymptotics.

Here we derive non-asymptotic, analytical bounds based on
the sphere bound. These bounds allow easy evaluation of the
bound, and give rise to more precise asymptotic analysis for
the error probability (whereδ is fixed).

Theorem 7:Let r∗ , reff = e−δV
−1/n
n , ρ∗ ,

r2eff
nσ2 and

Υ ,
n(ρ∗−1+ 2

n )√
2(n−2)

. Then for any NLDδ < δ
∗ and for any

dimensionn > 2, the sphere boundPSB
e (n, δ) is lower

bounded by

PSB
e (n, δ) ≥ en(δ

∗−δ)en/2e−
n
2 ρ∗ · eΥ2

2

√

n2π

n− 2
Q (Υ) (53)

≥ en(δ
∗−δ)en/2e−

n
2 ρ∗

ρ∗ − 1 + 2
n

(

1

1 + Υ−2

)

, (54)

upperbounded by

PSB
e (n, δ) ≤ en(δ

∗−δ)en/2e−
n
2 ρ∗

ρ∗ − 1 + 2
n

, (55)

and for fixedδ, given asymptotically by

PSB
e (n, δ) = e−nEsp(δ)

(nπ)−
1
2 e

2(δ∗
−δ)

e2(δ
∗−δ) − 1

(

1 +O
(

log2 n
n

))

.

(56)
Before the proof, some notes are in order:
• Eq. (53) provides a lower bound in terms of theQ

function, and (54) gives a slightly looser bound, but is
based on elementary functions only.

• The upper bound (55) on the sphere bound has no
direct meaning in terms of bounding the error probability
Pe(n, δ) (since the sphere bound is a lower bound).
However, it used for evaluating the sphere bound itself
(i.e. to derive (56)), and it will prove useful inupper
boundingPe(n, δ) in Theorem 8 below.

• A bound of the type (55), i.e. an upper bound on the
probability that the noise leaves a sphere, can be derived
using the Chernoff bound as was done by Poltyrev
[3, Appendix B]. However, while Poltyrev’s technique
indeed gives the correct exponential behavior, it falls
short of attaining the sub-exponential terms, and therefore
(55) is tighter. Moreover, (55) leads to the exact precise
asymptotics (56).

• (56) gives an asymptotic bound that is significantly tighter
than the error exponent term alone. The asymptotic form
(56) applies to (53), (54) and (55) as well.

• Note thatρ∗ is a measure that can also quantify the gap
from capacity (see II-B). It is an alternative to∆δ =
δ
∗−δ (or toµ = e2∆δ). The measures are not equivalent,

but asn → ∞ we haveρ∗ = e2(δ
∗−δ) + o(1), see (63)

and (64) below.

Proof of Theorem 7: The sphere bound can be written
explicitly as

PSB
e (n, δ) =

2−
n
2 nn/2

Γ
(

n
2

)

∫ ∞

ρ∗

ρ
n
2 −1e−nρ/2dρ (57)

=
Γ
(

n
2 ,

r2eff
2σ2

)

Γ
(

n
2

) , (58)

where Γ (a, z) ,
∫∞
z ta−1e−tdt is the upper incomplete

Gamma function (see e.g. [28, Sec. 8.2]). Bounds and asymp-
totics of Γ (a, z) have been studied extensively in literature
(see e.g. [28, Sec. 8],[29] and references therein). However,
for our needs both arguments ofΓ(·, ·) are large but are not
exactly proportional. In addition, the results we present here
include non-asymptotic bounds (i.e. (54) and (55)) that areof
independent interest. We therefore analyze the integral in(57)
explicitly:

Lemma 2:Let n > 2 and x > 1 − 2
n . Then the integral

∫∞
x

ρ
n
2 −1e−nρ/2dρ can be bounded from above by

∫ ∞

x

ρ
n
2 −1e−nρ/2dρ ≤ 2x

n
2 e−

nx
2

n(x− 1 + 2
n )

(59)

and from below by
∫ ∞

x

ρ
n
2 −1e−nρ/2dρ ≥ 2x

n
2 e−

nx
2 exp

[

Υ2

2

]√

π

n− 2
Q (Υ)

(60)

≥ 2x
n
2 e−

nx
2

n(x− 1 + 2
n )

(

1

1 + Υ−2

)

, (61)

whereΥ ,
n(x−1+ 2

n )√
2(n−2)

.

Proof: Appendix B.
Utilizing the result of the lemma, (53) follows by plugging

(60) into (57) withx = ρ∗. It can be shown thatρ∗ ≥ 1 for
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all δ < δ
∗ so the conditionx > 1 − 2

n is met. (54) follows
similarly using (61) and the definition ofδ∗. The upper bound
(55) follows using (59).

To derive (56) we first note the following asymptotic results:

Vn =
πn/2

n
2Γ(

n
2 )

=

(

2πe

n

)n/2
1√
nπ

(

1 +O

(

1

n

))

, (62)

ρ∗ =
e−2δV

−2/n
n

nσ2

= e2(δ
∗−δ)(nπ)1/n

(

1 +O

(

1

n2

))

(63)

= e2(δ
∗−δ)

(

1 +
1

n
log(nπ) +O

(

log2 n

n2

))

, (64)

Υ =
n(ρ∗ − 1 + 2

n )
√

2(n− 2)

=

√

n

2

(

e2(δ
∗−δ) − 1

)

(

1 +O

(

logn

n

))

= Θ(
√
n).

(65)

Eq. (62) follows from the Stirling approximation for the
Gamma function (see, e.g. [28, Sec. 5.11]). Eq. (63) follows
from (62) and the definition ofδ∗. (64) follows by writing
(nπ)1/n = e

1
n log(nπ) and the Taylor approximation. (65)

follows directly from (64). The terme−
n
2 ρ∗

can be evaluated,
using (54) and (55), as

e−
n
2 ρ∗

= e−
n
2 e2(δ

∗
−δ)

(nπ)−
1
2 e

2(δ∗
−δ)
(

1 +O
(

log2 n
n

))

.

(66)

Plugging (64), (65) and (66) into (54) and (55), along with
the definition ofEsp(δ), leads to the desired (56).

In Fig. 4 we demonstrate the tightness of the bounds and
precise asymptotics of Theorem 7. In the figure the sphere
bound is presented with its bounds and approximations. The
lower bound (53) is the tightest lower bound (but is based on
the non-analyticQ function). The analytic lower bound (54) is
slightly looser than (53), but is tight enough in order to derive
the precise asymptotic form (56). The upper bound (55) of the
sphere bound is also tight. The error exponent itself (without
the sub-exponential terms) is clearly way off, compared to the
precise asymptotic form (56).

B. Analysis of the ML Bound Aboveδcr

In order to derive the random coding exponentEr(δ),
Poltyrev’s achievability bound (24) was evaluated asymptot-
ically by setting a suboptimal value

√
nσe−(δ∗−δ) for the

parameterr. While setting this value still gives the correct
exponential behavior of the bound, a more precise analysis (in
the current and following subsections) using the optimal value
for r as in Theorem 2 gives tighter analytical and asymptotic
results.

Theorem 8:Let r∗ , reff = e−δV
−1/n
n and ρ∗ ,

r2eff
nσ2 .

Then for any NLDδ and for any dimensionn > 2 where
1 − 2

n < ρ∗ < 2 − 2
n , the ML boundPMLB

e (n, δ) is upper
bounded by

PMLB
e (n, δ) ≤ en(δ

∗−δ)en/2e−
n
2 ρ∗

(

2− ρ∗ − 2
n

) (

ρ∗ − 1 + 2
n

) , (67)

lower bounded by (68) and (69) at the bottom of the page,
and forδcr < δ < δ

∗, given asymptotically by

PMLB
e (n, δ)

=
e−nEr(δ)(nπ)−

1
2 e

2(δ∗
−δ)

(

2− e2(δ
∗−δ)

) (

e2(δ
∗−δ) − 1

)

(

1 +O
(

log2 n
n

))

. (70)

Some notes regarding the above results:

• For largen, the conditionρ∗ < 2 − 2
n translates to the

fact that δcr < δ. ρ∗ > 1 − 2
n holds for all δ < δ

∗.
The case ofδ ≤ δ

∗ is addressed later on in the current
section.

• The lower bounds (68) and (69) have no direct meaning in
terms of bounding the error probabilityPe(n, δ) (since
they lower bound an upper bound). However, they are
useful for evaluating the achievability bound itself (i.e.
to derive (70)).

• (70) gives an asymptotic bound that is significantly tighter
than the error exponent term alone. It holds aboveδcr

only, where belowδcr and exactly atδcr we have
Theorems 10 and 11 below. The asymptotic form (70)
applies to (67), (68) and (69) as well.

Proof of Theorem 8: The proof relies on a precise
analysis of the ML bound:

enδVn

∫ r∗

0

fR(r)r
ndr + Pr {‖Z‖ > r∗} . (71)

The second term is exactly the sphere bound, for which we
may utilize Theorem 7. The only non closed-form term in the
first term can be written asγ(n, r2eff

2σ2 ), whereγ(·, ·) is the lower

PMLB
e (n, δ) ≥ en(δ

∗−δ)en/2e−nρ∗/2

[

eΨ
2/2

√

nπ

2ρ∗
Q(Ψ) + eΥ

2/2

√

n2π

n− 2
Q (Υ)

]

(68)

≥ en(δ
∗−δ)en/2e−nρ∗/2

[

1

2− ρ∗ + 2
n

· 1

1 + Ψ−2
+

1

ρ∗ − 1 + 2
n

· 1

1 + Υ−2

]

, (69)

whereΨ ,

√
n
(

2−ρ∗+
2
n

)

2
√
ρ∗

andΥ ,
n(ρ∗−1+ 2

n )√
2(n−2)

.
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Fig. 4. Numerical evaluation of the sphere bound and its bounds and approximation in Theorem 7 vs the dimensionn. Hereδ = −1.5nat andσ2 = 1
(0.704db from capacity). The tight bounds (53), (54) and (55) lead to the asymptotic form (56). The error exponent term alone is evidently way off compared
to (56).

incomplete gamma function [28, Sec. 8.2]. As in the analysis
of the sphere bound, here too both arguments ofγ(·, ·) grow
together withn but are not exactly proportional. Therefore
we cannot use existing analysis of this function (e.g. [28, Sec.
8],[29] and references therein) but need to analyze the integral
explicitly. We first rewrite

∫ r∗

0
fR(r)r

ndr as

n

2
enδ

∗

Vne
n/2σ2nnn

∫ ρ∗

0

e−nρ/2ρn−1. (72)

Lemma 3:Let 0 < x < 2 − 2
n . Then the integral

∫ x

0
e−nρ/2ρn−1dρ is upper bounded by

∫ x

0

e−nρ/2ρn−1dρ ≤ 2xne−nx/2

n
(

2− x− 2
n

)

(

1− e
−n

(

1− 1
n−x

2

)
)

,

(73)
and is lower bounded by

∫ x

0

e−nρ/2ρn−1dρ ≥ xne−nx/2eΨ
2/2

√

2π

nx
Q(Ψ) (74)

≥ 2xne−nx/2

n
(

2− x+ 2
n

) · 1

1 + Ψ−2
, (75)

whereΨ ,

√
n
(

2−x+
2
n

)

2
√
x

.

Proof: Appendix B.
To prove the upper bound (67) we use (73) withx = ρ∗ to

bound (72), and (55) to bound the sphere-bound term to get:

enδVn

∫ r∗

0

fR(r)r
ndr + Pr {‖Z‖ > r∗}

≤ en(δ
∗−δ)en/2e−

n
2 ρ∗

2− ρ∗ − 2
n

+
en(δ

∗−δ)en/2e−
n
2 ρ∗

ρ∗ − 1 + 2
n

,

which immediately leads to (67).
In order to attain the lower bound (68) we use (74) with

x = ρ∗ and (53) to bound the sphere-bound term. The analytic
bound (69) follows from (75). The asymptotic form (70)
follows by the fact thatΨ = Θ(

√
n), and by plugging (64)

and (65) into the analytical bounds (67) and (69).
In Fig. 5 we demonstrate the tightness of the bounds and

precise asymptotics in Theorem 8. In the figure the ML bound
is presented with its bounds and approximations. The image
is similar to the Fig. 4, referring to the sphere bound. The
lower bound (68) is the tightest lower bound (but is based on
the non-analyticQ function). The analytic lower bound (69) is
slightly looser than (68), but is tight enough in order to derive
the precise asymptotic form (70). The upper bound (67) of the
sphere bound is also tight. The error exponent itself (without
the sub-exponential terms) is clearly way off, compared to the
precise asymptotic form (70).

C. Tightness of the Bounds Aboveδcr

Theorem 9:For δcr < δ < δ
∗ the ratio between the upper

and lower bounds onPe(n, δ) converges to a constant, i.e.

PMLB
e (n, δ)

PSB
e (n, δ)

=
1

(

2− e2(δ
∗−δ)

) +O

(

logn

n

)

. (76)
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Proof: The proof follows from Theorems 7 and 8. Note
that the result is tighter than the ratio of the asymptotic forms
(56) and (70) (i.e.O( log n

n ) and notO( log
2 n
n )) since the term

that contributes thelog2 n term is e−
n
2 ρ∗

which is common
for both upper and lower bounds.

D. The ML Bound Belowδcr

Here we provide the asymptotic behavior of the ML bound
at NLD valuesbelowδcr.

Theorem 10:For anyδ < δcr, the ML bound satisfies

PMLB
e (n, δ) =

e−nEr(δ)

√
2πn

(

1 +O
(

1
n

))

. (77)

Proof: We start as in the proof of Theorem 2 to have

enδVn

∫ r∗

0

fR(r)r
ndr

=
n

2
enδV 2

n σ
n(2π)−

n
2 nn

∫ ρ∗

0

e−nρ/2ρn−1dρ. (78)

We continue by approximating the integral as follows:
Lemma 4:Let x > 2. Then the integral

∫ x

0
e−nρ/2ρn−1dρ

can be approximated by
∫ x

0

e−nρ/2ρn−1dρ =

√

2π

n
e−n2n

(

1 +O
(

1
n

))

. (79)

Proof: The proof relies on the fact that the integrand is
maximized at the interior of the interval[0, x]. Note that the
result does not depend onx.

We first rewrite the integral to the form
∫ x

0

1

ρ
e−n(ρ/2−log ρ)dρ =

∫ x

0

g(ρ)e−nG(ρ)dρ, (80)

whereg(ρ) , 1
ρ andG(ρ) , ρ/2− log ρ.

When n grows, the asymptotical behavior of the integral
is dominated by the value of the integrand atρ̃ = 2 (which
minimizesG(ρ)). This is formalized by Laplace’s method of
integration (see, e.g. [30, Sec. 3.3]):

∫ x

0

g(ρ)e−nG(ρ)dρ

= g(ρ̃)e−nG(ρ̃)

√

2π

n∂2G(ρ̃)
∂ρ2 |ρ=ρ̃

(

1 +O
(

1
n

))

=
1

2
en(1−log 2)

√

2π

n · 1
4

(

1 +O
(

1
n

))

,

which leads to (79).
Before we apply the result of the lemma to (78), we note

that wheneverδ is below the criticalδcr, ρ∗ > e2(δ
∗−δ) =

2e2(δcr−δ) > 2 for all n. Therefore for alln we have

∫ 2e2(δcr−δ)

0

e−nρ/2ρn−1dρ

≤
∫ ρ∗

0

e−nρ/2ρn−1dρ

≤
∫ ∞

0

e−nρ/2ρn−1dρ.
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We apply Lemma 4 to both sides of the equation and conclude
that

∫ ρ∗

0

e−nρ/2ρn−1dρ =

√

2π

n
e−n2n

(

1 +O
(

1
n

))

. (81)

The proof of the theorem is completed using the approximation
(62) for Vn.

It should be noted that the sphere bound part of the achiev-
ability bound vanishes with a stronger exponent (Esp(δ)), and
therefore does not contribute to the asymptotic value.

In Fig. 6 we demonstrate the tightness of the precise
asymptotics in Theorem 10. Here too the precise asymptotic
form is significantly tighter than the error exponent only.

E. The ML Bound atδcr

In previous subsections we provided asymptotic forms for
the upper bound onPe(n, δ), for δ > δcr and for δ < δcr

(Theorems 8 and 10 respectively). Unfortunately, neither theo-
rem holds forδcr exactly. We now analyze the upper bound at
δcr, and show that its asymptotic form is different at this point.
As a consequence, at the critical NLD, the ratio between the
upper and lower bounds onPe(n, δ) is of the order of

√
n (this

ratio aboveδcr is a constant, and belowδcr the ratio increases
exponentially since the error exponents are different).

Theorem 11:At δ = δcr, the ML bound is given asymp-
totically by

PMLB
e (n, δcr)

=
e−nEr(δcr)

2π

[
√

π

2n
+

log(nπe2)

n

]

(

1 +O
(

log2 n
n

))

(82)

=
e−nEr(δcr)

√
8πn

(

1 +O
(

logn√
n

))

(83)

Proof: Appendix C.
In Fig. 7 we demonstrate the tightness of the precise

asymptotics of Theorem 11.

F. Asymptotic Analysis of the Typicality Bound

The typicality upper bound onPe(n, δ) (Theorem 1) is
typically weaker than the ML-based bound (Theorem 2). In
fact, it admits a weaker exponential behavior than the random
coding exponentEr(δ). Define thetypicality exponentEt(δ)
as

Et(δ) , δ
∗ − δ − 1

2
log(1 + 2(δ∗ − δ)). (84)

We can then show that for anyδ < δ
∗, the typicality bound

is given asymptotically by

PTB
e (n, δ) =

e−nEt(δ)

√
nπ

· 1 + 2(δ∗ − δ)

2(δ∗ − δ)

(

1 +O
(

1
n

))

. (85)

The technical proof is based on similar arguments to those
of Theorem 8 and is omitted. The error exponentEt(δ) is
illustrated in Figure 8. As seen in the figure,Et(δ) is lower
thanEr(δ) for all δ.

G. Asymptotic Analysis ofPMLB
e with Poltyrev’s r =√

nσeδ
∗−δ

In Poltyrev’s proof of the random coding exponent [3], the
suboptimal value forr was used, cf. Section III above. Instead
of the optimalr = reff = e−δV

1/n
n , he choser =

√
nσeδ

∗−δ.
In Figures 2 and 3 above we demonstrated how this suboptimal
choice ofr affects the ML bound at finiten. In the figures, it
is shown that forδ = −1.5nat (aboveδcr) the loss is more
significant than forδ = −2nat (below δcr). Here we utilize
the techniques used in the current section in order to provide
asymptotic analysis of the ML bound with the suboptimalr,
and by that explain this phenomenon.

Theorem 12:The ML boundPMLB
e , with r =

√
nσeδ

∗−δ,
denotedP̃MLB

e (n, δ), is given asymptotically as follows:
For δcr < δ < δ

∗,

P̃MLB
e (n, δ)

= e−nEr(δ)

[

1

nπ(2 − e2(δ
∗−δ))

+
1√

nπ(e2(δ
∗−δ) − 1)

]

(

1 +O
(

1
n

))

(86)

= e−nEr(δ)
1√

nπ(e2(δ
∗−δ) − 1)

(

1 +O
(

1√
n

))

, (87)

for δ < δcr,

P̃MLB
e (n, δ) = e−nEr(δ)

1√
2πn

(

1 +O
(

1
n

))

, (88)

and forδ = δcr,

P̃MLB
e (n, δcr) = e−nEr(δcr)

1√
πn

[

1 +
1√
8

]

(

1 +O
(

1
n

))

.

(89)
Notes:

• Forδ > δcr, P̃MLB
e (n, δ) is indeed asymptotically worse

than PMLB
e with the optimalr = reff (38), see (70).

Specifically, the choice ofr =
√
nσeδ

∗−δ only balances
the exponents of the two expressions of the bound (38),
while leaving the sub-exponential terms unbalanced -
see (86). The optimal selectionr = reff balances the
sub-exponential terms to the order ofn− 1

2 e
2(δ∗

−δ)

, see
Theorem 8. This in fact quantifies the asymptotic gap
between the bounds, as seen in the Fig. 2.

• For δ < δcr, the selection of the suboptimalr has no
asymptotic effect, as seen by comparing (88) and (77).
This corroborates the numerical findings presented in
Fig. 3.

• For δ = δcr the asymptotic form of the bound is changes
by a constant (compare (89) and (82),(83)), and the
correction term in the approximation tighter.

The technical proof is similar to the proof of Theorems 8-11
and is omitted.

V. A SYMPTOTICS FORFIXED ERROR PROBABILITY

In the previous section we were interested in the asymptotic
behavior ofPe(n, δ) when the NLDδ is fixed. We now turn
to look at a related scenario where the error probabilityε is
fixed, and we are interested in the asymptotic behavior of the
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form (82) is tighter than the simpler (83). Both forms approximate the true value of the ML bound better than the error exponent term alone.
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Fig. 8. Error exponents for the unconstrained AWGN channel.The typicality error exponentEt(δ) (dot-dashed) vs. the random coding exponentEr(δ)
(dotted) and the sphere packingEsp(δ) (solid). The noise varianceσ2 is set to 1.

optimal achievable NLD, denotedδε(n), with n → ∞. This
setting parallels the channel dispersion type results [10][9][31,
Problem 2.1.24], and is strongly related to the dispersion of
the power constrained AWGN channel [11][9].

A. The Dispersion of Infinite Constellations

Let ε > 0 denote a fixed error probability value. Clearly,
for any ε, δε(n) approaches the optimal NLDδ∗ asn → ∞.
Here we study the asymptotic behavior of this convergence.

Theorem 13:For a fixed error probabilityε, the optimal
NLD δε(n) satisfies, forn → ∞,

δε(n) = δ
∗ −

√

1

2n
Q−1(ε) +

1

2n
logn+O

(

1

n

)

. (90)

The proof (presented in sub-section V-C below) is based
on an asymptotic analysis of the finite-dimensional bounds
derived in Section III. Specifically, the converse bound (an
upper bound in (90)) is based on the sphere bound (5). The
achievability part (a lower bound in (90)) is based on the ML
bound (38). The weaker typicality bound is also useful for
deriving a result of the type (90), but in a slightly weaker
form - the typicality bound can only lead to

δε(n) ≥ δ
∗ −

√

1

2n
Q−1(ε) +O

(

1

n

)

. (91)

In Fig. 9 we show the bounds onδε(n) that are derived from
the finite dimensional bounds onPe(n, δ) given in Sec. III,
along with the asymptotic form (90), derived in this section,

which tightly approximatesδε(n). In addition, the term (91)
is also depicted, which only loosely approximatesδε(n). The
chosen error probability for the figure isε = 0.01.

Before proving the theorem, let us discuss the result. By the
similarity of Equations (1) and (90) we can isolate the constant
1
2 and identify it as the dispersion of the unconstrained AWGN
setting. This fact can be intuitively explained from several
directions.

One interesting property of the channel dispersion theorem
(1) is the following connection to the error exponent. Under
some mild regularity assumptions, the error exponent can be
approximated near the capacity by

E(R) ∼= (C −R)2

2V
, (92)

where V is the channel dispersion. The fact that the error
exponent can be approximated by a parabola with second
derivative 1

V was already known to Shannon (see [9, Fig. 18]).
This property holds for DMC’s and for the power constrained
AWGN channel and is conjectured to hold in more general
cases. Note, however, that while the parabolic behavior of the
exponent hints that the gap to the capacity should behave as
O
(

1√
n

)

, the dispersion theorem cannot be derived directly
from the error exponent theory. Even if the error probability
was given bye−nE(R) exactly, (1) cannot be deduced from
(92) (which holds only in the Taylor approximation sense).

Analogously to (92), we examine the error exponent for the
unconstrained Gaussian setting. For NLD values above the
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Fig. 9. Bounds and approximations of the optimal NLDδε(n) for error probabilityε = 0.01. Here the noise varianceσ2 is set to1.

critical NLD δcr (but belowδ
∗), the error exponent is given

by [3]:

E(δ) =
e−2δ

4πeσ2
+ δ +

1

2
log 2πσ2. (93)

By straightforward differentiation we get that the second
derivative (w.r.t.δ) of E(δ, σ2) at δ = δ

∗ is given by 2,
so according to (92), it is expected that the dispersion for
the unconstrained AWGN channel will be12 . This agrees
with our result (90) and its similarity to (1), and extends
the correctness of the conjecture (92) to the unconstrained
AWGN setting as well. It should be noted, however, that our
result provides more than just proving the conjecture: there
also exist examples where the error exponent is well defined
(with second derivative), but a connection of the type (92) can
only be achieved asymptotically withε → 0 (see, e.g. [32]).
Our result (90) holds for any finiteε, and also gives the exact
1
n logn term in the expansion.

Another indication that the dispersion for the unconstrained
setting should be12 comes from the connections to the power
constrained AWGN. While the capacity12 log(1 + P ), where
P denotes the channel SNR, is clearly unbounded withP , the
form of the error exponent curve does have a nontrivial limit
asP → ∞. In [2] it was noticed that this limit is the error
exponent of the unconstrained AWGN channel (sometimes
termed the ‘Poltyrev exponent’), where the distance to the
capacity is replaced by the NLD distance toδ∗. By this
analogy we examine the dispersion of the power constrained
AWGN channel at high SNR. In [9] the dispersion was found,

given (in nat
2 per channel use) by

VAWGN =
P (P + 2)

2(P + 1)2
. (94)

This term already appeared in Shannon’s 1959 paper on the
AWGN error exponent [6], where its inverse is exactly the
second derivative of the error exponent at the capacity (i.e.
(92) holds for the AWGN channel). It is therefore no surprise
that by takingP → ∞, we get the desired value of12 , thus
completing the analogy between the power constrained AWGN
and its unconstrained version. This convergence is quite fast,
and is tight for SNR as low as10dB (see Fig. 10).

B. A Key Lemma

In order to prove Theorem 13 we need the following
straightforward lemma regarding the norm of a Gaussian
vector.

Lemma 5:Let Z = [Z1, ..., Zn]
T be a vector ofn zero-

mean, independent Gaussian random variables, each with
varianceσ2. Let r > 0 be a given arbitrary radius. Then the
following holds for any dimensionn:

∣

∣

∣

∣

Pr{‖Z‖ > r} −Q

(

r2 − nσ2

σ2
√
2n

)
∣

∣

∣

∣

≤ 6T√
n
, (95)

where

T = E

[

∣

∣

∣

∣

X2 − 1√
2

∣

∣

∣

∣

3
]

≈ 3.0785, (96)

for a Standard Gaussian RVX .
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Fig. 10. The power-constrained AWGN dispersion (94) (solid) vs. the
unconstrained dispersion (dashed)

Proof: Let Yi =
Z2

i −σ2

σ2
√
2

. It is easy to verify thatE[Yi] = 0

and thatVAR[Yi] = 1. Let Sn , 1√
n

∑n
i=1 Yi. Note thatSn

also has zero mean and unit variance. It follows that

Pr{‖Z‖ > r} = Pr

{

n
∑

i=1

Z2
i ≥ r2

}

= Pr

{

Sn ≥ r2 − nσ2

σ2
√
2n

}

.

Sn is a normalized sum of i.i.d. variables, and by the central
limit theorem converges to a standard Gaussian random vari-
ables. The Berry-Esseen theorem [33, Ch. XVI.5] quantifies
the rate of convergence in the cumulative distribution function
sense. In the specific case discussed in the lemma we get
∣

∣

∣

∣

Pr

{

Sn ≥ r2 − nσ2

σ2
√
2n

}

−Q

[

r2 − nσ2

σ2
√
2n

]
∣

∣

∣

∣

≤ 6T√
n
, (97)

whereT = E[|Yi|3]. Note thatT is independent ofσ2, finite,
and can be evaluated numerically to about3.0785.

C. Proof of Theorem 13

Proof of Direct part:
Let ε denote the required error probability. We shall prove

the existence of an IC (more specifically, a lattice) with error
probability at mostε and NLD satisfying (90).

It is instructive to first prove a slightly weaker version of
(90) based on the typicality decoder (Theorem 1). This shows
that the weaker typicality bound is sufficient in order to prove
a dispersion theorem (i.e. that the gap to capacity is governed

by
√

1
2nQ

−1(ε)). While easier to derive, this will show the

existence of lattices with NLDδ = δ
∗−
√

1
2nQ

−1(ε)+O
(

1
n

)

.
Proving the stronger result (90) is more technical and will
proven afterwards using the ML achievability bound (Theorem
2).

Recall the achievability bound in Theorem 1: for anyr > 0
there exist lattices with NLDδ and error probabilityPe that
is upper bounded by

Pe ≤ γVnr
n + Pr {‖Z‖ > r} . (98)

We determiner s.t. Pr(‖Z‖ > r) = ε
[

1− 1√
n

]

andγ s.t.
γVnr

n = ε√
n

. This way it is assured that the error probability

is not greater than the requiredε
[

1− 1√
n

]

+ ε√
n
= ε. Now

defineαn s.t.r2 = nσ2(1+αn) (note thatr implicitly depends
on n as well).

Lemma 6:αn, defined above, is given by

αn =

√

2

n
Q−1(ε) +O

(

1

n

)

. (99)

Proof: By construction,r is chosen s.t.

Pr(‖Z‖2 > r2) = ε

[

1− 1√
n

]

. (100)

By the definition ofαn,

Pr(‖Z‖2 > nσ2(1 + αn)) = ε

[

1− 1√
n

]

. (101)

By Lemma 5,

Pr(‖Z‖2 > nσ2(1 + αn))

= Q

(

nσ2(1 + αn)− nσ2

σ2
√
2n

)

+O

(

1√
n

)

= Q

(
√

n

2
αn

)

+O

(

1√
n

)

.

Combined with (101), we get

ε

[

1− 1√
n

]

= Q

(
√

n

2
αn

)

+O

(

1√
n

)

, (102)

or

ε+O

(

1√
n

)

= Q

(
√

n

2
αn

)

. (103)

TakingQ−1(·) of both sides, we get
√

n

2
αn = Q−1

(

ε+O

(

1√
n

))

. (104)

By the Taylor approximation ofQ−1(ε + x) aroundx = 0,
we get

√

n

2
αn = Q−1 (ε) +O

(

1√
n

)

, (105)

or

αn =

√

2

n
Q−1 (ε) +O

(

1

n

)

, (106)

as required.
So far, we have shown the existence of a latticeΛ with error

probability at mostε. The NLD is given by

δ =
1

n
log γ

=
1

n
log

ε

Vnrn
√
n

= − 1

n
logVn − log r − logn

2n
+

1

n
log ε

= − 1

n
logVn − 1

2
log[nσ2(1 + αn)]−

logn

2n
+

1

n
log ε.
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Vn can be approximated by Stirling approximation for the
Gamma function as

1

n
logVn =

1

2
log

2πe

n
− 1

2n
logn+O

(

1

n

)

. (107)

We therefore have

δ = −1

2
log(2πeσ2)− 1

2
log(1 + αn) +O

(

1

n

)

(108)

(a)
= δ

∗ − 1

2
log(1 + αn) +O

(

1

n

)

(109)

(b)
= δ

∗ − 1

2
αn +O

(

1

n

)

(110)

(c)
= δ

∗ −
√

1

2n
Q−1(ε) +O

(

1

n

)

, (111)

where(a) follows from the definition ofδ∗, (b) follows from
the Taylor approximation forlog(1 + αn) aroundαn = 0
and from the fact thatαn = O(1/

√
n), and(c) follows from

Lemma 6. This completes the achievability part based on the
typicality decoder.

In order to prove the stronger achievability result that fits
(90) we follow the same steps with the ML achievability
bound. By Theorem 2 we get that for anyr > 0 there exist a
lattice with densityγ and error probability upper bounded by

Pe ≤ γVn

∫ r

0

fR(r̃)r̃
ndr̃ + Pr {‖Z‖ > r} . (112)

Now determiner s.t. Pr(‖Z‖ > r) = ε
[

1− 1√
n

]

and γ

s.t. γVn

∫ r

0
fR(r̃)r̃

ndr̃ = ε√
n

. Again, it is assured that the
error probability is upper bounded byε. Defineαn s.t. r2 =
nσ2(1 + αn).

The resulting density is given by

γ =
ε√

nVn

∫ r

0
fR(r̃)r̃ndr̃

, (113)

and the NLD by

δ =
1

n
log γ

=
1

n
log ε− 1

2n
logn− 1

n
logVn − 1

n
log

∫ r

0

fR(r̃)r̃
ndr̃

= −1

2
log

2πe

n
− 1

n
log

∫

√
n(1+αn)

0

fR(r̃)r̃
ndr̃ +O

(

1
n

)

.

(114)

where the last equality follows from the approximation (107)
for Vn.

We repeat the derivation as in Eq. (72) wherer∗ is replaced

by r =
√

nσ2(1 + αn) and have
∫

√
nσ2(1+αn)

0

fR(r̃)r̃
ndr̃

= σn 2
−n/2nn

Γ
[

n
2

]

∫ 1+αn

0

e−nr̃/2r̃n−1dr̃

≤ σn 2
−n/2nn

Γ
[

n
2

]

2(1 + αn)
ne−n(1+αn)/2

n
(

1− αn − 2
n

)

= σn 2
−n/2nn

Γ
[

n
2

]

2en log(1+αn)e−n(1+αn)/2

n
(

1− αn − 2
n

) ,

where the inequality follows from Lemma 3. Therefore the
term in (114) can be bounded by

1

n
log

∫

√
nσ2(1+αn)

0

fR(r̃)r̃
ndr̃

≤ 1

2
log σ2 − 1

2 log 2 + log n+ log(1 + αn)− 1
2 (1 + αn)

+
1

n
log

1
n
2Γ
[

n
2

]

1
(

1− αn − 2
n

)

(a)
=

1

2
log σ2 + 1

2 logn+ 1
2αn − 1

2n logn+O
(

1
n

)

.

(a) follows from the Taylor expansion oflog(1 + ξ) at ξ = 0
and from the fact thatαn = O( 1√

n
). Plugging back to (114)

combined with Lemma 6 completes the proof of the direct
part.

Proof of Converse Part:
Let ε > 0, and let{Sn}n∈N

be a series of IC’s, where for
eachn, Pe(Sn) ≤ ε. Our goal is to upper bound the NLDδn

of Sn for growingn.
By the sphere bound we have

ε ≥ Pe(Sn) ≥ Pr{‖Z‖ > r∗}, (115)

wherer∗ = e−δnV
−1/n
n . By Lemma 5,

ε ≥ Pr{‖Z‖ > r∗} ≥ Q

(

r∗2 − nσ2

σ2
√
2n

)

− 6T√
n
, (116)

whereT is a constant. It follows by algebraic manipulations
that

δn ≤ −1

2
log

(

1 +

√

2

n
Q−1

(

ε+
6T√
n

)

)

− 1

n
logVn − 1

2
log(nσ2).

By the Taylor approximation oflog(1 + x) at x = 0 and of
Q−1(y) at y = ε, and by the approximation (107) forVn,

δn ≤ −
√

1

2n
Q−1 (ε)− 1

2
log

2πe

n

+
1

2n
logn− 1

2
log(nσ2) +O

(

1

n

)

.

By the definition ofδ∗ we finally arrive at

δn ≤ δ
∗ −

√

1

2n
Q−1 (ε) +

1

2n
logn+O

(

1

n

)

,

as required.
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VI. COMPARISON WITH KNOWN INFINITE

CONSTELLATIONS

In this section we compare the bounds derived in this paper
with the actual performance of some known IC’s.

We start with the low dimensional IC’s, which include
classic sphere packings: the integer lattice, the hexagonal
lattice, the packingsD4, E8, BW16 and the leech latticeΛ24

(see Conway and Sloane [4]). In low dimensions we present
Monte Carlo simulation results based on the ML decoder.
In higher dimensions we consider low density lattice codes
(LDLC) [34] with dimensionsn = 100, 300, 500 and 1000
(designed by Y. Yona). In dimensionn = 127 we present the
results for the packingS127 [35].

In Fig. 11 we show the gap to (Poltyrev’s) capacity of
the low dimensional IC’s, where the error probability is set
to ε = 0.01. As seen in the figure, these low dimensional
IC’s outperform the best achievability bound (Theorem 2). At
n = 1, the integer lattice achieves the sphere bound (and is,
essentially, the only lattice forn = 1).

From the presentation of Fig. 11 it is difficult to compare
IC’s with different dimensions. For example, the hexagonal
lattice closer to the capacity than the latticeD4, and also the
gap to the sphere bound is smaller. Obviously this does not
mean thatD4 is inferior. To facilitate the comparison between
different dimensions we propose the following comparison:
Set a fixed value for the error probability forn = 1 denoted
ε1. Then define, for eachn, the normalized error probability

εn , 1− (1− ε1)
n.

Using this normalization enables the true comparison between
IC’s with different dimensions. The achieved gap to capacity
with a normalized error probability remains the same when
a scheme is used sayk times, and the block length becomes
k · n. For example, the integer lattice maintains a constantδ

for any n with the normalized error probability, as opposed
to the case presented in Fig. 11, where the performance
decreases. In Fig. 12 we plot the same data as in Fig. 11 for
normalized error probability withε1 = 10−5. We also plot the
normalized error probability itself for reference. In Fig.13
we present the performance of IC’s in higher dimensions
(again, with normalized error probability andε1 = 10−5).
The included constellations are the leech lattice again (for
reference), LDLC withn = 100, 300, 500, 1000 and degrees
5, 6, 7, 7 respectively (cf. [34] and [36] for more details on
the construction of LDLC and the degree). For LDLC’s, the
figure shows simulation results based on a suboptimal low
complexity parametric iterative decoder [36]. In addition, we
present the performance of the packingS127[35] (which is a
multilevel coset code [19]).

Several notes are in order:

• At higher dimensions, the performance of the presented
IC’s no longer outperforms the achievability bound.

• It is interesting to note that the Leech lattice replicated 4
times (resulting in an IC atn = 96) outperforms the
LDLC with n = 100 (but remember that the LDLC
performance is based on a low complexity suboptimal

decoder where the Leech lattice performance is based on
the ML decoder).

• The approximation (90) no longer holds formally for the
case of normalized error probability. This follows since
the correction term in (90) depends on the error probabil-
ity. Nevertheless, as appears in Fig. 13, the approximation
appears to still hold.

VII. V OLUME-TO-NOISE RATIO ANALYSIS

The VNRµ, defined in (21), can describe the distance from
optimality for a given IC and noise variance, and we say that
an IC S operating at noise levelσ2 is in fact operating at
VNR µ. Equivalently, we can define the VNR as a function of
the IC and the error probability: For a given ICS and error
probability ε, let µ(S, ε) be defined as follows:

µ(S, ε) , e−2δ(S)

2πeσ2(ε)
, (117)

whereσ2(ε) is the noise variance s.t. the error probability is
exactly ε. Note thatµ(S, ε) does not depend on scaling of
the IC S, and therefore can be thought of as a quantity that
depends only on the ‘shape’ of the IC.

We now define a related fundamental quantityµn(ε), as the
minimal value ofµ(S, ε) among alln-dimensional IC’s. It is
known that for any0 < ε < 1, µn(ε) → 1 asn → ∞ [20].
We now quantify this convergence, based on the analysis of
δε(n).

It follows from the definitions ofµn(ε) andδε(n) that the
following relation holds for anyσ2:

µn(ε) =
e−2δε(n)

2πeσ2
= e2(δ

∗−δε(n)). (118)

(note thatδε(n) implicitly depends onσ2 as well). We may
therefore use the results in the paper to understand the behavior
of µn(ε). For example, any of the bounds in Theorem 1,
Theorem 2 or the sphere bound (26) can be applied in order to
boundµn(ε) for finite n and ε. Furthermore, the asymptotic
behavior ofµn(ε) is characterized by the following:

Theorem 14:For a fixed error probability0 < ε < 1, The
optimal VNRµn(ε) is given by

µn(ε) = 1 +

√

2

n
Q−1(ε)− 1

n
logn+O

(

1

n

)

. (119)

Proof: In Theorem 13 we have shown that for givenε
andσ2, the optimal NLDδ is given by

δε(n) = δ
∗ −

√

1

2n
Q−1(ε) +

1

2n
logn+O

(

1

n

)

, (120)

whereδ∗ = 1
2 log

1
2πeσ2 .

According to (118) we write

µn(ε) = exp

[

√

2

n
Q−1(ε)− 1

n
logn+O

(

1

n

)

]

= 1 +

√

2

n
Q−1(ε)− 1

n
logn+O

(

1

n

)

(121)

where the last step follows from the Taylor expansion ofex.
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Fig. 11. Low-dimensional IC’s for coding over the unconstrained AWGN. The error probability is set toε = 0.01.

VIII. S UMMARY

In this paper we examined the unconstrained AWGN chan-
nel setting in the finite dimension regime. We provided two
achievability bounds and extended the converse bound (sphere
bound) to finite dimensional IC’s. Our best achievability
bound (the ML bound) was shown to be equivalent to a
bound by Poltyrev, but has a simpler form. Our derivation
reveals that this is the best known bound for maximal error
probability. For average error probability, we show that the
bound recently proposed in [7] is better at finite dimensions
by a multiplicative factor bounded by1.58. We then analyzed
these bounds asymptotically in two settings. In the first setting
where the NLD (which is equivalent to the rate in classic
channel coding) was fixed, we evaluated the (bounds on the)
error probability when the dimensionn grows, and provided
asymptotic expansions that are significantly tighter than those
in the existing error exponent analysis. In the second setting,
the error probabilityε is fixed, and we investigated the optimal
achievable NLD for growingn. We showed that the optimal
NLD can be tightly approximated by a closed-form expression,
and the gap to the optimal NLD vanishes as the inverse of the
square root of the dimensionn. The result is analogous to the
channel dispersion theorem in classical channel coding, and
agrees with the interpretation of the unconstrained setting as
the high-SNR limit of the power constrained AWGN channel.
The approach and tools developed in this paper can be used
to extend the results to more general noise models, and also
to finite constellations.

ACKNOWLEDGMENT

The authors are grateful to Y. Yona for assistance in
providing the simulation results for low-density lattice codes
in Section VI, and also to the anonymous reviewers for helpful
comments and suggestions for shorter proofs.

APPENDIX A
PROOF OF THEREGULARIZATION LEMMA

Proof of Lemma 1:Our first step will be to find a hyper-
cubeCb(a∗), so that the density of the points inS ∩Cb(a∗)
and the error probability of codewords inS∩Cb(a∗) are close
enough toγ and ε, respectively. We then replicate this cube
in order to get a regular IC. The idea is similar to that used in
[3, Appendix C], where it was used for expurgation purposes.
As discussed in III-E above, we wish to avoid expurgation
process that weakens the bound for finite dimensional IC’s.
By the definition ofPe(S) andγ(S),

γ(S) = lim sup
a→∞

M(S, a)
an

= lim
a→∞

sup
b>a

M(S, b)
bn

,

ε = Pe(S) = lim sup
a→∞

1

M(S, a)
∑

s∈S∩Cb(a)

Pe(s)

= lim
a→∞

sup
b>a

1

M(S, b)
∑

s∈S∩Cb(b)

Pe(s).

Let τγ =
√
1 + ξ andτε = 1 + ξ

2 . By definition of the limit,
there must exista0 large enough s.t. for everya > a0, both
hold:

sup
b>a

M(S, b)
bn

> γ · 1

τγ
, (122)
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Fig. 12. Top: performance of different constellations (dimensions1− 24) for normalized error probability, withε1 = 10−5. Bottom: the normalized error
probability.

and

sup
b>a

1

M(S, b)
∑

s∈S∩Cb(b)

Pe(s) < ε · τε. (123)

Define ∆ s.t. Q(∆/σ) = ε · ξ
2 , and definea∆ as the

solution to
(

a∆+2∆
a∆

)n

=
√
1 + ξ. Let amax = max{a0, a∆}.

According to (122), there must exista∗ > amax s.t.

M(S, a∗)
an∗

> γ · 1

τγ
. (124)

By (123) we get that

1

M(S, a∗)
∑

s∈S∩Cb(a∗)

Pe(s)

≤ sup
b>amax

1

M(S, b)
∑

s∈S∩Cb(b)

Pe(s)

< ε · τε.

Now consider thefinite constellationG = S ∩Cb(a∗). For
s ∈ G, denote byPG

e (s) the error probability ofs whenG
is used for transmission with Gaussian noise. SinceG ⊂ S,
clearly PG

e (s) ≤ Pe(s) for all s ∈ G. The average error
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probability forG is bounded by

Pe(G) ,
1

|G|
∑

s∈G

PG
e (s) ≤ 1

|G|
∑

s∈G

Pe(s) ≤ ε · τε. (125)

We now turn to the second part - constructing an IC from
the codeG.

Define the ICS ′ as an infinite replication ofG with spacing
of 2∆ between every two copies as follows:

S ′ , {s+ I · (a∗ + 2∆) : s ∈ G, I ∈ Zn} , (126)

whereZn denotes the integer lattice of dimensionn.
Now consider the error probability of a points ∈ S ′ denoted

by PS′

e (s). This error probability equals the probability of
decoding by mistake to another codeword from the same copy
of G or to a codeword in another copy. By the union bound,
we get that

PS′

e (s) ≤ PG
e (s) +Q(∆/σ). (127)

The right term follows from the fact that in order to make a
mistake to a codeword in a different copy ofG, the noise must
have an amplitude of at least∆. The average error probability
overS ′ is bounded by

Pe(S ′) ≤ Pe(G) +Q(∆/σ) ≤ ε · τε +Q(∆/σ) = ε(1 + ξ)

as required, where the last equality follows from the definition
of τε and∆.

The density of points in the new IC enclosed within a cube
of edge sizea∗ + 2∆ is given by |G|(a∗ + 2∆)−n. Define
ãk = (a∗ + 2∆)(2k − 1) for any integerk. Note that for any

k > 0, Cb(ãk) contains exactly(2k − 1)n copies ofG, and
therefore

M(S ′, ãk)

ãnk
=

|G|(2k − 1)n

ãnk
=

|G|
(a∗ + 2∆)n

. (128)

For anya > 0, let k∗ be the minimal integerk s.t. ãk ≥ a.
Clearly,

ãk∗−1 = ãk∗ − (a∗ + 2∆) < a ≤ ãk∗ . (129)

Therefore
M(S ′, ãk∗−1)

an
<

M(S ′, a)

an
≤ M(S ′, ãk∗)

an
, (130)

and
|G|

(a∗ + 2∆)n
ãnk∗−1

an
<

M(S ′, a)

an
≤ |G|

(a∗ + 2∆)n
ãnk∗

an
. (131)

By taking the limit a → ∞ of (131), we get that the limit
exists and is given by

γ(S ′) = lim
a→∞

M(S ′, a)

an
=

|G|
(a∗ + 2∆)n

. (132)

It follows that

γ(S ′) =
|G|

(a∗ + 2∆)n

=
|G|
an∗

an∗
(a∗ + 2∆)n

(a)

≥ γ(S) 1
τγ

(

a∗
a∗ + 2∆

)n

(b)

≥ γ(S) 1

1 + ξ
. (133)
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where (a) follows from (124) and(b) follows from the
definitions ofτγ , a∆ and from the fact thata∆ ≤ a∗.

It remains to show that the resulting ICS ′ is regular, i.e.
that all the Voronoi cells can be bounded in a sphere with
some fixed radiusr0. Let s be an arbitrary point inS ′. By
construction (see (126)), the points

{s± (a∗ + 2∆)ei|i = 1, ..., n}

are also inS ′ (where ei denotes the vector of1 in the i-
th coordinate, and the rest are zeros). We therefore conclude
that the Voronoi cellW (s) is contained in the hypercubes+
Cb(a∗ + 2∆), and is clearly bounded within a sphere of radius
r0 ,

√
n(a∗ + 2∆).

APPENDIX B
PROOF OFINTEGRAL BOUNDING LEMMAS

Proof of Lemma 2:Define

F (ρ) , log
[

ρ
n
2 −1e−nρ/2

]

=
(n

2
− 1
)

log ρ− nρ

2
,

so thatρ
n
2 −1e−nρ/2 = exp[F (ρ)]. LetF1(ρ) andF2(ρ) be the

first and second order Taylor series ofF (ρ) aroundρ = x,
respectively, i.e.

F1(ρ) = α+ β(ρ− x);

F2(ρ) = α+ β(ρ− x)− τ2(ρ− x)2,

where

α ,

(n

2
− 1
)

log x− nx

2
;

β ,

n
2 − 1

x
− n

2
;

τ ,

√

n
2 − 1

2x2
.

We note that for anyξ > 0,

ξ − ξ2

2
≤ log(1 + ξ) ≤ ξ. (134)

It follows that for all ρ > x we haveF2(ρ) ≤ F (ρ) ≤ F1(ρ),
or
∫ ∞

x

eF2(ρ)dρ ≤
∫ ∞

x

ρ
n
2 −1e−nρ/2dρ ≤

∫ ∞

x

eF1(ρ)dρ.

(135)
The upper bound (59) follows immediately from the right
inequality in (135), where convergence occurs only forx >
1− 2

n , hence the condition. Similarly, from the left inequality
of (135) we have

∫ ∞

x

eF (ρ)dρ ≥
∫ ∞

x

eF2(ρ)dρ

= exp

(

α+
β2

4τ2

) √
π

τ
Q

( −β

τ
√
2

)

.

Plugging back the values forα, β andτ leads to (60). Finally,
(61) follows from a well known lower bound for theQ
function:

Q(z) ≥ 1√
2πz

e−z2/2

(

1

1 + z−2

)

∀z > 0 (136)

and the definition ofΥ.

Proof of Lemma 3: We rewrite the integrand aseG(ρ)

whereG(ρ) , −nρ/2+ (n− 1) logρ. SinceG(ρ) is concave,
it is upper bounded its first order Taylor approximation at any
point. We choose the tangent atρ = x. We denote byG1(ρ)
the first order Taylor approximation at that point, and get

G(ρ) ≤ G1(ρ) , G(x) +G′(x)(ρ − x), (137)

whereG′(ρ) = ∂G(ρ)
∂ρ = −n

2 + n−1
ρ . Eq. (73) then follows by

calculating
∫ x

0 eG1(ρ)dρ explicitly.
Some extra effort is required in order to prove the lower

bound (74). We first switch variablesu , ρ−1 and get
∫ x

0

e−nρ/2ρn−1dρ =

∫ ∞

1/x

exp
(

− n

2u
− (n+ 1) log u

)

du.

(138)

We lower bound the exponent as follows:

− n

2u
− (n+ 1) log u

= − n

2u
+ (n+ 1)(log x− log(1 + ux− 1))

(a)

≥ − n

2u
+ (n+ 1)(log x− (ux− 1))

(b)

≥ −nx

2
(u2x2 − 3ux+ 3) + (n+ 1)(log x− (ux− 1)).

(a) follows from the fact thatlog(1 + ξ) ≤ ξ for all ξ ∈ R.
(b) follows from the fact that1ξ ≤ ξ2 − 3ξ + 3 for all ξ > 1

(which follows from the fact that(ξ − 1)3 ≥ 0).
Now the dependence on the integration variable is only

quadratic in the exponent, thus the integral bound can be
presented as aQ function in order to have (74) as required
(similarly to the proof of (53) in Lemma 2). Eq. (75) follows
by applying the lower bound (136) on theQ function.

APPENDIX C
EVALUATING THE ML B OUND AT δcr

Proof of Theorem 11:We start as in the proof of Theorem
2 to have

enδcrVn

∫ r∗

0

fR(r)r
ndr

=
n

2
enδV 2

n σ
n(2π)−

n
2 nn

∫ ρ∗

0

e−nρ/2ρn−1dρ.

We evaluate the integral in two parts:
∫ ρ∗

0

e−nρ/2ρn−1dρ =

∫ 2

0

e−nρ/2ρn−1dρ

+

∫ ρ∗

2

e−nρ/2ρn−1dρ. (139)

The term
∫ 2

0 e−nρ/2ρn−1dρ can be evaluated by the Laplace
method, as in the proof of Lemma 4. The difference is that
the exponent is minimized with zero first derivative at the
boundary pointρ = 2, which causes the integral to be
evaluated to half the value of the integral in Lemma 4, i.e.

∫ 2

0

e−nρ/2ρn−1dρ =

√

π

2n
e−n2n

(

1 +O
(

1
n

))

. (140)
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The second term in (139) requires some extra effort. We first
upper bound it as follows:
∫ ρ∗

2

e−nρ/2ρn−1dρ ≤
∫ ρ∗

2

1

2
e−n2ndρ =

1

2
e−n2n(ρ∗ − 2),

using the fact that in the integration intervalρ > 2 and since
e−nρ/2ρn is maximized atρ = 2. With (64) we have
∫ ρ∗

2

e−nρ/2ρn−1dρ ≤ 1

2
e−n2n(ρ∗ − 2)

= e−n2n
log(nπ)

n

(

1 +O
(

log n
n

))

.

The integral can also be lower bounded as follows:
∫ ρ∗

2

e−nρ/2ρn−1dρ

(a)

≥ 1

ρ∗

∫ ρ∗

2

e−nρ/2ρndρ

(b)

≥ 1

ρ∗

∫ ρ∗

2

en log
2
e−

n
8 (ρ−2)2dρ

(c)
=

1

ρ∗
2ne−n

√

8π

n

(

1
2 −

(

1
2 − 1√

2π

ρ∗−2√
4/n

+O
(

log2 n
n

)

))

= 2ne−n log(nπ)

n

(

1 +O
(

logn√
n

))

.

(a) follows sinceρ ≤ ρ∗. (b) follows from the fact thatnρ/2+
n log ρ ≥ n log 2

e − n
8 (ρ − 2)2 for all ρ > 2 (which follows

from (134)). (c) follows from the Taylor expansionQ(ξ) =
1
2 −

ξ√
2π

+O(ξ2) and sinceρ∗−2 = O( log n
n ). In total we get

∫ ρ∗

2

e−nρ/2ρn−1dρ = 2ne−n log(nπ)

n

(

1 +O
(

log n√
n

))

.

Combined with (140) we have
∫ ρ∗

0

e−nρ/2ρn−1dρ

=

∫ 2

0

e−nρ/2ρn−1dρ+

∫ ρ∗

2

e−nρ/2ρn−1dρ

= 2ne−n

[
√

π

2n
+

log(nπ)

n

]

(

1 +O
(

log2 n
n

))

.

The approximation (62) forVn finally yields

enδcrVn

∫ r∗

0

fR(r)r
ndr

= e−nEr(δcr)
1

2π

[
√

π

2n
+

log(nπ)

n

]

(

1 +O
(

log2 n
n

))

,

and the proof is completed by adding the asymptotic form (56)
of the sphere bound atδ = δcr.
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