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Unbounded Loss in Writing on Dirty Paper is Possible

Aaron S. Cohen and Ram Zamir

Abstract. For a generalization of Costa’s writing on dirty paper with ir-
regular additive noise distribution, we show that the loss between the zero-

interference capacity and the causal side information capacity can be arbitrar-

ily large. This contrasts to the Gaussian noise case, where the capacity loss is
zero or at most 1/4 bit for the non-causal and causal side information cases,

respectively. This also contrasts to the bounded loss in the “dual” problem of

rate distortion with side information.

1. Introduction

We consider a generalization of Costa’s writing on dirty paper [Cos83], in which
a channel has two independent sources of additive noise. The first source, Sn, is
known to the transmitter and is referred to as “side information” or “interference”.
The second source, Zn, is not directly known to any part of the communication
system. The input Xn and the output Y n are related as Y n = Xn + Sn + Zn.

Here, we fix constants α and L and a set Az ⊂ {1, . . . , L}. The noise sources
are i.i.d. with Zi uniformly distributed over Az and Si uniformly distributed over
{1, . . . , L}, which refer to as “strong interference”. Each input symbol Xi is re-
stricted to {1, . . . , α}. All arithmetic is done modulo L with results in {1, . . . , L}.

We write the capacity of this channel as CC(α, L, Az) or CNC(α, L, Az) depend-
ing on whether the transmitter side information can be used causally (i.e., Xk can
depend only on S1, . . . , Sk) or non-causally (i.e., the input sequence Xn depends on
the entire side information sequence Sn). The causal version is sometimes referred
to as “writing on dirty tape”. Our main result compares the causal case to the
zero-interference case, where the output is given by Y n = Xn + Zn and the capac-
ity is denoted by CZI(α, L, Az). The zero-interference case is equivalent to both the
transmitter and receiver having access to the side information (either causally or
non-causally). See Section 2 for the definitions of the capacities.

Theorem 1.1. The capacity loss between the zero-interference case and the
causal side information case is potentially unbounded. That is, for any ∆ > 0,
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there exists a modulo-additive noise channel with parameters α, L, and Az such
that CZI(α, L, Az)− CC(α, L, Az) > ∆.

This result contrasts with the uniform bound on the rate loss per degree of
freedom in the Wyner-Ziv problem, relative to common fidelity criteria such as
the rth-power distortion measure [Zam96, Zam02]. Duality between such rate
distortion with side information problems and input constrained communication
with side information problems like writing on dirty paper has been the subject of
several recent research efforts [CC02, BCW03, PCR03]. However, this result
indicates that this duality is potentially not complete.

This result also contrasts with Costa’s writing on dirty paper result [Cos83] of
no loss for Gaussian noise and side information and a power constraint, albeit for
the non-causal case. For the causal version of Costa’s problem, the loss is bounded
by the shaping gain (at most 1/4 bit) [ESZ00, ESZ02]. We also see the importance
of the necessary conditions of no loss (in the non-causal case) for generalized writing
on dirty paper [CL02]. The unboundedness of the loss in the non-causal case is
addressed in [CZ03b]. In the remainder of this paper, we prove Theorem 1.1.

2. Capacities

The capacity is the largest rate at which reliable communication is achiev-
able. For example, a rate R is achievable in the zero-interference case if we
can construct sequences (as n = 1, 2, . . . ) of rate R, blocklength n encoders,
fn : {1, . . . , 2nR} 7→ {1, . . . , α}n, and decoders, gn : {1, . . . , L}n 7→ {1, . . . , 2nR},
such that Pr(gn(fn(W )+Zn) 6= W ) → 0 as n →∞ for W uniformly distributed on
{1, . . . , 2nR}. For the causal side information case, a blocklength-n encoder consists
of a sequence (as k = 1, . . . , k) of functions,

(2.1)
{
fn,k : {1, . . . , 2nR} × {1, . . . , L}k 7→ {1, . . . , α}, 1 ≤ k ≤ n

}
,

where fn,k produces the kth input Xk from the entire message W and the first k side
information values. The capacity for the causal side information case is otherwise
the same as for the zero-interference case.

2.1. Zero-Interference. In this case, the capacity is given by

(2.2) CZI(α, L, Az) = max
PX

I(X;X + Z),

where the maximum is over all distributions on {1, . . . , α} and the random vari-
able Z is independent of X and uniformly distributed over Az. Here, I(X;Y ) is
the mutual information between random variables X and Y , which can be writ-
ten as a difference of entropies, I(X;Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X).
The entropy of the random variable X with distribution P is defined by H(X) =
−E[log P (X)] = −

∑
x P (x) log P (x).

We now give a condition on Az that results in the maximum possible capacity.

Lemma 2.1. If Az satisfies

(2.3) |z1 − z2| ≥ α, ∀z1, z2 ∈ Az, z1 6= z2,

then CZI(α, L, Az) = log α.

Proof. First, note that CZI(α, L, Az) ≤ log α since the transmitter can send
one of α values at each time (also since I(X;Z) ≤ H(X) ≤ log α). However, the
decoder can exactly recover any transmitted sequence since the values in Az are
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separated by at least α. More technically, if we let PX be uniform over {1, . . . , α},
then (2.3) implies that Pr(X + Z = j) is 1

α|Az| for α|Az| values of j. Thus, the
mutual information of interest, which can be written I(X;X + Z) = H(X + Z)−
H(X + Z|X) = H(X + Z)−H(Z), is log α|Az| − log |Az| = log α. �

2.2. Causal Side Information. In [Sha58], Shannon developed a general
formula for capacity with causal side information. This formula involves maximizing
over distributions of functions from the side information space to the input space
(here, this would be functions from {1, . . . , L} to {1, . . . , α}, and there are αL such
functions). In [ESZ00, ESZ02], the capacity optimization is simplified for the
important case of additive noise and strong interference (e.g., for S uniform over
{1, . . . , L}). By further imposing a hard input constraint, we see that

(2.4) CC(α, L, Az) = log L− min
t:{1,...,L}→{1,...,α}

H(t(S) + S + Z).

This formula only requires an optimization over the αL functions t(·) from the side
information space to the input space, not the distributions over such functions.

3. Lower Bounding The Loss

In this section, we prove Theorem 1.1 by lower bounding the difference between
the zero-interference capacity and the causal capacity. In Section 3.1, we develop
a general lower bound on the entropy of t(S) + S + Z. We refer to this random
variable as the effective noise and denote its probability mass function (PMF) by
peff = peff(t(·), Az, L). This distribution can be expressed in terms of the sets

(3.1) Cj = {1 ≤ s ≤ L : j − t(s)− s ∈ Az}, ∀1 ≤ j ≤ L.

The set Cj consists of the side information values s that contribute to the distri-
bution of the effective noise at j since s ∈ Cj implies that t(s) + s + z = j for some
z ∈ Az. Indeed, since S is uniformly distributed over {1, . . . , L} and Z is uniformly
distributed over Az, we have that

(3.2) peff
j = Pr(t(S) + S + Z = j) =

|Cj |
L|Az|

, ∀1 ≤ j ≤ L.

In Section 3.2, we upper bound the number of sets Cj that can be large (and hence
the number of values of peff

j that can be large) using the size of the intersection
of Az with a shifted version of itself. In Section 3.3, we construct a set Az that
satisfies (2.3) yet has a small self intersection. In Section 3.4, we complete the proof
by combining the previous steps.

3.1. Majorization Bound on Entropy. We first consider the points in the
PMF of the effective noise that are relatively large. For 0 ≤ β ≤ L, define the set

(3.3) J(β, t, Az, L) =
{
j : peff

j ≥ β/L
}

.

Clearly, we must have |J(β, t, Az, L)| ≤ L/β. The next lemma uses a majorization
argument assuming that, for some β < α, we have |J(β, t, Az, L)| ≤ L/α.

Lemma 3.1. For any β < α with |J(β, t, Az, L)| ≤ L/α,

(3.4) H(t(S) + S + Z) ≥ |J(β, t, Az, L)|α
L

log
L

α
+
(
1− |J(β, t, Az, L)|α

L

)
log

L

β
.
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Proof. For simplicity we write J for J(β, t, Az, L) during the course of the
proof. Consider the PMF p∗ on the L-dimensional simplex defined as

(3.5) p∗ =
[α
L

,
α

L
, . . . ,

α

L
,︸ ︷︷ ︸

|J | times

β

L
,
β

L
, . . . ,

β

L
,︸ ︷︷ ︸⌊

L−|J|α
β

⌋
times

ξ, 0, . . . , 0
]
,

where ξ ≤ β/L is chosen so that
∑L

j=1 p∗j = 1. The PMF p∗ majorizes the PMF
peff, written peff ≺ p∗; see [MO79] for the definition of majorization and the results
below. To see this, first note that peff

j ≤ α
L since |Cj | ≤ α|Az| for all j; see (3.1)

and (3.2). Thus, the sum of the largest k ≤ |J | components of peff cannot exceed
kα
L . Next, from the definition of J(β, t, Az, L) note that only |J | components of
peff can exceed β

L . Thus, the sum of the largest k > |J | components cannot exceed
|J|α+(k−|J|)β

L or 1, whichever is smaller. These two properties insure that the sum of
the largest k components of peff cannot exceed the sum of the largest k components
of p∗, which is precisely the definition of majorization. Since entropy is Schur-
concave, we can conclude that H(peff) ≥ H(p∗). We complete the proof by lower
bounding the entropy of p∗

H(p∗) = |J |α
L

log
L

α
+
⌊

L− |J |α
β

⌋
β

L
log

L

β
+ ξ log

1
ξ

(3.6)

≥ |J |α
L

log
L

α
+
(
1− |J |α

L

)
log

L

β
.(3.7)

�

3.2. Combinatorial Bound on Effective Noise Distribution. We next
define a function related to the auto-correlation of the actual noise distribution,

(3.8) M(n, Az) = |Az ∩ (Az + n)|.
Here, Az + n = {a + n : a ∈ Az}. We upper bound |J(β, t, Az, L)| using

(3.9) M∗(Az) = max
n 6=0

M(n, Az).

Lemma 3.2. For any β with
√

αM∗(Az)L/|Az|2 < β < α and for all functions
t(·),

(3.10) |J(β, t, Az, L)| ≤ β|Az| − αM∗(Az)
(β|Az|)2

L − αM∗(Az)
.

Proof. We shall again write J for J(β, t, Az, L) in this proof. The intersection
of two Cj ’s can be written as

(3.11) Cj ∩ Cj′ = {1 ≤ s ≤ L : j − s− t(s) ∈ Az ∩ (Az + j − j′)} ;

compare with (3.1). This follows since s ∈ Cj ∩ Cj′ only if j − s − t(s) ∈ Az and
j′ − s − t(s) ∈ Az, and the latter is equivalent to j − s − t(s) ∈ (Az + j − j′).
Since the function t(·) only takes on α different values, we can bound the size of
the intersection by

(3.12) |Cj ∩ Cj′ | ≤ αM∗(Az), ∀j 6= j′;

see (3.8), (3.9), and (3.11). We also see that

(3.13) |Cj | ≥ β|Az|, ∀j ∈ J ;
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see (3.2) and (3.3). We use these bounds to give a combinatorial proof of the lemma.
Let us define γ(s) = |{j ∈ J : s ∈ Cj}| and γ̄ = L−1

∑L
s=1 γ(s). That is, γ(s)

is the number of members of J for which s contributes to the PMF of the effective
noise. We first observe that

∑L
s=1 γ(s) =

∑
j∈J |Cj |, since both sums are counting

the same objects. Thus, the average value can be lower bounded using

(3.14) γ̄ = L−1
L∑

s=1

γ(s) = L−1
∑
j∈J

|Cj | ≥
β|J ||Az|

L
,

where we have used (3.13) above. A similar counting argument for pairs of elements

gives
∑L

s=1

(
γ(s)
2

)
=
∑

j 6=j′∈J |Cj ∩ Cj′ |. Therefore,

(3.15)
γ̄(γ̄ − 1)

2
≤ L−1

L∑
s=1

(
γ(s)
2

)
= L−1

∑
j 6=j′∈J

|Cj ∩ Cj′ | ≤
(
|J |
2

)
αM∗(Az)

L
,

where the first bound follows from Jensen’s inequality since x(x− 1)/2 is convex in

x and the second bound follows by (3.12) since there are
(
|J |
2

)
pairs of elements

in the set J . The combination of the bounds (3.14) and (3.15) under the condition
given in the lemma gives (3.10), and the proof is complete. �

3.3. Construction of Az Using Arithmetic Differences. We next con-
struct a set Az and give an upper bound on M∗(Az) for this Az. The main
idea is to find a set Az in which (2.3) is satisfied (so that CZI(α, Az, L) is large)
and yet the maximum autocorrelation M∗(Az) is small (so that CC(α, Az, L) is
small). Before giving our construction, we consider some other possibilities. The
set cannot be periodic, since M∗(Az) would then be large. For example, if Az =
{α, 2α, . . . , bL/αcα}, then M∗(Az) ≥ |Az| − 1 which is practically the maximum
value. Another possibility could be to let Az be a subset of the exponential series
{2k; k = 1, 2, . . . }, which results in the minimal M∗(Az) = 1. However, the size of
any such set grows as log L and the denominator (3.10) would not grow to infinity.
A final possibility could be to find a set Az so that M(n, Az) = 1 for all non-zero
n, while the size of Az grows as

√
L. Such a set (known as a planar difference set)

exists for all L = pk + 1, where p is a prime and k is an integer [BJL99]. A pla-
nar difference set minimizes M∗(Az) for fixed L and |Az|, but does not necessarily
satisfy (2.3); see [CZ03b] for the use of difference sets in this problem.

To construct our Az, we let L = (2α− 1)2 and let

(3.16) Az =

{
j∑

k=1

α + k − 1 : 0 ≤ j < 2α− 1

}
.

For example, if α = 3, then Az = {3, 7, 12, 18, 25}. We refer to this Az as an
arithmetic difference sequence since the difference between the jth and (j + 1)st
points in Az is α + j − 1. We thus see that (2.3) is satisfied. Note that for every
z ∈ Az ∩ (Az +n), there exists integers j1 and j2 such that either n or L−n can be
represented as

∑j2
k=j1+1 α + k − 1 = (j2 − j1)(2α + j1 + j2 − 1)/2. In other words,

the size of Az ∩ (Az + n) is related to the number of factorizations of n and L− n.
Let d(n) be the number of factors of n (e.g., d(4) = 3, d(5) = 2, d(6) = 4). This
reasoning gives the following result.
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Lemma 3.3. For any α, if L = (2α− 1)2 and Az is defined as in (3.16), then

(3.17) M(n, Az) ≤
d(n) + d(L− n)

2
, ∀1 ≤ n ≤ L.

Consequently, M∗(Az) ≤ max1≤n≤L d(n).

The final step is to bound the growth of M∗(Az) as a function of α. (Note that
it is necessary to let α grow to infinity in order for the loss to become unbounded.)
A sufficient bound on the growth is given by the following number theoretic result
on the number of divisors.

Lemma 3.4. [HW79, Theorem 315] For any δ > 0, limn→∞ d(n)/nδ = 0.

3.4. Combining the Bounds. For any β and Az such that the conditions in
Lemmas 3.1 and 3.2 are satisfied, we see that

CZI(α, L, Az)− CC(α, L, Az) ≥ max
t(·)

(
1− |J(β, t, Az, L)|α

L

)
log

α

β
(3.18)

≥

(
1− β|Az| − αM∗(Az)

(β|Az|)2
L − αM∗(Az)

α

L

)
log

α

β
(3.19)

where (3.18) follows by Lemma 3.1 and (3.19) follows by Lemma 3.2. So far, we
have not used the arithmetic difference sequence Az. For this Az, we can write the
relevant parameters as functions of α. In particular, we have that L = (2α − 1)2,
|Az| = (2α − 1) =

√
L, and that (from Lemmas 3.3 and 3.4) M∗(Az) = o(α2δ) for

any positive δ. Thus, for any 1/2 < λ < 1, let β = αλ and the bound becomes

CZI(α, L, Az)− CC(α, L, Az)

≥
(

1− αλ(2α− 1)− αM∗(Az)
α2λ − αM∗(Az)

α

(2α− 1)2

)
(1− λ) log α(3.20)

= (1− λ) log α + o(log α),(3.21)

where the asymptotics follow since M∗(Az) is o
(
α2λ−1

)
and o

(
αλ
)

for all λ > 1/2.
Thus, the big fraction grows as α−λ which tends to zero as α grows to infinity. This
completes the proof of the theorem since we can choose α arbitrarily large.

4. Conclusions

We have shown that the the capacity with causal side information at the trans-
mitter can be arbitrarily smaller than the capacity with side information at both
the transmitter and receiver. Indeed, for the arithmetic difference sequence Az

(3.16), we have asymptotically upper bounded CC(α, L, Az)/CZI(α, L, Az) by 1/2.
In [CZ03a, CZ03b], we strengthen these results in several ways. First, we

extend the capacity analysis to the non-causal case. In particular, we show that
the non-causal capacity is given by

(4.1) CNC(α, L, Az) = max
PV

(
H(V )− min

t:{1,...,L}→{1,...,α}
H(t(V ) + V + Z)

)
,

where the maximum is over distributions of the random variable V , which takes
value on the set {1, . . . , L}. Note that the right hand side of (4.1) is equal to the
causal capacity (2.4) when PV is uniform over {1, . . . , L}. Second, we show that
if Az is a difference set, then the non-causal capacity is at most 2 bits/channel
use, while the zero-interference capacity is at least log α − 1 bits/channel use for
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any constraint set of size α. The minus one results from the fact that (2.3) is not
satisfied all of the time. Thus, the rate loss can be arbitrarily large in the non-
causal case as well. Furthermore, for both causal and non-causal cases, the ratio
of capacity with side information to zero-interference capacity can be arbitrarily
small. Finally, we would like to generalize our results to continuous alphabets and
expected input constraints.
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