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Abstract—We study cost constrained side-information chan-
nels, where the cost function depends on a state which is known
only to the encoder. In the additive noise case, we bound the
capacity loss due to not knowing the cost state at the decoder and
show that it is small under various assumptions, and goes to zero
in the limit of weak noise. This model plays an important role
in the (non-degraded) broadcast channel. In the semi-additive
noise case, we bound the gap between the best known single
letter achievable region and the true capacity region, using tools
developed for the first problem. In the limit of weak noise,
we show that the bounds coincide, thus we get the complete
characterization of the capacity region.

Index Terms—Side-information channels, Broadcast channels.

I. INTRODUCTION

Channel coding where the encoder has access (non-causally)
to channel state side information, plays an important role in
many different problems. It’s capacity region was found by
Gelfand and Pinsker [2].

An important special case of the this problem is when
the channel state side information constrains the channel
inputs, but does not affect the channel transition probabilities.
This case models many problems. One is the information
embedding problem [3], where the encoder should encode
information over a “host” signal such that the transmitted
signal is not too far from the original one. A different type
of such problem is the case where the state constrains the
possible channel input alphabet [4]. A classical example for
that is writing to a memory with defective cells [5][6], where
the information whether a memory cell is writable or not is
available at the encoder but not at the decoder. Some channels
where the channel transitions are affected by the state side
information can be reduced to this model, for example writing
on dirty paper [7], viewed as information embedding.

This problem is conceptually similar to source coding when
the distortion measure is state-dependent and the state is
known only to the encoder [8] [4]. The latter problem can
be solved using interpolation-based coding (in the case of a
difference distortion measures which is weighted by the side
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information state) and a similar coding technique can be used
here.

We study the capacity loss due to not knowing the side-
information at the decoder and derive bounds for the additive
noise case. We then apply these observations and techniques
to explore the gap between the best known achievable region
and the true capacity region of the (non-degraded) broadcast
channel [9].

Transmission over a broadcast channel can be viewed under
the model of channel state side information, such that the state
only constrains the input. A broadcast channel is a channel
with a single input and two or more outputs. Information is
sent through the channel, such that each output is decoded
separately, i.e., the decoder of each channel is unaware of the
other channel output, so different receivers cannot cooperate.
The objective is to transmit a different private message to each
of the receivers. Generally, there may be a common message
to groups of terminals, but in this paper we assume that it is
not required. The role of the side information problem can be
seen by the following scheme: information is sent to the first
terminal, and the encoded word constitutes the ”channel state”
that constrains the encoding to the second terminal.

The capacity region of the broadcast channel is still an
open problem in the general (non-degraded) case. However
achievable regions [9] and outer regions [9][10][11] to the
capacity region are known. We call the gap between the
best known achievable region and the capacity region, the
unresolved gap.

Using the similarity between side-information channels and
broadcast channels, similar codebooks are constructed, a sim-
ilar bounding technique is used in both cases, and similar
bounds can be derived.

In section II we describe the channel models that are
studied in this paper, and discuss their similarity. Section III
describes channels where the channel output is known to
the encoder up to an additive noise component. We derive
general upper bounds for the capacity loss due to not knowing
the side information at the decoder, and show that the loss
is asymptotically zero for weak noise. In this section we
introduce two bounds which are used for the capacity loss
in side information channel, and in the next section for the
unresolved gap in the broadcast channel. Section IV explores
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broadcast channels which consist of a general channel in one
branch, and a deterministic function followed by an additive
noise channel at the second branch. We show upper bounds on
the gap between the best known single letter achievable region
and the true capacity region, and show that this gap vanishes
for weak noise. Section V presents further results that appear
in [12].

II. PROBLEM MODELS AND THEIR SIMILARITY

A. Cost State Side Information Problem

Consider the channel PY |X under the constraint
E[c(X;S)] ≤ A, where X is the channel input, Y is
the channel output, PY |X is the channel probability transition
function, S is the cost state side-information, c(x; s) is the
channel input cost function which depends on the channel
input and the cost state and A is the average cost constraint.
We assume that S is known (non-causally) only to the
encoder. Therefore the triple Sn

1 ↔ Xn
1 ↔ Y n

1 forms a
Markov chain, where n is the codeword length. We call this
channel a cost side information (or cost-SI) channel. This
channel is a special case of the side-information channel
considered by Gelfand and Pinsker [2], where the state S
affects the channel transition distribution. Nevertheless the
capacity formula still applies so, denoted by Cenc, it is given
by [3]:

Cenc(A) = sup
PU,X|S :E[c(X;S)≤A]

I(Y ;U)− I(U ;S), (1)

where U is an auxiliary random variable.
The cost-SI channel is formally equivalent to the informa-

tion embedding problem [3]. In the latter problem S is a signal
which is known to the encoder, and information should be
embedded over it such that the average distortion of the signal
is bounded by a given constraint A. Therefore S is called the
host signal. The distortion measure is a function of both X
and S: c(x; s), and it measures the similarity between the host
signal and the encoder output signal (e.g. (x − s)2)). In our
problem the emphasis is on the cost of using the symbol x
at state s, c(x; s), therefore S may not be a host signal, but
a weighting state for the cost (e.g. w(s)x2). This difference
in emphasis leads to new observations, coding techniques and
explicit capacity expressions. The cost-SI channel was first
introduced in [4] and further explored in [13].

We compare this problem to the case where the side
information is known to both the encoder the decoder. We
call that the fully aware system, and denote it’s capacity by
Cboth. When S is known at both sides, we can use separate
codebooks for different states of S, therefore the capacity is
given by [14] [3]:

Cboth(A) = sup
PX|S :E[c(X;S)≤A]

I(Y ;X|S). (2)

We explore the capacity loss due to not knowing the side-
information at the decoder

Loss(A) = Cboth(A)− Cenc(A). (3)

Some channels where the transition distribution depends on
S, i.e. PY |X,S , fall under the category of cost-SI channels.
One example is the “Writing on Dirty Paper” problem [7],
there Y = X + S + Z which when viewed as an information
embedding problem has the form of a cost-SI channel [3],
[15]. Detailed explanation is given in Section III.

In the discrete case, when the channel is deterministic,
Y = f(X) and S constrains the channel input alphabet, there
is no capacity loss due to not knowing the cost side informa-
tion at the decoder [3]. The same holds for the general side-
information problem, where the encoder knows the complete
channel state, i.e. the channel is of the form Y = f(X, S),
when S is given at the encoder. This fact can be seen by
substituting U = Y in the Cenc expression in (1).

An example for this model, is coding to memory with defec-
tive cells [5][6]. In this problem the channel state constrains
the input alphabet according to the following states: stuck-
at 0, stuck-at 1 or {0, 1}. This side information contains the
complete channel state, and is known only to the encoder.
Reducing this problem to a cost-SI channel is done by adding
a cost function and a constraint which will restrict the channel
input alphabet in the case of stuck-at state. There is no capacity
loss due to not knowing the side information state at the
decoder [5][6]. A coding scheme that achieves the capacity
is based on the cosets of a “good” binary erasure correction
(near MDS) code.

In this paper we focus on channels which are known to the
encoder up to an additive noise component, i.e. of the form
Y = f(X,S) + Z, with input cost function which depends
on S and an average cost constraint A. We show that these
channels can be reduced to the cost-SI model. As we shall see
in the next section, in the noisy case the capacity loss is not
zero, yet it often can be bounded by a small term.

B. Broadcast Channels

A broadcast channel has a single input and two outputs (see
[16]). Information is sent through the channel, such that each
output is decoded separately, i.e. the decoder of one channel
output is unaware of the other channel output. A broadcast
channel can be defined by PY1,Y2|X , where X is the channel
input and Y1, Y2 are two outputs of the channel. The capacity
region of the broadcast channel is yet unknown, except for
special cases e.g. the degraded case, therefore we consider
inner regions and outer regions to the capacity region.

The best known single-letter achievable region was given
by Marton in [9]. In this paper we use an weaker inner region
(without the common part), also given by Marton [9]:

RM
0 = {(R1, R2)|∃U1, U2 :

(U1, U2) ↔ X ↔ Y1,

(U1, U2) ↔ X ↔ Y2,

0 ≤ R1 ≤ I(Y1;U1),
0 ≤ R2 ≤ I(Y2;U2),
R1 + R2 ≤ I(Y1; U1) + I(Y2;U2)− I(U1;U2) } .(4)
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Channel with cost-SI known at the encoder plays an im-
portant role in Marton’s achievable region. Assume a given
probability distribution PU1,U2,X . At the corner point, infor-
mation is encoded freely to the first terminal in maximum
rate, R1 = I(Y1;U1). This constitute the “channel state”
that constrains the encoding to the second terminal. Therefore
R2 = I(Y2; U2)−I(U1; U2) which is similar to the expression
in (1), where the information to the first terminal U1 acts as
S, the “side information” that constrains the encoding to the
second terminal.

We explore the gap between this region and the capacity
region:

GAP = max
(R1,R2)∈C

min
(r1,r2)∈RM

0

max{R1 − r1, R2 − r2} (5)

where C is the broadcast channel capacity region, i.e. for each
point in the true capacity region C we look for the point in
RM

0 which is closest in both rate components.
We bound this gap by bounding the gap between Marton’s

achievable region (4) and an outer bound to the capacity region
due to Marton [9]:

RK-M
out = {(R1, R2)|∃U1 :

U1 ↔ X ↔ Y1,

U1 ↔ X ↔ Y2,

0 ≤ R1 ≤ I(Y1; U1),
0 ≤ R2 ≤ I(Y2; X),
R1 + R2 ≤ I(Y1;U1) + I(Y2; X|U1) } . (6)

The fully aware channel (see Section II-A) plays an im-
portant role in this region. Information is encoded to the
first terminal freely. As in RM

0 , this constitute the “channel
state” that constrains the encoding to the second terminal.
However, here it is assumed that the decoder of the second
terminal knows the information which was encoded for the
first terminal, which plays the role of the “channel state”. The
rate for the first terminal is R1 = I(Y1;U1), and the rate for
the second terminal is R2 = I(Y2;X|U1) which is similar to
(2).

The similarity described above between the broadcast chan-
nel and the side-information channel, leads to similarity of
the gap between the achievable region and the outer region of
broadcast channel, to the capacity-loss in the side-information
channel due to not knowing the side information at the
decoder. Both expressions are of the form:

I(Y ; X|S)− [I(Y ; U)− I(U ; S)]. (7)

In this paper we focus on semi-additive noise channels, i.e.
channels where one branch is general, while the second branch
has the form of Y2 = f(X) + Z, where f is a deterministic
function and Z is the noise. Using similar bounding technique
for the expression (7) in Lemma 2, we get similar bounds for
the gap between the regions of this broadcast channel and for
the capacity loss in side information channel.

A special case of a broadcast channel is the (discrete)
deterministic broadcast channel (DBC) (see [16]). In this case

Marton [9] and Pinsker [17] found the capacity region, and
Marton showed that it equals RM

0 and RK-M
out .

A simple but not trivial example to a DBC is the Blackwell
channel (see [16]). Gelfand [18] found the capacity region of
this channel. His coding scheme is similar to one which is
used for the binary case of writing on memory with defective
cells (see [4]).

This work strengthens this result of the noiseless case,
by showing that when the noise is weak, the inner region
and the outer region to the capacity region coincide, thus
characterizing the capacity region in this case. Thus the gap
between the regions is a continuous function near the point
where the channel is noiseless.

III. ADDITIVE NOISE CHANNELS WITH COST SIDE
INFORMATION

In this section we consider an important special case of side
information channels, where the encoder knows everything
about the channel up to an additive noise component, i.e.

Y = f(X, S) + Z (8)

with the following constraint:

E[c(X; S)] ≤ A, (9)

where X is the channel input, S is the channel state side
information, c(x; s) is the channel input cost function which
depends on the state, A is the average cost constraint on the
channel input and Z is an additive noise which is independent
of (X, S). We assume that S is known (non-causally) only to
the encoder. We call f the channel transfer function.

Lemma 1. The channel model given in (8)-(9) is equivalent
to the following cost-SI model:

Y = X̃ + Z (10)

under the constraint E[c̃(X̃; S)] ≤ A, where c̃(x̃; s) is some
modified cost function.

Proof: Set X̃ = f(X, S) and modify the cost function

c̃(x̃, s) =

{
min

x:f(x,s)=x̃
c(x; s) ∃x : f(x, s) = x̃

∞ ∀x : f(x, s) 6= x̃
, (11)

Theorem 1 (Upper Bound on the Capacity Loss). For the
channel given in (8)-(9), the capacity loss (which is given in
(3)) due to not knowing the side information at the decoder
too is upper bounded by:

Loss(A) ≤ I(Z − Z̃; Z̃) (12)

where Z̃ has the same probability distribution function as Z,
and Z̃, Z are independent R.V.s.

For example, if Z is a Gaussian noise, then the loss is at
most 1

2 bit. An additional example, if Z ∼ Bernulli(p), then
the loss is at most H(p ∗ p)−H(p), which is upper bounded
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by 0.2144 . . . bits (where p ∗ p = 2p(1− p), and the maximal
bound is at p = 0.121 . . .).

The theorem is proved using the following lemma, which
will also be used for the theorem which bounds the unresolved
gap for broadcast channels.

Lemma 2. Consider random variables X, S, Z, such that Z

is independent of (X, S), and denote Y
4
= X +Z. Let Z̃ be a

random variable with the probability distribution function of
Z, and independent of (X, S, Z). Denote U

4
= X + Z̃. Then:

I(Y ; X|S)− [I(Y ; U)− I(U ;S)] ≤ I(Z − Z̃; Z̃) (13)

Proof:

I(Y ; X|S)− [I(Y ;U)− I(U ;S)] (14)
= I(X + Z; X, S)− I(X + Z;X + Z̃) (15)
= I(X + Z; X)− I(X + Z; X + Z̃) (16)
= I(X + Z; X + Z̃|Z̃)− I(X + Z; X + Z̃) (17)
= I(Z − Z̃; Z̃|X + Z̃) (18)
= I(Z − Z̃; Z̃)− I(Z − Z̃;X + Z̃) (19)
≤ I(Z − Z̃; Z̃) (20)

proof of Theorem 1: Using Lemma 1, without loss of
generality we can consider only the case where f(X,S) = X .

Set the auxiliary R.V. to be U
4
= X + Z̃, where channel

input X has the probability distribution that achieves the
capacity Cboth(A) in the fully-aware case, and Z̃ has the same
probability distribution as Z and is independent of (X, S, Z).

Denote by renc the achievable rate using these U,X in the
system where S is known only at the encoder. Then by using
Lemma 2 we get: Loss(A) ≤ Cboth(A) − renc(A) ≤ I(Z −
Z̃; Z̃).

Let us define:

hmax(A|S)
4
= max

PX|S :E[c(X,S)]≤A
h(X|S). (21)

Theorem 2 (Asymptotic Zero Loss). Consider the chan-
nel given in (10), i.e., Y = X + Z under the constraint
E[c(X,S)] ≤ A. In the limit of weak noise, we look at a
sequence of channels Y = X + Zn, where {Zn}∞n=1 is a
sequence of RVs such that E(Z2

n) −→
n→∞

0. Assume that the
conditional maximum-entropy (21) exists and is continuous
in the parameter A (see [19]). In addition, assume that
E[c(X + Zn, S)] −→

n→∞
E[c(X,S)] uniformly over all X such

that E[c(X,S)] ≤ A. Then the capacity loss (which is given
in (3)) due to not knowing the side information at the decoder
too is asymptotically zero for weak noise:

lim
n→∞

Loss(A) = 0, (22)

Remark 1. 1) This result agrees with the fact that in the
noiseless side-information problem, there is no capacity
loss due to not knowing the side information at the
decoder too [3]. Therefore the capacity as a function
of the noise power is continuous near zero.

2) This result applies to the model (8)-(9) under the trans-
formation in Lemma 1.

3) A simple example where uniform convergence holds is
for c(x, s) = g(s)|x|r, and r is integer.

proof of Theorem 2: Denote the achieving RV of
hmax(A|S) by X∗. Denote the fully aware system capac-
ity achieving distribution, C

(n)
both, by X

(b)
n . Define An

4
=

E[c(X(b)
n + Zn, S)]. Denote the capacity of the encoder side

information system by C
(n)
enc .Then:

C
(n)
both − C(n)

enc ≤ [h(X(b)
n + Zn|S)− h(Zn)] (23)

−[h(X∗|S)− h(X∗|X∗ + Zn)]
≤ hmax(An|S)− hmax(A|S) −→

n→∞
0,(24)

where the convergence results from the continuity conditions
in the theorem.

Example 1. The “Writing on Dirty Paper” problem [7] is as
follow: the channel is Y = X+S+Z, where X is the channel
input, S is a channel interference which is known non-causally
at the encoder, and Z is a Gaussian noise, independent of
X, S. The channel has a power constraint: E(X2) ≤ P . It is
well known [7] that there is no rate-loss due to not knowing
S at the decoder. In this example we generalize the problem
such that the cost function is weighted according to a state Q.
The motivation is from the information embedding problem,
where the distortion measure function of each sample may
be different, according to it’s importance. This problem was
proposed in [4], where preliminary results were presented, and
further explored in [13]. The channel is Y = X + Z with the
constraint is E[Q · (X − S)2] ≤ D. According to Theorem 2,
the capacity loss due to not having S, Q at the decoder is
asymptotically zero as the noise gets small (σ2

Z → 0). This
result was shown in [13], and the result here generalizes it.
In addition, according to Theorem 1, the capacity loss due to
not having S, Q at the decoder is at most 1

2 bit.

IV. BROADCAST CHANNEL WITH ONE ADDITIVE NOISE
COMPONENT

We consider the broadcast channel where the transition
probabilities to the first terminal are given by:

PY1|X (25)

and the output to the second terminal is given by:

Y2 = f(X) + Z, (26)

where Z is an additive noise which is independent of X .

Theorem 3 (Upper Bound on the Gap). For the broadcast
channel given in (25)-(26), the gap between RM

0 and the
capacity region (which is given at (5)) is upper bounded by:

GAP ≤ I(Z − Z̃; Z̃), (27)

where Z̃ has the same probability distribution function as Z,
and Z̃, Z are independent R.V.s.
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Proof: Let (R1, R2) ∈ RK-M
out be a given point. Without

loss of generality we can assume that the point is on the (non-
trivial) boundary of RK-M

out . Therefore there exists a PU1,X which
achieves (R1, R2) point according to (6).

Define U2 = f(X) + Z̃, where Z̃ has the same probability
distribution as Z, and is independent of (X,Z). The sum-rate
gap is given by the following expression: I(Y2; f(X)|U1) −
[I(Y2;U2)−I(U2; U1)]. Lemma 2, where X there has the role
of f(X) here, shows that this expression is upper bounded by
I(Z − Z̃; Z̃).

The gap between the rates for the second terminal is given
by the following expression: I(Y2;X) − I(Y2; U2), which is
equivalent to (16), and therefore also upper bounded by I(Z−
Z̃; Z̃).

Theorem 4 (Asymptotically Zero Gap). Consider the broad-
cast channel given in (25)-(26), In the limit of weak noise,
we look at a sequence of channels Y2 = f(X) + Zn, where
{Zn}∞n=1 is a sequence of RVs such that E(Z2

n) −→
n→∞

0.
Let (R1, R2) ∈ RK-M

out be a given point on the (non-trivial)
boundary of RK-M

out. For every n denote the (R1, R2) achieving
prior by PU1,n,Xn . Assume that that there exist a RV pair

(X, U1) such that (Xn, U1,n) D−→
n→∞

(X, U1). In addition, for
{(Xn, U1,n)}∞n=1 and (X, U1) we assume that their p.d.f.s are
uniformly bounded and that there exists some k > 1 such that
their k-th moments are uniformly bounded. Then the distance
of (R1, R2) from RM

0 goes to zero when n → ∞. If this
property holds for every point (R1, R2) on the boundary of
RK-M

out then the gap between RM
0 and the capacity region (which

is given at (5)) is asymptotically zero in weak noise:

GAP −→
n→∞

0. (28)

Remark 2. An immediate conclusion from the this theorem
is that in small noise regime, RM

0 is practically the capacity
region. This result shows that the unresolved gap, as a function
of the noise power, is a continuous function near the point
where the channel is semi-noiseless. This result in the discrete
case agrees with the fact that in semi-deterministic broadcast
channel RM

0 = RK-M
out [9] [20].

Proof: Define U2,n = f(Xn). The sum-rate gap is given
by the following expression:

I(Y2,n; f(Xn)|U1,n)− [I(Y2,n;U2,n)− I(U2,n;U1,n)]
= I(U1,n; Zn|f(Xn) + Zn)
= I(f(Xn) + Zn;Zn|U1,n)− I(f(Xn) + Zn; Zn)
≤ I(f(Xn) + Zn;Zn|U1,n)

This mutual information goes to zero as n →∞ [21].
The gap between the rates for the second terminal is given

by the following expression: I(Y2,n;Xn) − I(Y2,n; U2,n) =
I(Y2,n;Xn|U2,n) = 0.

V. FURTHER RESULTS

A stronger connection between the capacity loss in side-
information channels and the unresolved gap in broadcast

channel can be established [12] using a tighter outer bound to
the capacity region of the broadcast channel, which appears
in [10]. Using this connection, bounds on the unresolved gap
in broadcast channels can be derived directly from bounds on
the capacity loss in side-information channels [12].

An additional result, which is already known, however di-
rectly results from the similarity to side-information problem,
is that in Marton’s achievable region RM

0 , it is enough to
consider only a deterministic functions X = f(U1, U2) as
the channel input [12] (using [3, Lemma 2]).

REFERENCES

[1] E. Haim and R. Zamir, “Broadcast channels and input-cost side informa-
tion,” in IEEE 24th Convention of Electrical and Electronics Engineers
in Israel, November 2006.

[2] S. I. Gelfand and M. S. Pinsker, “Coding for channel with random
parameters,” Probl. Contr. Inform. Theory, vol. 9, No. 1, pp. 19–31,
Jan.-Mar. 1980.

[3] R. J. Barron, B. Chen, and G. W. Wornell, “The duality between
information embedding and source coding with side information and
some applications,” IEEE Trans. Information Theory, vol. IT-49, pp.
1159–1180, May 2003.

[4] E. Haim and R. Zamir, “Quantization with variable resolution and
coding for deterministic broadcast channels,” in Allerton Conference on
Communication, Control and Computing, Oct. 2005.

[5] A. V. Kuznetsov and B. S. Tsybakov, “Coding in memory with defective
cells,” Problemy Pered. Inform. (Problems of Inform. Trans.), vol. 10,
No. 2, pp. 52–60, 1974.

[6] C. Heegard and A. E. Gamal, “On the capacity of computer memory
with defects,” IEEE Trans. Information Theory, vol. IT-29, pp. 731–739,
Sept. 1983.

[7] M. Costa, “Writing on dirty paper,” IEEE Trans. Information Theory,
vol. IT-29, pp. 439–441, May 1983.

[8] E. Martinian, G. W. Wornell, and R. Zamir, “Source coding with
distortion side information,” IEEE Trans. Information Theory, vol. IT-54,
pp. 4638–4665, Oct. 2008.

[9] K. Marton, “A coding theorem for the discrete memoryless broadcast
channel,” IEEE Trans. Information Theory, vol. IT-25, pp. 306–311, May
1979.

[10] C. Nair and A. E. Gamal, “An outer bound to the capacity region of the
broadcast channel,” in Proc. Int. Symp. Info. Theory, July 2006.

[11] Y. Liang, G. Kramer, and S. Shamai, “Capacity outer bounds for broad-
cast channels,” in Proceedings of IEEE Information Theory Workshop,
ITW 2008, Porto, Portugal, May 2008.

[12] E. Haim, “Input cost side-information and broadcast channels,” Master’s
thesis, Tel-Aviv University, October 2007.

[13] A. Khisti, E. Martinian, and G. Wornell, “Information embedding with
distortion side information,” in Proc. Int. Symp. Info. Theory, July 2006.

[14] J. Wolfowitz, Coding Theorems of Information Theory. New York:
Springer-Verlag, 1964.

[15] A. S. Cohen and A. Lapidoth, “The Gaussian watermarking game,” IEEE
Trans. Information Theory, vol. IT-48, pp. 1639–1667, June 2002.

[16] T. M. Cover, “Comments on broadcast channels,” IEEE Trans. Informa-
tion Theory, vol. IT-44, pp. 2524–2530, October 1998.

[17] M. S. Pinsker, “Capacity of noiseless broadcast channels,” Problemy
Pered. Inform. (Problems of Inform. Trans.), vol. 14, No. 2, pp. 28–34,
Apr.-June 1978.

[18] S. I. Gelfand, “Capacity of one broadcast channel,” Problemy Pered.
Inform. (Problems of Inform. Trans.), vol. 13, No. 3, pp. 106–108, July-
Sept. 1977.

[19] T. Linder and R. Zamir, “On the asymptotic tightness of the Shannon
lower bound,” IEEE Trans. Information Theory, vol. IT-40, pp. 2026–
2031, Nov. 1994.

[20] S. I. Gelfand and M. S. Pinsker, “Capacity of a broadcast channel with
one deterministic component,” Problemy Pered. Inform. (Problems of
Inform. Trans.), vol. 16, No. 1, pp. 24–34, Jan.-Mar. 1980.

[21] M. Godavari and A. Hero, “Convergence of differential entropies,” IEEE
Trans. Information Theory, vol. IT-50, pp. 171–176, Jan. 2004.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on November 8, 2009 at 10:42 from IEEE Xplore.  Restrictions apply. 


