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Abstract

We investigate the application of the nested coding framework for cancelling known interference at low
SNR, that is PX/PZ ≈ 1 and below. We consider multi-dimensional precoding, with anticipation of Ns > 1
“future” interference samples. Unlike non-precoded transmission, where capacity can be achieved at low
SNR without shaping, optimum precoding at low SNR does require shaping. Eyuboglu and Forney’s trellis
precoding scheme combines Tomlinson-Harashima precoding and trellis shaping, to achieve both coding
and shaping gains in transmission over inter-symbol interference channels with Euclidean distance decoder.
However, the standard configuration of this scheme does not support precoding at low SNR, where the
capacity is less than 1 bitdim . We propose a low rate precoding scheme which combines MMSE estimation,
dithering and a variant of nested codes, based on concatenation of a “syndrome dilution” code and a
“syndrome-to-coset” modulation code. We provide simulation results for several configurations of nested
trellis codes, which reduce the gap to capacity.

1 Introduction

Consider the interference channel
Y = X + S + Z, (1)

where X is the channel input with power constraint EX2 ≤ PX and Y is the channel output, Z is additive
i.i.d Gaussian noise Z ∼ N(0, PZ) and S is an arbitrary interference that is known at the encoder. Let the
SNR be PX

PZ
. The specific channel model where the interference S is i.i.d. Gaussian and known non-causally

at the transmitter was considered in [1], where it was shown that in this case C = 1
2 log2(1+SNR). Erez,

Shamai and Zamir [3, 10] developed structured coding scheme for cancelling known interference using
nested lattice strategies/codes (“lattice precoding”). This scheme uses a fine lattice - Λc in which a coarse
lattice - Λs is nested, where the basic cell of the coarse lattice, Vs, defines the region of the code and the
codewords are points of the fine lattice. Thus the coarse lattice determines the shaping gain while the fine
lattice the coding gain. Although Λc and Λs belong to the same multi-dimensional space, their effective
dimensions Nc and Ns may differ.

The lattice precoding scheme also incorporates common randomness (“dither”) and minimum mean
squared error (MMSE) estimation, α. Specifically, the transmitted signal is given by x = [v − αs −
d] mod Λs where v is the information bearing signal and d ∼ U(Vs) is the dither. Moreover, the receiver
front end is y′ = [αy+d] mod Λs. One of the main results of [3] is that this scheme induces an equivalent
modulo-Λs additive noise channel

Y′ =
[

V + Z′
]

mod Λs, (2)

where Z′ = [(1 − α)U + αZ] mod Λs is the equivalent noise. That is, Z′ is a mixture of the Gaussian
noise Z and “self noise”, U, which is uniformly distributed over the basic Voronoi region of Λs. For
α = PX/(PX + PZ) and high dimensional Λs (Ns →∞) with normalized second moment G(Λs) ≈ 1/2πe,
the self noise component approaches i.i.d Gaussian, consequently Z′ is nearly i.i.d Gaussian with EZ′

2 =
PXPZ/(PX + PZ). In this case, the full capacity C = 1

2 log(1 + SNR) is achieved.
The lattice precoding scheme may be viewed as a generalization of Tomlinson-Harashima (TH) pre-

coding [9, 5], where S plays the role of inter symbol interference (ISI), and the scalar modulo operation
of TH amounts to the special case of a Zn coarse lattice, implying effectively one dimensional (Ns = 1)
shaping, i.e., no shaping gain. A well known improvement to the TH precoding is the combined shaping
and precoding scheme of Eyuboglu and Forney (EF), trellis precoding [4]. In this scheme EF combines



between TH precoding and trellis shaping [6]. Trellis precoding achieves shaping gain by enforcing the
multi-dimensional transmitted signal to be in a Voronoi like region.

In this work we assume that Ns is large enough so that the self noise U is “Gaussian enough”, and
thus an Euclidean decoder is nearly the optimum decoder. However in a related study [8], for Ns = 1
we showed that a decoder matched to the equivalent noise Z′ has improved performance compared to an
Euclidean decoder.

2 Precoding “shaping-gap”

The ultimate precoding “shaping-gap” is the power (or SNR) gap between precoding using one dimensional
coarse lattice and precoding using high dimensional coarse lattice with G(Λs) ≈ 1/2πe (which achieves
the capacity), for a fixed mutual information. Unlike the interference-free AWGN channel, this gap is
particularly significant at the low SNR regime for the interference channel. Figure 1.a shows the mutual
information of a one dimensional lattice strategy achieved by (2), the mutual information achieved by a
uniform input over an interference-free AWGN channel, and the capacity C = 1

2 log(1 + SNR). We refer
to the SNR gap between the first two and the latter as “shaping-gap”, at high SNR the interference-
free AWGN and the interference channels have an identical shaping gap of 1.53 dB. At low SNR, the
interference-free AWGN channel has no shaping gap, on the other hand the interference channel has over
1.53 dB precoding shaping-gap. From Figure 1.a, at SNR = 0 dB the precoding shaping-gap is 3.1 dB,
while the shaping-gap of interference-free AWGN channel is close to zero.

The rate loss between one dimensional precoding scheme and Ns dimensional precoding scheme is
bounded by 1

2 log(2πeGNs(Λs)) ≤ 0.254 bit/dim, [3], for any SNR. Nevertheless, the capacity curve with
respect to the SNR (in logarithmic scale) is more sensitive at low SNR (the “6 dB per bit” is not valid at
low SNR), i.e, the loss in dB increases.

The shaping gap at the low SNR regime is well understood by drawing the mutual information with
respect to SNR

2I(V;Y′) (or
SNR
2R ), which is equivalent to Eb/N0. Figure 1.b shows the capacity, the mutual

information of one dimensional lattice strategy and one dimensional lattice strategy with time sharing at
the interval SNR ∈ [0, 1] (where SNRc = 1 is critical SNR for optimal transmission with time sharing at
the low SNR regime). For R→ 0, the Shannon limit is at Eb/N0 = −1.59 dB, the gap between the lattice
strategy with time sharing and the capacity is bounded by 4 dB.
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Figure 1: a. Precoding shaping-gap vs SNR. b. Precodeing shaping-gap vs SNR
2I(V;Y′) .

3 The nested lattices construction

“Construction A” is a fundamental method to construct a lattice Λ ∈ Rn using a linear code C(n, k) ∈ Zp,
where p is prime number. Since C is in the region of n-cube [0, p)n, the lattice Λ is obtained by tessellating



Rn with translations of C, i.e., Λ = C + pZn, thus Λ is a sub-lattice of Zn. Furthermore, “construction
A” of random ensembles of lattices achieve the interference-free AWGN channel capacity [7, 2], therefore
good lattices can be generated by “construction A”. Generally, a sub-lattice Λ2 of Λ1 induces a nested
lattice partition Λ1/Λ2 of Λ1 into |{Λ1 mod Λ2}| cosets of Λ2.

We present the nested lattices construction for Λc and Λs so that ZN/Λc/Λs/pZN , as shown in [8].
Initially, we construct Λ′s by “construction A” with linear code Cs(ns, ks) over Zp, meaning Λ′s = Cs+pZns ,
thus Λ′s is a sub-lattice of Zns . The code Cs contains all the codewords {cs} so that cs ∈ Zns

p and

whose syndrome, sy , Hscs, is equal to zero where sy ∈ Zns−ks
p . The coset leader group is defined

as {Zns mod Λ′s}, while a coset representative group includes a unique representative of each coset,
but not necessarily the coset leaders. The coset representative and coset leader groups have an equal
number of elements and they are equivalent modulo Λ′s. There are pns/|Cs| = pns/pks = pns−ks coset
representatives, which are equal to number of Cs syndromes. Each syndrome sy corresponds to a unique
coset representative. In order to obtain a Cs coset from a specific syndrome, we can apply the “pseudo” right
inverse parity check matrix on the syndrome [4], t = H−1

s sy so that sy = Hst, that is, t represents a coset
of Cs. Finally, the sub-lattice Λc of Zns is obtained by dilution of Zns codewords, which is accomplished
by dilution of Cs syndromes. Specifically, it is done by linear code Cc(nc, kc) over Zp, which produces a
sub-group of syndromes. The nested lattices construction is shown schematically in Figure 2.
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Figure 2: Nested lattices construction

The above construction implies effective rate of 1
N log2(Vs/Vc) [bit/dim], where Vc and Vs are the cells

volume of Λc and Λs, respectively. Assume nc is a multiple of ns−ks, then the construction ZN/Λc/Λs/pZN

has N = ns
nc

ns−ks
and Λs is

nc

ns−ks
times a Cartesian product of Λ′s, where the rate is

R =
1

N
log2(Vs/Vc) =

1

N
log2(p

kc) =
kc(ns − ks)

ncns
log2 p [bit/dim]. (3)

Furthermore, for any nc the construction should be extended by Cartesian product to dimension N =
ns

LCM(nc,ns−ks)
ns−ks

, nevertheless the rate is unchanged.

4 Transmission scheme

The transmission scheme is based on the following generalization of the “inflated lattice lemma” [3].

Lemma 1. (Generalized inflated lattice lemma) For the nested lattices chain ΛG/Λc/Λs/ΛA and the
channel defined by (1).
Encoder:

x = [v′ − αs− d̃] mod Λs, (4)



where v′ ∈ {Λc ∩ VA}, d̃ ∼ U(VA) and VA is the basic cell ΛA.
Decoder:

y′ = [αy + d̃] mod ΛA. (5)

For v ∈ {Λc ∩ Vs} the equivalent channel satisfies

Y′ = [v +B+ Z′] mod ΛA, (6)

with
Z′ = [(1− α)U+ αZ] mod ΛA, (7)

where B is some point in Λs which is a function of v′, and U ∼ U(Vs).

Applying the lemma to the nested lattices construction, where ΛG = ZN and ΛA = pZN , the equivalent
channel till y′ is given by Y′ = [v + B + Z′] mod pZN and B ∈ Λs. The effect of B can be cancelled by
maximum likelihood (ML) decoding of y′ for the nearest Λc codeword, and by syndrome detection of the
corresponding coset of Λs in Λc.

The transmission scheme which incorporates the lattice precoding and the nested lattices construction
is presented in Figure 3. The Λs second moment is given by σ2s = PX .
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Figure 3: Transmission scheme

Transmitter - the Cs syndromes dilution is done by a fine code encoder, where its output is a Cs syndrome,
sy ∈ Zns−ks

p . The shaping encoder, H−1
s , transforms a Cs syndrome to Cs coset representative v′, of Λs

in Λc over the basic cell of pZN , specifically v′ = H−1
s sy is a discrete point in Λc. The dither signal d̃ is

uniformly distributed over the basic cell of pZN . The transmitted vector is x = [v′ − αs − d̃] mod Λs,
it can be written as x = [v − αs − d] mod Λs where v ∈ {Λc mod Λs} is coset leader and d ∼ U(Vs),
as in [3]. Since d is uniform over Vs, the transmitted vector x is also uniform over Vs by the property of
dithered quantization. Therefore, the power constraint is 1

NE{||X||
2} = σ2s = PX .

Receiver - for information bits reconstruction, the receiver has to estimate the transmitted coset. Initially,
the receiver calculates y′ = [αy + d̃] mod pZN . Finally, since the equivalent channel till y′ is given by
Y′ = [v+B+Z′] mod pZN where B ∈ Λs, therefore V +B is in the same coset of V. The coset estimation

can be computed as ̂(v + b) = QΛc(y
′) where QΛc is performed over the basic cell of pZN .

Although the transmission scheme has been constructed from nested lattice codes, it can be interpreted
as structure of concatenated codes. This structure is composed of an inner code - performs syndrome-
to-coset-modulation for constellation shaping, and an outer code - adds redundancy for error correction
to enhance the noise immunity. Furthermore, the outer code is responsible for the coding gain while the
inner code for the shaping gain.

A detailed “rate flow diagram” of the encoder is illustrated in Figure 4, where the ms, mc integers are
determined by LCM(nc, ns − ks) = ms(ns − ks) = mcnc. A K-tuples of p-ary symbols is segmented into
mc vectors of length kc, each of the mc vector is encoded by Rc = kc/nc fine encoder. Therefore, at the
fine encoder output there are mc vectors of length nc. The mcnc p-ary symbols are segmented into ms

vectors of ns − ks symbols, each of the ms vector is encoded by Rs =
ns−ks

ns
shaping encoder, thus at the

shaping encoder output there are ms vectors of length ns symbols. The encoder rate is given by

R =
K

N
=

mckc
msns

=
kc(ns − ks)

ncns
log2 p (8)
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Figure 4: Encoder rate flow diagram

5 Nested trellis codes

A straightforward implementation of the above scheme, for p = 2, uses binary convolutional codes
Cc(nc, kc), Cs(ns, ks) to construct the nested binary lattice construction ZN/Λc/Λs/2ZN . The loss of using
p = 2 with shaping code rate Rs = 1/2 is 0.25 dB from the entire 3.1 dB shaping gap at SNR = 0 dB, see
[8]. Furthermore, as long as the SNR decreases the loss increases, therefore larger p is needed to achieve
the capacity at low SNR.

The coset representative, v′, is a series of one dimensional symbols {0, 1}. The dither vector d̃ ∼
U(basic cell of 2ZN) consists of continuous values random variables d̃i ∼ U(−1, 1). The modulo Λs oper-
ation can be written as x mod Λs = x − QΛs(x), where QΛs can be implemented by Viterbi algorithm
(VA) decoder for the nearest Cs codeword, since Λs has Voronoi partition. The receiver performs modulo
2ZN , or equivalently one dimensional modulo to the interval [−1, 1). The quantizer QΛc over the region
of the cube [−1, 1)N is implemented by VA decoder for the nearest Λc codeword in the region of [−1, 1)N .
The lattices effective dimensions Nc, Ns are mainly affected by the constraint length νc, νs of Cc and Cs,
respectively.

5.1 Performance results
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Figure 5: a. Shaped versus un-shaped system. b. Gaussian interference.

Figure 5.a shows 1.8 dB precoding shaping gain of the shaped system with νs = 8, compared to the
un-shaped system at Pe = 1 · 10−3 (about SNR = 0 dB). However, the precoding shaping-gap is bounded
by 3.1 dB at SNR = 0 dB. The precoding system immunity to the interference signal is shown in Figure
5.b for Gaussian interference. As long as the dither signal is used, the system performance is the same for
any interference power level and any interference distribution. For non-dithered system the performance
is interference dependent.

Figure 1.b illustrates the shaped systems performances with transmission rate 1
4 ,
1
6 ,
1
8 ,

1
12 bit/dim at

Pe = 1 · 10−3. These systems operate about 4.5 dB from the capacity, although modest convolutional
codes have been used as fine code.



6 Discussion

The above scheme can incorporate different codes, especially Turbo codes or LDPC codes as a fine code
with some decoder changes. Using these codes in our scheme enables to approach the interference channel
capacity. Theoretically, for any good fine code we use, without a shaping code the capacity can not
be achieved. Furthermore, at low SNR the precoding shaping-gap increases, therefore the shaping code
requires specific consideration.
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