
It Is Better to Take Few Accurate Measurements rather than Many

Noisy Ones ∗

Ram Zamir

330 E&TC Building, Cornell University, Ithaca, NY 14853 . e-mail: zamir@ee.cornell.edu

April 1995

Abstract

Linear pre-filtering (projection) of the measurement space is often used in parameter esti-
mation to reduce the dimensionality, and hence the complexity, of the (generally non-linear)
processor. We examine the tradeoff between the number and the accuracy of the measurements,
as reflected by the Fisher Information after the prefilter. We observe the following phenomena.
Taking twice as much but half as accurate measurements does not preserve the Fisher informa-
tion after the prefiletr, unless the measurement noise is Gaussian. Thus, when the processor
dimension is fixed and the noise is not Gaussian, it is better to take few accurate measurements
rather than many noisy ones.
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I. Introduction

In many situations a large number of noisy measurements is used to estimate a small number of

parameters. Examples may be found in array processing, in linear modeling (e.g., equalization for

multi-path channels, or linear prediction for speech coding), and in digital-to-analog conversion of

oversampled data. In certain applications, the number of measurements is used to trade for their

accuracy in order to achieve a desirable estimation error. Suppose the “cost” of a measurement is

some function of its accuracy. The system designer may wish, then, to find an optimal operation

point in terms of the amount and the accuracy of the measurements.

In the case where the measurement noise is Gaussian, the solution to this problem is very simple

and intuitive, due to the linear structure of the optimal estimator. However, in non-Gaussian noise

cases the situation is less clear, since often in practice linear pre-filtering precedes the (possibly non

linear) estimator in order to reduce its dimensionality and hence its complexity [8].

In this paper we are concerned with the effect of linear pre-filtering, and with the question of the

optimal tradeoff between the amount and the accuracy of measurements in parameter estimation.

Section II presents the linear additive non-Gaussian noise model which we analyze. In Section III

we present our main result which is an explicit upper bound on the Fisher information matrix (or

via the Cramer Rao bound, a lower bound on the mean squared estimation error). The important

property of this bound is that it provides insight to the quantity-quality tradeoff discussed above,

while making a distinction between the Gaussian and the non-Gaussian noise cases. In Section IV

we prove our main result, using a matrix form of the Fisher Information Inequality (FII) which was

recently presented in [10]. The last section provides an example that illustrates the quantity-quality

tradeoff in a case where the Cramer Rao bound is tight. A detailed proof of the matrix-FII is given

in the appendix.

We note that the degradation of the marginal Fisher information due to linear projection has
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already been observed before (see, e.g., [5] and the literature on blind deconvolution). In this

respect, our work extends the scope to the multi parameter case.

II. The Statistical Model

Suppose we need to estimate a vector of unknown (nonrandom) real parameters θ = θ1 . . . θm by

observing

Y = H · θ + α ·N , (1)

where H is a known n×m matrix, α is a known scalar parameter, and N = N1 . . . Nn is a vector

of independent noises. Each measurement, Yj, j = 1 . . . n, is thus some linear combination of the

parameters, corrupted by its own independent noise. Assume that n ≥ m and that Rank H = m,

so that for noiseless measurements equation (1) is invertible.

In order to give a physical insight to this problem, one may interpret Y as the output of an

array of n sensors in the presence of m targets. By this interpretation, the m entries in the j-th

row of H are the gains of the j-th sensor with respect to the targets θ1 . . . θm, the m columns of H

are the virtual beams of the array towards the m targets, and the parameter α controls the overall

signal-to-noise ratio, or the accuracy, of the array.

The processor we consider in this paper has the special structure shown in Figure 1. First, the n

measurements are projected onto an m̃-space, m ≤ m̃ ≤ n, by means of linear transformation. Then

a (possibly non-linear) processor is applied to obtain an unbiased estimate θ̂ of the parameters.

The input of the non-linear processor is thus

Ỹ = P · (Hθ + αN) , (2)

where P is an m̃× n orthonormal matrix, i.e., PP t = Im̃, where Im̃ is the m̃× m̃ identity matrix.

Note that any more general pre-filter can be rewritten in this form by suitably modifying P and

H. We further assume that Rank PH = m, i.e., the rows of P span the columns space of H,
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Figure 1: The statistical model of the measurements and the structure of the estimator.

so that (2) is invertible when the measurements are noiseless. The two extreme situations of this

processor are m̃ = n (e.g., when P = In), where the non-linear processor has direct access to all

the n measurements, and m̃ = m, where the dimension of the measurements space is reduced to

the number of parameters, i.e., to its minimal possible value.

We are interested in investigating the quality of the estimate as a function of the number of

measurements, n, and the dimensionality of the estimator, m̃, when the number of parameters, m,

is fixed. For that we need to impose two additional “physical” constraints. First, we assume that

N1 . . . Nn are i.i.d. random variables. (3)

Second, we assume that all rows of H have a unit square norm, i.e.,

m∑

j=1

h2i,j = 1 , for i = 1 . . . n . (4)

Continuing our interpretation above, these two conditions means that the accuracy and the total
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gain of each one of the sensors are the same. Furthermore, enlarging the array is equivalent simply

to adding rows of unit norm to H and extending respectively the i.i.d. noise vector N .

III. The Main Result

The processor wishes to minimize the estimation error covariance matrix

COV(θ̂ − θ) = E
{
(θ̂ − θ) · (θ̂ − θ)t

}
. (5)

A useful tool for assessing the performance limit of any unbiased estimator1 which has access to

Ỹ , is the Cramer-Rao Lower Bound (CRB), [7], which states that

COV(θ̂ − θ) ≥ J(θ)−1 , (6)

where the inequality between the two matrices means that the difference matrix is nonnegative

definite. The m×m matrix J(θ) is the Fisher Information matrix

J(θ) = COV
{
∇θ ln

(
fỹ(Ỹ ; θ)

)}
, (7)

where COV(·) denotes covariance matrix as in (5), ln(·) is the natural logarithm, fỹ(Ỹ ; θ) is the

probability density function of Ỹ for some parameter vector θ, and

∇θ =

(
∂

∂θ1
, . . . ,

∂

∂θm

)

is the gradient vector with respect to the parameters. Note that due to the simple linear additive

noise model (2), J(θ) is in our case independent of the value of θ.

For a Gaussian noise N ∼ N (0, σ2
N ), the maximum likelihood (ML) estimate

θ̂ML(Ỹ ) = argmax
θ

fỹ(Ỹ ; θ) (8)

1An unbiased estimator satisfies E{θ̂} = θ, for all θ in some neighborhood of the true parameter.
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is unbiased and efficient, i.e., it satisfies the CRB (6) with equality; see [7, p. 68]. More specifically,

in the Gaussian case Ỹ is a multivariate normal vector, with mean PH ·θ, and covariance α2σ2
N ·Im̃,

and so

J(θ) =
HtH

α2σ2
N

(9)

(see Section IV). Also, since we may always write

PH = P̃ tG ,

where P̃ is an m× m̃ orthonormal matrix (i.e., P̃ P̃ t = Im) and G is a non-singular m×m matrix,

the ML estimate (8) may be written in the Gaussian case in a linear form, as

θ̂ML = G−1P̃ · Ỹ . (10)

Thus, the ML estimate has a Gaussian distribution, with mean θ and covariance

COV(θ̂ML − θ) = J(θ)−1 = α2σ2
N · (HtH)−1 . (11)

As for the non-Gaussian noise case, let σ2
N = VAR(N) denote the variance of N , and let, [3,

pp. 494-497],

JN = VAR

{
d

dN
ln(f(N))

}
=

∫
1

f(n)

(
df(n)

dn

)2

dn (12)

denote the (scalar) Fisher Information with respect to a translation parameter of the measurement

noise Ni, where f(n) is the density function of Ni (which is identical for N1 . . . Nn). Note that

JN ≥ σ−2

N , with equality if N is Gaussian [1].

Theorem 1 Assume the model defined in (1), (2) and (3). Then, for any m ≤ m̃ ≤ n,

σ−2

N

α2
·HtH ≤ J(θ) ≤ JN

α2
·HtH (13)

where the inequality between the matrices is in the sense of (6). The upper bound is tight if m̃ = n,
and both inequalities are tight (for any m̃) if the noises are Gaussian. Furthermore, if we also
assume (4), we have

n · σ
−2

N

α2
≤ trace {J(θ)} ≤ n · JN

α2
, (14)

where trace{·} denotes diagonal element sum, and equality holds under the same conditions as in
(13).
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The proof is given in Section IV. The main contribution of Theorem 1 is in the upper bound on

the Fisher Information matrix, which is based on a matrix form of the Fisher Information Inequality

(FII) given in Section IV. The matrix-FII was stated originally in [10] and proved partially in [9].

For completeness we provide its full proof in the appendix.

Compare the upper and lower bounds in (13) with the Fisher information in the Gaussian

noise case (9). We observe that non Gaussian measurements provide us with more information

than Gaussian measurements having the same variance, but with less information than Gaussian

measurements having the same Fisher information.

We now make some additional interesting observations from the second part of Theorem 1,

which bounds the Fisher Information sum2. Consider first the case m̃ = n in which by Theorem 1

the upper bound in (14) is tight, i.e.,

trace {J(θ)} = JN · n

α2
. (15)

Recall that α2 is a measure for the accuracy of the measurements. The relation (15) implies that

the Fisher Information sum is constant as long as the ratio n/α2 is kept constant. In other words,

when the non linear processor has direct access to all the n measurements there is a simple tradeoff

between the number of measurements and the accuracy of each measurement, which keeps the Fisher

Information sum fixed. Consider now the case where m̃ < n. It follows from Theorem 1 that for

non Gaussian noise the Fisher Information sum is in this case less than JN · n
α2 . Namely, when

the measurement space is projected into a smaller sub-space prior to the non-linear processor the

Fisher Information sum decreases (unless the measurement noises are Gaussian). Thus, if we have

the choice of taking as many measurements as we want while keeping n/α2 = constant, but in the

same time the dimension of the processor input must be kept as low as possible, i.e., m̃ = m, ∀n,
2The diagonal elements of the Fisher Information matrix may not be uniform (in terms of our array processing

interpretation, the array may have strong beams pointing to some of the targets, and weak beams pointing to others),

and so it is more meaningful to consider their sum or their average.
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then it is better to take few accurate measurements rather than many noisy ones.

Theorem 1 also provides insight into the structure of the optimal estimator. In the Gaussian

case the optimal unbiased estimator (10) is linear, composed of projection of the measurements

vector on the parameters space and linear transformation. In the non-Gaussian case Theorem 1

tells us that the optimal estimator cannot be decomposed into projection followed by some (non

linear) operation. This may be explained by the fact that projection, which is a non invertible

linear transformation, makes the additive noise more Gaussian (see [10]) and thus less favorable

for the estimator. This phenomena is illustrated in the example in the last section.

The second part of Theorem 1 is stated with respect to the Fisher Information sum rather than

in terms of the CRB (6) (i.e., the inverse Fisher Information matrix) which directly lower bounds

the estimation errors E(θ̂i − θi)
2, i = 1 . . . m. Nevertheless, if the columns of H are orthogonal and

have the same square norm, then by (4),

HtH =
n

m
· Im . (16)

In this case each of the diagonal elements of the inverse Fisher Information matrix satisfies

m

n
· α2σ2

N ≥ J(θ)−1
i,i ≥ m

n
· α

2

JN
, i = 1 . . . m . (17)

Equality in the lower bound in (17) holds if m̃ = n, and both inequalities are tight (for any m̃) if

the noises are Gaussian.

In the array processing interpretation, when (16) is satisfied we say that the array has “or-

thogonal beams having equal gains”. Paradoxically, in order to satisfy (16) in dynamic situations

(e.g., in order to ensure high resolution between moving targets), an array should have much more

sensors than targets. Thus, in light of (17) and contrary to our conclusion following (15), it might

be desirable to have n ≫ m.
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IV. Derivation of Results

We first introduce a special form of Fisher Information which does not involve explicitly a parameter,

and is useful for our purpose. Let f(x) be the density of some random vector X. The Fisher

Information of X with respect to a translation parameter is defined as

K(X) = COV
{∇x ln (f(X))

}
= E

{(∇xf(X)

f(X)

)(∇xf(X)

f(X)

)t
}
; , (18)

where ∇x is the gradient vector with respect to x. Note that the quantity JN defined in (12) is the

scalar form of (18). If the components of X are independent, then the matrix K(X) is diagonal,

with the scalar FI’s of the components of X on its diagonal. The Fisher Information (18) satisfies

the scaling property K(αX) = 1/α2K(X), or more generally

K(AX) = (A−1)tK(X)A−1 (19)

for any non singular square matrix A. A lower bound on K(X) is provided by the inverse covariance

K(X) ≥ COV(X)−1 , (20)

with equality if X is a Gaussian vector. Note that for a Gaussian vector X∗ we have

K(AX∗) = COV(AX∗)−1 =
(
AK(X∗)−1At

)−1

(21)

for any matrix A (not necessarily square).

The special form of Fisher Information defined in (18) satisfies another interesting inequality,

called the Fisher Information Inequality (FII); see e.g. [3, pp. 494-497] and [4]. We next propose

a matrix form of the FII, which was shown recently in [10] and [9]. Given the m × n matrix A,

define IR(A) ⊆ {1 . . . n} to be the subset of indices j such that xj is uniquely determined by Ax,

and define I0(A) ⊆ {1 . . . n} to be the subset of indices of the all-zero columns of A. If j ∈ IR(A)

we say that “xj is extractable”, while if j ∈ I0(A) we say that “xj is irrelevant”. Of course both
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sets may be empty, while if A is a non-singular square matrix IR(A) = {1 . . . n}. Finally, given the

random vector X, define IG(X) ⊆ {1 . . . n} to be the subset of indices j such that Xj is Gaussian.

Theorem 2 (“Matrix FII” - Zamir Feder [10]) Suppose the components of the random vector
X = X1 . . . Xn are statistically independent. Then, for any m× n matrix A, m ≤ n, having a full
row-rank (i.e., Rank A = m),

K(AX) ≤ K(AX∗) =
(
AK(X)−1At

)−1

(22)

where X∗ is a Gaussian vector with independent components such that the variance of X∗
j equals

K(Xj)
−1 for j = 1 . . . n (i.e., X∗

1 . . . X
∗
n have the same scalar Fisher Informations (12) as X1 . . . Xn).

The matrix inequality (22) is in the sense of (6). Equality holds if and only if

IR(A)
⋃

I0(A)
⋃

IG(X) = {1 . . . n} , (23)

i.e., if every Xj is either “extractable” or “irrelevant” or Gaussian.

The proof which originally appeared in [9] without the exact condition (23) for equality, is given

for completeness in the appendix. In particular, equality in (22) holds if X1 . . . Xn are all Gaussian

random variables, or if m = n (in which case A is invertible so (22) coincides with (19)). We may

turn now to prove Theorem 1.

Proof of Theorem 1: Following the simple linear additive noise model (2), we obtain

∇θ ln
(
fỹ(x ; θ)

)
= (PH)t · ∇x ln

(
fαPN(x− PHθ)

)
, (24)

where fαPN(·) is the density of the random vector αPN (which exists since P has a full row rank).

Using definitions (7) and (18), and the scaling property of K(·), we then obtain

J(θ) =
1

α2
(PH)t ·K(PN) · (PH) . (25)

Note that (25) holds for any joint probability density function of the measurement noise vector.

To show the lower bound in (13), we use (20) to obtain

J(θ) ≥ 1

α2
(PH)t · COV(PN)−1 · (PH) . (26)
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Since N1 . . . Nn are i.i.d., and since PP t = Im̃, we have COV(PN ) = σ2
N · Im̃, so

J(θ) ≥ HtP tPH

α2σ2
N

=
HtH

α2σ2
N

, (27)

where the second equality above follows since the (orthonormal) rows of P span the columns space

of H (see the discussion following (2)), so P tP is virtually a unit matrix with respect to the column

space of H.

As for the upper bound in (13), we use the fact that N1 . . . Nn are independent, and apply the

matrix form of the FII (22), to obtain from (25)

J(θ) ≤ 1

α2
·HtP t

(
PK(N)−1P t

)−1

PH =
JN
α2

·HtH , (28)

where for the second equality we substituted K(N) = JN ·In and PP t = Im̃, and we used the same

argument used in (27) by which HtP tPH = HtH.

In the special case m̃ = n we have P−1 = P t, so from (19), K(PN) = JN · In. Substituting in

(25) we get J(θ) = JN/α2 ·HtH, which implies that the upper bound is tight in this case. In the

Gaussian case, JN = σ−2

N , resulting equality.

To obtain (14), we take the trace of (13) (which preserves the inequality), and we utilize as-

sumption (4) which implies trace{HtH} =
∑

i,j h
2
i,j = n. ✷

V. Example

To illustrate the phenomena predicted by Theorem 1, we present in this section a simple example

of estimating a parameter corrupted by a “very un-Gaussian” noise. We show the loss due to

pre-projection of the measurements by examining the Fisher Information and the actual minimum

achievable MSE in this example. We assume a doubly modal Gaussian noise, distributed as

N ∼ 1

2
· N (−∆, δ2) +

1

2
· N (∆, δ2) , (29)
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i.e., N has a density fN(x) = 1

2δ
{φ(x/δ+∆)+φ(x/δ−∆)}, where φ(x) = 1√

2π
exp(−x2/2) denotes

the standard normal distribution. To make N indeed “very un-Gaussian”, assume that ∆ ≫ δ. We

consider estimating a single parameter θ (i.e., m = 1), given the measurement vector

Yi = θ + αNi , i = 1 . . . n ,

where the Ni’s are independent random variables, identically distributed according to (29), and for

convenience we set α = 1.

Our aim is to compare the performance of the estimator θ̂(Y1 . . . Yn) which has access to all the

measurements, with that of the estimator θ̂(Ỹ ) which receives only a scalar projection Ỹ =
∑

i piYi

of the measurements. In terms of the definitions in Section II, these are the two extreme cases

m̃ = n and m̃ = 1. As a natural choice for the pi’s in the second case we take a symmetric

projection, i.e., p1 . . . pn = 1/
√
n . . . 1/

√
n.

We first apply Theorem 1 to this example. The variance of N is given by V AR(N) = ∆2 + δ2.

By the assumption ∆ ≫ δ, the Fisher Information of N with respect to a translation parameter

(as defined in (12)) is given approximately3 by

JN =

∫
(f ′

N (x))2

fN (x)
dx ≈ 1

2

{∫
( 1

δ2
φ′(x/δ +∆))2

1

δ
φ(x/δ +∆)

dx+

∫
( 1

δ2
φ′(x/δ −∆))2

1

δ
φ(x/δ −∆)

dx

}
=

1

δ2
, (30)

where φ′(x) = − x√
2π

exp(−x2/2). Substituting in Theorem 1, we get that the Fisher Information

J(θ, m̃), for m̃ = 1 and m̃ = n, satisfies

n

∆2 + δ2
≤ J(θ, 1) < J(θ, n) =

n

δ2
. (31)

Next, we examine directly the minimum mean squared error in unbiased estimation of θ in both

cases discussed above, and show that it coincides with the CRB. Consider first the case m̃ = n. Due

to the doubly modal nature of fN , and since ∆ ≫ δ, most of the measurements will be concentrated

3More precisely, JN → 1/δ2 as ∆ → ∞.
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in two accumulations with width of about 4δ each 4. We thus can divide the measurements into

two distinct groups, where {Y +
i }n+i=1

are those in the upper accumulation, and {Y −
i }n−i=1

are those

in the lower one. With high probability each accumulation is associated with only one (Gaussian)

mode of N , and n+ + n− = n. We claim that

θ̂(Y1 . . . Yn) =
1

n






n+∑

i=1

(Y +
i −∆) +

n−∑

i=1

(Y −
i +∆)




 (32)

is efficient, i.e., it achieves the CRB J(θ, n)−1 = δ2

n
given in (31). To see that, note that with high

probability the estimator (32) is distributed as N (θ, δ2/n). Thus, θ̂ is an unbiased estimator having

MSE of δ2/n, as we claim5.

Consider now the case m̃ = 1. For n large enough the Central Limit Theorem holds, and the

distribution of Ỹ = 1√
n

∑
i Yi is approximately normal, with mean

√
nθ and variance (∆2 + δ2).

Thus, asymptotically the CRB is tight, given by J(θ, 1)−1 = (∆2+δ2)/n, and it is actually achieved

by the estimator θ̂(Ỹ ) = Ỹ /
√
n. We thus conclude that for large n,

min
θ̂
E(θ̂(Y )− θ)2

min
θ̂
E(θ̂(Ỹ )− θ)2

≈ J(θ, n)−1

J(θ, 1)−1
≈ δ2

∆2 + δ2
, (33)

where the minimizations above are taken with respect to all possible unbiased estimators. This

demonstrates the loss due to pre-projection of the measurements for large n.
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