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Abstract

As bees and crystals (and people selling oranges in the thddakew it for many years, lattices provide
efficient structures for packing, covering, quantizationd &hannel coding. In the recent years, interesting links
were found between lattices and coding schemes for muititteal networks. This tutorial paper covers close
to 20 years of my research in the area; of enjoying the bedulgtiice codes, and discovering their power in
dithered quantization, dirty paper coding, Wyner-Ziv DPOiodulo-lattice modulation, distributed interference
cancelation, and more.

. INTRODUCTION

Lattice codes form effective arrangements of points in sgac various geometric and coding problems, e.g.,
sphere covering and packing, quantization, and signabnghie additive white Gaussian noise (AWGN) channel
[11], [21]. The effectiveness (as well as the complexityhad solution or the coding effort) usually increases with
the spatial dimension; good lattices tend to be “perfectlimspects as the dimension goes to infinity. However,
for a given dimension, the problems are not equivalent. feigjof merit like thickness, density, normalized second
moment (NSM) and volume-to-noise ratio (VNR), charactetiow good a given lattice is with respect to each
of the various aspects.

Recent developments in the area of Gaussian network intf@mégheory generated new solutions based on
lattices, and hence new figures of merit [66], [18]. For exEmfor side-information problems known as the
“Wyner-Ziv” source and the “dirty-paper” channel, a nespedr of lattices is needed where one component lattice
forms a good channel code while the other component lattices a good source code. For joint source-channel
coding problems, lattices with a good NSM-VNR product arsirel [34].

We review these results, and re-examine the theory of dafigures of merit in the context of multi-user
systems and linear Gaussian networks. We hope that thiviewewill motivate and guide future research on

efficient lattice codes construction.



Il. LATTICES AND FIGURES OFMERIT

An n-dimensional lattice\ is defined by a set of basis (column) vectorg,,...,g, in R". The latticeA is

composed of all integral combinations of the basis veciogs,
A={£=G-i:iez"}, 1)

whereZ = {0, £1,+2,...}, and then x n generator matrixG is given byG = [g, | g,/ - .. | g,,|. Note that the
zero vector is always a lattice point, and tldais not unique for a givern\. See [11].
A few important notions are associated with a lattice, sef, [B0]. The nearest neighbor quantiz-)

associated with\ is defined by
Qx)=Lec A if |x—2|<|x—¢| VleA, 2

where|| - || denotes Euclidean norm, and ties are broken in a systematioen. The basic Voronoi cell of is
the set of points irR™ closest to the zero codeword, i.8y = {x : Q(x) = 0} . The Voronoi cell associated
with each? € A is the set of pointx such thatQ(x) = € and it is given by a shift o), by £. The moduloA
operation w.r.t. the lattice is defined as

xmModA = x — Q(x) (3)

which is also the quantization error &f with respect toA.

The use of high dimensional lattice codes is justified by tkistence of asymptotically “good” lattice codes.
Lattice “goodness” may take one of several forms [11], [Bdlow we consider four such forms. It is interesting
to note that a lattice which is good in one sense need not sadlysbe good in the other. Nevertheless, it is
shown in [15] that a sequence of lattices exists which is kanaously good in all four aspects.

Packing problem:Consider a lattice\ with Voronoi region). For a given radiug the setA + 13 is a packing

in Euclidean space if for all lattice points y € A (x # y) we have

(x+rB)N(y+rB)=10
whereB denotes the unit ball. That is, the spheres do not interBedine the packing radiu;s}iaLCk of the lattice
by

74/pxack =sup{r: A+ rB is a packing}. (4)

Note thatr}iaLCk is the radius of the largest-dimensional ball contained in the Voronoi célj. Denote byrf\1cfec
the “effective radius” of the Voronoi region, meaning thelites of a sphere having the same volume, so that

reffec is defined by

1>

Va(r{®) = Vol(V) =V (5)

whereVz(r) denotes the volume of a sphere of radiugsigure 1 gives the geometric picture Qf,q andrf\lcfec

with respect to the Voronoi region, as well as the other radibe defined below. Define the packing efficiency
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poacic(A) = A (6)
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We note that the packing efficiengy,(A) is by definition no greater than one. We wigh,.(A) to be as
large as possible. For a sequence of lattidgs the best known asymptotic lower bound faf..(A) is equal
to % , a result known as the Minkowski-Hlawka theorem [53].

Covering problem:The associated notions for the covering problem are defiimailagy to their packing
counterparts. The sét-+ 3, composed of spheres centered around the lattice poirdascasering of Euclidean
space if

R® C A+ rB.

That is, each point in space is covered by at least one spbefie the covering radius of the lattic§" by

i’ = min{r: A+ rB is a covering}.

This is also the minimum radius of a ball containikg. Define the covering efficiency..,(A) of a lattice by

7,.[C\OV

effec *
A

Peov(A) =

We note that the covering efficiengy,,(A) is by definition not less than one. We wigh,,(A) to be as small
as possible. It is a result of Rogers [52] that there existjeece of lattices such that,, (A,) — 1 asn — co.
This means that covering (in contrast to packing) may be asytically efficient, i.e., every point in space can
be covered (for a good lattice covering) by at most a sub-esptial number of spheres.

See standard textbooks on packing and covering such as Kfgrand Conway and Sloane [11].
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Mean-squared error (MSE) quantizatiohe second moment: of a lattice is defined as the second moment

per dimension of a uniform distribution ovét,

1 1
2 _ 2 2
oy = SR /v ||Ix||“dx. (7)

A figure of merit of a lattice quantizer with respect to the M8iStortion measure is the normalized second
moment (NSM)

2

G(A) (8)

Vv2/n
where V' = Vol(V). The minimum possible value af(A,,) over all lattices inR™ is denoted byG,,. The
normalized second moment of a sphere, denoted?pyapproache% as the dimension goes to infinity. The
isoperimetric inequality implies that,, > G}, > ﬁ for all n. We also haves,, < G = %

The operational significance of this figure of merit comesnfrddassical results in high resolution quantization
theory; see e.g. [28]. A result due to Poltyrev in [64] statest

lim G = —— 9)

n—00 27e
i.e., that there exist a sequence of “good” lattice quargiag such thatG(A};) = G, — 5. Another result in
[64] is that the guantization noise of a good lattice (e.dattice achieving’,,) is “white”, i.e., the covariance
matrix of a uniform distribution ovew is given byo3 - I, where! is the identity matrix.

Coding for the unconstrained AWGN:he AWGN channel model is given by the input/output relation
Y=X+7 (10)

where 7 is i.i.d. Gaussian noise of variandé. We denote byZ an i.i.d. vector of lengttn of noise random
variables.

The notion of lattices which are good for AWGN coding may bdirdel using Poltyrev’s [50] definition of
coding for theunconstrainedAWGN channel, allowing to separate the “granular” propeytof the lattice as a
good channel code from the issue of shaping (to meet the poovestarint). In this scenario any point of a lattice
may be transmitted, corresponding to infinite power andstrassion rate. For a given lattice the ML decoder
will search for the lattice point that is nearest to the reegivector. Therefore, the probability of decoding error

is the probability that the noise leaves the Voronoi regibthe transmitted lattice point
P.=Pr{Z ¢ V}. (11)

The volume-to-noise ratio (VNR) of a lattice at probabiliaf error P, is defined as the dimensionless number
V2/n
T>
where N is such that (11) is satisfied with equality [Z2Note that for fixedP,, the VNR is invariant to scaling

M(Aa Pe) = (12)

of the lattice. The minimum possible value ofA, P.) over all lattices inR"™ is denoted by, (P.). The VNR

We omit the2re from the original definition to keep the symmetry with the ditfon of the NSM.
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Fig. 2: Equivalent additive noise channel of the ditheratide quantizer.

of a sphere, denoted (P.), approache@re for any 1 > P. > 0 asn — oo.2 Furthermore, since a sphere
supports the isotropic vectdt better than any shape of the same volume (seesfiiere boundf [22]), we
have i, (P.) > ! (P.) > 2me, where the second inequality holds for all sufficiently dnal. It follows from
Poltyrev (see also [21], [22], [15]) that

lim p,(P.) =2me, forall 1> P.>0. (13)

n—oo

[1l. DITHERED QUANTIZATION

In quantization theory (as well as in some non-linear preicgssystems) the term “dithering” corresponds to
intentional randomization, aimed to improve the percetiact of the quantization, e.g. to reduce “blockiness” in
picture coding. Dithered quantization is also an effecthean to guarantee a desired distortion level, independent
of the source statistics.

Specifically, let the vectoZ be uniform over the fundamental Voronoi regidfy of the lattice A, and
independent of the source. We say tl#fatis “subtractive dither” if it is known at both the encoder atie
decoder, and we reconstruct the source vec@s Q) (s + Z) — Z. Addition and subtraction of a vectarbefore
and after lattice quantization amounts to shifting thedatguantizer, (-) by the vector—z. Since the lattice
guantizer is periodic in space, a random uniform shift olierlattice period makes the quantization error uniform

as well.

Theorem 1. [64] The quantization erro@ (s+Z)—Z—s is uniform over—)), the reflection of the fundamental

Voronoi region))y, independent of the source vector

Equivalently,(s + Z) modA is uniform over—), for anys, a result termed “Crypto Lemma” by Forney [23].
As a corollary from Theorem 1 and (7), the mean squared distoof the dithered quantizer is equal to the
lattice second moment:

EIQa(s +2) ~ Z—s|* = 0} (14)

independent of the source vector

2Note that by the Law of Large Numbe|§§,||Z||2 — Pn asn — oo, thus the typical set of the noisé coincides with a sphere of
radiusy/n Py, and therefore the NSM-VNR product for a sphéu;, (P.) — 1.



In high resolution quantization theory it is common to motthed quantization process as adding (indeper?dent)
noise to the source [27]. While this is just an approximatiwhich holds under the assumption that the quantizer
cells are small compared to the variations in the sourcd.pp.@heorem 1 shows that for dithered quantization
the equivalent additive noiseodel, shown in Figure 2, is accurateaaty resolution

The next theorem makes the connection to an additive noiaengh even stronger. Assume that for a given
source statistics, the lattice quantizer output is losyfe®ntropy” coded, conditioned on the dither value. That
is, each lattice point is mapped into a binary word of vaegale@ngth, such that the average code length is
approximately equal to the conditional entropy of the gizamtoutput

HQuS+2)12) = 3; | da 3 ~pia)logni(2) (15)

Vo i
wherep;(z) = fv fs(x —z)dx is the probability that the source vector falls in ttie cell of the shifted lattice.

If the source statistics are known a priori, then this entrigpachieved by making the binary word length close
to — log p;(z) [14]. Otherwise, there exist universal coding schemes,(thg Lempel-Ziv compression algorithm
and others) which can sequentially approach the entropypystationary and ergodic source [14]. We call such a

combination of a lattice quantizer and optimum lossles®dimg an Entropy Coded Dithered Quantizer (ECDQ).

Theorem 2. [62] The rate of the ECDQ, i.e., the conditional entropy of théneliéd lattice quantizer, is equal

to the mutual information in the equivalent additive noisamenel of Figure 2:
H(Qa(S +2)|Z) = I(S;S - Z) (16)
where ! denoted mutual information [14].

The mutual information formula above resembles the expedsr Shannon’s rate-distortion function:

R(D) = inf 1(8;89) 17)
S: E{d(S,8)}<D

where the distortion measudecan be, for example, squared erts, 3) = (s — 3)2. This function characterizes
the minimum achievable rate in lossy compression of a melessysource5, and can be extended to sources
with memory [14]. The formal resemblance between the twenfdas leads to aniversalbound on the loss of

the entropy-coded dithered lattice quantizer.

Theorem 3. [69], [62] For any sourceS, the redundancy of the ECDQ above the rate-distortion fonctuinder

a squared error distortion measure is at most

H(QA(S +2)[2) ~ R(D) < | + 5 log(2meG(A)) bit (18)

See [62] for general difference distortion measures. Angotlj (squared-error) lattice quantizer satisfies
Lloyd’s centroid condition, [27], implying that the dith@ector has zero mean. For such a lattice quantizer, the

second term in the right hand side above can be interpretédeadivergence (or “Kullback-Leibler distance”)



of the dither distribution from AWGN:
%10g(27reG(A)) _ D(z||Z") (19)

whereZ* is a zero-mean i.i.d. Gaussian vector with @) = o3 for all i, and whereD(-||-) denotes divergence
[14], [64].

Interestingly, the channel of Figure 2 could realize thedistortion function (17) of any continuous source
in the limit of high resolution quantizationY — 0), if the dither Z was replaced by Gaussian noise [4].
The divergenceD(Z||Z*) measures the information distance of the dither from beiagsSian. Thus, at high

resolution conditions, we can obtain a tighter characion for the rate loss of the ECDQ.

Theorem 4. For any continuous sourc8 (i.e., a source with a p.d.f.), the redundancy of the ECDQvabibe

rate-distortion function under squared-error distortiomeasure satisfies
1
Ll)imOH(QA(S +72)|Z) - R(D) = 5 log(2meG(A)). (20)

Note that this rate loss is half a bit smaller than the unialel®ound of Theorem 3, which holds at any
guantization resolution.

To close the discussion of universal quantization, we tdoain the previous section that for a sequence of
lattices (\ € R™) which are good for quantizatiotim,, .., G(A}) = ﬁ Thus, for such lattices the divergence
of the dither from Gaussianity (19) is going to zero. As a eauence, the bounds above on the redundancy of
the ECDQ go to half a bit - at general resolution, and to zerbhigh resolution.

Note that the redundancy of the best lossy compression scees to zero with the dimension like;(n)/n,
which is the same asymptotic behaviolag(27eG), ). See [63]. Does the lattick’ represent the best arrangement
of code points aany finite dimension:? This is, in fact, an open question at high-resolution vegt@mntization

theory.

A. Filtered ECDQ: the “test-channel simulator”

Consider the equivalent additive noise channel model inrféi@. If the second order statistics of the source
are known, then we can use Wiener linear estimation priesiph reduce the overall MSE in reconstructing the
sourceS. The improvement is most dramatic when the source is Gaussia

Note first that following the discussion in Section I, theh@ir vector of an optimum (squared-error) lattice
guantizer is “white”, i.e., the dither components are unglated and have equal variance. Thus, the noise in
the equivalent ECDQ channel of Figure 2 is white, althoughquite Gaussian (unless fay;, asn — o). If
also the source is white (i.e., memoryless), then the Widitier is a simple scalar coefficiertt at the output

of the equivalent channel, [23]. For such a source the reéagrion becomes$ = [Qa(S + Z) — Z], where

2 2
T59A

2 7.
ogto}

If we further assume

3= =25, and the overall distortio) = E||S — S||? decreases from? to D =

2 )
osto}



that the source is Gaussia$ii ~ N(0,0%), then the rate-distortion function (17) becomes
R*(D) = l1og <U—%> 0<D<o?. (21)
2 D
On the other hand, the mutual information in (16) can be amitis a difference of differential entropig$*; S*—
Z) = h(S* —Z) — h(Z), where the first term is bounded by the Gaussian entropyggsponding to variance of

0% + 03%), while the second term is a uniform entropy, which in view(8Y is equal to

0.2
h(Z) = log(V) = %log ( - (AA)> 22)

whereV is the lattice cell volume. Combining together, it followsat the redundancy of the ECDQ above (21)
is at most
1
H(Qa(S™ + Z)|Z) - R*(D) < 5 log(2meG(4)) , (23)

now not only for small but forall distortion levels. See the proof in [63], where it is alsowhahat for a
non-Gaussiarsource, the rate loss of the “Wiener filtered” ECDQ incredseat mostD(S||S*), the divergence
of the source from Gaussianity.
We can write the output coefficient directly in terms of thegé distortion as
D

0%

and the lattice second moment is then choseﬁrf\a& D/3. We observe that is smaller than one for all the
range0 < D < o%. Thus, interestingly, the reproduction lattiée is a “deflated” version of the encoding lattice
A. More on the meaning of that - in the next chapter.

To extend this concept to a source witlemory we shall first need to assume that the entropy coding is
donejointly, to take advantage of the dependence between consecutuatof the lattice quantizérThis is
equivalent to conditioning the probabilities(z) in (15) on past outputs of the lattice quantizer. An extemsib
Theorem 2 above shows that the resultargropy rate denotedH, is equal to themutual information_rateof

the source over the equivalent additive noise channel:
H(QA(S+Z)|Z) =I(S;S — 7). (25)

Now, recall that the rate-distortion function of a generatisnary Gaussian source, with power spectrum

S(e7?1), is given by the “water-pouring” parametric equations [4}]:

B 1/2 1 ‘S(ejZWf)
wo = [ 5 (i) @

j2nf
— / llog <M> df (26)
F:S(ei2ms)>0 2 0

3We shall see a linear prediction approach later, in Sectibn V
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Fig. 3: The water filling solution.

where thedistortion spectrums given by (See Figure 3)

. 0, if S(el?™f) >0
Dy =3 7 ) (27)
S(e’>"1), otherwise,

and where we choose theater levelparamete so that the total distortion i®:

1/2 .
D= D(e?*df. (28)
—1/2

This function is realized by the “forward test-channel izsion” [4]
Yn = h2,n * (hl,n * Xn + Nn) (29)

whereN,, ~ N(0,6) is AWGN with § = §(D) = the water levelx denotes convolution, ank, ,, and kg, are
the impulse responses of a pre-filter and a post-filter, @sedy, whose absolute squared frequency responses
are given by

D(ej27rf)
S(ej27rf)

and their phase responses are chosen so ihé&’>™/) = Hi(e/>"/) . Since as we saw above the ECDQ

[Hi(e™™ )2 = | Hy(e* )P =1 ~ (30)

simulates, in an information sense, an additive channdi wiise —Z, we can combine the same pre- and
post-filters as in (30) with the ECDQ, where entropy-codiaglone sequentially over consecutive outputs of
the lattice quantizer. Since the system is linear, the tieguMSE would be the same as if the nois& was
white Gaussian (as in the forward test channel realizgtiajle the mutual information rate would increase
by at most the divergenc®(Z||Z*). Thus, the resulting scheme achieves the R-D function (2@8} up-to
D(Z|Z*) = log(2meG(A)).

Note that if the source spectrum is bounded away from zemn ih the limit of high resolution P «
min s S(e7?™/)) the pre and post filters degenerate, and can be replaced dsicstis. Note also that in the
memoryless source case, the system reduces to a scalar foich i8 equivalent to the one discussed in the
beginning of this section: the source is first multiplied $¥, then quantized with a lattice with? = D, and
then multiplied again by/j3 for reproduction.

As a final conclusion, if we use lattices from the sequeAfe(lattices which are “good” for quantization),

then the rate loss vanishes in the limit as the lattice dime@ngoes to infinity.



. : . 10
Theorem 5. [63] For any stationary Gaussian source, the entropy rate of trepost filtered ECDQ system
satisfies

A(Qu: (S%. + Z)|Z) — R*(D) asn — oo (31)

pre

whereS? . denotes the pre-filtered source afdis the overall distortion.

pre

IV. VORONOICODEBOOKS

As information theory shows us, Gaussian sources and clgesheuld be encoded using “Gaussian code-
books”. That is, the codewords should be selected from a sEmugenerating distribution. The number of
codewords is determined by the target rate, while the géngrdistribution is white, and its variance is equal to
the source variance - in source coding, and to the transrpitieer - in channel coding. The resulting codebook
in R™ (n being the code dimension) has a Gaussian - or equivalendlgharical- shape, with roughly evenly
spaced points as codewords. Can we replace a Gaussian o&dapa lattice code?

In the ECDQ system discussed above, the codebook was the \mdbounded) lattice anabt shapedo fit
the source variance. The lack of shaping is compensated/fentoopy coding, which amounts to “soft” shaping:
the lattice points which fall inside the typical (spherjcaburce region get a shorter binary representation, and
dominate the coding rate, while the contribution of the poimutside this region is negligible. A similar situation
occurs in un-constrained channel coding [50]. In fixed-terepurce coding or power-constrained channel coding,
however, the codebook must be bounded.

In this Chapter we show how to construct a lattice codebol&t ts rate-distortion / capacity achieving
for Gaussian sources / channels, and whose codewords apthghragion both have a lattice structure. Our
construction is based on the notion of nested lattices, whave its roots in De-Buda’s spherical lattice codes
[6] and Forney’s Voronoi constellations [20], [21], and oite development to the search for structured binning

schemes for side information problems; see the next Chapter

A. Nested Lattices

We introduce a “double lattice” construction which provddestructured solution for side-information problems
[66], [16], [18]. A pair of n-dimensional lattice§ A1, Ag) is called nested ifAs C A4, i.e., there exists

corresponding generator matricés and G, such that
Go=Gp-J,

whereJ is ann x n integer matrix whose determinant is greater than one. Thenes of the Voronoi cells of
A1 and A, satisfy
Vo =det{J} -V} (32)

4If the source, or the “power spectral density mask” of thegraitter output, are colored, then the generating digichumust be
colored too.
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Fig. 4: Nested lattices: special case of self similar lattic

whereV; = Vol (Vp2) andVy = Vol (Vy1). We call 3/det {J} = {/V5/V; the nesting ratio
Figure 4 shows nested hexagonal lattices with= 3 - I, where! is the 2 x 2 identify matrix. This is an
example of the important special case s#if similar lattices where A, is a scaled — and possibly rotated —
version of A; [10].
The points of the set
AymodAs 2 Ay N Vs (33)

are called thecoset leadersf A, relative toA; for eachv € {A; mod As} the shifted lattice\, , = v+ Ag is
called acosetof A, relative toA;. Mapping of border points in (33) (i.e., points &f who fall on the envelop of
the Voronoi region) ;) to the coset leader set is done in a systematic fashion,addrtl cosets\, ,,, v € {A;
mod As} are disjoint. It follows that there arg/V; = det{J} different cosets. Enumeration of the cosets can
be obtained using a parity-check-like matrix [11]. See dlsoformulation of Voronoi constellations [19], [20].
Good nested latticesThe existence of a sequence of good pairs of nested lattidesxe one of the lattices
(the fine one or the coarse one) is good for AWGN channel cqdirnje the other lattice is good for source
coding under mean squared distortion, is addressed by dfrakin [15]. The key to proving the existence of
such lattices is to consider an appropriatesembleof lattices. Such an ensemble was defined in the seminal
work of Loeliger [41] who also demonstrated how random cgdirguments can be used to establish “goodness”

properties for most members of the lattice ensemble.

B. MMSE Estimation and Lattice Inflation

A dithered Voronoi codeboatonsists of all shifted fine lattice poinfsc u + A; inside the Voronoi region of
the coarse latticé\,, i.e.,
(U_ + Al) modA, (34)
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where the dithem is an arbitrary vector irR™ to be specified later. (Far = 0 this is the set of relative coset

leaders in (33).) The size of this codebboKiig/V; (independent ofx), so the associated coding rate is
R = 1/nlog,y(Va/ V1)

bit per dimension.

If we use this codebook for Gaussian source coding, then tigeldittice should be a “good quantizer”. The
coarse lattice, on the other hand, should minimize the adllnae V5 (for best compression performance) while
keeping theoverload probability[32] (the probability a source vector falls outside the Vowdregion) ») low.
This means that the coarse lattice should act like a “good AAMBannel code”.

If we use this codebook for AWGN channel coding, i.e., as aokor constellation [20], then the roles are
reversed. The fine lattice should be a “good AWGN channel 'Godhile the coarse lattice should maximize
the cell volumeV; (for maximum capacity) while keeping the transmit power steaint. Thus the coarse lattice
should act as a “good quantizer”.

If both component lattices are good, i.e., with NSM1/27e and VNR — 27e as the lattice dimension goes

to infinity, then the coding rate is roughly given by

1 o3,

This rate, however, corresponds to some rate loss in bottlgns of interest. Specifically, for an AWGN channel
with noise powerN and power constrainP, we getR ~ 1/2log(P/N), i.e., loss of “1” inside thdog with
respect to the AWGN channel capacity

P

C’z%log (HN)' (35)

For a Gaussian source with variancg encoded at distortion levéd, we getR ~ 1/2log((0%+D)/D), because
(as we saw in the previous chapter for dithered quantizatiua variance of the quantizer output is equal to the
source variance plus the second moment of the (fine) lattidech is equal toD). Thus we get an extra “1”
inside thelog, corresponding to some rate redundancy above the QG mstmdhn function (21).

Note that from an information theoretic point of view, theate losses can be avoided by using joint-typicality
arguments in the decoding/quantizing operations. Howelies means breaking away with the lattice partition
structure of the decision cellshence increasing the decoding/quantizing complexity.

We shall show below that by combining dithering and lineagragions, it is possible to achieve capacity and
rate-distortion function while still preserving the lati structure at the encoding and decoding stages. We already
used this technique in the filtered ECDQ system of SecticAllThere, linear processing amounted to minimum
mean-squared error (MMSE) estimation while dithering wesponsible for de-correlating the signal from the

®Vectors outside the codebook shaping region must be peajennto the surface of the region rather than quantized tondaeest

lattice point.
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guantization error. Here we shall give this technique afsoihterpretation ofattice inflation In particular, we
shall use the identities

A
[@Y]modA = « [Y mod—] (36)
o

and

Qu(8S) = 5 Q4 (9), (37)

which imply that scaling down / up a vector before a modultidatoperation or quantization, is equivalent to

taking the modulo or the quantization operations with respe a scaled-up / -down version of the lattice.

C. Achieving the AWGN Channel Capacity

Consider the AWGN channél = X + Z of (10). Let the ditheiU be uniform over the coarse lattice c&l »,
and letv be any codeword ir\; modA2. To transmit the message the encoder outputy’ = (v + U) modAs.
By (14) we have thatt{[|X|*} = o3, thus if we chose a lattice with second momefit = P, then each
codeword satisfies the power constraint (on the averageredpect to the dither). At the decoder we calculate
the “decision vector”

Y = [@Y — U] modA, (38)

(wherea is a coefficient to be determined later), and decode to theeseaodeword, i.eV = Q,, (Y). By the

identities (36) - (37) above, this is equivalent to

V= Qu ([Y - g} modﬁ> , (39)

«
i.e., to decoding with respect to tlieflated codebook% mod%. The equivalent channel from the codeward
to the decision vector

Y = [a(v + UmodAz + N) — U] modAy (40)
is called amodulo-lattice transformatiofiLl6]. The distributive law of the modulo operation implies:

Lemma 1. (Effective modulo-A additive noise channel) [16] The channel fromv to Y is equivalent in

distribution to the modulo additive noise channel

Y = (v +[aN + (a — 1)U’]) modA, (41)
whereU’ is uniform over), » and independent of and N.

The effective (additive) noisé/. s = [N+ (a—1)U’] modA; is a weighted combination of two components:
AWGN and a dither component called “self noise” becauseresfrom the coarse lattice. For a modulo additive

noise channel a uniform inpuV ~ Unif(V,2) maximizes the mutual informatioli(V;Y), which becomes
log(Vg) — h(Neff).
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The optimuma from a mutual-information viewpoint is the one that minieszthe entropy of the effective
noise [23]. As the lattice dimension increases, the dittierand therefore the effective nois¥.;; become
closer to a Gaussian distribution (in the divergence sef8¥),(in which case minimizing entropy amounts

to minimizing variance. Having this asymptote in mind, théormation-wise optimumx becomes the Wiener

coefficienta = Uffa = P+U2 , and the resulting noise variance is the MMSE solution
Ao N
Po?
Var(N,s¢) = N 42
(Neyr) P of (42)

We want to approach the corresponding mutual informatianguthe nested lattice code described above. Note
that by the modulo-additivity of the equivalent channeg #rror probability is identical for all codewords and
is equal to

P.=Pr{N.; ¢ Vo1}. (43)

Thus, by the definition of the the VNR (12), if we target somfg the volume of the fine lattice cell must
be Vi = [u(A1, P.) - Var(N,s;)]"/? or larger (where we assumed Gaussi¥yy;, which is true for high SNR
(implying oo = 1), or high dimension and “good” lattice to make the self-eot®mponent “Gaussian enough”).
On the other hand, the power constraint implies that themelwf the coarse cell ¥, = [P/G(A2)]™/? or

smaller. For the MMSE solution (42), we thus get a coding odte

1. (W) 1 P/G(Ay)
R=gloe <71>‘510g<u<A1,Pe>Var<Neff>> “4)

—C-= 1og( (Ay, P )) (45)

whereC' is the AWGN channel capacity (35).

If we now assume a sequence of good nested lattice pairs WHérg) — 1/2me and (A1, P.) — 27e, then
the system approaches the AWGN channel capacity. An asadyshe error exponent of Voronoi codebooks can
be found in [40].

D. Achieving the QG Rate-Distortion Function

To encode the sourc® using a Voronoi codebook; modA,, we first quantize a scaled dithered version of
the source using the fine lattice, and then send an indexifigiegtthe codeword modulo the coarse lattice. At

the decoder, we subtract the dither to obtain the recortstgtugector
S = Qu, (S + U)modA, — U (46)

where the dithelU is uniform over the fine cel, ;. By the identities (36)-(37) above, this procedure is eajeint
to
. ~ Ay =
S:g[QA_](SJrU) mOdF_U (47)
B

whereU = U/, i.e., to encoding with respect to theflated codebook% mod% and then re-scaling.



Note that if we ignore the shaping by,, then the second form (47) is the same as the “filtered ElCF)ZDQ"
scheme of Section IlI-A. We can thus take the coefficiént 1 — D /0% as in (24), and set the fine lattice
second moment t°/2\1 = 3D (or equivalently the second moment of the inflated fine lattw be D/3). This
guarantees that the resulting reconstruction mean-sdjarer 1/nE||S — S||2 would be D. The choice of the

coarse lattice determines the coding r&te= 1/nlog(V2/V1) and the overload probability

P. = Pr{Qn, (38 +U) ¢ Voo } < Pr{#S - U' & Wy} (48)

where the upper bound follows by taking a mibodoperation also at the decoder (which can only make the
overload probability worse), and then applying Theorem d. gliarantee some targét, we adjust the coarse
lattice to the variance of the equivalent sourt® — U’ which for 8 and 0—12&1 above isc% — D. Specifically we
chooseVs = [u(Ag, P.) - (02 — D)]"/2. And sinceV; = [3D/G(A1)]"/?, we get

1 w(As, P.) - o
n= s (b ) “

thus we achieve the rate distortion function (21) up to a neldmcy term of
1 .
Redundancy = 3 log (,u(Ag, pP.)- G(Al)) bit per sample (50)

As discussed above, we can find a sequence of pairs of netteeldauch that(As ., P.) — 2me andG(A; ,) —
1/2me, asn — oo. Thus using large dimensional lattices we can make the dahay term as small as desired.
Thus again the NSM-VNR cross product of the lattice pair ljvtlie roles ofA; and A, switched relative to

(45)) determines the rate loss of the system.

V. SIDE-INFORMATION PROBLEMS

Classical information theory deals with point-to-pointnomunication, where a single source is transmitted
over a channel to a single destination. In a distributedchtitn there may be more than one (possibly correlated)
sources, hence more than one encoder, and/or more desigdience more than one channel output and decoder.
The simplest situation, which captures much of the essandtieei problem, are sources and channels with side
information.

In the source version of the problem - solved by Wyner and B8] [ a sourceS is encoded knowing that
a correlated signal is available non-causally at the decoder (but not at the demoln the Gaussian case, we
assume thab = J + @, where(@ is a white Gaussian source independent/of

The channel version of the problem was solved by Gelfand ameker in [26]. Here a state-dependent channel
is encoded knowing the channel states non-casually, howading is done solely from the channel output
without having access to the channel states. In the speas® known as the “dirty paper” channel, the input-
output relation isY = X + I + Z, wherel, the interference, is known at the encoder but not at thedkrcand
Z (the unknown noise) is AWGN [13].
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An interesting feature of the Gaussian side-informatioobfams is that their information theoretic solution
amounts to complete elimination of the effect of the knowmtgd and /. Below we show that the lattice
encoding and decoding schemes of Section IV give us almostffée” a simple structured solution for these

two Gaussian side-information problems.

A. Lattice Wyner-Ziv Coding

The Wyner-Ziv function of the sourcg = J + @, with J known at the decoder, at MSE distortion leve] is
given by0.5log(aé/D). See [14]. To approach this optimum performance, we usehareitl Voronoi codebook
based on a nested lattice pél; € A1), as in Section IV. The encoder is identical to that in Sechiérwith the
lattices tuned according to the variance of the unknownopart) and the distortion leveD. The decoder
subtracts the known paut (properly scaled) prior to the modulo lattice operatiorg adds it back after the post
scaling byg3. The final system is shown in Figure 5.

Like in Section 1V, the distributive law of the modulo opeaat implies that the mapping betweéh J and
S is equivalent to the channel in Figure 6. Note that the eftécthe J component is removed prior to the
equivalent modulo operation. Thus, for “correct decodjngé are left with the same condition as in the no
side-information case (48)-(49), only now with respect justhe unknown part of the soureg. It follows that
after adding the side information, the overall distortionSi is D, as desired. Furthermore, the coding ratés
equal to the Wz functior@.5log(aé/D), up to a loss factog log (G(A1) - u(As, P.)), as in (50). Thus, for a
sequence of good nested lattice paits¢ 1/2we, u — 2me) the system becomes optimal.

It is interesting to compare the lattice-WZ system to thed#ad “random binning” technique [14]. Note that
all source vectors which are associated with the same fine lattice point modudocioarse lattice (i.e., with
Qa, (s+u)modA, = ¢ for somel € A; modA;) are mapped to the same channel index. Hence, in the |atice-
system, a “bin” is equivalent to a coset &f relative toA,, as defined in Section IV-A. Unlike random bins, all
such cosets are equivalent, i.e., identical in size and @mage distortion. Furthermore, we don’t need to make

any statistical assumptions regarding the side informagignal.

B. Lattice Dirty-Paper Coding

Very similar ideas apply to the dirty-paper channel
Y=X+1+7Z,

where the interferencé is known at the encoder, the unknown noBds Gaussian with varianc®’, and the
encoder satisfies the power constraiht We use a pair of nested lattices, with the roles of quamntizathere
in the sense of shaping) and channel coding reversed: theectstice satisﬁee[z\2 = P, while the fine lattice

satisfiesPr{Z ¢ V, 1} < P, for sufficiently small decoding error probabilify.. The full description of the lattice
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Fig. 6: Equivalent channel for the scheme of Figure 5.

DPC scheme can be found in [66] (also [16]). For the high digmaoise (SNR) case the analysis simplifies,

and the resulting coding rate (which like above it is the lige of the nesting ratio) becomes

%log <%) ~C — %log(G(Ag) - p(Aq, Pe)) (51)

whereC' = %log (1 + %) denotes the AWGN channel capacity. We see again that in tod®@iake the capacity
loss term small, we need nested lattices with a small crodd-MSR product, but in reversed order w.r.t. the
Wyner-Ziv problem above.

More delicate analysis and lattice properties are requateithe non- high SNR regime; see e.g. [40] for the

error exponent in lattice decoding.

V1. WAVEFORM SOURCES ANDCHANNELS

We shall now apply the lattice coding techniques developedas to the efficient encoding of signals and
channels with memory. One of the interesting observatioasshall make is that memory can be treated as
“side-information”. This gives rise to “reversed” forms obmmon prediction and equalization techniques in

source and channel coding.

A. Predictive Quantization and Wyner-Ziv DPCM

Linear prediction is an effective mean to exploit memorydnige coding. In differential pulse code modulation

(DPCM), [32], the current source sample is predicted fromghst reconstruction - a procedure cabedkward
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prediction- and the prediction error is encoded by a simple scalar igeanThe error reduction due to prediction
translates into rate saving for the same distortion in dgmation. Can we replace the complsgquencentropy
coding in the ECDQ of Section IlI-A by linear prediction folled byper-samplequantization?

The “predictive test channel” of Figure 7 provides a firsipstewards this goal. This channel has the same
pre- and post-filters (30) as in the forward channel reabmadf Section IlI-A, while the inner AWGN channel

was replaced by a sequential block:

o = fVe1,Vaeo,- s Vo) (52)
Qn = U,—Jy (53)
Qe = Qn+ Ny (54)
Vo = Jo+ Qqy. (55)

where N,, ~ N (0,6) is i.i.d. andf = 0(D) is the “water level” parameter (26).
Theorem 6. [67] The system of Figure 7, satisfies
E(Y, - X,)? =D. (56)
Furthermore, if the source,, is Gaussian andf = f(V,;") is the optimum infinite order predictor then
1(Qn; @n + Nn) = R(D). (57)
Thus, thescalarmutual information over the channel (54) is equal to the RR2B)(- (28).

The next step is to replace the AWGN channel inside the ptiedidoop by a Voronoi codebook (as in
Section IV-D) or a lattice ECDQ (as in Section Ill). These itgdschemes approximate the information-distortion
performance of the chann€élg, = @, + N,,, up-to a rate loss of log (G(A1) - (A2, P.)) (for a Voronoi
codebook), or} log (2reG(A)) (for a lattice ECDQ). The combination of the encoder secfioom S, to the
codeword associated witf)g,) and the decoder section (mapping back@g, and then toS,,) results in a
lattice-DPCM system.

At first sight, however, the dimensionality of the latticedebook seems to be in conflict with the temporal

sequentiality of the system. Nevertheless, it is shown ¥} (6ee [29]) how to use the dimensional lattice over
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a virtual “spatial” dimension, by encoding in paralleldifferent sources on interleaved long segments of the
same source.

Finally, we can view the predicted procegs as side information which is available at the decoder [57¢. W
can thus use the lattice-WZ system to encode the filteredcea@yy, avoiding the prediction at the encoder all
together. This “Wyner-Ziv DPCM” system is shown in Figure 8.

B. Decision Feedback Equalization (DFE) and Lattice Preliog

The same ideas can be used to extend the Voronoi lattice gadineme of Section IV-C to channels with

inter-symbol interference (ISI). The channel model is like interference channel of Section V-B, only here the

interference signal is a linear combination of previousneied inputs

o0
I, = Z hi X;.
=1

As shown by Cioffiet al, [9], if we assume that the receiver decides correctly oripus channel inputs (correct
decoding), then the equivalent ISI at the receiver input bancanceled perfectly, implying that trszalar
mutual information over the decision device (“slicer”) moides with the mutual-informatiorate over the entire
channel. If the input spectrum is capacity achieving, thefrissthe scalar mutual information at the slicer. Like
for colored sources above, a Voronoi codebook can be usédawattice decoder (quantizer) as a slicing device,
to approach this scalar (Gaussian) mutual informationtoug-loss term o% log (G(Asg) - (A1, P.)).5 Again,
to allow sequential operation, the lattice is encoded oveirtaal “spatial” dimension ofn parallel channels,
generated by interleaving long channel segments. See [2H],

Finally, we can transfer the channel interference compgems&om the decoder to the encoder, by viewing
the ISI term,, above as side information known to the encoder. We can therthes lattice DPC system of
Section V-B to cancel the interference at the encoder. Theltieg system, illustrated in Figure 9, provides a

lattice form of the well known Tomlinson-Harashima pre-eoR], [66], [47].

®Since the equivalent slicer channel isexversedAWGN channel [67], the theoretically achievable rate isf hlaé logarithm of the
SNR at the slicer input (i.e., with no additional “1” insideetlogarithm [9]).
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VIlI. M ODULO-LATTICE MODULATION

So far we discussed either source or channel coding problentkis section we address the combination of
the two. We shall present a “semi-analog” joint source-ceghmodulation technique, which is based on lattice
codes. This technique - called “modulo-lattice moduldti¢kiLM) - enjoys the benefits of both analog and
digital communication. It is robust to channel uncertaiabyd saves complexity - similar to analog modulation,
yet it optimally matches sources and channels of generalviigth and spectra - like in digital communication.
See [34], [33].

The presentation starts with an analog version of the &tide-information schemes of Section V, which

forms the basis for the joint source-channel lattice matitascheme.

A. Joint WZ/DPC Lattice Coding

Suppose that the composite soutge= J + @ of Section V-A needs to be transmitted over the power-
constrained interference channél= X + I + Z of Section V-B. Like in these two Sections, suppose that the
decoder knows thd component of the source, while the encoder knows/teemponent (“interference”) of the
channel noise. Thé andJ signals are known non-causally.

We can merge the two systems of Sections V-A and V-B to coacstujoint-source channel modulation
scheme, as shown in Figure 10. This MLM scheme consists of @m lattice - the former coarse lattice of the
WZ/DPC schemes - which is used to take account of the sidenrdtion signald and.J. The fine quantization
lattice of the WZ system, and the fine lattice codebook of tlRCDsystem, are replaced by direct mapping of

the (scaled) source vector to the channel input. Thus, imaeseve saved the complexity of 3 out the 4 lattices



in a full digital implementation, where a lattice WZ systesnconcatenated with a lattice DPC system.
How good is this combined system? Since the separationipiénbolds in this setting [43], it follows by
combining the QG WZ-RD functiori/2log(a%/D) and the DPC channel capacity2log(1 + SNR) (where

SNR = P/N), that the minimum theoretically attainable distortionA([) is
2

pwt= 9 __ (58)
14+ SNR

Note that thisD°?! is independent of the power of the interferencas well as of the variance of the known
part of the source/. Hence (setting = J = 0), it is the same as if the unknown source p@rtvas transmitted
over a zero-interference AWGN channiiél= X + Z. To compare that with the performance of the MLM system
of Figure 10, we first use the modulo distributive law to agrat an equivalent channel with a single modulo
operation. See [34]. It can be verified that the signal at tiputi of the equivalent modulo lattice operation
is Y = 8Q + Z.q, WhereZ,, = aZ + (o — 1)U, and U denotes the dither. The variance of this (nearly
Gaussian) signal determines the size of the coarse laiteTtus, as shown in [34], if we follow the analysis

of Sections V-A and V-B, we obtain the distortion
D =D (A, P,) - G(A) (59)

where P, is the overload probability as in (43). That is, we suffer stalition amplification equal to the NSM-
VNR product of the lattice - an interesting new figure of meptrovided an overload event did not occur. Thus, if
we use lattices with a small NSM-VNR product (i.&(A) — 1/2mwe andu(A, P.) — 27e), then asymptotically
for large dimension the non-overload distortion (59) adity approaches the OPTA of (58). Furthermore, for
such lattices the contribution of the overload distorti@m e made negligible [34].

The system above is not only asymptotically optimal (fogétattice dimension), but unlike in a digital
solution, it is robust to the accuracy of knowing the sigiwatioise ratio SNRZ/N at the encoder, provided the
SNR is high. Specifically, if we know in advance that the tridRSis greater than some minimum levg), and
tune the encoder parameteito that value, then the decoder can reconstruct at distolieel which is bounded

above by

2
790 "
D < . 60

~“ SNR~ —1 (60)

This is only slightly worse than the optimum (58) providegl is sufficiently large. This is in contrast to the
digital solution in this situation, where the distortidby;g;;a; = aé/(l + 7o) is fixed for all SNR > ~, i.e.,
determined solely by the minimum SNR and does not improveaf$SNR gets better.

Bandwidth ExpansionThe MLM system can be used for “bandwidth expansion” - thathere is no source
or channel side-information, but there grechannel uses per each source samplbeing an integer. Suppose,
first, MLM with a scalar lattice = 1). The first channel inpuk; is the source samplg, scaled to match the

input power constraint Then, the received sighiial= 55 + Z is considered as side-informatio™ known to

the decoder, and' is transmitted again, now using the MLM principle. (Notetthe can always writeS as
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aY1 + @9, whereaY; is the MMSE estimate of, and(@)- is the estimation error which is is independent®f)
This “zooming” procedure is repeated- 1 times, where every time the previous received samples arsd®red
as side-information [7], [51]. In the generaldimensional lattice case, the finstvector input is a scaled version
of the source vector, and in each of the- 1 iterations the source vector is WZ-encoded treating theique

received vectors as side information. As the lattice dinmengoes to infinity, the distortion approaches
D=5 __ (61)

which is the OPTA in this case [51].
In the next section we present a general framework for magckources and channels of arbitrary bandwidth

and spectra using MLM.

B. Analog Matching of Colored Sources and Channels

Suppose a stationary Gaussian source with an arbitrantrapeaeeds to be transmitted over a Gaussian
channel with an arbitrary noise spectrum, or equivalemmgr a filter plus AWGN channel. It is known that,
unless the source and the channel spectra are flat oveatheband, analog transmission - i.e., a simple scalar
gain (power matching) at the encoder - cannot achieve Smes@&TA R(D) = C. Nevertheless, like we did for
the joint source-channel side-information problem, we earge the lattice precoding and the lattice “reversed”
DPCM schemes of Section VI to obtain a “semi-analog” systdmtivis asymptotically optimal for large lattice
dimension. Furthermore, unlike the separation-basedatligolution, thisAnalog Matchingsystem is robust to
channel SNR uncertainty for high SNR.

Consider the system in Figure 11, which consists of intemsyl interference cancelation at the encoder (a
lattice precoder) and “reversed” source prediction at teeoder (lattice WZ of a colored source). Again, we
keep the coarse lattice components of the systems of Sé¢tiand replace the fine quantization / constellation
lattices by direct mapping of the (scaled) source vectohéodhannel input. To simplify the exposition, we shall
restrict attention to the high-SNR / small distortion cdsethis case the pre-coder subtracts the exact value of
the I1SI modulo the coarse lattice, and transmits the resuis @ver the channel. The decoder predicts the next

source sample from the past reconstruction as if it was analealica of the source (i.e., neglecting the effect of



the accumulated channel noise), and use it as side-infanmétr WZ decoding. Like in Section VI, we asszl?me
parallel processing or interleaving to allow for a multirdinsional lattice inside the ISl/source prediction loops.

Under the high resolution assumption (almost “clean” seyscediction at the decoder), it follows that the
resulting distortion (under the no-overload event) is ahéf source innovatio) was transmitted over the zero
ISI channelY = X + Z. That is, the distortion is given by = aé/(l + P/N), as in the MLM system
for the joint-WZ/DPC setup in Section VII-A. Not surprisiygthis is also Shannon’s OPTA in this case. See
Kochmanet al [33] for the complete derivation, as well as for the geneesutution/SNR case, and for the
robustness property. See [39] for the usecompandingto overcome the (severe) effect of overload for small
lattice dimension and high resolution conditions.

Why don't we take the opposite route, i.e., merge sourceigied (DPCM) at the encoder and channel
equalization (DFE) at the decoder? We cannot use forwar@NDPbecause the encoder must use the “noisy”
source samples for prediction [32], [67], but here the nos@es from nature (the physical channel). Likewise,
we cannot equalize the channel at the decoder like in a DBEebaystem, because the transmitted signal is not
digital so the decoder cannot have an exact replica of passitnissions.

Bandwidth conversionA case of special interest is that when the source and chdamwidths do not
match. In this case we cannot carry on the “high resolutiomgh ISNR” assumption above, because either the
source or the channel is sampled above its Nyquist’r&@r. example, if the source bandwidth is narrower than
the channel bandwidth, then at the decoder we must take aguouat the out-of-band (channel) noise seen by
the (strictly causal) predictor. Either way, the optimalif the Analog Matching system implies that it performs
bandwidth conversion matching the source bandwidfBiV; to the channel bandwidtB W, - while preserving

mutual information. This fact can be written as
(1+SDR)PW: = (14 SNR)BW: (62)

whereSDR = ¢2/D is the unbiased signal to distortion ratio of the sourceJeviiv R = P/N is the channel’'s

signal to noise ratio. Note that here the bandwidth expansitio p = BW,./BWj is not necessarily an integer.

VIIl. G AUSSIAN NETWORKS

There are many ways in which side-information paradigms eater general multi-terminal networks. The
obvious cases are the broadcast channel, in which the joouder may view the transmission to one terminal
as side-information for the transmission to the other teatsi. Similarly, in multi-terminal coding of correlated
sources, the joint decoder may view the reconstruction ef source as side information for the reconstruction
of the other sources. In both these cases, the side-inflnmest concentrated in the “relevant” terminal in the
network. Indeed, in the QG case, it is easy to figure out howtace the standard information theoretic “random

binning” technique, [14], [5], by a lattice-based solutidrhis solution uses the the lattice-WZ and lattice-DPC

"Without loss of generality, we assume here that the narrdaed is contained inside the wider one.



schemes above as building blocks [66]. As in Chapter V, then mmtivation for such a lattice scheme i§4the
complexity reduction (and perhaps the intuition) gainedabstructured solution.

A more interesting situation, however, occurs whade-information is distributedamong more than one
terminal. Surprisingly, it turns out that in some distridditlinear network topologies, the lattice-based system
outperformghe “random binning” solution. Moreover, in some casesihifact optimal! Apparently, the linearity

of the network in these scenarios favors linear binning.

A. The Korner-Marton Problem

We start with an interesting binary sources setup, the “teip lone” problem of Figure 12, which motivates
our discussion. In a seminal paper from the late 70’s, Koarat Marton [37] showed that if one wishes to
reconstruct the modulo-two sum of two correlated binaryrsesi from their independent encodings, then linear
coding seems to be better than random coding. SpecificallyKbrner-Marton setup consists of three binary
sourcesX, Y, Z, whereZ = X @ Y, and the joint distribution of andY” is symmetric withP(X #Y) = 6.
The goal is to encode the sourc&sandY separately such that can be reconstructed losslessly. Korner and

Marton showed that the rate sum required is at least
R, + R, >2H(Z), (63)

and furthermore, this rate sum can be achieved by a lineas: ceaith encoder transmits the syndrome of the
observed source relative to a good linear binary code for @ B&h crossover probability.

In contrast, the “one help one” problem [2], [58] has a closiegle-letter expression for the rate region, which
corresponds to a random binning coding scheme. Korner amtbM§7] generalize the expression of [2], [58]

to the “two help one” problem, and show that the minimal ratengequired using this expression is given by
R, +R,> H(X,Y). (64)

The region (64) corresponds to Slepian-Wolf encodingodndY’, and it can also be derived from the Burger-
Tung achievable region [5] for distributed coding &f and Y with one reconstructior under the distortion
measured(X,Y, Z) 2 X &Y @ Z. Clearly, the region (64) is strictly contained in the KarMarton region
R, + R, >2H(Z) (63) (sinceH (X,Y) =1+ H(Z) > 2H(Z) for Z ~ Bernoulli(#), whered # 3).

Krithivasan and Pradhan [38] extended the Korner-Martarblem to the QG case. Suppo&eandY are
positively correlated Gaussian sources (3ay- X + N whereN is independent oK), and the decoder wants to
reconstruct their difference\) with some mean-squared distortidh As they show, near optimal performance
can be achieved if each source is lattice-WZ encoded, wiheredarse lattice - tuned to match the variance of
the difference {V) - is identical at both encoders. The decoder subtractswbeencodings, modulo the coarse
lattice, to isolate the desired (quantized) differenceaig

Unlike the original “lossless” KM setup, the lattice schedmes not match the “gini aided” outer bound; it

looses 3dB in distortion (half a bit in the rate sum) due togbeumulation of the two (independent) quantization
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X — Enc. X

Yy — Enc.Y = Dec. — 2

Fig. 12: The Korner-Marton configuration.

noise$. Yet this is still much better than a “standard” random birgnsolution, which (implicitly) encodes both

sourcesX andY just to transmit their difference.

B. The Dirty Multiple Access Channel

We next consider what seems to be the “dual” of the KornerttMaproblem; a generalization of the Gaussian
dirty-paper problem to a multiple access setup [48]. Theeet&o additive interference signals, one known to
each transmitter but none to the receiver. See Figure 13.rdtks achievable using Costas strategies (i.e. by a
random binning scheme induced by Costas auxiliary randaiahlas) vanish in the limit when the interference
signals are strong. In contrast, it is shown by Philosbfl [48] that lattice strategies (lattice precoding) can
achieve positive rates independent of the interferenaegh&more, they derive an outer bound for the capacity
region for arbitrary strong interferences, which is slyi@maller than the clean MAC capacity region. Lattice
strategies meet this outer bound for some combinations isenaariance and power constraints. In particular,
they are optimal in the limit of high SNR. Thus, the dirty MAG another instance of a network setup, like
the Korner-Marton modulo-two sum problem, where lineariiegds potentially better than random binning. See

also [49].

St
1% X
L Enc. 1 !
Xo
Wa
— Enc.2
b z
Sa

Fig. 13: Doubly dirty MAC.

8This is assuming independent dithering at the two terminlsommon dithering scheme is complicated to analize, but reduce
this loss [36].
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C. Lattice Network Coding

In a standard packet switching network, nodes act as routtttay wish to find the best route for a packet
under the current conditions. If the inflow to a node is higthemn the output capacity, then some of the packets
need to be discarded. The idea of network coding is that ¢ebettk node can “combine” together packets rather
than choose which one to pass and which one to discard. If tlaé diestination gets enough “combinations”
(from different routes), then it can resolve the ambiguityl alecode all the transmitted packets reliably.

The focus of most research on network coding wabraar coding schemes. In theory, though, any information
preserving mapping at the nodes would work, as long as theonletis lossless. However, when extending the
network coding idea tmoisy networks, the structure of the code is essential to amoide accumulatiorand

loss of capacity.

bit pipes
relayl m = = = - - - 1
mi 1
——=| wuserl 1
Y ]
relay2 | _ > T[L
m central ma
%2 user 2 I
\ decoder |
! | == m
! I relay 3 Ny
N I
myf ; A
——= userN I 1
I
: 1
1
relay M pm == = = = -

Fig. 14: A multi-relay multi-user network scenario.

Specifically, consider the Gaussian relay network propas¢4b], depicted in Figure 14, wher® users wish
to communicate with a destination (central decoder) thinoaigayer ofM > N relays. Each relay receives some
weighted (by the fading coefficients) linear combinatiorited transmitted signals corrupted by AWGN, i.e., each
relay is a Gaussian MAC channel. Thus, the different sigatithe relay input are already “combined” by the
network. However, unlike in a clean network, if the relayateits input as an “analog signal” and digitize it,
then the noise will be forwarded to the final receiver as well.

It has been shown recently how to use nested lattice codesefwrork coding in the presence of Gaussian
noise [56], [8], [45], [44]. The nested lattice structuréoais the relay to decode an integer linear combination
of the codewords (a lattice point which is close to the remgigignal), thus remove the channel noise before
forwarding the decoded point to the final receiver. In [17]eneral framework is presented, which allows to

treat non-integer combinations, as well as non-Gaussi&e ramd non-additive channels.

D. Back to Analog: Coherency Gain in Parallel Relaying

If the relays couldcoordinate then we could get effectively a multi-antenna relay systdnthe number of

relays is larger than the number of users, then such a mikthaa relay could enhance the SNR by a factor of
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Power P

Power Py,

Fig. 15: The Parallel Relay Network.

M/N on the average. This enhancement - due to the coherent coglhtransmitted signals at the relays -
is known as “array gain”. It becomes significant (even moanthoise accumulation avoidance)lif > N or
if the SNR at the relays is low. Can we achieve this enhancemea distributed setup?

Consider now the “fully physical” single-user parallelay network shown in Figure 15, where both the
section from the user to the relays and the section from tleyseo the destination are Gaussian channels.
An interesting alternative for digital relaying in this sptis amplify and forward(A&F) [54], [25]: each relay
sends a scaled version of its received signal. Due to theuriiiyeof the network, the transmitted signals are
coherently combined at the final receiver. Thus, A&F allowsathieve array gain, in spite of the the lack of
relay coordination, at the price of noise accumulation.

This method is, however, limited to the case of simple AWGNurfels of identical bandwidth. In a recent
work, [35], the concept of A&F was extended to the case whieeebandwidth B1V;) at the user-relays section
is different than the bandwidthB(i15) at the relays-destination section. The new technique lecdaématch
and forward- is based on using an Analog Matching scheme (as in SectibB)\at the transmitter to match
a codeword of bandwidtiBW; to a channel of bandwidtiB1;. At the relay, the Analog Matching decoder
reconstructs the codeword of bandwidiiV,, while satisfying the mutual information preservation 1§62).
The reconstructed codeword is then sent in an analog maarike tdestination. This procedure exploits the full

bandwidth of both sections, while preserving the array gainn A&F.
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