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ABSTRACT
Multiple Description (MD) source coding is a method to overcome unexpected infor-

mation loss in a diversity system such as the internet, or a wireless network. While classic
MD coding handles the situation where the rate in some channels drops to zero temporarily,
thus causing unexpected packet-loss, it fails to accommodate more subtle changes in link
rate such as rate reduction. In such a case, a classic scheme can not use the link capacity
left for information transfer, causing even minor rate reduction to be considered as link fail-
ure. In order to accommodate such a frequent situation, we propose a more modular design
for transmitting over a diversity system, which can handle unexpected reduction in link’s
rate, by downgrading the original description into a more coarse description, so it would fit
to the new link’s rate. The method is analyzed theoretically, and performance results are
presented.

Index Terms— Source Coding, Multiple Description Coding, Successive Refinement,
lossy packet network, Multiple Description Scalar Quantization.

1. INTRODUCTION

All packet based networks suffer from packet-loss. Packet loss occurs when one or more
packets of data traveling across a computer network fail to reach their destination. There
are numerous reasons why packet loss happens. It could be due to physical change over the
network medium such as signal degradation, faulty hardware, or over-saturated network
links forcing the router to drop some packets. Notice that the router decision is binary -
either pass the packet if there’s enough link capacity, or drop it if there’s none. If there’s
only half of the needed capacity, the packet must be dropped. The main measure that
networks employ in order to cope with packet loss, is by retransmission. Each packet
is numbered, and when a packet is recorded as missing, the receiver asks the sender to
retransmit. Although this is a robust method, it has some disadvantages. It’s unapplicable
over one-way communication scenarios - such as multicast scenarios, and because of the
inherent latency in retransmission it’s not appropriate for realtime applications.

If the network is a diversity system, i.e. there’s more than one way to send information
from source to destination, then it may use that diversity to overcome packet-loss. Sending
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packets in different routes over the internet, or transmitting signal over different antennas in
a MIMO wireless device, are examples of such. In case that the information can suffer loss
and still be intelligible, like audio or video, Multiple Descriptions (MD) is a way to take
full advantage of the diversity in the system. A good MD scheme adheres to the following
principles:

1. Each description is good by itself. Even if the receiver gets only one description due
to packet-loss, the quality of the reconstruction is good enough.

2. If more than one description makes it to the receiver, the outcome has better quality
than if it has not.

Clearly, there’s an inherent tradeoff between those principles. In order to be better when
combined, the descriptions should be as ”different” as possible. But in order to be good by
themselves, they should be as ”similar” as possible to the original information.

The inherent tradeoff of the MD problem depicted in fig.1(a) has been examined in
information theory perspective, and an inner bound for the achievable rates was found
by El Gamal and Cover [1]. An outer bound for the quadratic Gaussian case was found by
Ozarow [2]. Practical ways to create multiple description from a single description has been
suggested by many. Some of the ways are Unequal Error Protection (UEP) [3] ,Correlating
Transforms [4], Dithered Delta-Sigma Quantization [5] and Multiple Description Scalar
quantization (MDSQ) [6].

While MD coding handles the situation where the rate in some channels drops to zero
temporarily, thus causing packet-loss, it fails to accommodate more subtle changes in link
rate such as rate reduction. In such a case, a classic MD scheme can not use the link capac-
ity left for information transfer, causing even minor rate reduction to be considered as link
failure. In order to accommodate such a frequent situation, we have to add the quality of
Successive Refinability (SR) to the description. A source is successively refinable if encod-
ing in multiple stages incurs no rate loss as compared with optimal rate-distortion encoding
at the separate distortion levels. Therefore, an SR description can be downgraded to a lower
rate by extraction of previous stages from the original description. Furthermore, we have
to add a ”transcoding” functionality to the nodes that the description travels through. They
can not only either pass or drop the description, depending on sufficient rate, but have the
ability to manipulate it (e.g. by extracting some previous stages of SR description). By this



we extend the Multiuser Successive Refinement (MSR) problem, formulated by Pradhan
and Ramchandran in [7] and explored in [8], so it would treat uncontrolled packet-loss, as
well as controlled successive refinement.

Summing up, we propose a more modular scheme for transmitting over diversity sys-
tem, which have the following qualities:

1. The description is successively refinable - unexpected reduction in link’s rate can be
solved by downgrading the original description into a more coarse description, so it
would fit to the new link’s rate.

2. Work in a distributed environment - each node of the network can downgrade the
description, relaying only on local information, i.e. knowing neither the other de-
scriptions, nor the entire network topology.

3. Maintain the aforementioned original MD properties

We call such scheme a Multi Level Multiple Description (MLMD) scheme. Based on
Vaishampayan’s seminal work on MDSQ [6], we present two constructive methods of
building such an MLMD scheme: Deflated MDSQ which prioritize the maximal rate, and
Inflated MDSQ which prioritize the minimal rate.

The paper is organized as follows: Relevant rate distortion bounds from the literature
are presented in Section 2. In Section 3 MDSQ is presented and analyzed. In Section
4 we present the design of MLMD, and analyze it in Section 5. Performance results are
presented in Section 6. Section 7 discuss open questions and concludes.

2. RATE DISTORTION BOUNDS

El Gamal and Cover [1] found the achievable rate-distortion region for the MD problem,
and Ozarow [2] showed that for the Gaussian source and squared-error distortion measure,
this region is indeed tight.

For the situation depicted in fig.1(a), Ozarow showed that for a unit variance source
given R1 and R2 any triple of average distortions {D0, D1, D2} (associated with the re-
spective reconstructions) could be achieved if and only if:

D1 ≥ 2−2R1 , D2 ≥ 2−2R2

D0 ≥ 2−2(R1+R2)

1− (
√

Π−√∆)2
(1)

where Π = (1−D1)(1−D2) and ∆ = D1D2− 2−2(R1+R2). Consequently, Vaishampayan
[9] proved that for the symmetric case (R1 = R2 = R)

D1 = D2 = D1,2 = Θ(2−2R(1−α))

D0 = Θ(2−2R(1+α)) (2)
for some 1 ≥ α ≥ 0, and found an equivalent criteria for optimality, by inspecting the
distortion product

D0D1,2 = Θ(2−4R). (3)
The optimality is in the asymptotic sense, thus neglecting constant factors such as scalar
vs. vector quantization loss.



3. MULTIPLE DESCRIPTION SCALAR QUANTIZATION

Vaishampayan [6] suggested an MD scheme based upon scalar quantization (MDSQ). Each
description is a union of disjoint intervals. The problem of cleverly mapping those inter-
vals (represented by the indices of the scalar quantizer) to descriptions, is called the index
assignment problem. An easy way to visualize a two-dimensional MDSQ, is by using an
index assignment matrix as depicted in fig.2(a). One description consists of the vertical
coordinate selecting the row, and the other consists of the horizontal coordinate selecting
the column. The encoder quantize the source, using a scalar quantizer, to an index value,
then sends its row and column coordinates along different paths as descriptions. If the de-
coder gets both descriptions, it can find the original cell by intersecting the row and the
column, and then reconstruct the value associated with this index.If only one description
makes it to the decoder, it knows only the row or column of the original cell. In that case,
its reconstruction is the centroid of all the values associated to indices contained in the row
or column.

Vaishampayan describes a method to build such matrix which he calls nested index as-
signment. The matrix in Fig.2(a) was created using that method. Following Vaishampayan
we’d use the following definitions: n is the number of rows or columns, k is the number of
symmetric matrix diagonals that are filled with indices, codewords (or central cells) are the
total number of indices and spread is the difference between the lowest index to the highest
index in a certain group of indices. spread = max(index)−min(index) + 1

It’s clear that the spread of a set of indices determines the quality of the reconstruction
produced from them. The bigger the spread, the bigger the distortion is. Vaishampayan
proved that using this method, the number of codewords is

codewords = (1 + 2k)n− k(k + 1) (4)

and the maximal spread is
spread = 2k2 + k + 1 (5)

We can see that k is the tradeoff controlling parameter. By increasing k the number of
codewords raises, meaning a better central distortion(D0), but it simultaneously increases
the spread, meaning worse side distortion(D1,2).

Vaishampayan proved that if the size of every quantizer’s cell is

Θ(1/N b); 1 ≤ b ≤ 1 (6)

then the corresponding MSE is
Θ(1/N2b) (7)

Substituting equations 4,5, into 6,7 yields that the central distortion and side distortion are

D0 = Θ([(1 + 2k)n− k(k + 1)]−2) = Θ((nk)−2)

D1,2 = Θ([
2k2 + k + 1

(1 + 2k)n− k(k + 1)
]2) = Θ((n/k)−2) (8)

Remembering that n = 2R and setting k = 2R/n

D0 = Θ(2−2R(1+1/n))



D1,2 = Θ(2−2R(1−1/n)) (9)

thus making the distortion product to be

D0D1,2 = Θ(2−4R) (10)

proving that this is indeed an optimal distortion pair, in the sense of (3).

4. DESIGNING A MULTI LEVEL INDEX ASSIGNMENT

As mentioned previously, in an MLMD system, suited for real-world packet switched net-
work, a new type of node is introduced - the transcoder. The transcoder has the ability
to manipulate the payload of the packet, besides possible other roles such as switching or
decoding. In the situation depicted in fig.1(b) , if R1 > R4 then transcoder1 has to decrease
the rate of the forward transmitted description. The transcoder has to do it relying only on
local information. In order to do so, all the other parts of the system (encoder, decoders)
have to be designed to enable the transcoding.

4.1. Encoder design

The encoder acts very much like the original MDSQ encoder, the changes are denoted
in italics font. Its descriptions are the coordinates of an index in the MLMD matrix. It
aggregates several instances of a description over time , and sends them as a packet. It sets
the packet header to contain the number of description instances sent, their resolution (that
may change during the packet’s journey, due to its MLMD nature) and dimension (in a two
dimensional MD system this parameter may be either vertical or horizontal). Since a packet
is composed from many instances of the description, the size of the header is negligible.

Besides having the resolution parameter in the header, the main change in the MLMD
encoder is the construction of its index assignment matrix. We suggest two possible ap-
proaches to construct it:

Inflated MLMD - Create an initial index assignment matrix using original scheme. Set
its rate (by setting n to an appropriate value) to be the minimal rate we want to deal with.
Now, inflate each matrix cell to the maximal rate. Say the original matrix is A, the inflated
is B, and the Inflating Factor (IF) is defined as follows:

IF = 2MaximalRate−MinimalRate, (11)

then

B[i][j] =





(A[i/IF, j/IF ]− 1)IF 2 + 1 (i mod IF)=(j mod IF)=0
. . .
(A[bi/IF c, bj/IF c])IF 2 (i mod IF)=(j mod IF) =IF - 1

In section 5 we will prove, that only the smallest and largest index of a row or column
matter, hence the inner mapping of the other inflated indices is not described explicitly. For
a possible mapping, See Fig.2(b).

Since inflated MLMD is based upon a lower (minimal) rate matrix, it gives priority
to the lower rate, in the sense that the designer can control the tradeoff of side to central



distortion for the lower rate directly, and the tradeoffs of the higher rates are derived from
it.

Deflated MLMD - Create an initial index assignment matrix using original scheme. Set
its rate to be the maximal rate. In section 5 we will prove that the original MDSQ matrix
is also an MLMD matrix. Since deflated MLMD is based upon a higher (maximal) rate
matrix, it gives priority to the higher rate, in the same sense that was described earlier for
the inflated MLMD.

4.2. Transcoder design

The transcoder transmits the description. In the case it does not have enough rate to send
the description tuple, it chops the Least Significant Bits (LSB) from the description, until
the rate limit is satisfied. It updates the resolution field in the header appropriately. The
transcoder is very simple, and totally unaware to the MLMD nature of the transmission, it
just chops bits.

4.3. Decoder design

As in the case of the encoder, the MLMD decoder is very similar to the MDSQ one. Each
description received selects a set of indices from the matrix. the decoder intersects these
sets to construct the final set. The reconstruction it announces is the centroid of all the
values associated to the indices in the final set. The main difference from the MDSQ
decoder, is that an MLMD description can choose a set that consists of couple of the matrix
rows (or columns) and not just one of them. The decoder first calculates the factor of the
description factor = n

2resolution ,where n is the MLMD matrix size, and resolution is the
actual rate of the description, known to the decoder from packet header. The set induced
by the description is all the indices starting from the (factor ∗ description) row / column,
to the (factor ∗ (description + 1) − 1) row / column. Note that the decoder is totally
oblivious to the method in which the matrix was created - same decoder for inflated or
deflated MLMD matrix.

4.4. Illustration

The whole picture may be clarified using an example. In the situation depicted in fig.1(b),
say R1 = R2 = R5 = 3 bits and R4 = 2 bits. The encoder wants to send the index
16. Using the high resolution matrix it sends its coordinates - 3,3 (zero based addressing,
encoded as binary strings of 3 bits length - ”011”) as description 1 and 2 to decoder 1 and
2, respectively. Since R2 = R5 decoder 2 can send its description directly to decoder 5
and 3, but transcoder 1 have to do some transcoding operation so it can send the 3 bit wide
description 1 on a 2 bit rate channel. Therefore, it chops the last bit of the description and
transform it from ”011” to ”01”. The decoding of decoder 3 is shown in fig.2(c). When
it receives both descriptions it first finds the relevant index set for both descriptions: the
third and fourth row for the chopped description 1 and the fourth column for description 2.
After both sets are intersected with eachother only {14,16} remain. The reconstruction is
the centroid of the values associated by the quantizer to indices 14 and 16.



(a) (b) (c)

Fig. 2. Index Assignment Matrices: (a) original matrix n=4, k=1, codewords=10, max
spread=4; (b) inflated matrix based on (a), IF=2; (c) MLMD decoding example

5. ANALYSIS

We will analyze the behavior of the distortion of our algorithm in the same manner and
under the same assumptions Vaishampayan analyzed his (see Section 3). Although the
MLMD system can handle asymmetric rate reduction, as shown in Sec.4.4, for brevity
only the symmetric rate reduction is analyzed.

For the inflated version, we note that if the maximal spread for the original low reso-
lution matrix was spreadlr = MaxIndexlr −MinIndexlr + 1, then by using the inflate
function from Section 4.1 the corresponding spread is bounded by

spread = MaxIndexhr −MinIndexhr + 1

≤ IF 2MaxIndexlr − [IF 2(MinIndexlr − 1) + 1] + 1

= IF 2(MaxIndexlr −MinIndexlr + 1) = IF 2(spreadlr) (12)

and the number of the codewords is

codewords = IF 2(codewordslr). (13)

Therefore, the central and side distortions are (using the assignments from (9))

D0 = Θ[
1

codeswords
]2 = Θ([IF 2codewordslr]

−2) =

Θ(IF−4D0;lr)

D1,2 = Θ([
spread

codeswords
]2) = Θ([

IF 2spreadlr

IF 2codeswordslr

]2) =

Θ([
spreadlr

codeswordslr

]2) = D1,2;lr (14)

which yields distortion product of

D0D1,2 = D0;lrD1,2;lrIF−4 =

Θ(2−4Rlr2−4(R−Rlr)) = Θ(2−4R) (15)

thus proving the description optimality, in the sense of (3). We can see that using this
method, the central distortion decays rapidly as a function of the rate, while the side distor-
tion remains constant 1.

1As a by-product, we have found another optimal index assignment method for the MDSQ system, which



Fig. 3. Applying MLMD on a picture: R1 = R2 = 4, R3 = R4 = 2. Deflated matrix
n = 16, k = 2. Reconstructions (from left to right) : x0, x1, x2, x3, x4, x5

For the deflated version, first we’d take a look on the construction of the original index
assignment matrix. It’s constructed from r-shaped parts, their center on the main diagonal,
each part holds 2k + 1 successive indices. Therefore adding a portion of a new r shaped
part to an index set, adds at most 2k + 1 to its spread. By chopping bits, more rows (for
a vertical coordinate description) to the description set, each row adds one new r shaped
part. The number of rows is IF , so there are IF − 1 new rows. If we add now IF − 1
new columns to the set it would not change the set spread, since no new r shaped parts are
added. That means we have to add ˆspread = (IF − 1)(2k + 1) to the numerator of both
side and central distortion. Therefore, the central distortion (the distortion associated with
reconstruction x3, as depicted in fig1(b)) is:

D3 = Θ([
1 + ˆspread

codeswords
]2) = Θ([

(IF − 1)(2k + 1) + 1

(1 + 2k)n− k(k + 1)
]2) =

Θ([
IF

n
]2) = Θ([

2Rhr−Rlr

2Rhr
]2) = Θ(2−2Rlr) (16)

and the side distortion is

Θ([
spread + ˆspread

codeswords
]2) = Θ([

2k2 + k + 1 + (IF − 1)(2k + 1))

(1 + 2k)n− k(k + 1)
]2).

If IF >> k, then 2k2 + k + 1 is negligible in comparison to (IF − 1)(2k + 1) + 1) and
the equation becomes

= Θ([
(IF − 1)(2k + 1) + 1

(1 + 2k)n− k(k + 1)
]2) = D0 = Θ(2−2Rlr) (17)

which yields distortion product of

D3D4,5 = (D3)
2 = Θ(2−4Rlr). (18)

This proves the description is optimal, in the sense of (3), provided IF >> k - which
happens either when the central to side distortion ratio is close to 1 (k is small), or when
the rate reduction (denoted by IF) is large. We can see that using this method the side and
central distortion in (18) decay at the same rate.

offers more working points for the designer. While in the original index assignment the number of diagonals
(k) may take only an integer value, using the inflated method we can create MDSQ with punctured diagonals,
i.e. with a fractional k.
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Fig. 4. Performance results: (a) Inflate, original matrix n=4, k=1. (b) Inflate, original
matrix n=8, k=3. (c) Deflate n=64, k=1. (d) Deflate n=64, k=3.

6. PERFORMANCE

We’ve tested our algorithm by simulating the system in fig.1(b). The source is Gaussian
noise f(x) ∼ N(0, 1). We trained our scalar quantizer to it, using the max-Lloyd algo-
rithm. Then, we encoded the index received from the quantizer as descriptions, using the
MLMD matrix (created by the inflate/deflate method) , passed the descriptions through
transcoders, and used the decoder described in section 4.3 to reconstruct the original value.
Finally, we’d compared the reconstruction to the original signal, using squared-error distor-
tion measure, and plotted a graph of lg2 distortion (so it would be easy to see that the slope
is indeed -4) as a function of the rate (in bits). The results appear in fig.4.As expected, the
inflated method simulations shown at figs.4(a),4(b) achieves a slope of −4R for the distor-
tion product. Only the central distortion (D0) contributes to the slope, while side distortion
(D1) maintain its values regardless to the rate.

The deflated method simulations shown at figs.4(c),4(d) achieves a slope of −4R for
the distortion product, and a slope of −2R for both central and side distortion, only when
k is small as in fig.4(c) or when the rate reduction is large - the lower rates of fig4(c) and
fig4(d).

For illustrative purposes, we applied the same process to a picture, and the results are
shown in fig.3.

7. CONCLUSIONS

The problem of rate reduction in an MD system is introduced. A Multi Level MD (MLMD)
approach is presented, and a design algorithm based upon the MDSQ method for the en-
coder, decoders and transcoders of the system is suggested. The algorithm is analyzed and
proved to be asymptotically optimal, and the simulation results obtained show its optimal-
ity.

While in this paper we considered MLMD based upon MDSQ, it’s still an open ques-
tion whether MLMD can be based also upon other methods of MD. Since our method rely
heavily on the exact details of the coding of the specific MD system, it can not be deployed
”out of the box” for another MD system. However, it seems that the underlying principles
can be applied with appropriate changes to any specific MD method. For instance, consider
the MDCT (MD Correlating Transform) system [4]. In that system the description is cre-
ated by sending a linear transform of two instances of the source. If both descriptions make



it to the decoder, it can solve the linear equations and reconstruct the original information.
In the case that only one of the descriptions arrives, the decoder can estimate the other
description and then extract the information. It’s clear that if the description is changed a
little by chopping the LSB, it would cause only a little change in the reconstructed data.
Thus, MLMD system can be based upon MDCT system. Even for more complex MD sys-
tems such as dithered delta-sigma quantization MD [5] it seems that if we’d add successive
refinability to the description by using SR quantizer inside the noise shaping loop, then it
could be used for MLMD encoding.
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