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Abstract

For general memoryless systems, the typical information theoretic solution - when exists - has a “single-letter”

form. This reflects the fact that optimum performance can be approached by a random code (or a random binning

scheme), generated using independent and identically distributed copies of some single-letter distribution. Is that the

form of the solution of any (information theoretic) problem? In fact, some counter examples are known. The most

famous is the “two help one” problem: Korner and Marton showed that if we want to decode the modulo-two sum

of two binary sources from their independent encodings, then linear coding is better than random coding. In this

paper we provide another counter example, the “doubly-dirty” multiple access channel (MAC). Like the Korner-

Marton problem, this is a multi-terminal scenario where side information is distributed among several terminals;

each transmitter knows part of the channel interference but the receiver is not aware of any part of it. We give an

explicit solution for the capacity region of a binary version of the doubly-dirty MAC, demonstrate how the capacity

region can be approached using a linear coding scheme, and prove that the “best known single-letter region” is

strictly contained in it. We also state a conjecture regarding a similar rate loss of single letter characterization in

the Gaussian case.

Index Terms

Multi-user information theory, random binning, linear lattice binning, dirty paper coding, lattice strategies,

Korner-Marton problem.

I. INTRODUCTION

Consider the two-user / double-state memoryless multiple access channel (MAC) with transition and state

probability distributions

P (y|x1, x2, s1, s2) and P (s1, s2), (1)

†This research was partially supported by BSF grant No-2004398
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Ŵ2

Fig. 1. Doubly-dirty MAC

respectively, where the states S1 and S2 are known non-causally to user 1 and user 2, respectively. A special case

of (1) is the additive channel shown in Fig. 1. In this channel, called the doubly-dirty MAC (after Costa’s “writing

on dirty paper” [1]), the total channel noise consists of three independent components: S1 and S2, the interference

signals, that are known to user 1 and user 2, respectively, and Z, the unknown noise, which is known to neither.

The channel inputs X1 and X2 may be subject to some average cost constraint.

Neither the capacity region of (1) nor that of the special case of Fig. 1 are known. In this paper we consider

a particular binary version of the doubly-dirty MAC of Fig. 1, where all variables are in Z2, i.e., {0, 1}, and the

unknown noise Z = 0. The channel output of the binary doubly-dirty MAC is given by

Y = X1 ⊕X2 ⊕ S1 ⊕ S2, (2)

where ⊕ denotes the mod 2 addition (xor), and S1, S2 are Bernoulli(1/2) and independent. Each of the codewords

xi ∈ Zn
2 is a function of the message Wi and the interference vector si ∈ Zn

2 , and must satisfy the input constraint,
1
nwH(xi) ≤ qi, i = 1, 2, where 0 ≤ q1, q2 ≤ 1/2 and wH(·) is the Hamming weight. The coding rates R1 and R2

of the two users are given as usual by Ri = 1
n log |Wi|, where Wi is the set of messages of user i, and n is the

length of the codeword.

The double state MAC (1) generalizes the point to point channel with side information (SI) at the transmitter

considered by Gel’fand and Pinsker [2]. They prove their direct coding theorem using the framework of random

binning, which is widely used in the analysis of multi-terminal source and channel coding problems [3]. They

obtain a general capacity expression which involves an auxiliary random variable U :

C = max
P (u,x|s)

{H(U |S)−H(U |Y )} (3)

where the maximization is over all the joint distributions of the form p(u, s, y, x) = p(s)p(u, x|s)p(y|x, s).

The channel in (1) with only one informed encoder (i.e., where S2 = {∅}) was considered recently by Somekh-

Baruch et al. [4] and Kotagiri and Laneman [5]. The common message (W1 = W2) capacity of this channel is

known [4], and it involves using random binning by the informed user. For the binary “one dirty user” case (i.e.,
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(2) with S2 = 0), we show that Somekh-Baruch’s common-message capacity becomes (see Appendix I)

Ccom = Hb(q1), (4)

where Hb(x) , −x log2(x)−(1−x) log2(1−x) is the binary entropy function. Clearly, the doubly-dirty individual-

message case is harder. Thus, it follows from (4) that the rate-sum in the setting of Fig. 1 is upper bounded by

R1 + R2 ≤ min
{

Hb(q1),Hb(q2)
}

. (5)

In Theorem 1 we show that this upper bound is in fact tight.

One approach to find achievable rates for the doubly-dirty MAC, is to extend the Gel’fand and Pinsker solution

[2] to the two-user / double-state case. As shown by Jafar [6], this extension leads to the following pentagonal

inner bound for the capacity region of (1):

R(U1, U2) ,
{

(R1, R2) : R1 ≤ I(U1, Y |U2)− I(U1;S1)

R2 ≤ I(U2, Y |U1)− I(U2;S2) (6)

R1 + R2 ≤ I(U1, U2, Y )− I(U1; S1)− I(U2; S2)

}

for some P (U1, U2, X1, X2|S1, S2) = P (U1, X1|S1)P (U2, X2|S2). In fact, by a standard time-sharing argument

[3], the closure of the convex hull of the set of all rate pairs (R1, R2) satisfying (7),

RBSL , cl conv

{
(R1, R2) ∈ R(U1, U2) : P (U1, U2, X1, X2|S1, S2) = P (U1, X1|S1)P (U2, X2|S2)

}
, (7)

is also achievable1. To the best of our knowledge, the set RBSL is the best currently known single-letter charac-

terization for the rate region of the MAC with side information at the transmitters (1), and in particular, for the

doubly-dirty MAC (2)2. The achievability of (7) can be proved, as usual, by an i.i.d random binning scheme [6].

A different method to cancel known interference is by “linear strategies”, i.e, binning based on the cosets of a

linear code [8], [9], [10]. In the sequel, we show that the outer bound (5) can indeed be achieved by a linear coding

scheme. Hence, the set of rate pairs (R1, R2) satisfying (5) is the capacity region of the binary doubly-dirty MAC.

In contrast, we show that the single-letter region (7) is strictly contained in this capacity region. Hence, a random

binning scheme based on this extension of the Gel’fand-Pinsker solution [2] is not optimal for this problem.

A similar observation has been made by Korner-Marton [11] for the “two help one” source coding problem.

For a specific binary version known as the “modulo-two sum” problem, they showed that the minimum possible

1As in the Gel’fand and Pinsker solution, for a finite alphabet system it is enough to optimize over auxiliary variables U1 and U2 whose

alphabet size is bounded in terms of the size of the input and state alphabets.
2For the case where the users have also a common message W0 to be transmitted jointly by both encoders, (7) can be improved by

adding another auxiliary random variable U0 which plays the role of the common auxiliary r.v. in Marton’s inner bound for the non-degraded

broadcast channel [7]. In this case, the joint distribution of (U0, U1, U2) is given by P (U0, U1, U2) = P (U0)P (U1|U0)P (U2|U0), i.e, U1

and U2 are conditionally independent given U0.
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rate sum is achieved by a linear coding scheme, while the best known single-letter expression for this problem is

strictly higher. See the discussion in [11, Section IV] and in the end of Section III.

Although the “single-letter characterization” is a fundamental concept in information theory, it has not been gen-

erally defined [12, p.35]. Csiszar and Korner [13, p.259] suggested to define it through the notion of computability,

i.e., a problem has a single-letter solution if there exists an algorithm which can decide if a point belongs to an

ε-neighborhood of the achievable rate region with polynomial complexity in 1/ε. Since we are not aware of any

other computable solution to our problem, we shall refer to (7) as the “best known single-letter characterization”.

An extension of these observations to continuous channels would be of interest. Costa [1] considered the single-

user case of the dirty channel problem Y = X + S + Z, where the interference S and the noise Z are assumed to

be i.i.d. Gaussian with variances Q and N , respectively, and the input X is subject to a power constraint P . He

showed that in this case, the transmitter side-information capacity (3) coincides with the zero-interference capacity
1
2 log2(1 + SNR), where SNR = P/N . Selecting the auxiliary random variable U in (3) such that

U = X + αS, (8)

where X and S are independent, and taking α = P
P+N , the formula (3) and its associated random binning scheme

are capacity achieving. The continuous (Gaussian) version of the doubly-dirty MAC of Fig. 1 was considered in

[10]. It was shown that by using a linear structure, i.e., lattice strategies [8], the full capacity region is achieved

in the limit of high SNR and high lattice dimension. In contrast, it was shown that for Q →∞ no positive rate is

achievable by using the natural generalization of Costa’s strategy (8) to the two user case, while a (scalar) modulo

addition version of (8) looses ≈ 0.254 bit in the sum capacity. We shall further elaborate on this issue in Section IV.

Similar observations regarding the advantage of modulo-lattice modulation with respect to a separation based

solution were made by Nazer and Gastpar [14], in the context of computation over linear Gaussian networks, and

also by Krithivasan and Pradhan [15] for multi-terminal rate distortion problems.

The paper is organized as follows. In Section II the capacity region for the binary doubly-dirty MAC (2) is

derived, and linear coding is shown to be optimal. Section III develops a closed form expression for the best

known single-letter characterization (7) for this channel, and demonstrates that it is strictly contained in the the

true capacity region. In Section IV we consider the Gaussian doubly-dirty MAC, and state a conjecture regarding

the capacity loss of single-letter characterization in this case.

II. THE CAPACITY REGION OF THE BINARY DOUBLY-DIRTY MAC

The following theorem characterizes the capacity region of the binary doubly-dirty MAC of Fig. 1.

Theorem 1. The capacity region of the binary doubly-dirty MAC (2) is the set of all rate pairs (R1, R2) satisfying

C(q1, q2) ,
{

(R1, R2) : R1 + R2 ≤ min
{

Hb(q1),Hb(q2)
}}

. (9)

Proof: The converse part: As explained in the Introduction (5), one way to derive an upper bound for the

rate-sum is through the general one-dirty-user capacity formula [4], which we derive explicitly for the binary case
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in Appendix I. Here we show directly the converse part, which is similar to the proof of the outer bound for the

Gaussian case in [16], [10]. We assume that user 1 and user 2 intend to transmit a common message W . An upper

bound on the rate of this message clearly upper bounds the sum rate R1 + R2 in the individual messages case.

Thus,

n(R1 + R2) ≤ H(W )

= H(W |Y n) + I(W ; Y n)

≤ I(W ; Y n) + nεn (10)

= H(Y n)−H(Y n|W ) + nεn

= H(Y n)−H(Y n|W,Sn
1 , Sn

2 )− I(Sn
1 , Sn

2 ;Y n|W ) + nεn

= H(Y n)− I(Sn
1 , Sn

2 ; Y n|W ) + nεn (11)

= H(Y n)−H(Sn
1 , Sn

2 |W ) + H(Sn
1 , Sn

2 |W,Y n) + nεn

≤ −n + H(Sn
1 |W,Y n) + H(Sn

2 |W,Y n, Sn
1 ) + nεn (12)

≤ H(Xn
1 ⊕Xn

2 ⊕ Sn
1 |W,Y n, Sn

1 ) + nεn (13)

= H(Xn
2 |W,Y n, Sn

1 ) + nεn (14)

≤ nHb(q2) + nεn, (15)

where (10) follows from Fano’s inequality where εn → 0 as the error probability P
(n)
e goes to zero for n → ∞;

(11) follows since Y is fully known given W , S1 and S2; (12) follows from the chain rule for entropy, and due

to H(Y n) ≤ n and H(Sn
1 , Sn

2 |W ) = H(Sn
1 ) + H(Sn

2 ) = 2n since W , Sn
1 and Sn

2 are mutually independent; (13)

follows since H(Sn
1 |W,Y n) ≤ n and Y n = Xn

1 ⊕Xn
2 ⊕Sn

1 ⊕Sn
2 ; (14) follows since Xn

1 is a function of (W,Sn
1 ),

finally (15) follows since H(Xn
2 |W,Y n, Sn

1 ) ≤ H(Xn
2 ) ≤ nHb(q2).

In the same way we can show that R1 + R2 ≤ Hb(q1) + εn. The converse part follows since for n → ∞ we

have that εn → 0, thus P
(n)
e → 0.

The direct part is based on the scheme for the point-to-point binary dirty paper channel [9]. We define q ,
min{q1, q2}. In view of the converse part, it is sufficient to show achievability of the point (R1, R2) = (Hb(q), 0),

since the outer bound may be achieved by time sharing with the symmetric point (R1, R2) = (0,Hb(q)). The corner

point (R1, R2) = (Hb(q), 0) corresponds to the “helper problem”, i.e., user 2 tries to help user 1 to transmit at its

highest rate. The encoders and decoder are described using a binary linear code C(n, k) with parity check matrix

H . Let v ∈ Zn−k
2 be a syndrome of the code C, where we note that each syndrome represents a different coset of

the linear code C. Let f(v) denote the “leader” of (or the minimum weight vector in) the coset associated with

the syndrome v [17, Chap. 6], hence f : {0, 1}n−k → {0, 1}n . For a ∈ Zn
2 , we define the n-dimensional modulo

operation over the code C as

a mod C , f(Ha),
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which is the leader of the coset to which the vector a belongs.

• Encoder of user 1: Let the transmitted message v1 ∈ Zn−k
2 be a syndrome in C, and let x̃1 = f(v1) be

its coset leader. In particular v1 = Hx̃1. Transmit the modulo of the code C with respect to the difference

between x̃1 and s1, i.e.,

x1 = (x̃1 ⊕ s1) mod C = f(v1 ⊕Hs1).

• Encoder of user 2: (functions as a “helper” for user 1). Transmit

x2 = s2 mod C = f(Hs2).

• Decoder:

1. Reconstruct x̃1 by ˆ̃x1 = y mod C.

2. Reconstruct the transmitted coset of user 1 by v̂1 = H ˆ̃x1.

In fact, the transmitted coset can be reconstructed directly as v̂1 = H ˆ̃x1 = H(y mod C) = Hy, where the

last equality follows since y mod C and y are in the same coset.

It follows that the decoder correctly decodes the message coset v1, since

v̂1 = H ·
(
y mod C

)

= H ·
(
[x̃1 ⊕ s1 ⊕ s2 ⊕ s1 ⊕ s2] mod C

)

= Hx̃1

= v1,

where the third equality follows since x̃1 and x̃1 mod C are in the same coset. It is left to relate the coding rate

R1 = 1
n log

(∣∣∣{0, 1}n−k
∣∣∣
)

= 1 − k/n to the input constraint q. Form [18], there exists a binary linear code with

covering radius ρ that satisfies k
n ≤ 1 − Hb(ρ/n) + ε where ε → 0 as n → ∞. The achievability of the point

(Hb(q), 0) follows by using q = ρ/n, thus R1 = 1 − k/n ≥ Hb(q) − ε, while wH(x1) = wH(f(v1 ⊕Hs1)) ≤ ρ

and wH(x2) = wH(f(Hs2)) ≤ ρ, hence

1
n

EwH{x1} =
1
n

EwH{f(v1 ⊕Hs1)} ≤ q

1
n

EwH{x2} =
1
n

EwH{f(Hs2)} ≤ q.

This completes the proof of the direct part of the theorem.

As stated above, the achievability for the capacity region follows by time sharing the corner points (Hb(q), 0) and

(0,Hb(q)) where q = min{q1, q2}. It is also interesting to see how to achieve the rate sum Hb(q) for an arbitrary

rate pair (R1, R2) without time sharing. For that, let the message of user 1 be m1 ∈ Zl1
2 and the message of user
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2 be m2 ∈ Zl2
2 where l1 + l2 = n− k. We define the following syndromes in C

v1 , [m1 0 0 . . . 0︸ ︷︷ ︸
l2

] ∈ Zn−k
2

v2 , [0 0 . . . 0︸ ︷︷ ︸
l1

m2] ∈ Zn−k
2

v , v1 ⊕ v2.

Clearly, given the syndrome v the syndromes v1 and v2 are fully known and the messages m1 and m2 as well.

Let x̃i = f(vi) be the coset leader of vi for i = 1, 2. In this case the transmission scheme is as follow:

• Encoder of user 1: transmit x1 = (x̃1 ⊕ s1) mod C = f(v1 ⊕Hs1).

• Encoder of user 2: transmit x2 = (x̃2 ⊕ s2) mod C = f(v2 ⊕Hs2).

• Decoder: reconstruct v̂ = H ·
(
y mod C

)
.

Therefore, we have that

v̂ = H ·
(
y mod C

)

= H ·
(
x̃1 ⊕ x̃2

)
= v1 ⊕ v2 = v.

The sum capacity is achieved since R1 + R2 = l1+l2
n = n−k

n ≥ Hb(q)− ε where ε → 0 as n →∞ which satisfies

the input constraints.

III. A SINGLE-LETTER CHARACTERIZATION FOR THE CAPACITY REGION

In this section we characterize the best known single-letter region (7) for the binary doubly-dirty MAC (2),

and show that it is strictly contained in the capacity region (9). For simplicity, we shall assume identical input

constraints, i.e., q1 = q2 = q.

Definition 1. For a given q, the best known single-letter rate region for the binary doubly-dirty MAC (2), denoted

by RBSL(q), is the set of all rate pairs (R1, R2) satisfying (7) with the additional constraints that EX1, EX2 ≤ q.

In the following theorem we give a closed form expression for RBSL(q).

Theorem 2. The best known single-letter rate region for the binary doubly-dirty MAC (2) is a triangular region

given by

RBSL(q) =

{
(R1, R2) : R1 + R2 ≤ u.c.e

[
2Hb(q)− 1

]+
}

, (16)

where u.c.e is the upper convex envelope with respect to q, and [x]+ , max{0, x}.

Fig. 2 shows the sum capacity of the binary doubly-dirty MAC (9) versus the best known single-letter rate sum

(16) for equal input constraints. The latter is strictly contained in the capacity region which is achieved by a linear

code. The quantity [2Hb(q) − 1]+ is not a convex - ∩ function with respect to q. The upper convex envelope of
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[2Hb(q)− 1]+ is achieved by time-sharing between the points q = 0 and q = q∗ , 1− 1/
√

2, therefore it is given

by

R1 + R2 ≤
{

2Hb(q)− 1, q∗ ≤ q ≤ 1/2

C∗q, 0 ≤ q ≤ q∗
, (17)

where C∗ , 2Hb(q∗)−1
q∗ .

Proof: The direct part is shown by choosing in (6) U1 = S1 ⊕ X1 and U2 = S2 ⊕ X2, where X1, X2 ∼
Bernoulli(q) and X1, X2, S1, S2 are independent. From (6) the achievable rate sum is given by

R1 + R2 = I(U1, U2;Y )− I(U1, U2; S1, S2)

= H(U1|S1) + H(U2|S2)−H(U1, U2|U1 ⊕ U2) (18)

= H(U1|S1) + H(U2|S2)−H(U1|U1 ⊕ U2)−H(U2|U1 ⊕ U2, U1) (19)

= H(X1) + H(X2)−H(U1|U1 ⊕ U2) (20)

= 2Hb(q)− 1, (21)

where (18) follows since Y = U1⊕U2; (19) follows from the chain rule for entropy; (20) follows since U2 is fully

known given U1 ⊕ U2, U1 thus H(U2|U1 ⊕ U2, U1) = 0; (21) follows since H(Xi) ≤ Hb(q) and since U1, U2 are

independent with P (Ui = 1) = 1/2 thus H(U1|U1 ⊕ U2) = H(U1) = 1.

The converse part of the proof is given in Appendix II.
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Fig. 2. The rate sum of binary doubly-dirty MAC vs. best known single-letter rate sum with input constraints EX1, EX2 ≤ q.
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We see that the binary doubly-dirty MAC is a memoryless channel coding problem, where the capacity region

is achievable by a linear code, while the best known single-letter rate region is strictly contained in the capacity

region. This may be explained by the fact that each user has only partial side information, and distributed random

binning is unable to capture the linear structure of the channel.

In order to understand the limitation of random binning versus a linear code, we consider these two schemes

for high enough q, that is 2Hb(q) − 1 ≥ 0. The random binning scheme uses Ui = Xi ⊕ Si where Xi ∼
Bernoulli(q) and Si ∼ Bernoulli(1/2) are independent, therefore Y = U1 ⊕ U2 where Ui ∼ Bernoulli(1/2) for

i = 1, 2. Each transmitter maps the message (bin) Wi into a codeword ui which is with high probability at a

Hamming distance of nq from si. Therefore, given the vectors (sn
1 , sn

2 ), the available input space is approximately

2nH(U1,U2|S1,S2) = 2nH(X1,X2) = 22nHb(q). Given the received vector y, the residual ambiguity is given by

2nH(U1,U2|Y ) = 2n[H(U1|Y )+H(U2|Y,U1)] = 2n, since H(U1|Y ) = 1 and H(U2|Y, U1) = 0. As a result, the achievable

rate sum is given by

R1 + R2 =
1
n

log2

( |input space|
|residual ambiguity space|

)
≈ 2Hb(q)− 1.

The linear coding scheme shown in Theorem 1 has the same input space size as the random binning scheme, i.e.,

22nHb(q), since each user has 2nHb(q) cosets. However, given the received vector y there are 2nHb(q) possible pairs

of cosets, i.e., the residual ambiguity is only 2nHb(q). Therefore, the linear code achieves rate sum of R1 + R2 ≈
2Hb(q) −Hb(q) = Hb(q). The advantage of the linear coding scheme results from the “ordered structure” of the

linear code, which decreases the residual ambiguity from 1 bit in random coding to Hb(q).

The following example illustrates the above arguments for the case that user 2 is a “helper” for user 1, i.e,

R2 = 0, and user 1 transmits at his highest rate for each technique (random binning or linear coding). Table I

summarizes the rates and codebooks sizes for each user for q = 0.3, that is Hb(q) ≈ 0.88 bit.

Random binning Linear code

Rate sum 2Hb(q)− 1 = 0.76 bit Hb(q) = 0.88 bit

Codewords per bin/coset 2nI(Ui;Si) = 2n[1−Hb(q)] = 20.12n 2n[1−Hb(q)] = 20.12n

Helper (user 2) - codebook size 2nI(U2;S2) = 2n[1−Hb(q)] = 20.12n 2n[1−Hb(q)] = 20.12n

User 1 - codebook size 20.76n20.12n = 20.88n 20.12n20.88n = 2n

Number of possible codeword pairs 20.88n20.12n = 2n 2n20.12n = 21.12n

TABLE I

RANDOM BINNING AND LINEAR CODING SCHEMES CODEBOOKS SIZES FOR THE HELPER PROBLEM WITH q = 0.3.

Korner and Marton [11] observed a similar behavior for the “two help one” source coding problem shown in

Fig. 3. In this problem, there are three binary sources X, Y, Z, where Z = X ⊕ Y , and the joint distribution of X

and Y is symmetric with P (X 6= Y ) = θ. The goal is to encode the sources X and Y separately such that Z can
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Enc. Y
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ẐY

X

Z = X ⊕ Y

Fig. 3. The Korner-Marton configuration.

be reconstructed losslessly. Korner and Marton showed that the rate sum required is at least

Rx + Ry ≥ 2H(Z), (22)

and furthermore, this rate sum can be achieved by a linear code: each encoder transmits the syndrome of the

observed source relative to a good linear binary code for a BSC with crossover probability θ.

In contrast, the “one help one” problem [19], [20] has a closed single-letter expression for the rate region, which

corresponds to a random binning coding scheme. Korner and Marton [11] generalize the expression of [19], [20]

to the “two help one” problem, and show that the minimal rate sum required using this expression is given by

Rx + Ry ≥ H(X, Y ). (23)

The region (23) corresponds to Slepian-Wolf encoding of X and Y , and it can also be derived from the Burger-Tung

achievable region [21] for distributed coding for X and Y with one reconstruction Ẑ under the distortion measure

d(X,Y, Ẑ) , X⊕Y ⊕Ẑ. Clearly, the region (6) is strictly contained in the Korner-Marton region Rx+Ry ≥ 2H(Z)

(22) (since H(X, Y ) = 1+H(Z) > 2H(Z) for Z ∼ Bernoulli(θ), where θ 6= 1
2 ). For further background on related

source coding problems, see [15].

IV. THE GAUSSIAN DOUBLY-DIRTY MAC

In this section we introduce our conjecture regarding the rate loss of the best known single-letter characterization

for the capacity region of the two-user Gaussian doubly-dirty MAC at high SNR. The Gaussian doubly-dirty MAC

[10] is given by

Y = X1 + X2 + S1 + S2 + Z, (24)

where Z ∼ N (0, N) is independent of X1, X2, S1, S2, and where user 1 and user 2 must satisfy the power

constraints, 1
n

∑n
i=1 X2

1i
≤ P1 and 1

n

∑n
i=1 X2

2i
≤ P2 see Fig. 1. The interference signals S1 and S2 are known

non-causally to the transmitters of user 1 and user 2, respectively. We shall assume that S1 and S2 are independent

Gaussian with variances going to infinity, i.e., Si ∼ N (0, Qi) where Qi → ∞ for i = 1, 2. The signal to noise

ratios for the two users are SNR1 = P1
N and SNR2 = P2

N .
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The capacity region at high SNR, i.e., SNR1, SNR2 À 1, is given by [10],

R1 + R2 ≤ 1
2

log2

(
min{P1, P2}

N

)
, (25)

and it is achievable by a modulo lattice coding scheme of dimension going to infinity. In contrast, it was shown in

[10] that at high SNR and strong independent Gaussian interferences, the natural generalization of Costa’s strategy

(8) for the two users case, i.e., with auxiliary random variables U1 = X1 + S1 and U2 = X2 + S2, is not able to

achieve any positive rate. A better choice for U1 and U2 suggested in [10] is a modulo version of Costa’s strategy

(8),

U∗
i = [Xi + Si] mod ∆i, (26)

where ∆i =
√

12Pi, and where Xi ∼ Unif
(
[−∆i

2 , ∆i

2 )
)

is independent of Si, for i = 1, 2. In this case the rate loss

with respect to (25) is 1
2 log2

(
πe
6

)
≈ 0.254 bit.

The best known single-letter capacity region for the Gaussian doubly-dirty MAC (24) is defined as the set of

all rate pairs (R1, R2) satisfying (7), where X1 and X2 are restricted to the power constraints EX2
1 ≤ P1 and

EX2
2 ≤ P2. We believe that for high SNR and strong interference, the modulo-∆ strategy (26) is an optimum

choice for (X1, X2, U1, U2) in (7) for the Gaussian doubly-dirty MAC. This implies the following conjecture about

the rate loss of the best known single-letter characterization.

Conjecture 1. For the Gaussian doubly-dirty MAC, at high SNR and strong interference, the best known single-letter

expression Rsum
BSL (7) looses

Csum −Rsum
BSL =

1
2

log2

(πe

6

)
≈ 0.254 bit, (27)

with respect to the sum capacity Csum (25).

Note that the right hand side of (27) is the well known “shaping loss” [22] (equivalent to a 1.53dB power loss).

A heuristic approach to attack the proof of this conjecture is to follow the steps of the proof of the converse

part in the binary case (Theorem 2). First, in Lemma 6 we derive a simplified single-letter formula, Gmax(P1, P2),

which is analogous to Lemma 1 in the binary case. The next step would be to optimize this expression. However,

an optimal choice for the auxiliary random variables V1, V
′
1 , V2, V

′
2 (provided in the binary case by Lemma 2 and

Lemma 3) is unfortunately still missing for the Gaussian case. The expression in Lemma 6 is close in spirit to the

point-to-point dirty tape capacity for high SNR and strong interference [8]. In [8] it is shown that optimizing the

capacity is equivalent to minimum entropy-constrained scalar quantization in high resolution, which is achieved

by a lattice quantizer. Clearly, if we could show a similar lemma for the two variable pairs in the maximization

of Lemma 6, i.e., that it is achieved by a pair of lattice quantizers, then the conjecture would be an immediate

consequence.

It should be noted that the above discussion is valid only for strong interferences S1 and S2. For interference

with finite power, it seems that cancelling the interference part of the time and staying silence the rest of the time

(like in the time-sharing region 0 ≤ q ≤ q∗ in the binary case) may achieve better rates.



12

V. SUMMARY

A memoryless information theoretic problem is considered open as long as we are missing a general single-letter

characterization for its information performance. This goes hand in hand with the optimality of the random coding

approach for those problems which are currently solved. We examined this traditional view for the memoryless

doubly-dirty MAC.

In the binary case, we showed that the best known single letter characterization is strictly contained in the region

achievable by linear coding, and that the latter is in fact the full capacity region of the problem. In the Gaussian

case, we conjectured that the best known single-letter characterization suffers an inherent rate loss (equal to the

well known “shaping loss” 0.5 log(πe/6)), and we provide a partial proof. This is in contrast to the asymptotic

optimality (dimension →∞) of lattice strategies, as recently shown in [10].

The underlying reason for these performance gaps is that random binning is in general not optimal when side

information is distributed among more than one terminal in the network. In the specific case of the doubly-dirty

MAC (like in Korner-Marton’s modulo-two sum problem [11] and similar settings [14], [15]), the linear structure

of the network allows to show that linear binning is not only better, but it is capacity achieving.

APPENDIX I

A CLOSED FORM EXPRESSION FOR THE CAPACITY OF THE BINARY MAC WITH ONE DIRTY USER

We consider the binary dirty MAC (2) with S2 = 0,

Y = X1 ⊕X2 ⊕ S1, (28)

where S1 ∼ Bernoulli(1/2) is known non-causally at the encoder of user 1 with the input constraints 1
nWH(xi) ≤ qi

for i = 1, 2. We show that the common message (W1 = W2 = W ) capacity of this channel is given by

Ccom = Hb(q1). (29)

To prove (29), consider the general expression for the common message capacity of the MAC with one informed

user [4], given by

Ccom = max
U1,X1,X2

{I(U1, X2;Y )− I(U1, X2; S1)}, (30)

where the maximization is over al the joint distributions

P (S1, X1, X2, U1, Y ) = P (S1)P (X2)P (U1|X2, S1)P (X1|S1, U1)P (Y |X1, X2, S1).

The converse part of (29) follows since for any U1, X1, X2, the common message rate Rcom can be upper bounded
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by

Rcom = I(U1, X2; Y )− I(U1, X2; S1)

= H(S1|U1, X2)−H(Y |U1, X2) + H(Y )−H(S1)

≤ H(S|U1, X2)−H(Y |U1, X2) (31)

= H(S1|U1, X2)−H(X1 ⊕ S1|U1, X2) (32)

= H(S1|T )−H(X1 ⊕ S1|T ) (33)

= ET

{
H(S1|T = t)−H(X1 ⊕ S1|T = t)

}
(34)

= ET

{
Hb(αt)−Hb(βt)

}
, (35)

where (31) follows since H(Y ) ≤ 1 and H(S1) = 1; (32) follows since Y = X1 ⊕ X2 ⊕ S1; (33) follows

the definition T , (U1, X2); (34) follows from the definition of the conditional entropy; (35) follows from the

following definitions αt , P (S1 = 1|T = t) and βt , P (S1 ⊕ X1 = 1|T = t) for any t ∈ T . We also define

q1|t , P (X1 = 1|T = t) = E{X1|T = t}, therefore the input constraint of user 1 can be written as

EX1 = ET E{X1|T = t} = ET {q1|t} ≤ q1. (36)

Without loss of generality, we can only consider αt, βt, q1|t ∈ [0, 1/2] in (35) for any t ∈ T . Thus,

Rcom ≤ ET

{
Hb(αt)−Hb

(
[αt − q1|t]+

)}
(37)

≤ ET

{
Hb(q1|t)

}
(38)

≤ Hb

(
ET {q1|t}

)
(39)

≤ Hb(q1), (40)

where (37) follows from (35) and since Hb(βt) ≥ Hb

(
[αt − q1|t]+

)
, where [x]+ = max{x, 0}; (38) follows since

Hb(αt)−Hb

(
[αt − q1|t]+

)
is increasing in αt for αt ≤ q1|t ≤ 1/2 and decreasing in αt for q1|t < αt ≤ 1/2, thus

the maximum is for αt = q1|t; (39) follows from Jensen’s inequality since Hb(·) is convex-∩; (40) follows from the

input constraint for user 1 (36). The converse part follows since the outer bound is valid for any U1 and X1, X2

that satisfy the input constraints.

The direct part is shown by using U1 = X1 ⊕ S1 where X1 and S1 are independent with X1 ∼ Bernoulli(q1),

thus U1 ∼ Bernoulli(1/2). Furthermore, X2 ∼ Bernoulli(q2) which is independent of X1, U1, S1. In this case

Y = U1 ⊕X2, hence Y ∼ Bernoulli(1/2). Using this choice for U1, X1, X2, the achievable common message rate

is given by

Rcom = I(U1, X2; Y )− I(U1, X2; S1)

= H(S1|U1, X2)−H(Y |U1, X2) + H(Y )−H(S1)

= H(X1) (41)

= Hb(q1),
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where (41) follows since H(S1|U1, X2) = H(S1|U1) = H(X1), H(Y |U1, X2) = 0, H(Y ) = 1 and H(S1) = 1.

APPENDIX II

PROOF OF THE CONVERSE PART OF THEOREM 2

The proof of the converse part follows from Lemma 1, Lemma 2 and Lemma 3, whereas Lemma 5 and Lemma 4

are technical results which assist in the derivation of Lemma 3.

Let us define the following functions:

F (PV1,V ′1 , PV2,V ′2 ) ,
[
H(V1) + H(V2)−H(V ′

1 ⊕ V ′
2)− 1

]+
, (42)

where [x]+ = max(0, x); its (q1, q2)-constrained maximization with respect to V1, V
′
1 , V2, V

′
2 ∈ Z2 where (V1, V

′
1)

and (V2, V
′
2) are independent, i.e.,

Fmax(q1, q2) , max
V1,V ′

1 ,V2,V ′2
F (PV1,V ′

1
, PV2,V ′

2
) (43)

s.t P (Vi 6= V ′
i ) ≤ qi, for i = 1, 2;

and the upper convex envelope of Fmax(q1, q2) with respect to q1, q2

Fmax(q1, q2) , u.c.e
{

Fmax(q1, q2)
}

. (44)

In the following lemma we give an outer bound for the single-letter region (7) of the binary doubly-dirty MAC in

the spirit of [23, Lemma 3] and [8, Proposition 1].

Lemma 1. The best known single-letter rate sum (7) of the binary doubly-dirty MAC (2) with input constraint q1

and q2 is upper bounded by

R1 + R2 ≤ Fmax(q1, q2). (45)

Proof: An outer bound on the best known single-letter region (7) is given by

Rsum
BSL(U1, U2) ,

[
I(U1, U2; Y )− I(U1, U2;S1, S2)

]+
(46)

=
[
H(S1|U1) + H(S2|U2)−H(Y |U1, U2) + H(Y )−H(S1)−H(S2)

]+
(47)

≤
[
H(S1|U1) + H(S2|U2)−H(Y |U1, U2)− 1

]+
(48)

=

[
EU1,U2

{
H(S1|U1 = u1) + H(S2|U2 = u2)−H(Y |U1 = u1, U2 = u2)− 1

}]+

(49)

≤ EU1,U2

{[
H(S1|U1 = u1) + H(S2|U2 = u2)−H(Y |U1 = u1, U2 = u2)− 1

]+
}

(50)

≤ EU1,U2

{
F

(
PS1,S1⊕X1|U1=u1

, PS2,S2⊕X2|U2=u2

)}
(51)

≤ EU1,U2

{
Fmax

(
q1|u1

, q2|u2

)}
(52)

≤ Fmax

(
EU1q1|u1

, EU2q2|u2

)
(53)

≤ Fmax

(
q1, q2

)
, (54)
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where (48) follows since H(S1) = H(S2) = 1 and H(Y ) ≤ 1; (49) follows from the definition of the conditional

entropy; (50) follows since [Ex]+ ≤ E{x+}; (51) follows from the definition of the function F (PV1,V ′1 , PV2,V ′2 )

(42), likewise (52) follows from the definition of the function Fmax(q1, q2) (44), and from the definition

qi|ui
, P (Si 6= Xi ⊕ Si|Ui = ui) = P (Xi = 1|Ui = ui), for i = 1, 2;

(53) follows from Jensen’s inequality since Fmax(q1, q2) is a concave function; (54) follows from the input

constraints where

EXi = EUi
P (Xi = 1|Ui = ui)

=
∑

ui∈Ui

P (ui)P (Xi = 1|Ui = ui)

=
∑

ui∈Ui

P (ui)qi|ui
≤ qi, for i = 1, 2. (55)

The lemma now follows since the upper bound (54) for the rate sum is independent of U1 and U2, hence it also

bounds the single-letter region RBSL(q).

A simplified expression for the function Fmax(q1, q2) of (43) is shown in the following lemma.

Lemma 2. The function Fmax(q1, q2) (43) is given by

Fmax(q1, q2) = max
α1,α2∈[0,1/2]

[
Hb(α1) + Hb(α2)−Hb

(
[α1 − q1]+ ∗ [α2 − q2]+

)
− 1

]+
, (56)

where ∗ is the binary convolution, i.e., x ∗ y , (1− x)y + (1− y)x.

Proof: The function Fmax(q1, q2) is defined in (42) and (43) where V1, V
′
1 , V2, V

′
2 are binary random variables.

Let us define the following probabilities:

αi , P (Vi = 1)

δi , P (V ′
i = 1|Vi = 0)

γi , P (V ′
i = 0|Vi = 1),

for i = 1, 2. We thus have

P (V ′
i = 1) = (1− αi)δi + αi(1− γi) , g(αi, δiγi)

P (Vi 6= V ′
i ) = αiγi + (1− αi)δi , h(αi, δi, γi),

for i = 1, 2. The maximization (43) can be written as

Fmax(q1, q2) = max
α1,α2

[
Hb(α1) + Hb(α2)− min

γ1,δ1,γ2,δ2
h(αi,δi,γi)≤qi, i=1,2

Hb

(
g(α1, δ1, γ1) ∗ g(α2, δ2, γ2)

)
− 1

]+
. (57)

This maximization has two equivalent solutions (αo
1, α

o
2) and (1− αo

1, 1− αo
2) where 0 ≤ αo

1, α
o
2 ≤ 0.5, since any

other (α1, α2) can only increase the inner minimization in (57) which results in a lower Fmax(q1, q2). Therefore,

without loss of generality we may assume that 0 ≤ α1, α2 ≤ 0.5.
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To prove the lemma we need to show that for any αi the inner minimization is achieved by

δi = 0, γi = min{1, qi/αi}, i = 1, 2.

In other words, V ′
i has the smallest possible probability for 1 under the constraint that P (Vi 6= V ′

i ) ≤ qi, implying

that the transition from Vi to V ′
i is a “Z channel”. The inner minimization requires that P (V ′

i = 1) will be minimized

restricted to the constraint P (Vi 6= V ′
i ) ≤ qi, therefore it is equivalent to the following minimization

min
γi,δi

h(αi,δiγi)≤qi

g(αi, δiγi), i = 1, 2.

For αi ≤ q, the solution is δi = 0 and γi = 1 since in this case g(αi, γi, δi) = 0 and the constraint is satisfied.

For q ≤ αi ≤ 0.5, in order to minimize g(αi, γi, δi), it is required that δi ∈ [0, q/(1 − ai)] will be minimal and

γi ∈ [0, q/αi] will be maximal such that the constraint is satisfied. Clearly, the best choice is for δi = 0 and

γi = q/αi, in this case the constraint is satisfies and g(αi, γi, δi) = αi − q.

The next lemma gives an explicit upper bound for Fmax(q1, q2) (43) for the case that q1 = q2. Let

f(x) = x− 1

1 +
(

1
x − 1

)2 , (58)

and let

qc , max
x∈[0,1/2]

f(x). (59)

Since f(x) is differentiable, we can characterize qc by differentiating f(x) with respect to x and equating to zero,

thus we get that

4x4 − 8x3 + 10x2 − 6x + 1 = 0.

This fourth order polynomial has two complex roots and two real roots, where one of its real roots is a local

minimum and the other root is a local maximum. Specifically, this local maximum maximizes f(x) for the interval

x ∈ [0, 1/2] and it achieves qc ' 0.1501 which occurs at x ' 0.257.

Lemma 3. For q1 = q2 = q, we have that:

Fmax(q, q) = 2Hb(q)− 1, qc ≤ q ≤ 1/2

Fmax(q, q) ≤ C∗q, 0 < q < qc

Fmax(0, 0) = 0, q = 0,

(60)

where qc is defined in (59), while C∗ = 2Hb(q∗)−1
q∗ and q∗ , 1− 1/

√
2 ' 0.3 are defined in (17).

Note that in the first case (qc ≤ q ≤ 1/2) in (56) is achieved by α1 = α2 = q, while in the third case (q = 0) (56)

is achieved by α1 = α2 = 1/2 as shown in Fig. 5. Although, we do not have an explicit expression for Fmax(q, q)

in the range 0 < q < qc, the bound Fmax(q, q) ≤ C∗q is sufficient for the purpose of proving Theorem 2 because

qc ≤ q∗. In Fig. 4 a numerical characterization of Fmax(q, q) is plotted.
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Fig. 4. Numerical results of Fmax(q, q) (56) for q ∈ [0, 0.12] (Fig. 2 is the same plot for q ∈ [0, 0.5]) .

Proof: Define

F (α1, α2, q) , Hb(α1) + Hb(α2)−Hb

(
[α1 − q]+ ∗ [α2 − q]+

)− 1.

From the discussion above about the cases of equality in (60), Lemma 3 will follow by showing that F (α1, α2, q)

is otherwise smaller, i.e.,

F (α1, α2, q) ≤
{

C∗q, 0 ≤ q ≤ qc

2Hb(q)− 1, qc ≤ q ≤ 1/2
(61)

for all 0 ≤ α1, α2 ≤ 1/2. It is easy to see that for α1, α2 ≤ q the function F (α1, α2, q) is monotonically increasing

with α1, α2, and thus F (α1, α2, q) ≤ F (q, q, q) = 2Hb(q) − 1. For α1 ≤ q and q < α2 ≤ 1/2, F (α1, α2, q)

is increasing with α1 and decreasing with α2, and thus F (α1, α2, q) ≤ F (q, q, q) = 2Hb(q) − 1. Clearly, from

symmetry, also for α2 ≤ q and q ≤ α1 ≤ 1/2, F (α1, α2, q) ≤ 2Hb(q) − 1. As a consequence, we have to show

that (61) is satisfied only for q ≤ α1, α2 ≤ 1/2. Likewise, in the sequel we may assume without loss of generality

that q ≤ α2 ≤ α1 ≤ 1/2.

The bound for the interval qc < q ≤ 1/2: in this case (61) is equivalent to the following bound

Hb

(
(α1 − q) ∗ (α2 − q)

)
−Hb(α1)−Hb(α2) + 2Hb(q) ≥ 0, for qc ≤ q ≤ α2 ≤ α1 ≤ 1/2. (62)
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Fig. 5. The optimal α1 = α2 = α(q) which maximizes (56).

The LHS is lower bounded by

Hb

(
(α1 − q) ∗ (α2 − q)

)
−Hb(α1)−Hb(α2) + 2Hb(q)

≥ Hb(α1 − q)−Hb(α1)−Hb(α2) + 2Hb(q) (63)

≥ Hb(α1 − q)− 2Hb(α1) + 2Hb(q) (64)

≥ 0, (65)

where (63) follows since Hb

(
(α1 − q) ∗ (α2 − q)

)
≥ Hb(α1 − q); (64) follows since α2 ≤ α1 ≤ 1/2; (65) follows

from Lemma 4 below.

The bound for the interval 0 ≤ q ≤ qc: in this case (61) is equivalent to the following bound

Hb

(
(α1 − q) ∗ (α2 − q)

)
≥ Hb(α1) + Hb(α2)− 1− C∗ · q, for 0 ≤ q ≤ α2 ≤ α1 ≤ qc. (66)

For fixed α1 and α2, let us denote the RHS and the LHS of (66) as

gl(q) , Hb

(
(α1 − q) ∗ (α2 − q)

)

gr(q) , Hb(α1) + Hb(α2)− 1− C∗ · q.

The function gl(q) is convex-∩ in q, since it is a composition of the function Hb(x) which is non-decreasing

convex-∩ in the range [0, 1/2] and the function [α1 − q] ∗ [α2 − q] which is convex-∩ in q [24]. Since gr(q) is

linear function in q and gl(q) is convex-∩ function in q, the bound (66) is satisfied if the interval edges (q = 0 and
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q = α2) satisfy this bound. For q = 0, (66) holds since

gl(q = 0) = Hb(α1 ∗ α2)

≥ max{Hb(α1),Hb(α2)}
≥ min{Hb(α1), Hb(α2)}
≥ Hb(α1) + Hb(α2)− 1

= gr(q = 0).

For q = α2 where 0 ≤ q ≤ qc, the bound (66) is satisfied since

gr(q = α2) = Hb(α1) + Hb(α2)− 1− C∗ · α2 (67)

≤ Hb(α1)−Hb(q∗) + Hb(0.5q∗)− 0.5 (68)

≤ Hb(α1)−Hb(qc) (69)

≤ Hb(α1)−Hb(α2) (70)

≤ Hb(α1 − α2) (71)

= gl(q = α2), (72)

where (68) follows from Lemma 5 since arg maxα2∈[0,1/2] gr(α2) = 0.5q∗, and since C∗ = 2Hb(q∗)−1
q∗ ;(69) follows

since for q∗ = 1−1/
√

2 and qc defined in (59), we have Hb

(
1−1/

√
2
)−Hb

(
0.5(1−1/

√
2)

)
+0.5 ' 0.68... ≥ Hb(qc);

(70) follows since qc ≥ α2, thus Hb(qc) ≥ Hb(α2); (71) follows since Hb(α1) −Hb(α1 − α2) is decreing in α1,

thus Hb(α1)−Hb(α1−α2) ≤ Hb(α2) for α2 ≤ α1 ≤ 1/2. Therefore, the bound (66) follows which completes the

proof.

Lemma 4 and Lemma 5 are auxiliary lemmas used in the proof of Lemma 3.

Lemma 4. For qc ≤ q ≤ α1 ≤ 1/2, the following inequality is satisfied

f1(α1) , Hb(α1 − q)− 2Hb(α1) + 2Hb(q) ≥ 0. (73)

Proof: Since f1(α1 = q) = 0, it is sufficient to show that f1(α1) is non-decreasing function in α1, i.e.,
d

dα1
f1(α1) ≥ 0 for qc ≤ q ≤ α1 ≤ 1/2, therefore

d

dα1
f1(α1) = log2

( 1
α1 − q

− 1
)
− 2 log2

( 1
α1

− 1
)
≥ 0. (74)

Due to monotonicity of the log function (74) is equivalent to

q ≥ α1 − 1

1 +
(

1
α1
− 1

)2 = f(α1), (75)

where f(·) was defined in (58). Since by the definition of qc (59) f(x) ≤ qc ∀x ∈ [0, 1/2], it follows that

f(α1) ≤ q ∀ α1 if qc ≤ q, and in particular for qc ≤ q ≤ α1, which implies (75) as desired.
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Lemma 5. Let

f2(x) = Hb(x)− 1− C∗ · x, (76)

where x ∈ [0, 1/2], and C∗ = 2Hb(q∗)−1
q∗ where q∗ = 1− 1/

√
2. The maximum of f2(x) is achieved by

arg max
x

f2(x) = 0.5q∗ =
1
2
(1− 1/

√
2). (77)

Proof: By differentiating f2(x) with respect to x and comparing to zero, we get that

0 =
d

dx
f2(x) = log2

(1− x

x

)
− C∗, (78)

thus xo = 1
2C∗+1 maximizes f2(x) since the second derivative is negative, i.e., d2

x2 f2(x)|x=xo < 0. The lemma is

followed since xo = 1
2C∗+1 = 0.5q∗.

We are now in a position to summarize the proof of Theorem 2.

Proof of Theorem 2 - Converse Part. The rate sum is upper bounded by

R1 + R2 ≤ u.c.e
{

Fmax(q, q)
}

(79)

≤ u.c.e

{
C∗ · q, 0 ≤ q ≤ qc

2Hb(q)− 1, qc < q ≤ 1/2

}
(80)

= u.c.e
{

[2Hb(q)− 1]+
}

, (81)

where (79) follows from Lemma 1; (80) follows from Lemma 3; and (81) follows since (80) is equal to the upper

convex envelope of [2Hb(q)− 1]+.

APPENDIX III

A SIMPLIFIED OUTER BOUND FOR THE SUM CAPACITY IN THE STRONG INTERFERENCE GAUSSIAN CASE

Lemma 6. The best known single-letter sum capacity (7) of the Gaussian doubly-dirty MAC (24) with power

constraints P1, P2, and strong interferences (Q1, Q2 →∞) is upper bounded by

R1 + R2 ≤ u.c.e

{
sup

V1,V ′1 ,V2,V ′
2

[
h(V1) + h(V2)− h

(
V ′

1 + V ′
2 + Z

)
+ h(S1 + S2)− h(S1)− h(S2)

]+
}

, (82)

where u.c.e is the upper convex envelope operation with respect to P1 and P2, and [x]+ = max(0, x). The supremum

is over all V1, V
′
1 , V2, V

′
2 such that (V1, V

′
1) is independent of (V2, V

′
2), and

E
{

(Vi − V ′
i )2

}
≤ Pi,

h(Vi) ≤ h(Si),

for i = 1, 2.

Proof: Let us define the following functions (corresponds to F (PV1,V ′
1
, PV2,V ′

2
) of (42))

G
(
fV1,V ′1 , fV2,V ′2

)
,

[
h(V1) + h(V2)− h

(
V ′

1 + V ′
2 + Z

)
+ h(S1 + S2)− h(S1)− h(S2)

]+
. (83)
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The second function is the following maximization of (83) with respect to V1, V
′
1 , V2, V

′
2 .

Gmax(P1, P2) , sup
V1,V ′

1 ,V2,V ′2

G
(
fV1,V ′

1
, fV2,V ′

2

)
(84)

s.t E
{

(Vi − V ′
i )2

}
≤ Pi, h(Vi) ≤ h(Si), for i = 1, 2.

Finally, we define the upper convex envelope of Gmax(P1, P2) with respect to P1 and P2:

Gmax(P1, P2) , u.c.e
{

Gmax(P1, P2)
}

. (85)

Clearly if we take only the rate sum equation in (6) we get an outer bound on the best known single-letter region,

Rsum
BSL(U1, U2) ,

[
I(U1, U2; Y )− I(U1, U2; S1, S2)

]+
(86)

=
[
h(S1|U1) + h(S2|U2)− h(Y |U1, U2) + h(Y )− h(S1)− h(S2)

]+
(87)

≤
[
h(S1|U1) + h(S2|U2)− h(Y |U1, U2) + h(S1 + S2)− h(S1)− h(S2)

]+
+ o(1) (88)

=

[
EU1,U2

{
h(S1|U1 = u1) + h(S2|U2 = u2)− h(Y |U1 = u1, U2 = u2) + h(S1 + S2)− h(S1)− h(S2)

}]+

+ o(1)

(89)

≤ EU1,U2

{[
h(S1|U1 = u1) + h(S2|U2 = u2)− h(X1 + S1 + X2 + S2 + Z|U1 = u1, U2 = u2)

+ h(S1 + S2)− h(S1)− h(S2)
]+

}
+ o(1) (90)

= EU1,U2

{
G

(
fS1,S1+X1|U1=u1

fS2,S2+X2|U2=u2

)}
+ o(1) (91)

≤ EU1,U2

{
Gmax

(
P1|u1

, P2|u2

)}
+ o(1) (92)

≤ Gmax

(
EU1P1|u1

, EU2P2|u2

)
+ o(1) (93)

≤ Gmax

(
P1, P2

)
+ o(1), (94)

where (88) follows since h(Y ) ≤ h(S1 + S2) + o(1) where o(1) → 0 as Q1, Q2 → ∞; (89) follows from the

definition of the conditional entropy; (90) follows since [Ex]+ ≤ E{x+} and since Y = X1 + S1 + X2 + S2 + Z;

(91) follows from the definition of the function G
(
fV1,V ′1 , fV2,V ′2

)
(83), likewise (92) follows from the definition of

the function Gmax(P1, P2) (85), and since h(Si|Ui) ≤ h(Si) and from the definition

Pi|ui
, E

{
X2

i |Ui = ui

}
, for i = 1, 2;

(93) follows from Jensen’s inequality since Gmax(P1, P2) is a concave function; (94) follows from the input

constraints where

EX2
i = EUi

E
{
X2

i |Ui = ui

}
= EUi

Pi|ui
≤ Pi, for i = 1, 2. (95)

The lemma follows since the upper bound (94) for the rate sum is now independent of U1 and U2, hence it also

bound the single-letter region RBSL(P1, P2).
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