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1Abstract – We follow a method introduced by Ziv and Zakai 
for finding ‘informational’ lower bounds on delay constrained 
joint source-channel coding. Their method uses the data 
processing theorem for generalized measures of information. We 
introduce the use of Rényi’s information of order α in their 
framework, and use high-resolution approximations to find its 
rate distortion function for a source that possesses a smooth 
distribution with  rth-power distortion. This allows us to present 
two new lower bounds, one on the distortion in fixed rate vector 
quantization, and the other on the transmission through 
low-dimensional modulo-lattice additive noise channels. 

I. INTRODUCTION 
We consider a problem of length-constrained communication, 

where we wish to reproduce an approximation to a real-valued 
source at the far end of a channel, as appears in Fig. 1. We 

represent the constraint on the length of the code by using vector 
notation for the variables, where the source S and its 
reproduction Ŝ are k-vectors, and the communication channel 
has input X and output Y, which are both n-vectors. A distortion 
measure d measures the quality of the reproduction, where the 
overall distortion is measured by  
 D =

1

k
Efd(S; Ŝ)g. (1) 

The channel is described by its conditional distribution 
function Q(yjx). 

In Shannon’s original paper from 1948  [11], he presented a 
bound on the performance of such transmission, known also as 
the separation principle. This bound is the familiar 

 R(D) · C , (2) 
where R(D) is the rate distortion function (RDF) of the source 
under a specific distortion measure, and C is the capacity of the 
channel. The rate distortion function is defined by 

 R(D) = inf I(S; Ŝ), (3) 
where the infimum is taken over all conditional distributions 
Q(ŝjs) that satisfy the distortion constraint (1). The channel 
capacity is defined by 

 C = sup I(X;Y), (4) 
where the supremum is taken over all input distributions f(x), 
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or over a subset that satisfies a certain constraint (e.g. average 
or peak power constraint). Shannon’s bound is then proved 
using the data processing theorem, which states that 

 I(S; Ŝ) · I(S;Y) · I(X;Y)

I(S; Ŝ) · I(X; Ŝ) · I(X;Y)
. (5) 

 Shannon showed that in the limit of large block length, i.e. 
k,n→∞, A combination of the two separate solutions to the 
problems of lossy source coding and communication over the 
given channel can achieve the bound (2) asymptotically. 

However, Shannon’s result generally relies on the law of large 
numbers, and may break down whenever the length of the code is 
restricted, due to constraints on delay or complexity. In such 
cases, joint source/channel schemes may outperform the separate 
solution, and neither method is guaranteed to reach the bound (2). 
In fact, except for a few special cases, it is impossible to achieve 
Shannon’s bound with a code of fixed length. In many cases of 
length- constrained communication, the optimal achievable 
performance is not known, and outer bounds that are stricter than 
Shannon’s can serve as a goal and benchmark for the 
performance of communication schemes. 

In their paper from 1973  [12] (also later generalized in  [13]), 
Ziv and Zakai proposed a method for the calculation of bounds 
similar to (2) for communication schemes with finite block 
length. They showed that if we replace the –log(·) function in the 
expression for the mutual information with a convex function 
©(¢) that satisfies a certain technical requirement, the functional 
I©(¢) that results still obeys the data processing theorem. By 
defining R©(D) as the infimum of I©(S; Ŝ), and CΦ as the 
supremum of I©(X;Y), we form a new inequality that states 
R©(D) · C©.   

Shannon’s information is additive in the block length, and 
thus (2) is independent of n and k when dealing with memory- 
less sources and channels. The new information measures do 
not possess this quality, and thus the distortion bounds derived 
from them depend on the specific block length. This results in 
tighter bounds for coding with constrained length. We give a 
review of Ziv and Zakai’s work in Section II. 

In Section III, we present a variation on Rényi’s information 
of order α, and show that it satisfies the Ziv-Zakai (ZZ) 
conditions. We then continue to find the Rényi RDF at high- 
resolution conditions, for a squared distance distortion 
measure, and for a source that possesses a smooth probability 
density function (pdf) f(s) with finite Rényi entropy. 

In Section IV, we illustrate the ZZ-Rényi method by finding 
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lower bound on the distortion in fixed-rate scalar quantization. 
In Section V, we extend the derivation to the vector case and to 
rth power distortion. We compare our bounds to the 
well-known results of Bennett and Zador. The quantization case 
provides insight on the tightness of the new ZZ-Rényi bounds. 

In section VI, We find the ZZ-Rényi lower bound for 
delay-constrained transmission through a low dimensional 
modulo-lattice additive Gaussian noise (MLAN) channel. This 
gives a bound on the performance of the ‘analog matching’ 
scheme  [5] at low dimensions. 

II. THE  ZIV-ZAKAI  METHOD 
Shannon’s information can be written as 

 I(X;Y) = ¡
ZZ

f(x;y) log
f(x)q(y)

f(x;y)
dxdy, (6) 

where f(x;y) is the joint pdf of X and Y, and f(x) and q(y) 
are its marginals. Throughout this work, we refer to the natural 
logarithm. Let ©(t) be a real-valued function defined on [0,∞), 
where ©(0) may be ∞, that satisfies: 

 ©(t) is convex, (7a) 
 lim

t!0
t ¢ ©(1=t) = 0. (7b) 

These conditions also imply that ©(t)  is non-increasing 
(see  [12] for the proof). The generalized mutual information 
relative to the function ©(t) is defined by 

 I©(X;Y) =

ZZ
f(x;y)©

μ
f(x)q(y)

f(x;y)

¶
dxdy. (8) 

Referring to the setup of Fig. 1, The generalized data 
processing theorem ( [12], Thm. 3) states: 

 I©(S; Ŝ) · I©(S;Y)
I©(S;Y) = I©(X;Y),

 (9) 

and, consequently, 
 I©(S; Ŝ) · I©(X;Y). (10) 

The generalized RDF of the source S with respect to a 
distortion measure d(S; Ŝ) is defined as 

 R©(D) = inf I©(S; Ŝ), (11) 
where the infimum is taken over all the conditional 
distributions Q(̂sjs) that satisfy  the distortion condition (1). 
For a channel defined by Q(yjx) and by a constraint on its 
input X, The generalized capacity is defined as 

 C© = sup I©(X;Y), (12) 
where the supremum is taken over all input distributions that 
satisfy the given constraint. Combining (10)-(12), we get 

 R© (D ) = inf I© (S ; Ŝ) · I© (S ; Ŝ)

· I© (X ; Y ) · sup I© (X ; Y ) = C©

. (13) 

We now note a significant difference between Shannon’s 
information and the generalized measures. Let the source and 
channel be memoryless, which means that (s1; x1; y1; ŝ1) and 
(s2; x2; y2; ŝ2) are independent, and let k=n. For a block of 
length n, The additivity property of the -log(·) function in 
Shannon’s information leads to the same inequality: 

inf I(S; Ŝ) = inf I(S1; S2; :::; Sn; Ŝ1; Ŝ2; :::; Ŝn)

= n ¢ inf I(S1; Ŝ1) = n ¢R1(D) ,
 (14) 

and similarly for the channel capacity, which together lead to: 
 n ¢R1(D) · n ¢ C1. (15) 

This essentially means that Shannon’s bound does not 
depend on the block length. On the other hand, for any other 
function ©(¢), we have 

 );();(),;,( 22112121 YXIYXIYYXXI ΦΦΦ +≠ . (16) 
Thus, the bound for a different block length will also be 
different. For a good choice of function ©(¢), this bound may 
be stricter than Shannon’s. 

III. RÉNYI’S INFORMATION AND RDF 
In 1961, Alfréd Rényi introduced an “information of order 

α” as a generalization of Shannon’s information measure  [10]. 
Rényi’s entropy of order α is given by 

 H®(X) =
1

1¡ ®
log

Z
f(x)®dx. (17) 

Rényi’s information of order α is given by 

I®(X;Y) =
1

®¡1
log

ZZ
f(x;y) ¢

μ
f(x;y)

f(x)q(y)

¶®¡1

dxdy. (18) 

In both definitions, ® > 0  and ® 6= 1. In the limit when α 
approaches 1, Rényi’s entropy and information become 
identical to Shannon’s original definition. While the above 
definition is not in the structure of the Ziv-Zakai formulation, 
we define the Rényi information power of order α as: 

 
IP®(X;Y) = e(®¡1)I®(X;Y)

=

ZZ
f(x;y) ¢

μ
f(x;y)

f(x)q(y)

¶®¡1

dxdy
 (19) 

This definition fits in the formulation of (8) with the function 
©®(t) = t1¡®. For any ® > 1, we have that ©®(t) is a convex 
function. We now show that it also satisfies (7b): 

 lim
t!0

t©®(1=t) = lim
t!0

t(1=t)1¡® = lim
t!0

t® = 0 (20) 

We therefore have that for ® > 1 , Rényi’s information 
power of order α follows the data processing theorem (9)-(10), 
and it is thus possible to write the appropriate bound: 

 RIP®(D) = inf IP®(S; Ŝ) · sup IP®(X;Y) = CIP®
 (21) 

Since log(·) is a monotonically increasing function, and 
since α > 1, we can take the logarithm of the previous equation 
and divide both sides by (®¡ 1) to arrive at the equivalent 
bound on Rényi’s information of order α: 

 R®(D) = inf I®(S; Ŝ) · sup I®(X;Y) = C® (22) 
In their papers, Ziv and Zakai gave several examples of 

lower bounds using a version of Rényi information power 
(without referring to it as such). In   [13], they used convexity 
arguments to show that using α=2 must result in a stricter 
bound on fixed-rate quantization than Shannon’s. In the 
following, we present an explicit calculation for this stricter 
bound in the limit of high resolution. 

We now wish to find the Rényi rate distortion function for a 
source X under rth power distortion, i.e. 

 d(x;y) = kx¡ ykr. (23) 
For a given source pdf f(x) , we are looking for the 

conditional distribution function Q(yjx) that minimizes (18). 
As we noted, IPα and Iα are related by a monotonically 
increasing function, and therefore they are minimized and 
maximized simultaneously. We minimize IPα for a simpler 
derivation. We begin with a derivation for the scalar case, 



 

k=n=1, and for α=2, r=2, and generalize it in Section V. 
In our derivation, we use an extension of the moment-entropy 

inequality to Rényi entropy, as appears in  [7]. When dealing with 
Shannon’s entropy, the Gaussian distribution maximizes entropy 
under a power constraint. In  [7], the authors present the 
distribution that maximizes Rényi’s entropy under an rth power 
constraint, and call it a generalized Gaussian distribution. They 
present an inequality of the moments and Rényi entropy of this 
distribution. We restate their definitions using our terminology. 

The generalized Gaussian distribution that maximizes Rényi 
entropy of order α under rth power constraint, for r > 0, is: 

G®(x) =

½
a1;r;®(1 + (1¡ ®) jxjr)1=(®¡1)

+ ® 6= 1
a1;r;1e

¡jxjr ® = 1
, (24) 

where 

 ak;r;® =

8>>>><>>>>:
(1¡®)k/r+1¡( k

2 +1)

¼k=2¯( k
r +1; 1

1¡®¡
k
r )

® < 1

¡( k
2 +1)

¼k=2¡(k
r +1)

® = 1

(®¡1)k/r+1¡( k
2 +1)

¼k=2¯(k
r +1; 1

®¡1 )
® > 1

, (25) 

Γ(x) denotes the gamma function, ¯(a; b)  denotes the beta 
function, and t+= max(t,0). They define a scaled version, for t>0: 

 G®;t(x) = G®(x=t)=t (26) 
We note that for any , G®;t(x) has bounded support. 
The rth deviation is defined for 0<r<∞ as the rth root of the rth 
moment of a pdf f: 

 ¾r [f ] =

μZ
jxjrf (x)dx

¶1/r

 (27) 

The Rényi moment-power inequality follows: 
Theorem 1- Scalar Rényi moment-power inequality  [7]: Let 

f : R ! R be a pdf. If 0 · r · 1; ® > 1=(1 + r), and, by 
the definitions in (17), (27), H®[f ]; ¾r[f ] < 1, then 

 
¾r [f ]

eH®[f ]
¸ ¾r [G®]

eH®[G®]
. (28) 

In the above, Gα is given by (24). Equality holds iff f = G®;t of 
(26) for some t 2 (0;1). The theorem is a statement of the 
maximum entropy quality of Gα, where for any f that shares the 
same rth deviation as Gα, the latter has higher Rényi entropy. 

We also use the following modification of Hölder’s 
inequality. Let f; g : R ! R be two functions, then: 

 
Z

fk=rg¡k=r ¸ kfkk=r
k

k+r

¢ kgk¡k=r
1  (29) 

 kfkp =

μZ
fp

¶1=p

 (30) 

Equality in (29) is achieved iff g = c ¢ fk=k(k+r). 
We now state our high-resolution result for α=2, r=2, k=1.  
Theorem 2 – High-resolution Rényi2 RDF for squared 

distortion: For a source S with pdf f(s) that can be approx- 
imated by a piecewise-flat function, and possesses finite Rényi 
entropy (17) of order 2 and finite second moment (27), the high 
resolution Rényi RDF of order 2 with squared distortion is: 

 R2(D) »=
1

2
log

μ
9

125
kfk1=3 ¢

1

D

¶
 (31) 

where »= is taken to mean that the difference between the two 
goes to 0 in the limit D ! 0. 

A rigorous proof can be obtained following an approach 

similar to the derivation of high-resolution quantization in  [1]. 
We present here a heuristic approach, using high-resolution 
assumptions about the densities of x and y, which parallel the 
approximations used in high-resolution quantization: 

High Resolution Assumptions (HRA): in the limit D ! 0, 
(A) For any x, Q(yjx)  is localized within a small 

neighborhood ky ¡ xk · ¢x. 
(B) For any y in this neighborhood of x, q(y) ¼ f(x). 
Rényi’s information power (19) of order α=2 now becomes: 

IP2(X ;Y ) =
R

f(x)
R Q2(yjx)

q(y) dydx

(A)
¼

R
f(x)

R x+¢x

x¡¢x

Q2(yjx)
q(y) dydx

(B)
¼

RR
Q2(yjx)dydx

 (32) 

where we used HRA (A) and (B). For each x, we define 
yx=y-x, and Qx(yx)=Q(y|x). We note that for any x, Qx is a 
probability distribution function of yx. The last expression has 
the form of Rényi’s entropy power of order 2 of Qx(yx): 
IP2(X;Y ) ¼

RR
Q2

x(yx)dyxdx =
R

e¡H2[Qx(yx)]dx
(a)

¸
R

3
53=2

¡R
y2

xQx(yx)dy
¢¡1=2

dx

= 3
53=2

R
f1=2(x) ¢

¡
f(x)

R
y2

xQx(yx)dy
¢¡1=2

dx
(b)

¸ 3
53=2

(
R

f1=3(x)dx)
3=2

(
R

f(x)
R

y2
xQx(yx)dydx)1=2

(c)
=

q
9

125 kfk1=3 ¢ 1
D

 (33) 

In the above, (a) is due to Theorem 1, and a direct calculation 
on G2, and is achieved for Qx that satisfies 

 Qx(yx) = (1¡ y2
x=¢2

x)+=¢x, (34) 
where Δx is the radius of the neighborhood of x where Qx(yx) 
is positive. In (b) we used (29), with equality when Δx solves: 

 
Z ¢x

¡¢x

y2
xQx(yx)dyx = c ¢ f¡2=3(x) (35) 

In (c), we used the definition of the overall distortion: 
 D =

R
f(x; y)(y ¡ x)2dydx =

R
f(x)

R
Qx(yx)y2

xdydx (36) 
We note that following this derivation for α=1 amounts to 

the asymptotical tightness of Shannon’s lower bound, which is 
a lower bound at any distortion level. Unfortunately, in the 
case of α>1, we will later show that (33) is not a lower bound 
at all distortion levels. Taking the logarithm of (33) gives (31). 

IV. FIXED-RATE SCALAR QUANTIZATION 
We now use the result of Section III to find an ‘informational’ 

lower bound on the distortion achievable in fixed-rate 
high-resolution scalar quantization (k=n=1). We use a noise- 
less N-ary channel in the setup of Fig. 1. This requires a 
representation of the source S by one of N possible channel 
inputs, and a reconstruction of Ŝ out of the same output. This is 
equivalent to the representation of S by an N-level quantizer.  

We first find the Rényi2 capacity of the N-ary noiseless 
channel. Let pi be the probability of the ith input, and qj the 
probability of the jth output. The noiseless transition matrix is 
Q(j|i)=δi,j, and thus qj is equal to pj. We find: 

e(®¡1)C® = max
pi

X
i;j

pi

±®
ij

q®¡1
j

= max
pi

X
i

p2¡®
i = N®¡1 (37) 

The maximum above is achieved for 0 · ® · 2  by the 
uniform distribution and gives Cα=logN. We note that for 
® > 2, setting any single input to have 0 probability results in 
infinite Rényi information, which means that the N-ary 



 

channel has infinite capacity, and thus using ® > 2 does not 
lead to a useful bound. Combining (31) and (37) in the manner 
of (13), we have that in the limit of high resolution, 

 
1

2
log

μ
9

125
kfk1=3 ¢

1

D

¶
· 1

2
log N2, (38) 

which gives the ZZ-Rényi lower bound on distortion: 

 DZZ¡R¶enyi ¸
1

N2
¢ 9

125
kfk1=3. (39) 

Bennett’s classic result about the optimum distortion 
achievable in fixed rate scalar quantization is (see  [4]): 

 DBennett =
1

N2
¢ 1

12
kfk1=3. (40) 

It is apparent that our lower bound has a similar form to 
Bennett’s result, and it is lower by a factor of ~1.16, or 0.63dB, 
for any source pdf. We remark on this gap in Section V. 

Repeating (38) with α=1 results in Shannon’s lower bound: 

 DShannon ¸
1

N2
¢ 1

2¼e

Z
f log f . (41) 

For a Gaussian source, for example, calculation shows that 
Shannon’s bound is ~4.3dB below Bennett’s result, making 
our new bound tighter by ~3.7dB. 

V. FIXED-RATE VECTOR QUANTIZATION 
The vector definition of G®(x) , along with the vector 

Rényi moment-entropy inequality, appear in  [8]: 
Theorem 3 - Vector Rényi moment-power inequality  [8]: For 

0<r<∞, ® > k=(k + r), and a random vector X in Rk with finite 
Rényi entropy of order α (17) and rth deviation (27), 

 
E fkXkrg1=r

e
1
k H®(X)

¸ ck;r;®, (42) 

where for ak;r;® as given in (25), ck;r;® is given by: 

 

ck;r;® = a
1=k
k;r;®

£
®

¡
1 + r

k

¢
¡ 1

¤¡ 1
r bk;r;®

bk;r;® =

8<:
³
1¡ k(1¡®)

r®

´ 1
k(1¡®)

® 6= 1

e¡1=r ® = 1

, (43) 

The derivation in the vector case follows the same method 
of section III, using the HRA with the neighborhoods of y=x 
interpreted as k-dimensional neighborhoods. Following the 
same derivation as in (33) results in the following: 

Theorem 4 – High-resolution vector Rényi RDF for rth 
power distortion: For a k-dimensional source S with pdf f(s) 
that can be approximated by a cubewise-flat function, and that 
possesses finite Rényi entropy (17) of order α and finite rth 
deviation (27), the Rényi RDF at high resolution is: 

R®(D) »=
k

r
log

μ
1

k
cr
k;r;® ¢

°°°f
(2¡®)r+k(®¡1)

k(®¡1)

°°°
k(®¡1)

k(®¡1)+r

¢ 1

D

¶
 (44) 

where »=  has the same meaning as in Theorem 2. 
We can now examine the dependency on α of the above. In 

Fig. 3(a), we plot the argument in the parentheses for D=1 and 
r=2, for different α and k. The highest Rα(D) is at α=2. Setting Y 
to 0 for any X has 0 information, and a distortion equal to the 
source deviation, thus R(1)=0. Fig. 3(a) demonstrates that for any 
α>1, setting D=1 in (44) results in an expression greater than 0, 
and thus (44) is not a lower bound for all D. 

We now apply the Ziv-Zakai method using the same N-ary 

noiseless channel of section IV, with a single channel use for 
each source sample (n=1). For 0 · ® · 2, this channel has 
Rényi capacity of log N , as stated in (37). We find the 
following lower bound on fixed-rate vector quantization: 

 DZZ¡R¶enyi ¸
1

Nr=k
¢ 1

k
cr
k;r;® ¢

°°°f
(2¡®)r+k(®¡1)

k(®¡1)

°°°
k(®¡1)

k(®¡1)+r  
(45) 

While the general solution for the vector case is unknown, 
Zador has shown (see  [3],  [4]) that 

 DZador =
A(k; r)

Nr=k
¢ kfk k

k+r
, (46) 

where A(k,r) is independent of the source distribution. For 
α=2, the ZZ-Rényi bound becomes a parallel:   

 DZZ¡R¶enyi ¸
1

Nr=k
¢ 1

k
cr
k;r;2 ¢ kfk k

k+r
, (47) 

and 1k cr
k;r;® becomes a lower bound on A(k,r). 

Gersho has conjectured that A(k,r) is the least normalized 
moment of inertia of k-dimensional tessellating polytopes  [3], a 
result  which has been proven for k=1 and k=2, r=2. Even if his 
conjecture is true, the best tessellating polytopes are only known 
for low dimensions, and mostly for r=2. Several authors have 
given lower and upper bounds to A(k,r), and we use Zador’s 
original bound in order to compare to our new bound:  

 ¡
³
1 +

r

k

´
¢ V ¡r=k

k ¸ A(k; r) ¸ 1

k + r
¢ V ¡r=k

k  (48) 

where Vk is the volume of a k-dimensional unit sphere. A direct 
calculation gives: 

 
1

k
cr
k;r;2 =

1

k + 2r
V
¡r=k
k ¢

μ
1 +

k

k + 2r

¶r=k

 (49) 

Although our bound is always lower than Zador’s operational 
lower bound, it comes close, as demonstrated in Fig. 2.  

Here, as in the scalar case, there is a gap between the bound 
and the optimum achievable results. We attribute this gap to a 
mismatch in the distribution of the source given its 
reconstruction, or the 'backward channel'. In the case of 
quantization, this distribution is uniform on a quantization 
cell. In Shannon's case, this distribution is the Gaussian 
distribution, and in the Rényi case, this is the generalized 

Fig. 2 - Bounds for A(k,r) for different power r and dimension k . The short 
dashed lines (---) are Zador's upper bound, and his lower bound appears in the 
long dashed lines (– –). The full line (––) is the new ZZ-Rényi lower bound 
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Gaussian distribution Gα. The latter has finite support and is 
closer to the uniform distribution, thereby achieving a closer 
bound. As k grows, and the Gaussian distribution becomes 
closer to a uniform distribution on a multi-dimensional cell, so 
does the generalized Gaussian distribution, and they both give 
bounds that come closer to the actual achievable performance. 

VI. MODULO LATTICE ADDITIVE CHANNEL 
Recently, modulo-lattice techniques have been used to cancel 

interference known at the transmitter  [2], utilize side information 
known at the receiver, or perform a combination of both  [5],  [9]. 
In all these schemes, transmission is equivalent to transmission 
through a modulo lattice additive noise channel, in which 
y = x + z mod ¤ .(for details on the MLAN channel, see [2] 
or  [6].) In the limit of infinitely many dimensions, these lattice 
techniques attain the capacity of the AWGN channel, while 
solving the problem of memory in the source and channel. The 
use of high dimensional lattices is, however, very complex, and a 
lower dimensional lattice may serve as a feasible compromise.  

One drawback to the use of low dimensional lattices is the loss 
of shaping gain, which reduces the modulo-lattice channel’s 
capacity in comparison to an AWGN channel (see  [2]). For a 
scalar lattice, for example, this loss is ~0.254 bit/channel use, or 
~1.53dB in SNR. However, even in order to achieve this lowered 
capacity, it is generally necessary to use an additional channel- 
coding scheme (as in  [2]). When complexity or delay is 
restricted, so that only a finite block length may be used, we can 
again use the Ziv-Zakai method to find a tighter lower bound. 

We present the case where the source and channel bandwidths 
are equal, i.e. k=n, easily extendable to k≠n (bandwidth 
reduction/expansion). Rényi’s information of order α=2 again 
gives the tightest bound. In the MLAN channel, a uniform input 
distribution then achieves capacity, equal to: 

 
C2 = log

μZ
º0

f(x)

q(y)
Q2(y¡ x mod ¤)dxdy

¶
= log

μ
V (º0) ¢

Z
º0

Q2(³ mod ¤)d³

¶ , (50) 

where º0 is the basic lattice cell. In the most common case, the 
noise is Gaussian. Since we performed our derivation for the 
RDF under high-resolution conditions, we make high-SNR 
simplifications in the channel as well. These amount to the 
noise being contained within the basic lattice cell º0. Thus: 

C2 = log V (º0) + log

Z
º0

1

(2¼N)k
exp¡k³k

2

N
d³

=
k

2
log

·
1

4¼N
¢ V 2

k (º0)

¸  (51) 

Combining now with (44) at r = 2, we have : 

 
1

k
c2k;2;2 ¢ kfk k

k+2
¢ 1

D
·

·
1

4¼G(¤)
¢ P

N
,̧ (52) 

where we have used G(Λ), the normalized second moment of 
the lattice (see  [2]). We arrive at: 

 DZZ¡R¶enyi ¸
4¼G(¤) ¢ 1

k c2
k;2;2 ¢ kfk k

k+2

SNR
 (53) 

For a Gaussian source, Shannon’s bound at high SNR is: 
1

2
log

1

D
· 1

2
log SNR ) DShannon ¸ 1

SNR  (54) 

We plot the ratio between (53) and (54) in Fig. 3(b) to see how 
the use of a delay limited modulo-Λ channel deteriorates 
distortion performance. Since G(Λ) is not known for all k, we 
replace it with Zador’s lower bound, which is exact at k=1 and at 
k→∞. We can see that the ZZ-Rényi lower bound is stricter than 
Shannon’s for k<14, but becomes lower at higher dimensions. 
For k=1, the bound is D≥2.42/SNR. The actual achievable 
distortion for a scalar MLAN channel is found using a 
compander  [6], which compresses the possibly infinite support of 
the source into the finite lattice cell, and prevents undesired 
modulo shifts. The compander follows equations similar to 
Bennett's error in high-rate quantization, and has the same form 
as the familiar result of Panter and Dite (see  [4]). The actual 
achievable distortion using this compander is Dopt≈2.72/SNR. 
This means that the ZZ-Rényi lower bound is closer to the true 
distortion than Shannon’s bound, but as in the case of 
quantization, there still is a small gap between the bound and 
achievable results. 
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Fig. 3 – (a) - the dependency of the Rényi RDF on α. (b) -  The ratio between 
the Rényi and Shannon lower bounds on distortion in the MLAN channel at 
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