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Abstract

Analog (uncoded) transmission provides a simple schemedammunicating a Gaussian source
over a Gaussian channel under the mean squared error (MS®©)tidin measure. Unfortunately, its
performance is usually inferior to the all-digital, sepama-based source-channel coding solution, which
requires exact knowledge of the channel at the encoder. e domes from the fact that except for
very special cases, e.g. white source and channel of matdbamdwidth (BW), it is impossible to
achieve perfect matching of source to channel and channsbdoce by linear means. We show that
by combining prediction and modulo-lattice operations, ea® match any colored Gaussian source to
any inter-symbol interference (ISI) colored Gaussian eabannel (of possibly different BW), hence
we achieve Shannon’s optimum attainable performaRg®) = C. Furthermore, when the source and
channel BWs are equal (but otherwise their spectra areranjf our scheme is asymptotically robust in
the sense that for high signal to noise ratio (SNR) the endogieomes SNR-independent. The derivation
is based upon a recent modulo-lattice modulation schemérdosmitting a Wyner-Ziv source over a

dirty-paper channel.
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. INTRODUCTION

Digital transmission of analog sources relies, at leaghfeotheoretical point of view, on Shannon'’s
source-channel separation principle. Being both optimdleasy to implement, digital techniques replace
today traditional analog communication even in areas likeestelephony, radio and television. This trend
ignores, however, the fact that the separation principlesdwot hold for communication networks, and
in particular for broadcast channels and unknown chandgl434], [26]. Indeed, due to both practical
and theoretical reasongint source-channel coding and hybrid digital-analog schemescanstantly
receiving attention of researchers in the academia andnthesiry.

Figure 1 Demonstrates the setting we consider in this papansmission under the MSE distortion
criterion, of a general stationary Gaussian soufigeover a power-constrained linear time-invariant (LTI)

filter channel with additive white Gaussian noise (AWGN),

where X,, andY,, are the channel input and output, respectivelyis the channel filter impulse response,
x denotes convolution, and’,, is the noise. See Figure 2. This channel, commonly callebdditerature
inter-symbol interference (ISI) channel, has also an edeiv ISI-free colored-noise representation, which
we shall give in the sequel.

Shannon’s joint source-channel coding theorem implies tha optimal (i.e., minimum distortion)



performanceDP! is given by
R (D) = C, (2)

where R(D) is the rate-distortion function of the sourSg at MSE distortionD, andC' = C(P) is the
capacity of the channel (1) at power-constraihtboth given by the well-known water-filling solutions
[4]. By Shannon’s separation principle, (2) can be achidwed system consisting of source and channel
coding schemes. This system usually requires large deldycamplex digital codes. A more serious
drawback of the all-digital system is that it suffers fromtaréshold effect”: if the channel noise turns
out to be higher than expected, then the reconstructionswifer from very large distortion, while if the
channel has lower noise than expected, then there is no waprent in the distortion [34], [26], [2].

In contrast, analog communication techniques (like amgditor frequency modulatior?]) are not
sensitive to exact channel knowledge at the transmitterebieer, in spite of their low complexity and
delay, they are sometimes optimal: if we are allowed one w©hlnse per source sample, the source
S, is white (i.e., source samples are i.i.d.), and the charmméS$i-free ¢, = ho - X,, + W,,), then a

“single-letter” coding scheme achieves the optimum pentoice of (2), given by

Var{S,}
b=Db 1+SNR ’

where SNR denotes the channel signal-to-noise ratio; ge¢8. In this scheme, the transmitter consists

3)

of multiplication by a constant factor that adjusts the seup the power constrairfit, so it is independent
of the channel parameters. Only the receiver needs to knevexact channel parameters (the gain
and the power of the nois®#/,) to optimally estimate the source from the noisy channepautby
multiplying by the “Wiener coefficient”).

For the case otolored sources and channels, however, such a simple solution isvaitable, as
single-letter codes are only optimal in very special scesdi7]. By “colored” we mean that the source
spectrum and the frequency response of the channel fijteare not flat. A particular case is when the
channel bandwidttB, (i.e., the bandwidth of the filtek,,) is not equal to the source bandwidth, but
otherwise they are white (i.e., we are allowBgd/ B, channel uses per source sample on the average). As
it turns out, even if we consider more general linear trassian schemes, [1], still (2) is not achievable
in the general colored case. How far do we need to deviate faoralog” transmission in order to achieve
optimal performance in the colored case? More importanty, we still achieve full robustness?

In this work we propose and investigate a semi-analog treassom scheme, based on lingaediction
with modulo-lattice arithmeticThis scheme achieves the optimum performance of (2gafgrcolored

source and channel pair, hence we call it &malog Matchingscheme. Furthermore, for the matching
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bandwidth caseR. = B;), we show that the Analog Matching transmitter is asymp#ily robust in
the high signal-to-noise ratio (SNR) regime, in the sensg¢ ithbecomes invariant to the variance of the
channel noise. Thus, in this regime, the perfect SNR-iavairimatching property of white sources and
channels [8] generalizes to the equal-BW colored case.

Previous work on joint source/channel coding for the BWsasch/colored setting mostly consists
of hybrid digital analog (HDA) solutions, which involve #ihg the source or channel into frequency
bands, or using a superposition of digital encoders (sele [P5], [21], [19], [16] and references therein),
mostly for the cases of bandwidth expansié - B,) and bandwidth compressioB{ < B;) with white
spectra. Other works [2], [27] treat bandwidth expansiomiapping each source sample to a sequence
of channel inputs independently. Most of these solutiorpligtly or implicitly, allocate different power
and bandwidth resources to analog and digital source reptations, thus they still employ full coding.
In contrast, the Analog Matching scheme treats the sourdechannel in théime domain

The rest of the paper is organized as follows: We start ini@ettby demonstrating the basic principles
of the Analog Matching scheme. Then in Section Il we bringlipninaries regarding sources and channels
with memory, as well as modulo-lattice modulation and sifermation problems. In Section IV we
prove the optimality of the Analog Matching scheme. In Satt/ we analyze the scheme performance

for unknown SNR, and prove its asymptotic robustness. Kindkction VI contains the conclusion.

Il. A SIMPLIFIED VIEW OF THE SCHEME IN THE EQUAL-BW HIGH-SNR CasE

To realize where lies the difficulty of matching a coloredm@uto a colored channel, and to demonstrate

the basic principles of the Analog Matching scheme, comsagleauto-regressive (AR) source model:

Ls
Sn:Qn+ZalSn_l , —0o<n<+oo (4)
=1

where the innovation procesy, is zero-mean white Gaussian with variam@ and where the AR order
L, is in general infinite. For the channel, without loss of galigrt assume that the filtel,, is causal,

monic (hg = 1) and minimum phase, so (1) can be re-written as

L¢
Yo=Xn+ Y mXp + W, | (5)
=1

whereW,, is zero-mean white Gaussian with varian€e and where the filter length,. may be infinite

(see Figure 2).

!Since we can always transform the channel into such usingtehem filter at the receiver front, see e.g. /citeProakis83



Let us assume for now that the source bandwidth and the chbandwidth are equalKs = B¢),
and they both occupy the entire spectrum (This holds, fomgt@, when the AR orderi(;) and the

channel filter length I{.) are finite). In this case, for sufficiently small distortion

R(D) =  log <%Q}>

while for small channel noise
1
C =~ 3 log (SNR),

where in general
P

A
SNR= N (6)

See more on that in Section Ill. Thus, in the limit where theRSHE high, (2) becomes
DOpt ~ M (7)

SNR ’
as if we were transmitting a white Gaussian sougggover an ISI-free AWGN channdl,, = X,, + W,,.
(See (3).)

It is tempting to try to achieve the performance of (7) byiteftthe transmitter predict the source (to
exploit @,, from S,,), and invert the channel filter (i.e., cancel the 1SI p@ﬁ;l hiXy—1), thus transform
the colored problem into a white one. However, this tramaftion turns out to be worthless: at the
transmitter, inversion of a monic channel filter causes poamaplification; while at the receiver, re-
generation (re-coloring) of the source from the (white)sgainnovations will amplify the noise. All in
all, the overall performance will be the same as if we weradnaitting the original AR source directly
(with only power matching) over the original ISI channel lwiho filtering (except for scalar power
matching). Such a naive scheme will achieve distortion

P+ Var{l,} Var{S,} _ P+ Var{l,,} Var{S,} povt
P SNR P Var{Qn} ’

which can be arbitrarily far from the optimum, depending miploe source and channel color.

D=

(8)

The Analog-Matching scheme circumvent this power/noisgldication phenomena by employing
modulo-arithmetic at the predictors. Unlike the more comnoonfiguration in practical systems, the
Analog Matching scheme performs source prediction atdibeoderside while channel inversion at the

encoderside, as demonstrated below.
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Recalling the source model (4) and the channel model (5),d&ifithing the source regression term

and the channel ISI term:

A&
Jn = Z alSn—l
=1

L¢
A
In = Zthn—l ’ (9)
=1
we have:
Sn = Qn+Jn ’
Y, = X,+I,+W, . (10)

These source and channel models are shown in Figure 3.
The high-SNR variant of the scheme is depicted in Figure 4 d@coder and decoder are given by:
X, = [55n - in} mod A (11)
and 3
g = Y, — BJE] mod A s

respectively, wherd,, and .J,, are the source and channel predictor outputs. If the soureeigtor

(12)

coefficients are taken to be the source AR coefficiaptand the channel predictor coefficients are taken
to be the ISI coefficients,,, then indeed the predictors are used to “candgland.J,,, as demonstrated

in Figure 5:
~n = dn*sn:']n‘i'an*(gn_sn)éJn"i'an*En
Io = (hn—00)*Xn=1, . (13)

In principle, the modulaA block performs a multi-dimensional modulo-lattice openat However at this

stage, for simplicity, we will look at a one-dimensional noéa operation:

zmod A 2 z — Around (%)
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Figure 4: The Analog Matching encoder and decoder at high SNR

where A > 0 is the lattice cell size, chosen to be small enough such beathannel power constraint

P is satisfied, andound(-) rounds a real number to the nearest integer.

To that end, Comparing these outputs with (9), we have thatliduing (4), (11) and (5), the channel
output is:

Y, =[8Qn+ Jy) — I mod A+ I, + W,, .

Substituting this in (12) and using the fact that

(a mod A + b) mod A = (a + b) mod A

we have that:

N [ﬁ(@n"‘Jn—jn)‘FIn—fn‘FWn] mod A _
Sn = 5 +J,

[8(@n — Buean) + Wo| mod A
= 3 +Jn . (14)

We see that, up to noise error-dependent terms, the sigdabfthe decoder modulo operation is a
scaled version of the source innovatiofg, as described above. Suppose that we choose this scaling
factor 8 to be small enough such that the modulo operation has nat €iffecthe decoder can reproduce

the grid point selected by the encoder), then the recongiruerror is:

E,=S,—-5S,=—-2, (15)
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encoder, channel and decoder. Dashed lines show the ch&ipehnceled by the channel predictor.
Dotted lines show the source memory component, subtractédreen added again using the source

predictor.

which is a scaled version of the current noise sample asedkesiihe resulting performance is:

2 V. n
0§ vl

where32 = % This is identical to the optimum (7), up to the ratio @ which is a fixed source-
and channel-independent loss (as opposed to the loss ofa seieme, see (8)). We will show in the
sequel how even this loss can be eliminated by using a higlemsional dithered modulo-lattice operation
in parallel over interleaved samples, yielding optimumfgenance.

We can “forget” that the predictor outpufs and,, are produced by the source and channel predictors,
and view them as side information (SI) available to the decahd the encoder, respectively. In this
sense, the Analog Matching scheme translates the colomaepn into a white S| problem. In fact, it
uses ideas of prediction as in precoding [24] and diffeedénqtulse code modulation (DPCM) [10], and
then treats this joint source/channel SI problem using riwothitice operations, based upon our recent
work [12]. In the context of channel coding, the combinatidprecoding and nested lattice transmission
is optimal for colored Gaussian channels [33, Section \jII&s for source coding, there has been much
interest in Wyner-Ziv (WZ) video coding, [29], exploitinge dependence between consecutive frames at
the decoder rather than at the encoder (see for example Ra]}he more theoretical side, it is shown
in [32] that a DPCM-like encoder using prediction to explhie source memory achieves the Gaussian-
guadratic rate-distortion function (RDF). Furthermorescaeme where prediction is used in thecoder
only relates to the DPCM scheme the same way that a precoder sdwéthechannel prediction at

the encoder only) relates to an optimal feed-forward-eégeal decision-feedback-equalizer (FFE-DFE)
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scheme [3]. Figure 6 demonstrates the place of the Analoghitaj scheme, within information-theoretic

time-domain schemes.

I11. PRELIMINARIES

In this section we bring preliminaries necessary for the ofsthe paper. In Sections 1lI-1 to llI-
3 we present results connecting the Gaussian-quadratic &Fthe Gaussian channel capacity to

prediction, mostly following [32]. In sections IlI-4 andlHb we discuss lattices and their application

to joint source/channel coding with side information, nho$bllowing [12].

A. Spectral Decomposition and Prediction

The Paley-Wiener condition for a discrete-time spectisife’>™/) is [25]:
‘/2 10g<S(ej27rf)>df < oo . a7

This condition holds for example if the spectrusite’>f) is bounded away from zero. Whenever the

Paley-Wiener condition holds, the spectrum has a spect@drdposition:

S(e??™f) = B(z)B* <i> o P6<S) , (18)

Z*




where B(z) is a monic causal filter, and the entropy-power of the spettfu (S) is defined by:
P(S)2 P, (S(eﬂwf)) — exp / ’ log(S(ejz’Tf))df . (19)

The optimal predictorof a processX,, having a spectrun$(e/2™/) from its infinite past isB(z) — 1, a
filter with an impulse response satisfyihg = 0 for all n < 0, with the prediction mean squared error
(MSE) being the entropy power:

P.(S) = Var{X,,| X"} , (20)

see [25]. The prediction error process can serve as a whitevations process for AR representation of
the process. In terms of (4), we have tldat is the prediction error of the process from its infinite

past, thus

Var{Q,} = P.(Ss) .
We define theprediction gainof a spectrumsS(e/?™/) as:

| JLSEd yax,
r(s) 2 (s ) & =5 S var{Xi\Xf}_l} -

(21)

where the gain equals one if and only if the spectrum is whige,fixed over all frequencielf| < %
A case of special interest, is where the process is bandelinsuch thatS(e/2™/) = 0v|f| > £ where
B < 1. In that case, (17) does not hold and the prediction gain fisite. We re-define, then, the

prediction gain of a process band-limited Boas the gain of the process downsampledfljhyi.e.,
[0 S )df

exp f_% log (S(ei271) ) df

We will use in the sequel prediction from a noisy version ofragess: Suppose that, = X,, + A4,

r(S) = (22)

with A,, white with powerd. Then it can be shown that the estimation error is a white ggeavith
variance (see e.g. [32]):

Var{X,,[Y" 1} = P.(S+6)—0 . (23)

Note that for anyd > 0, the spectrun(e27/) +- 0 obeys (17), so that the conditional variance is finite

even if X,, is band-limited; In the casé = 0, (23) collapses to (20).
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B. Water-Filling Solutions and the Shannon Bounds

The rate-distortion function (RDF) for a Gaussian sourcéhveipectrumSs(e/2™/) with an MSE

distortion measure is given by:

3 Seo(ei2nf
rD) =3 [ (24)

where thedistortion spectrumD(e#27/) is given by the reverse water-filling solutiom?(e/?™f) =
min (93, S(eﬂ”f)) with the water levelfs set by the distortion leveD:
1/2

D= D(e?*af
—1/2

The Shannon lower boun@SLB) for the RDF of a source band-limited g is given by:

B SDR
R(D) > <> log = = Rsrp(D) (25)

where the signal to distortion ratio is defined as:

SDR2 % (26)

andl's 2 I'(Sg) is the source prediction gain (22). This bound is tight forau&sian source whenever the
distortion levelD is low enough such thab < Bgmin s <p, S(e/™f), and consequentlyp (e/?™/) =
0s = £ for all |f| < Bg.

For stating the channel capacity, it is convenient to abartde ISI channel model (5) in favor of an

additive (colored) noise equivalent channel (see Figureiven by:

where g,, is the impulse response of an ideal low pass filter of bandwigit and the noiseZ,, has

spectrumSZ(eﬂ’rf ), bandlimited toB¢, and total power

Be ,
N = Sz(e?*™Hdf .
—Be
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With respect to this model we define the equivalent signaldisenratio:

sNrRa L (28)
N

Note that (5) is equivalent to (27) with noise spectrlfy_rj\c(xefﬁ,,W for |f| < Bc. Since we assumed the
ISI filter h,, of (5) to be monic, causal and minimum-phase, it follows that colored noiseZ,, can be
seen as an AR process with innovations prod&ssand prediction filterh,,2. Consequently, if we define

the channel prediction gaic = I'(Sz), we have:

ro— N _SNR
N SNR
In terms of this channel model, the capacity is given by:
eJ27Tf)
C= /%log < S ]2#)) af (29)

where thechannel input spectrur®?(e727/) is given by the water-filling solutionP(e/2™f) = max (Qc—
SZ(eﬂ”f),O) with the water levelf- set by the power constraiti:
1/2 _
P= / P(e?™ ) df
—1/2
The Shannon upper boun(SUB) for the channel capacity is given by:

C< %log [PC- (1 +§|\TR” 2 s (30)

The bound is tight for a Gaussian channel whenever the dguiv&NR is high enough such that
P > Bcmax|fj<p, Sz(e’*™f) — N and consequentl§ (e72™f) + P(e72) = 6 = PBLCN.
Combining (25) with (30), we have an the following asymptaliy tight upper bound on the Shannon

optimum performance (2).

Proposition 1: Let SDR*? be the OPTA performance
Var{S,}

SpRwt & THWnS (31)
R~Y(C(SNR))
and let thebandwidth ratiobe
A B
p2 B_Z (32)
Then:
SDR? < I'sT¢(1+ SNRP | (33)

2In the bandlimited cas®¢ < 1, this refers to a downsampled version of the signals and efitter.
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with equality if and only if the SLB and SUB both hold with edjtya®. Furthermore if the noise spectrum

is held fixed while the power constraift is taken to infinity:

SNR—coc SNR e (34)

C. Predictive Presentation of the Gaussian RDF and Capacity

Not only the SLB and SUB in (25) and (30) can be written in pcéde forms, but also the rate-
distortion function and channel capacity, in the GaussasecThese predictive forms are given in terms
of the realizations depicted in Figure 8.

For source coding, leF (e/2"/) be some filter with amplitude response satisfying

. D(ej%rf)
J2mfy2 — 1 _
‘Fl(e )‘ 1 Ss(ﬁjzwf)

whereD(e277) is the distortion spectrum materializing the water-fillisgiution (24). We call; (e727/)

(35)

and Fy(e/?"f) = Fy(e/?"F) the pre- and post-filters for the sourSe[31].

Proposition 2: The pre/post filtered AWGN depicted in Figure 8a satisfies:

1 Var{U,|V"!
R(D) = §log (1 + W) ;

*The SLB and SUB never strictly hold #s(e?>™f) is not bounded away from zero, 8tz (e?*™f) is not everywhere finite.

However, they do hold asymptotically if these spectra Batise Paley-Wiener condition.
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whereVar{Z,,} = 0.

This Proposition is a direct consequence of (23). It is du2), where this form is used to establish
the optimality of a DPCM-like scheme, where the predictioroeof U,, from the past samples éf,, is
being quantized and the quantizer is equivalent to an AWGHteNhat in the limit of low distortion the
filters vanish, prediction frond/,, is equivalent to prediction fron¥,,, and we go back to (25). Defining
the source Wiener coefficient

as =1—exp(2R(D)) , (36)

the Proposition implies that
ag

Var{U,|V" '} = fs . (37)

1—ag

For channel coding, lef (¢/27/) be some filter with amplitude response satisfying
2 _ P(ej%f)

Oc ’

where P(e/2"f) and fc are the channel input spectrum and water level materiglifie water-filling

|G1(e7%™7))] (38)

solution (29). Fy(e/2™f) is usually referred to as the channel shaping filter, but vatgd by the the
similarity with the solution to the source problem we calkitthannel pre-filter. At the channel output

we placeGsy(e/2™/) = G (e72™/), known as a matched filter, which we call a channel post-filter

Proposition 3: In the pre/post filtered colored-noise channel depictediguié 8b, let the inputX,,

be white and defin&,, = Y,, — X,,. Then the channel satisfies:

1 X,
O = Liog [ YortXat
2 Var{Z,|Z" '}

whereVar{X,} = fc.

This Proposition is again due to [32], following the anadyisi [6]. It is used to establish the optimality
of a scheme based upon noise prediction, where the decoeeipast decisions in order to evaluate the
linear filtering error, and then subtracts the predictiortra$ error in order to achieve capacity. It can
also be shown to be equivalent to the better known MMSE FFE-Bélution [3]. Note that in the limit
of low noise the filters vanish, prediction froff, is equivalent to prediction fronZ,,, and we go back

to (30). defining the channel Wiener coefficient

ac=1—-exp(2C) , (39)

14



The Proposition implies that

. 1—
Var{Z,| 2"} = TO‘%C . (40)
C

The predictive forms described above are highly attracisehe basis for coding schemes, since the
filters and predictors take care of the source or channel megratbowing to use the design of generic
optimal codebooks fowhite sources and channels, regardless of the actual specthawviompromising

optimality. See e.g. [9], [32].

D. Good Lattices for Quantization and Channel Coding

Let A be aK-dimensional lattice, defined by the generator ma@ix RX*X. The lattice includes
all points {1 =G -i:1i¢c ZX} whereZ = {0,£1,+2,...}. The nearest neighbor quantizer associated

with A is defined by
Q(x) = argmin [x 1] .
Let the basic Voronoi cell of\ be

VOZ{X:Q(X):O} )

while the second moment of a lattice per dimension is givernthieyvariance of a uniform distribution

over the basic Voronoi cell:

x|2dx
o?(A) = % : % (41)
The modulo-lattice operation is defined by:
xmod A =x— Q(x) .
We say thatcorrect decodingf a vectorx by a lattice A occurs, whenever
xmod A =x (42)

For a dither vectod which is independent ok and uniformly distributed over the basic Voronoi cell
Vo, [x + d] mod A is uniformly distributed oved), as well, and independent &f [30].

We will assume the use of lattices which are simultaneousbddor source coding (MSE quantization)
and for AWGN channel coding [5]. Roughly speaking, a seqaarfds-dimensional lattices igood for
MSE quantizationif the second moment of these lattices tends to this of a Wathe same volume,
as K grows. A sequence of lattices good for AWGN channel codini the probability of correct
decoding (42) of a Gaussian i.i.d. vector with element var@gasmaller than the variance of a ball having

the same volume as the lattice basic cell, approaches zertarfye K. There exists a sequence of

15
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Figure 9: The Wyner-Ziv / Dirty Paper Coding Problem

lattices satisfying both properties simultaneously, tfaughese lattices, correct decoding holds with high
probability for Gaussian i.i.d. vectors with element vada smaller thaw?(A), for large enoughk.
This property also holds when the Gaussian vector is reglagea linear combination of Gaussian and
“self noise” (uniformly distributed over the lattice basiell) components, see [12, Proposition 1] for an
exact statement. We also assume that these lattices hapeoierty that the second moment along each
coordinate of a uniform distribution over the basic lattaal is identical, and it is equal to the lattice

second moment2(A). This is proven for lattices which are good for source codmg30].

E. Coding for the Joint WZ/DPC Problem using Modulo-Lattiedulation

The lattices discussed above can be used for achieving thewp performance in the joint source/channel
Gaussian Wyner-Ziv/Dirty Paper codihglepicted in Figure 9. In that problem, the source is the sfim o
an unknown i.i.d. Gaussian componépt and an arbitrary componedt, known at the decoder, while
the channel noise is the sum of an unknown i.i.d. GaussiarpooantZ, and an arbitrary component
I, known at the encoder. In [12] the MLM scheme of Figure 10a mwshto be optimal for suitabler
and 5. This is done showing first equivalence to the modulo-adelithannel of Figure 10b, and then,
for good lattices, asymptotic equivalence with high pralitgbto the real-additive channel of Figure
10c. The output-power constraint in that last channel refléte element variance condition in order
to ensure correct decoding (42) of the vecttsp,, + Z.q,, with high probability. When this holds, the
dithered modulo-lattice operation at the encoder and tlwedkr perfectly cancel each other. This way,
the MLM scheme asymptotically translates the Sl problemh® $imple problem of transmitting the

unknown source componegt, over an AWGN, where the interferendg is not present.

4An alternative form of this scheme may be obtained by reptathe lattice with a random code and using mutual infornmatio

considerations, see [28].
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Z.q = aZ — (1 — o)X is independent o).

Power Constraint?

(c) Asymptotic equivalent real-additive channel for

“good” lattices.

Figure 10: Equivalent Channels for the WZ/DPC Coding Scheme

IV. OPTIMALITY OF THE AM SCHEME

In this section we provide analysis of the performance ofAhalog Matching scheme, depicted in
Figure 11. The high-SNR variant of Section Il (see Figureig)a special case of the general scheme
where the pre/post filters are taken to be scalar factorsAarsdtaken to be a scalar lattice. In terms of
the quantities defined in Section lll, the performance of trdriant in the high-SNR regime (16) can be
re-written as:

SDR= —2FSFC§I\TR :
&5
Comparing this to Proposition 1 we see that the scheme igthdsymptotically optimal up to the factor
of #’s. As promised in Section Il, we show how this factor may hienglated, and moreover, we show
that by choosing the filters of the Analog Matching schemedooptimal in the MMSE sense, it can
approach the optimal performance (31) for any SNR.

For proving the optimality of the scheme, we need high latdanension. We assume for now that we
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Figure 11: The Analog Matching Scheme

have K independent identical source-channel pairs in paPalehich allows ak-dimensional dithered
modulo-lattice operation across these pairs. Other dpesatare done independently in parallel. To
simplify notation we will omit the index: of the source/channel pait & 1,2,..., K), and use scalar
notation meaningny of the K pairs; We will denote by bold by bold lettet&-dimensional vectors,
for the modulo-lattice operation. Subscripts denote tim&ants. Under this notation, the AM encoder
is given by:

U, = fi,*5

X, = [fU,-1,+D,]modA

oo
In = Z pCan—m
m=1

SWe will discuss in the sequel how this leads to optimality dosingle source and a single channel.
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while the decoder is given by:

Yn = g2n*Yn
~ 0 ~
Y/n - Yn + Z pCmYn—m
m=1
1

Vo = 3 [Yn—ﬁJn—Dn} mod A + J,,

J, = Z pSkVn—k
m=1
Sn = fonxVa , (44)

wherex denotes convolution, and for each filtey denotes the impulse response of the corresponding
frequency respons# (e727/). Each of theK parallel channels is given by the equivalent colored noise
modef (5).

The optimality proof shows that at each time instant the sEhis equivalent to a joint source/channel
side-information (SI) scheme, and then applies the Modlalitice Modulation (MLM) analysis of such
schemes presented in Section llI-5. The key to the proofasvaty that the correct decoding event (42)
holds, thus the modulo-lattice operation at the decodectBxeancels the corresponding operation at the
encoder. This is an event which involves all the source/ehbpairs, and its analysis requires verifying
the signal distribution, see Section IlI-4. Once this holtie rest of the analysis iscalar, i.e. we can
treat each of thd{ source/channel pairs separately, apuddratic i.e. we can ignore the distribution of
signals and deal with variances only. In this scalar quadeatposition, we find that with a choice of
MMSE filters, the scheme materializes the capacity readimadf Proposition 3, nested inside the RDF
realization of Proposition 2; The channel error, scaled dy factor 3, serves as the AWGN in the
RDF realization. The calculations in the lemmas below, shgwtep by step equivalence to the channels
in Figure 12, result in approaching the optimum performa(88. Throughout the proof we usk:
according to (29), andg according to (24) at a distortion level corresponding wiie pptimum (31).
We also usex = as = ac (36),(39).

We start by showing that the Analog Matching scheme is etprivat each time instant to the WZ/DPC

scheme of Section IlI-5. This equivalence is feasible,esifhcand J,, are constructed in the encoder and

®Note that when moving from the high-SNR scheme to the germgtiinal scheme, we find it convenient to replace the ISI
channel (27) by the colored noise channel. For equal sourdeclaannel BW, these are interchangeable as discussedtiorbSec
II-2. Consequently we also look at the channel predidier(e’?™f) as a part of a noise-predictor, rather than a Tomlinson

precoder, see [6], [32].
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+
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Figure 12: Equivalent Channels for the Analog Matching Suohe

the decoder usingastvalues ofX,, and V,,, respectively, thus at any time instant they can be seen as
side information. Specifically, the equivalent scheme iswshin Figure 12a, which is identical to the

scheme of Figure 10a, with the substitutions summerizetiénfédllowing table:

S| Q|| X |aY | Z |aI| D |P

<

AM U,
Wz/DPC || S

R |~

It remains to show that an optimum choice of filters indeedltesn a channel where the unknown noise

component is white, and evaluate its variance.

Lemma 1:(Equivalent side-information scheme) If we chooseG, (e/2™/) and G (e/2™/) according
to (38) and we choos@c(e/>™f) as the minus of the optimal predictor of the spectrum

. . 2 . .
Spel ) = (1= 1G1 (2 )2) b + |G ()PS5 (1)

then
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is a white process, independent of &l}, with variance

1l -«

Var{Z]} = Oc .

a

Proof: By the properties of the modulo-lattice operatiof, is a white process of varianeé(A) =

6c. Now the channel fronX,, to Y,, is identical to the channel in Proposition 3, thus we havé tha
Y! = (X, + Z,) % (0n —pcy) = Xp + I+ 2,

whereZ!! = Z, (6, +pc,,) andZ, has spectruny;(e?2"/). Since—Pc(e/2™f) is the optimum predictor
of the proces¥,,, we have thaZ” is a white process, with varianc—l%ﬂec according to (40). Now since
Y, =Y/ — I, is an optimum estimator foX,, given the channel output, we have by the orthogonality
principle that the estimation error is uncorrelated with firocess’,, resulting in an additive backward
channel (see e.qg. [32]):

X,=Y —-I,-Z! .
Reverting back to a forward channel, we have
V! =a(X,+Z)+ 1,

where Z/, is white with the same variance a& [

Using this result, the equivalence to the channel of Figie i$ immediate, as follows.

Lemma 2:(Equivalent modulo-lattice channel) Under the same conditions of Lemma 1, the first

moduloA operation can be dropped, resulting in an equivalent cHanne

V, = B [ﬁ(Un —Jn)+ Zeqn] mod A+J, ,

where Z,,,, is white additive noise with variandd — «)fc .

Proof: We apply Lemma 1 and identify the Analog Matching scheme withthe WZ/DPC scheme
as described above. Seeing thats indeed the Wiener coefficient of the channel frofy to Y/, we
can use [12, Lemma 1] to arrive at the desired channel With{ Z, = aVar{Z)} = (1 -a)fc ®

Assuming that correct decoding holds, the modulo-lattiperation can be dropped, and we have the
scalar additive channel of Figure 12c:
Z,

m:m+§%. (45)
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We now show, that if correct decoding held at all past timksntthe variance of the signal at the input

of the decoder modulo-lattice operation can be bounded &bove.

Lemma 3:Under the conditions of Lemma 2, and if in addition (45) hedd &ll past instances —

1,n —2,..., then the variance of

>

Ty = B(Un — Jp) + Zeg,

satisfies:

Var{T},} = (1 - §)fc

where§ = 6 (Sy(e/*™/),0¢, 8) > 0, provided that
Oc
Os

Fy(e7%7f) is chosen according to (35) arfel(e/27/) is the optimum predictor of the spectrum

B <BE(1-a (46)

Sy (/2™ = 325y (™) + (1 — a)be .

Proof: We note thatPs(e/2/) is the optimum predictor of the proce®s. Under our assumption,
V., = T, for all past instances, thus it is also the optimum predicto¥,,. Consequentlyl/,, — J,, is

white, with variance

Var{U, — J,} = Var{U,|Vy-1,V-2,...}
() Var{Zq, } Var{Z.q, }
= P, (SU + 7 ) - 7
B 53
= P, (SU + ?95> — ?95
62
< 3 [PE(SU +0g) — 95}
® B _o
B2 11— aes
abo
_ 5

where (a) holds by (23) andb) holds by applying the same in the opposite direction, coetdbiwith
(37). By the whiteness af,,,, and its independence of dll,, we have thal,, — J, is independent of

Zeq,,, thus the variance dt), is given by

Var{T,} = 8* Var{U,, — J,,} + Var{Z,,} < 0c . (47)
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The margin fromd depends on the margin in the inequality in the chain abové;wtlepends only on

Sy (e7?71), 8 and 3, and is strictly positive for allp < 3, as required [ |
We now note, that if we could chooge= 3,, and if (45) holds at all times, then by setti6g (e/27/) =

Gi(e’>"T) we have the equivalent channel of Proposition 2, thus weesehihe optimum (31). The

following shows in what sense we can approach this.

Lemma 4:(Steady-state behavior of the Analog Matching scheme) Let p.(K) be the probability
that (45) does not hold in the present instance, in an AnalatgMng scheme using a lattice of dimension
K. Then

lim pe(K)=0 ,

K—o0

under the conditions of Lemma 3, provided that= A is taken from a sequence of lattices simulta-
neously good for source and channel coding in the sense ofFddosition 1].

Proof: The channel of Lemma 2 is equivalent to the (45) if correctodiégtgy (42) holds forT,,.
By [12, Proposition 1], the probability approaches zero lfoge K if the input of the modulo-lattice
operation is a combination of Gaussian and uniform (overltasic lattice cell) componerftsand if
the power ofT;, is less thanr?(A) = 6¢. The first condition holds sincg, is a combination 0Zcq,,,
U,, and past values of,,, and these, by our assumptions, are composed of the Gayssiegssed/,,
and Z,, and of the procesX,, uniformly distributed over the basic lattice cell, all padshrough linear
filters. The second condition holds by Lemmag3(K) does not depend on, since the margird in
Lemma 3 depends only on the spectra which are fixed. [ |
Now we translate the conditional result above, to an opitsnalaim for blocks of any finite length.
We assume steady-state behavior, in the sense that the’ filtate is correct.
Definition 1: We say that the Analog Matching schemectrectly initialized at time instancen, if

all signals at all times: — 1,n — 2,... take values according to the correct decoding assumption

Theorem 1:(Asymptotic optimality of the Analog Matching scheme) For anye > 0, the Analog
Matching scheme can achieve
SDR> SDR?' — ¢ |

"Actually, [12] only discusses the combination of a Gaussiactor with a single uniform component, but the extension to

multiple uniform components is straightforward.

23



where SDRP* was defined in (31), in transmitting source blocks of suffitieength N, provided that
the lattice dimensionk is high enough and that at the start of transmission the sehengorrectly

initialized.

Proof: We assume that the scheme is correctly initialized at time 1. Let N’ = N + M be the

number of channel uses made. Now as long as correct decodidg, lwe have thaV,, = U, + Z;’",
where the additive noise term has variance

(1—a)bc B ﬂg
N
By Proposition 2, if correct decoding always holds afnd= 0, SDR= SDR** exactly. Now we decide

05 2 05 +e1(B) .

upon some finiteV’, and setV,, = 0 for all n > N’. This adds some distortioss(N'), but for large
enough excess number of usks the effect vanishes. If at any instangecorrect decoding does not
hold anymore)V,, starts taking arbitrary values, bounded by the maximum ntadg of V, divided by
£. We bound the performance then, by assuming that if thatdvapphen throughout the whole block
V,, deviates by some,,,.... Finally we can bound the probability of such an event: Dafin.(K, N')
as the probability that correct decoding failsany of n = 1,2,..., N’ we have by Lemma 4 and by
the union bound that

pe(K, N') < p(K)
Taking all these effects into account, we have that:
D < D%+ ¢1(B) + e2(N') + 12, - N'pe(K) .

By taking 8 close enough tg3, we can make:; as small as desired. By taking large enoughwe
can makecs as small as desired. Finally, by choosiAglarge enough we can make the last term small
enough for any finite choice gf and N’. We have madé/ extra channel uses, but for large enough
the optimum performance faN’ uses approaches this 6f uses. [ |

From the idealized scheme to implementation:

We now discuss how the scheme can be implemented with finigesfilhow the correct initialization
assumption may be dropped, and how the scheme may be usedifugl@ source/channel pair.

1. Filter length. If we constrain ourself to filters of finite length, we may net &ble to implement the
optimum filters. However, it is possible to show, that botk #ffect on the correct decoding condition
and on the final distortion can be made as small as desirext #ie additional signal errors due to the
filters truncation can be all made to have arbitrarily vac@by taking long enough filters. In the sequel

we assume the filters all have length
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2. Initialization. After taking finite-length filters, we note that correct ialization now only involves a
finite history of the scheme. Consequently, we can create this Bjaadding a finite number of channel
uses. Now we may create a valid state for the channel predii¢e’>™/) by transmitting L values
X, =0, see [9]. For the source predictor the situation is morelimd since in absence of past values
of V,,, the decoder cannot reduce the source power to the innasgtiower, and correct decoding may
not hold. This can be solved by de-activating the prediaborttie first L values ofU,,, and transmitting
them with lower such that (47) holds without subtractinfy. Now in order to achieve the desired
estimation error for these first values 6f, one simply repeats the same valueg/gfa number of times
according to the (finite) ratio ofi’s. If the block lengthN is long enough relative td, the number of
excess channel uses becomes insignificant.

3. Single source/channel pair. A pair of interleaver/de-interleaver can serve to emul&teparallel
sources, as done in [9] for an FFE-DFE receiver, and extetwléaitice operations in [33].

General Remarks:

1. Composition of the noise. We bring here a short account of how noises at different paintthe
scheme are composed. For simplicity, we substitute kiete) in the margin of Lemma 3. The channel

equivalent noise,

Zeq,, = aZ'y — (1 - oz)f(n

is an MMSE linear combination of an “unbiased slicer errarn Z’,, and a “self-noise” termX,,. Both
terms are white, and’,, itself is composed of future channel inputs (“residual )Sihd channel noise.
The ISI and the noise are weighted at each frequency aceptdithe value of the channel post-filter,
which is in turn set by the channel SNR at that frequency. Ngniflewe denote the spectrum of the
channel noise and self noise component§,§§se(ej2’rf) and Slgj(eﬂ”f), we have that:
Snaise(7F) _|Go(@? )P Sz() _ P(P)S() P
Srsi(e7m) 1 — Gy(ei?m)Go(ed?™ ) 9 (¢ — Plei?nf))? — Sz(er*™)
where the last equality holds if the SUB is satisfied with dityzalhe total reconstruction error is then a

Y

pre/post filtered version of the channel equivalent nofses aigain it is composed by a channel equivalent
noise component and a bias component. The ratio betweea toesponents can be computed, to find
that at each frequency the higher source spectrum is, therldéine part of the channel equivalent noise
is.

2. Compoasition of the signal at the decoder modulo-lattice output. We turn to consider the signal
Zeq,, + BQn, WhereQ, 2 U, — J, is the source prediction error or “innovations” processisTdignal

should satisfy the output power constraint (47), thus suhsig againd = 0, it has a total powef¢.
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These two components are mutually independent, and botte whie innovations process occupies a
portion « of this power. This is reflected in the zooming coefficientcsi we have:

bc _ . 0c
0s  Var{Q,}

Thus g plays the role of amplifying the source (noisy) innovatigmecess to the lattice power, in order

fi=01-a)

to enhance the signal to distortion ratio, but the< 1 factor is still needed for “leaving room for the
noise”. In high SNRa — 1 and this effect vanishes. See [12] for further discussion.

Examples: Bandwidth Expansion and Compression

At this point, we present the special casesahdwidth expansioand bandwidth compressiorand
see how the analog matching scheme specializes to these bafisese cases the source and the channel
are both white, but with different bandwidth (BW). The saum@nd channel prediction gains are both

one, and the optimum condition (31) becomes:
SDRP = (1 +§|\TR>p , (48)

where the bandwidth ratip was defined in (32).

For bandwidth expansion, we choose to work with a samplinig carresponding with the channel
bandwidth, thus in our discrete-time model the channel iseytbut the source is band-limited to a
frequency of%. As a result, the channel predictéy.(z) vanishes and the channel pre- and post-filters
become the scalar Wiener facter The source water-filling solution allocates all the distor to the in-
band frequencies, thus we hafie = pD and the source pre- and post-filters become both ideal I®s-pa

filters of width % and height

\/1—@:\/1—(1+S’NVR)_K) . (49)

As the source is band-limited, the source predictor is mivtat and depends on the distortion level. The
resulting prediction error ot/,, has variance
Var{U,|V" '} = % ;
(1 + SNR)

and the resulting distortion achieves the optimum (48).

For bandwidth compression, the sampling rate reflects thecedbandwidth, thus the source is white
but the channel is band-limited to a frequency®# = £. In this case the source predictor becomes
redundant, and the pre- and post-filters become a constaat fequal to (49). The channel pre- and post-

filters are ideal low-pass filter of widt§ and unit height. The channel predictor is the SNR-dependent
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DFE. Again this results in achieving the optimum distorti@®). It is interesting to note, that in this
case the outband part of the channel etgris entirely 1S (a filtered version of the channel inputs),
while the inband part is composed of both channel noise ahdal®l tends to be all channel noise at
high SNR.

V. UNKNOWN SNR

So far we have assumed in our analysis that both the encodetemoder know the source and channel
statistics. In many practical communications scenariosdver, the encoder does not know the channel,
or equivalently, it needs to send the same message to diffesers having different channels. Sometimes
it is assumed that the channel filtéfy(e/27/) is given, but the noise leveV is only known to satisfy
N < Ny for some given),. For this special case, and specifically the broadcast bidtitwxpansion
and compression problems, see [22], [15], [21], [19].

Throughout this section, we demonstrate that the key faictasymptotic behavior for high SNR
is the bandwidth ratig (32). We start in Section V-1 by proving a basic lemma regaydichievable
performance when the encoder is not optimal for the actuahiél. In the rest of the section we utilize
this result: In Section V-2 to show asymptotic optimality fanknown SNR in the casg = 1, then
in Section V-3 we show achievable performance for the speeaes of (white) BW expansion and

compression, and finally in Section V-4 we discuss generttsp in the high-SNR limit.

A. Basic Lemma for Unknown SNR

We prove a result which is valid for the transmission of a oedbsource over a degraded colored
Gaussian broadcast channel: We assume that the channadiishyi (5), whereB¢ is known but the noise
spectrumSz(e72™f) is unknown, except that it is bounded from above by some sp@cs o (e/27/)
everywhere. We then use an Analog Matching encoder optiotabf(e72"/), as in Theorem 1, but
optimize the decoder for the actual noise spectrum. Codecbding undetSzy(e/?™/) ensures correct
decoding undetSz(e727f), thus the problem reduces tolinear estimation problem, as will be evident
in the proof.

For this worst channe$zy(e/2/) and for optimal distortion (31), we find the water-filling atibns
(24),(29), resulting in the source and channel water lef/glandé respectively, and in aource-channel

passbandF,, which is the intersection of the inband frequencies of trse and channel water-filling
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solutions:
Fs = {f:8s(e”) =05},
Fo = {f:Sz(*7) <00} |
Fo = FsnFc . (50)

Under this notation we have the following.

Lemma 5:For any noise spectrurfizo(e’?™f), exists a single encoder, such that for any equivalent
noise spectrum
Sz(*™) < Szo(*) ¥ f € Fo (51)

a suitable decoder can arbitrarily approach:
D:/2 D) df
where the distortion spectrui(e/>™/) satisfies:
Ss(ed27f) .
D(ej27rf) _ 1+®(es2mf)° it f € %o 7 (52)
min (Ss(eﬂ”f), 95) , otherwise

with
(I =

Sz, (™) [ Sz,(e7*™) = Sz(e7*™)] Ss(e*™) — b5
Sz(ei?]) Oc fs

Proof: We work with the optimum Analog Matching encoder for the ea@pectrunszo(e/2™f). At
the decoder, we note that for any choice of the channel pest4i;(e72™/), we have that the equivalent
noise Z.,, is the noiseZ, 2, — X, passed through the filtar+ P (e727/). Consequently, this noise
has spectrum:

Seq(€?™) = S7(* )1+ Po(e*™)? .

The filter G2 (e72™/) should, therefore, be the Wiener filter which minimizgg(e/2™/) at each frequency.

This filter achieves a noise spectrum

» Oc — Szo(e??™7)
o og2mfy c Z0
S = G 0@ ) 1 5y (@) 2

inside F¢, andd¢ outside. Denoting the variance of the (white) equivalems@m the casé€zo(e/2™/) =

el 27rf)

Sz(e7*"1) as we have that? , we find that:

quec
(0c — Sz0(e7%71)) S z0(e32])

114 Po(e*™)? =
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g

fcq outside. We conclude that we have equivalent channel natbespectrum
“ Szo(e7?™))  Oc — Szo(e7?™)) + Sz(e?™) " B(es2ml)0g

inside F¢, ando—gq outside. Now, since this spectrum is everywhere upper@edlmyagq, we need not

inside ¢, and

worry about correct decoding. We have now at the source fstinput the source, corrupted by an

Z'-’ﬁ’“", with spectrum arbitrarily close to

Seq(e®™) _ Ss(e*™) — O

B )

inside F¢, andOg outside. Now again we face optimal linear filtering, and welaee the source post-

additive nois

filter F»(e/?™f) by the Wiener filter for the source, to arrive at the desirezliite [ |

Remarks:

1. Outside the source-channel passb&pdthere is no gain when the noise spectrum density is lower
than expected. Insid&y, the distortion spectrum is strictly monotonously deciegsn Sz (e/2™/), but
the dependence is never stronger than inversely propattittrfollows, that the overall SDR is at most
linear with the SNR. This is to be expected, since all the gaimes from linear estimation.

2. In the unmatched case modulation may change performaimeg.is, swapping source frequency
bands before the analog matching encoder will chafigand®(¢727/), resulting in different performance
asSy(e/?"/) varies. It can be shown that the best robustness is achigvedsy (e/27/) is monotonously
decreasing inSz(e?2™/).

3. The degraded channel condition (51) is not necessarygieti condition for correct decoding to

hold can be stated in terms 6% (e2™/), Szo(e/2™/) and Sz(e/27/), though it is cumbersome.

B. Asymptotic Optimality for equal BW

We prove asymptotic optimality in the sense that, if in tharohel (27), the ISI filter is known but
the SNR is only known to be above some Sj\fhen a single encoder can simultaneously approach
optimality for any such SNR, in the limit that the minimum SNRhigh. This follows directly from

Lemma 5, noting that this is equivalent to the channel (Shi(e/27/) = S”S"TTR; - Sz0(e?*™T).

Theorem 2:(Robustness at high SNR): Assume we are allowed one channel use per source sample,

and let the source and channel be given by (4) and (5), ragelgciThen, exists an SNR-independent

encoder that for any > 0 achieves distortion
SDR(SNR) > (1 — §)SDR”*(SNR)
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for sufficiently large (but finite) SNR, i.e., for all SNR SNRy(9).

Proof: We apply Lemma 5. If the source spectrum is bounded away fremm and theSzo(e/2™/)
is bounded from above, we can always teﬁ?ﬁ% high enough such that the source-channel passband
Fo includes all frequencies, and then we have for§NVR2 S/I\TR):

D(e7?™) < L SNRyg
1 —¢(SNR)) SNR

resulting in

SDR> (1 — e(s’r\TR)))ﬁsm) = (1 - ¢(SNRy)) SNR I'sTe(1 4 SNRy)
SNR, SNR,

where the second transition is due to Proposition 1. Agaia wuthe same proposition, this is nearly
optimal. If the spectra are not bounded, then we artificisdlythe pre-filters to beoutside their respective
bands, and in the case of the channel pre-filter we slightnaate other frequencies to comply with the
power constraint. While this has the effect of worsening pleeformance aS/NvRO, it allows for linear
improvement of the SDR WitlBNR for all frequencies. The effect of worsening&‘ENTR) can be made
as small as desired, by taking large eno@%. [ |
Alternatively, we could prove this result using a the zesoeing scheme of Section 1l with high lattice
dimension. Actually, using such a scheme, an even stroreggitrcan be proven: Not only can the

encoder be SNR-independent, but so can the decoder.

C. BW Expansion and Compression

We go back now to the cases of bandwidth expansion and cosipnediscussed at the end of Section
IV. In these cases, we can no longer have a single Analog NMetcbncoder which is universal for
different SNRs, even in the high SNR limit. For bandwidth axpion p > 1), the reason is that the

source is perfectly predictable, thus at the limit of highRStNe have that
Var{U,|V,-1, Vh—2,...} = Var{U,|Up-1,Up—2,...} =0

thus the optimun® goes to infinity. Anys value chosen to ensure correct decoding at some finite SNR,
will impose unbounded loss as the SNR further grows. For Wit compression, the reason is that
using any channel predictor suitable for some finite SNR, w&eehin the equivalent noisg, some
component which depends on the channel input. As the SNReudrows, this component does not
decrease, inflicting again unbounded loss.

By straightforward substitution in Lemma 5, we arrive at fhkbowing.
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Figure 13: Unknown SNR Performance: BW Expansion and Cosgjwa

Corollary 1: Assume white source and AWGN channel where we are allowethannel uses per
source sample. Then using an optimum Analog Matching schehieh assumes signal to noise ratio
SNR) and a suitable decoder, it is possible to approach:

1 1-—min(l,p) min(1, p)

— —— (53)
SDR <1+SNR)>p 1+ @,(SNR SNR))

where

®,(SNR SNR) 2 ﬂ[(uﬁ%)p—l} (54)

1+ SNRy
andp =, for anySAN/RE SNR,.

Note that the choice of filters in the SNR-dependent decosl®mams simple in this case: Fpr> 1
the channel post-filter is flat while the source post-filteaisideal low-pass filter, while fop < 1 it is
vice versa. The only parameters which change with SNR, &edhlar filter gains.

Comparison of performance: In comparison, the performance reported by different nathio [15],

[21] for these cases has, in terms of (53):

®,(SNR SNR)) = (1+ SNR) - (1 +SNR))* ' —1 (55)

while [21] also proves an outer bound for BW expansipri>( 1) on any scheme which is optimal at

some SNR:

®,(SNR SNR)) = S%Z (1+ SNR))” — 1] (56)
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In both BW expansion and compression, the Analog Matchirges®e does not perform as good as
the previously reported schemes, although the differeacésties for high SNR. The basic drawback of
analog matching compared to methods developed specififtallthese special cases seems to be, that
these methods apply different “zooming” to different s@uoc channel frequency bands, analog matching
uses the same “zooming facto#’ for all bands. Enhancements to the scheme, such as the catiohin
of analog matching with pure analog transmission, may iwethese results. Figure V-3 demonstrates
these results, for systems which are optimal at differenR 3¢vels.

At high SNR, the performance of all these methods and of tlierdaound converge to:

1 1-—min(p,1) min(p, 1)
SDR SNR) SNR- SNRS_l '
Thus the Analog Matching scheme, as well as the schemes hf[pg, are all asymptotically optimal

(57)

for high SNR among the schemes which achieve 3bBt some SNR.

D. Asymptotic Behavior with BW Change

Finally we turn back to the general case of non-white spegiita any p, and examine it in the high-
SNR regime. As in Section V-2, we assume that the channel lt8t f§ known, corresponding with an
equivalent noise spectrussi; (e/>*f) known up to a scalar factor.

In the high-SNR limit, Lemma 5 implies:

1 |1—min(p,1) min(p, 1)
SDR SNR; SNR- SNR, ™!

Comparing with (57), we see that the color of the source anth@foise determines a constant factor

TeTs . (58)

by which the SDR is multiplied, but the dependence upon th® $&mains similar to the white BW

expansion/compression case. The following definition fines this behavior (see [13]).

Definition 2: The distortion slopeof a continuum of SNR-dependent schemes is :

. log SDR
_lim —
SNR—co log SNR

e

(59)

where SDR is the signal to distortion attained at signal tiseoatio SNR, where the limit is taken for

a fixed channel filter with noise variance approaching

We use the notation = \(p) in order to emphasize the dependance of the asymptotic siope the

bandwidth expansion factor. The following follows dirgcfrom Proposition 1.
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Proposition 4: For any source and channel spectra with BW rati@nd for a continuum of schemes

achieving the OPTA performance (31),
Alp)=p

As for an analog matching scheme which is optimal for a sil8R, (58) implies:

Corollary 2: For any source and channel spectra and for a single analtgitimg encoder,

1, ifp>1
Alp) = _
0, otherwise

is achievable.

This asymptotic slope agrees with the outer bound of [21{fer(white) bandwidth expansion problem.
For the bandwidth compression problem, no outer bound isvknbut we are not aware of any proposed

scheme with a non-zero asymptotic slope. We believe thiettrue for all spectra:

Conjucture 1: For any source and channel spectra of BW rationo single encoder which satisfies

(31) at someSNR, can have a better slope than that of Corollary 2.

By this conjecture, the analog matching encoder is asymneptiyt optimal among all encoders ideally
matched to one SNR. It should be noted, that schemes whiclodsatisfy optimality at one SNRan

in fact approach the ideal slopdp) = p, see e.g. approaches for integesuch as bit interleaving [23].

VI. CONCLUSION: IMPLEMENTATION AND APPLICATIONS

We presented the Analog Matching scheme, which optimalyndamits a Gaussian source of any
spectrum over a Gaussian channel of any spectrum, withaartneg to any data-bearing code. We
showed the advantage of such a scheme over a separatiahgzdsgon, in the sense of robustness for
unknown channel SNR.

The analysis we provided was asymptotic, in the sense thdgladimensional lattice is needed.
However, unlike digital transmission where reduction o tode block length has a severe impact on
performance, the modulo-lattice framework allows in picteduction to low-dimensional, evegalar
lattices, with bounded loss.

One approach for scalar implementation of the Analog Maigticheme, usesompanding14]. In

this approach, the scalar zooming factdiis replaced by a non-linear function which compresses the
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unbounded Gaussian source into a finite range, an operatichus reverted at the decoder. There is
a problem here, since the entity which needs to be compréssactually the innovations proces,,
unknown at the encoder since it depends on the channel Aidige can be solved by compressiay,,

the innovations of the source itself; The effect of this “ganding encoder-decoder mismatch” vanishes
in the high-SNR limit. An altogether different approachtdsavoid instantaneous decoding of the lattice;
Instead, the decoder may at each instance calculate theesprediction using several hypothesis in
parallel. The ambiguity will be solved in the future, po$giby a trellis-like algorithm.

Finally, we remark that the robustness analysis made inpgier is by no means the only application
of Analog Matching. The scheme has the basic property, thabriverts any colored channel to an
equivalent additive white noise channel of the same capasitthe original channel, but of the source
bandwidth. In the limit of high-SNR, this equivalent noisecbmes Gaussian and independent of any
encoder signal. This property is plausible in multi-usarrse, channel and joint source/channel problems,
in the presence of bandwidth mismatch. Applications ineladmputation over MACs [18], multi-sensor

detection [17] and transmission over the parallel relayvoét [11].
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