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Abstract

Analog (uncoded) transmission provides a simple scheme forcommunicating a Gaussian source

over a Gaussian channel under the mean squared error (MSE) distortion measure. Unfortunately, its

performance is usually inferior to the all-digital, separation-based source-channel coding solution, which

requires exact knowledge of the channel at the encoder. The loss comes from the fact that except for

very special cases, e.g. white source and channel of matching bandwidth (BW), it is impossible to

achieve perfect matching of source to channel and channel tosource by linear means. We show that

by combining prediction and modulo-lattice operations, wecan match any colored Gaussian source to

any inter-symbol interference (ISI) colored Gaussian noise channel (of possibly different BW), hence

we achieve Shannon’s optimum attainable performanceR(D) = C. Furthermore, when the source and

channel BWs are equal (but otherwise their spectra are arbitrary), our scheme is asymptotically robust in

the sense that for high signal to noise ratio (SNR) the encoder becomes SNR-independent. The derivation

is based upon a recent modulo-lattice modulation scheme fortransmitting a Wyner-Ziv source over a

dirty-paper channel.
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I. INTRODUCTION

Digital transmission of analog sources relies, at least from a theoretical point of view, on Shannon’s

source-channel separation principle. Being both optimal and easy to implement, digital techniques replace

today traditional analog communication even in areas like voice telephony, radio and television. This trend

ignores, however, the fact that the separation principle does not hold for communication networks, and

in particular for broadcast channels and unknown channels [4], [34], [26]. Indeed, due to both practical

and theoretical reasons,joint source-channel coding and hybrid digital-analog schemes are constantly

receiving attention of researchers in the academia and the industry.

Figure 1 Demonstrates the setting we consider in this paper:Transmission under the MSE distortion

criterion, of a general stationary Gaussian sourceSn, over a power-constrained linear time-invariant (LTI)

filter channel with additive white Gaussian noise (AWGN),

Yn = hn ∗ Xn + Wn, (1)

whereXn andYn are the channel input and output, respectively,hn is the channel filter impulse response,

∗ denotes convolution, andWn is the noise. See Figure 2. This channel, commonly called in the literature

inter-symbol interference (ISI) channel, has also an equivalent ISI-free colored-noise representation, which

we shall give in the sequel.

Shannon’s joint source-channel coding theorem implies that the optimal (i.e., minimum distortion)
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performanceDopt is given by

R
(
Dopt

)
= C, (2)

whereR(D) is the rate-distortion function of the sourceSn at MSE distortionD, andC = C(P ) is the

capacity of the channel (1) at power-constraintP , both given by the well-known water-filling solutions

[4]. By Shannon’s separation principle, (2) can be achievedby a system consisting of source and channel

coding schemes. This system usually requires large delay and complex digital codes. A more serious

drawback of the all-digital system is that it suffers from a “threshold effect”: if the channel noise turns

out to be higher than expected, then the reconstruction willsuffer from very large distortion, while if the

channel has lower noise than expected, then there is no improvement in the distortion [34], [26], [2].

In contrast, analog communication techniques (like amplitude or frequency modulation [?]) are not

sensitive to exact channel knowledge at the transmitter. Moreover, in spite of their low complexity and

delay, they are sometimes optimal: if we are allowed one channel use per source sample, the source

Sn is white (i.e., source samples are i.i.d.), and the channel is ISI-free (Yn = h0 · Xn + Wn), then a

“single-letter” coding scheme achieves the optimum performance of (2), given by

D = Dopt =
Var{Sn}

1 + SNR
, (3)

where SNR denotes the channel signal-to-noise ratio; see e.g. [8]. In this scheme, the transmitter consists

of multiplication by a constant factor that adjusts the source to the power constraintP , so it is independent

of the channel parameters. Only the receiver needs to know the exact channel parameters (the gainh0

and the power of the noiseWn) to optimally estimate the source from the noisy channel output (by

multiplying by the “Wiener coefficient”).

For the case ofcolored sources and channels, however, such a simple solution is notavailable, as

single-letter codes are only optimal in very special scenarios [7]. By “colored” we mean that the source

spectrum and the frequency response of the channel filterhn are not flat. A particular case is when the

channel bandwidthBc (i.e., the bandwidth of the filterhn) is not equal to the source bandwidthBs, but

otherwise they are white (i.e., we are allowedBc/Bs channel uses per source sample on the average). As

it turns out, even if we consider more general linear transmission schemes, [1], still (2) is not achievable

in the general colored case. How far do we need to deviate from“analog” transmission in order to achieve

optimal performance in the colored case? More importantly,can we still achieve full robustness?

In this work we propose and investigate a semi-analog transmission scheme, based on linearprediction

with modulo-lattice arithmetic. This scheme achieves the optimum performance of (2) forany colored

source and channel pair, hence we call it theAnalog Matchingscheme. Furthermore, for the matching
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bandwidth case (Bc = Bs), we show that the Analog Matching transmitter is asymptotically robust in

the high signal-to-noise ratio (SNR) regime, in the sense that it becomes invariant to the variance of the

channel noise. Thus, in this regime, the perfect SNR-invariant matching property of white sources and

channels [8] generalizes to the equal-BW colored case.

Previous work on joint source/channel coding for the BW-mismatch/colored setting mostly consists

of hybrid digital analog (HDA) solutions, which involve splitting the source or channel into frequency

bands, or using a superposition of digital encoders (see [22], [15], [21], [19], [16] and references therein),

mostly for the cases of bandwidth expansion (Bc > Bs) and bandwidth compression (Bc < Bs) with white

spectra. Other works [2], [27] treat bandwidth expansion bymapping each source sample to a sequence

of channel inputs independently. Most of these solutions, explicitly or implicitly, allocate different power

and bandwidth resources to analog and digital source representations, thus they still employ full coding.

In contrast, the Analog Matching scheme treats the source and channel in thetime domain.

The rest of the paper is organized as follows: We start in Section II by demonstrating the basic principles

of the Analog Matching scheme. Then in Section III we bring preliminaries regarding sources and channels

with memory, as well as modulo-lattice modulation and side-information problems. In Section IV we

prove the optimality of the Analog Matching scheme. In Section V we analyze the scheme performance

for unknown SNR, and prove its asymptotic robustness. Finally, Section VI contains the conclusion.

II. A S IMPLIFIED V IEW OF THE SCHEME IN THE EQUAL-BW HIGH-SNR CASE

To realize where lies the difficulty of matching a colored source to a colored channel, and to demonstrate

the basic principles of the Analog Matching scheme, consider an auto-regressive (AR) source model:

Sn = Qn +
LS∑

l=1

alSn−l , −∞ < n < +∞ (4)

where the innovation processQn is zero-mean white Gaussian with varianceσ2
Q, and where the AR order

Ls is in general infinite. For the channel, without loss of generality1 assume that the filterhn is causal,

monic (h0 = 1) and minimum phase, so (1) can be re-written as

Yn = Xn +
LC∑

l=1

hlXn−l + Wn , (5)

whereWn is zero-mean white Gaussian with varianceN , and where the filter lengthLc may be infinite

(see Figure 2).

1Since we can always transform the channel into such using a matched filter at the receiver front, see e.g. /citeProakis83
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Let us assume for now that the source bandwidth and the channel bandwidth are equal (BS = BC),

and they both occupy the entire spectrum (This holds, for example, when the AR order (Ls) and the

channel filter length (Lc) are finite). In this case, for sufficiently small distortion

R(D) =
1

2
log

(
Var{Qn}

D

)

while for small channel noise

C ≈
1

2
log (SNR) ,

where in general

SNR
∆
=

P

N
. (6)

See more on that in Section III. Thus, in the limit where the SNR is high, (2) becomes

Dopt ≈
Var{Qn}

SNR
, (7)

as if we were transmitting a white Gaussian sourceQn over an ISI-free AWGN channelYn = Xn +Wn.

(See (3).)

It is tempting to try to achieve the performance of (7) by letting the transmitter predict the source (to

exploit Qn from Sn), and invert the channel filter (i.e., cancel the ISI part
∑LC

l=1 hlXn−l), thus transform

the colored problem into a white one. However, this transformation turns out to be worthless: at the

transmitter, inversion of a monic channel filter causes power amplification; while at the receiver, re-

generation (re-coloring) of the source from the (white) noisy innovations will amplify the noise. All in

all, the overall performance will be the same as if we were transmitting the original AR source directly

(with only power matching) over the original ISI channel with no filtering (except for scalar power

matching). Such a naive scheme will achieve distortion

D ∼=
P + Var{In}

P
·
Var{Sn}

SNR
=

P + Var{In}

P
·

Var{Sn}

Var{Qn}
Dopt , (8)

which can be arbitrarily far from the optimum, depending upon the source and channel color.

The Analog-Matching scheme circumvent this power/noise-amplification phenomena by employing

modulo-arithmetic at the predictors. Unlike the more common configuration in practical systems, the

Analog Matching scheme performs source prediction at thedecoderside while channel inversion at the

encoderside, as demonstrated below.
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Recalling the source model (4) and the channel model (5), anddefining the source regression term

and the channel ISI term:

Jn
∆
=

LS∑

l=1

alSn−l

In
∆
=

LC∑

l=1

hlXn−l , (9)

we have:

Sn = Qn + Jn ,

Yn = Xn + In + Wn . (10)

These source and channel models are shown in Figure 3.

The high-SNR variant of the scheme is depicted in Figure 4. The encoder and decoder are given by:

Xn =
[
βSn − Ĩn

]
mod Λ (11)

and

Ŝn =
[Yn − βJ̃n] mod Λ

β
+ J̃n (12)

respectively, wherẽIn and J̃n are the source and channel predictor outputs. If the source predictor

coefficients are taken to be the source AR coefficientsan and the channel predictor coefficients are taken

to be the ISI coefficientshn, then indeed the predictors are used to “cancel”In andJn, as demonstrated

in Figure 5:

J̃n = ân ∗ Sn = Jn + an ∗ (Ŝn − Sn)
∆
= Jn + an ∗ En

Ĩn = (hn − δn) ∗ Xn = In . (13)

In principle, the modulo-Λ block performs a multi-dimensional modulo-lattice operation. However at this

stage, for simplicity, we will look at a one-dimensional modulo operation:

x mod Λ
∆
= x − ∆ round

( x

∆

)
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Figure 4: The Analog Matching encoder and decoder at high SNR

where∆ > 0 is the lattice cell size, chosen to be small enough such that the channel power constraint

P is satisfied, andround(·) rounds a real number to the nearest integer.

To that end, Comparing these outputs with (9), we have that Combining (4), (11) and (5), the channel

output is:

Yn = [β(Qn + Jn) − Ĩn] mod Λ + In + Wn .

Substituting this in (12) and using the fact that

(a mod Λ + b) mod Λ = (a + b) mod Λ

we have that:

Ŝn =

[
β(Qn + Jn − J̃n) + In − Ĩn + Wn

]
mod Λ

β
+ J̃n

=

[
β(Qn − En ∗ an) + Wn

]
mod Λ

β
+ J̃n . (14)

We see that, up to noise error-dependent terms, the signal fed to the decoder modulo operation is a

scaled version of the source innovationsQn, as described above. Suppose that we choose this scaling

factorβ to be small enough such that the modulo operation has no effect (i.e. the decoder can reproduce

the grid point selected by the encoder), then the reconstruction error is:

En = Ŝn − Sn =
Wn

β
, (15)
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encoder, channel and decoder. Dashed lines show the channelISI, canceled by the channel predictor.

Dotted lines show the source memory component, subtracted and then added again using the source

predictor.

which is a scaled version of the current noise sample as desired. The resulting performance is:

D =
β2

0

β2
·
Var{Qn}

SNR
, (16)

whereβ2
0

∆
= P

Var{Qn}
. This is identical to the optimum (7), up to the ratio ofβ’s which is a fixed source-

and channel-independent loss (as opposed to the loss of a naive scheme, see (8)). We will show in the

sequel how even this loss can be eliminated by using a high-dimensional dithered modulo-lattice operation

in parallel over interleaved samples, yielding optimum performance.

We can “forget” that the predictor outputs̃Jn andIn are produced by the source and channel predictors,

and view them as side information (SI) available to the decoder and the encoder, respectively. In this

sense, the Analog Matching scheme translates the colored problem into a white SI problem. In fact, it

uses ideas of prediction as in precoding [24] and differential pulse code modulation (DPCM) [10], and

then treats this joint source/channel SI problem using modulo lattice operations, based upon our recent

work [12]. In the context of channel coding, the combinationof precoding and nested lattice transmission

is optimal for colored Gaussian channels [33, Section VII-B]. As for source coding, there has been much

interest in Wyner-Ziv (WZ) video coding, [29], exploiting the dependence between consecutive frames at

the decoder rather than at the encoder (see for example [20]). On the more theoretical side, it is shown

in [32] that a DPCM-like encoder using prediction to exploitthe source memory achieves the Gaussian-

quadratic rate-distortion function (RDF). Furthermore, ascheme where prediction is used in thedecoder

only relates to the DPCM scheme the same way that a precoder scheme(with channel prediction at

the encoder only) relates to an optimal feed-forward-equalizer / decision-feedback-equalizer (FFE-DFE)
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scheme [3]. Figure 6 demonstrates the place of the Analog Matching scheme, within information-theoretic

time-domain schemes.

III. PRELIMINARIES

In this section we bring preliminaries necessary for the rest of the paper. In Sections III-1 to III-

3 we present results connecting the Gaussian-quadratic RDFand the Gaussian channel capacity to

prediction, mostly following [32]. In sections III-4 and III-5 we discuss lattices and their application

to joint source/channel coding with side information, mostly following [12].

A. Spectral Decomposition and Prediction

The Paley-Wiener condition for a discrete-time spectrumS(ej2πf ) is [25]:
∣∣∣∣∣

∫ 1

2

− 1

2

log
(
S(ej2πf )

)
df

∣∣∣∣∣ < ∞ . (17)

This condition holds for example if the spectrumS(ej2πf ) is bounded away from zero. Whenever the

Paley-Wiener condition holds, the spectrum has a spectral decomposition:

S(ej2πf ) = B(z)B∗

(
1

z∗

)∣∣∣∣
z=j2πf

Pe

(
S
)

, (18)
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whereB(z) is a monic causal filter, and the entropy-power of the spectrum Pe (S) is defined by:

Pe(S)
∆
= Pe

(
S(ej2πf )

)
= exp

∫ 1

2

− 1

2

log
(
S(ej2πf )

)
df . (19)

The optimal predictorof a processXn having a spectrumS(ej2πf ) from its infinite past isB(z) − 1, a

filter with an impulse response satisfyingbn = 0 for all n ≤ 0, with the prediction mean squared error

(MSE) being the entropy power:

Pe(S) = Var{Xn|X
n−1
−∞ } , (20)

see [25]. The prediction error process can serve as a white innovations process for AR representation of

the process. In terms of (4), we have thatQn is the prediction error of the processSn from its infinite

past, thus

Var{Qn} = Pe(SS) .

We define theprediction gainof a spectrumS(ej2πf ) as:

Γ(S)
∆
= Γ

(
S(ej2πf )

)
∆
=

∫ 1

2

− 1

2

S(ej2πf )df

Pe (S)
=

Var{Xn}

Var{Xn|X
n−1
−∞ }

≥ 1 , (21)

where the gain equals one if and only if the spectrum is white,i.e. fixed over all frequencies|f | ≤ 1
2 .

A case of special interest, is where the process is band-limited such thatS(ej2πf ) = 0∀|f | > B
2 where

B < 1. In that case, (17) does not hold and the prediction gain is infinite. We re-define, then, the

prediction gain of a process band-limited toB as the gain of the process downsampled by1
B , i.e.,

Γ(S) =

∫ B

2

−B

2

S(ej2πf )df

exp
∫ B

2

−B

2

log
(
S(ej2πf )

)
df

. (22)

We will use in the sequel prediction from a noisy version of a process: Suppose thatYn = Xn + An,

with An white with powerθ. Then it can be shown that the estimation error is a white process with

variance (see e.g. [32]):

Var{Xn|Y
n−1
−∞ } = Pe(S + θ) − θ . (23)

Note that for anyθ > 0, the spectrumS(ej2πf ) + θ obeys (17), so that the conditional variance is finite

even if Xn is band-limited; In the caseθ = 0, (23) collapses to (20).
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B. Water-Filling Solutions and the Shannon Bounds

The rate-distortion function (RDF) for a Gaussian source with spectrumSS(ej2πf ) with an MSE

distortion measure is given by:

R(D) =
1

2

∫ 1

2

− 1

2

log
SS(ej2πf )

D(ej2πf )
df , (24)

where thedistortion spectrumD(ej2πf ) is given by the reverse water-filling solution:D(ej2πf ) =

min
(
θS, S(ej2πf )

)
with the water levelθS set by the distortion levelD:

D =

∫ 1/2

−1/2
D(ej2πf )df .

The Shannon lower bound(SLB) for the RDF of a source band-limited toBS is given by:

R(D) ≥
BS

2
log

SDR
ΓS

∆
= RSLB(D) , (25)

where the signal to distortion ratio is defined as:

SDR
∆
=

Var{Sn}

D
(26)

andΓS
∆
= Γ(SS) is the source prediction gain (22). This bound is tight for a Gaussian source whenever the

distortion levelD is low enough such thatD < BS min|f |≤BS
S(ej2πf ), and consequentlyD(ej2πf ) =

θS = D
BS

for all |f | < BS .

For stating the channel capacity, it is convenient to abandon the ISI channel model (5) in favor of an

additive (colored) noise equivalent channel (see Figure 7), given by:

Yn = Xn ∗ gn + Zn, (27)

wheregn is the impulse response of an ideal low pass filter of bandwidth BC and the noiseZn has

spectrumSZ(ej2πf ), bandlimited toBC , and total power

Ñ =

∫ BC

−BC

SZ(ej2πf )df .
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With respect to this model we define the equivalent signal to noise ratio:

S̃NR
∆
=

P

Ñ
. (28)

Note that (5) is equivalent to (27) with noise spectrum N
|H(ej2πf )|2 for |f | ≤ BC . Since we assumed the

ISI filter hn of (5) to be monic, causal and minimum-phase, it follows thatthe colored noiseZn can be

seen as an AR process with innovations processWn and prediction filterhn
2. Consequently, if we define

the channel prediction gainΓC = Γ(SZ), we have:

ΓC =
Ñ

N
=

SNR

S̃NR
.

In terms of this channel model, the capacity is given by:

C =

∫ 1

2

− 1

2

log

(
1 +

P (ej2πf )

SZ(ej2πf )

)
df , (29)

where thechannel input spectrumP (ej2πf ) is given by the water-filling solution:P (ej2πf ) = max
(
θC −

SZ(ej2πf ), 0
)

with the water levelθC set by the power constraintP :

P =

∫ 1/2

−1/2
P (ej2πf )df .

The Shannon upper bound(SUB) for the channel capacity is given by:

C ≤
BC

2
log
[
ΓC ·

(
1 + S̃NR

)]
∆
= CSUB . (30)

The bound is tight for a Gaussian channel whenever the equivalent SNR is high enough such that

P ≥ BC max|f |≤BC
SZ(ej2πf ) − Ñ and consequentlySZ(ej2πf ) + P (ej2πf ) = θC = P+Ñ

BC
.

Combining (25) with (30), we have an the following asymptotically tight upper bound on the Shannon

optimum performance (2).

Proposition 1: Let SDRopt be the OPTA performance

SDRopt ∆
=

Var{Sn}

R−1(C(S̃NR))
, (31)

and let thebandwidth ratiobe

ρ
∆
=

BC

BS
. (32)

Then:

SDRopt ≤ ΓSΓC(1 + S̃NR)ρ , (33)

2In the bandlimited caseBC < 1, this refers to a downsampled version of the signals and of the filter.
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Figure 8: Realizations of the RDF and capacity

with equality if and only if the SLB and SUB both hold with equality3. Furthermore if the noise spectrum

is held fixed while the power constraintP is taken to infinity:

limgSNR→∞

SDRopt

S̃NR
ρ = ΓSΓC . (34)

C. Predictive Presentation of the Gaussian RDF and Capacity

Not only the SLB and SUB in (25) and (30) can be written in predictive forms, but also the rate-

distortion function and channel capacity, in the Gaussian case. These predictive forms are given in terms

of the realizations depicted in Figure 8.

For source coding, letF1(e
j2πf ) be some filter with amplitude response satisfying

|F1(e
j2πf )|2 = 1 −

D(ej2πf )

SS(ej2πf )
, (35)

whereD(ej2πf ) is the distortion spectrum materializing the water-fillingsolution (24). We callF1(e
j2πf )

andF2(e
j2πf ) = F ∗

1 (ej2πf ) the pre- and post-filters for the sourceS [31].

Proposition 2: The pre/post filtered AWGN depicted in Figure 8a satisfies:

R(D) =
1

2
log

(
1 +

Var{Un|V
n−1
−∞ }

Var{Zn}

)
,

3The SLB and SUB never strictly hold ifSS(ej2πf ) is not bounded away from zero, orSZ(ej2πf ) is not everywhere finite.

However, they do hold asymptotically if these spectra satisfy the Paley-Wiener condition.
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whereVar{Zn} = θS.

This Proposition is a direct consequence of (23). It is due to[32], where this form is used to establish

the optimality of a DPCM-like scheme, where the prediction error of Un from the past samples ofUn is

being quantized and the quantizer is equivalent to an AWGN. Note that in the limit of low distortion the

filters vanish, prediction fromUn is equivalent to prediction fromVn, and we go back to (25). Defining

the source Wiener coefficient

αS = 1 − exp (2R(D)) , (36)

the Proposition implies that

Var{Un|V
n−1
−∞ } =

αS

1 − αS
θS . (37)

For channel coding, letG1(e
j2πf ) be some filter with amplitude response satisfying

|G1(e
j2πf )|2 =

P (ej2πf )

θC
, (38)

whereP (ej2πf ) and θC are the channel input spectrum and water level materializing the water-filling

solution (29).F1(e
j2πf ) is usually referred to as the channel shaping filter, but motivated by the the

similarity with the solution to the source problem we call ita channel pre-filter. At the channel output

we placeG2(e
j2πf ) = G∗

1(e
j2πf ), known as a matched filter, which we call a channel post-filter.

Proposition 3: In the pre/post filtered colored-noise channel depicted in Figure 8b, let the inputX̃n

be white and definẽZn = Ỹn − X̃n. Then the channel satisfies:

C =
1

2
log

(
Var{X̃n}

Var{Z̃n|Z̃
n−1
−∞ }

)

whereVar{X̃n} = θC .

This Proposition is again due to [32], following the analysis in [6]. It is used to establish the optimality

of a scheme based upon noise prediction, where the decoder uses past decisions in order to evaluate the

linear filtering error, and then subtracts the prediction ofthis error in order to achieve capacity. It can

also be shown to be equivalent to the better known MMSE FFE-DFE solution [3]. Note that in the limit

of low noise the filters vanish, prediction from̃Zn is equivalent to prediction fromZn, and we go back

to (30). defining the channel Wiener coefficient

αC = 1 − exp (2C) , (39)
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The Proposition implies that

Var{Z̃n|Z̃
n−1
−∞ } =

1 − αC

αC
θC . (40)

The predictive forms described above are highly attractiveas the basis for coding schemes, since the

filters and predictors take care of the source or channel memory, allowing to use the design of generic

optimal codebooks forwhitesources and channels, regardless of the actual spectra, without compromising

optimality. See e.g. [9], [32].

D. Good Lattices for Quantization and Channel Coding

Let Λ be aK-dimensional lattice, defined by the generator matrixG ∈ R
K×K . The lattice includes

all points {l = G · i : i ∈ Z
K} whereZ = {0,±1,±2, . . .}. The nearest neighbor quantizer associated

with Λ is defined by

Q(x) = arg min
l∈Λ

‖x− l‖ .

Let the basic Voronoi cell ofΛ be

V0 = {x : Q(x) = 0} ,

while the second moment of a lattice per dimension is given bythe variance of a uniform distribution

over the basic Voronoi cell:

σ2(Λ) =
1

K
·

∫
V0

‖x‖2dx∫
V0

dx
. (41)

The modulo-lattice operation is defined by:

x mod Λ = x− Q(x) .

We say thatcorrect decodingof a vectorx by a latticeΛ occurs, whenever

x mod Λ = x , (42)

For a dither vectord which is independent ofx and uniformly distributed over the basic Voronoi cell

V0, [x + d] mod Λ is uniformly distributed overV0 as well, and independent ofx [30].

We will assume the use of lattices which are simultaneously good for source coding (MSE quantization)

and for AWGN channel coding [5]. Roughly speaking, a sequence of K-dimensional lattices isgood for

MSE quantizationif the second moment of these lattices tends to this of a ball of the same volume,

as K grows. A sequence of lattices isgood for AWGN channel codingif the probability of correct

decoding (42) of a Gaussian i.i.d. vector with element variance smaller than the variance of a ball having

the same volume as the lattice basic cell, approaches zero for large K. There exists a sequence of
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Figure 9: The Wyner-Ziv / Dirty Paper Coding Problem

lattices satisfying both properties simultaneously, thusfor these lattices, correct decoding holds with high

probability for Gaussian i.i.d. vectors with element variance smaller thanσ2(Λ), for large enoughK.

This property also holds when the Gaussian vector is replaced by a linear combination of Gaussian and

“self noise” (uniformly distributed over the lattice basiccell) components, see [12, Proposition 1] for an

exact statement. We also assume that these lattices have theproperty that the second moment along each

coordinate of a uniform distribution over the basic latticecell is identical, and it is equal to the lattice

second momentσ2(Λ). This is proven for lattices which are good for source codingin [30].

E. Coding for the Joint WZ/DPC Problem using Modulo-LatticeModulation

The lattices discussed above can be used for achieving the optimum performance in the joint source/channel

Gaussian Wyner-Ziv/Dirty Paper coding4, depicted in Figure 9. In that problem, the source is the sum of

an unknown i.i.d. Gaussian componentQn and an arbitrary componentJn known at the decoder, while

the channel noise is the sum of an unknown i.i.d. Gaussian componentZn and an arbitrary component

In known at the encoder. In [12] the MLM scheme of Figure 10a is shown to be optimal for suitableα

andβ. This is done showing first equivalence to the modulo-additive channel of Figure 10b, and then,

for good lattices, asymptotic equivalence with high probability to the real-additive channel of Figure

10c. The output-power constraint in that last channel reflects the element variance condition in order

to ensure correct decoding (42) of the vectorβQn + Zeqn with high probability. When this holds, the

dithered modulo-lattice operation at the encoder and the decoder perfectly cancel each other. This way,

the MLM scheme asymptotically translates the SI problem to the simple problem of transmitting the

unknown source componentQn over an AWGN, where the interferenceIn is not present.

4An alternative form of this scheme may be obtained by replacing the lattice with a random code and using mutual information

considerations, see [28].
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IV. OPTIMALITY OF THE AM SCHEME

In this section we provide analysis of the performance of theAnalog Matching scheme, depicted in

Figure 11. The high-SNR variant of Section II (see Figure 4),is a special case of the general scheme

where the pre/post filters are taken to be scalar factors andΛ is taken to be a scalar lattice. In terms of

the quantities defined in Section III, the performance of this variant in the high-SNR regime (16) can be

re-written as:

SDR∼=
β2

β2
0

ΓSΓCS̃NR .

Comparing this to Proposition 1 we see that the scheme is indeed asymptotically optimal up to the factor

of β’s. As promised in Section II, we show how this factor may be eliminated, and moreover, we show

that by choosing the filters of the Analog Matching scheme to be optimal in the MMSE sense, it can

approach the optimal performance (31) for any SNR.

For proving the optimality of the scheme, we need high lattice dimension. We assume for now that we
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haveK independent identical source-channel pairs in parallel5, which allows aK-dimensional dithered

modulo-lattice operation across these pairs. Other operations are done independently in parallel. To

simplify notation we will omit the indexk of the source/channel pair (k = 1, 2, . . . ,K), and use scalar

notation meaningany of the K pairs; We will denote by bold by bold lettersK-dimensional vectors,

for the modulo-lattice operation. Subscripts denote time instants. Under this notation, the AM encoder

is given by:

Un = f1n ∗ Sn

X̃n = [βUn − In + Dn] mod Λ

In =
∞∑

m=1

pCmX̃n−m

Xn = g1n ∗ X̃n , (43)

5We will discuss in the sequel how this leads to optimality fora single source and a single channel.
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while the decoder is given by:

Ỹn = g2n ∗ Yn

Y ′
n = Ỹn +

∞∑

m=1

pCmỸn−m

Vn =
1

β

[
Ỹn − βJn − Dn

]
mod Λ + Jn

Jn =

∞∑

m=1

pSkVn−k

Ŝn = f2n ∗ Vn , (44)

where∗ denotes convolution, and for each filterhn denotes the impulse response of the corresponding

frequency responseH(ej2πf ). Each of theK parallel channels is given by the equivalent colored noise

model6 (5).

The optimality proof shows that at each time instant the scheme is equivalent to a joint source/channel

side-information (SI) scheme, and then applies the Modulo-Lattice Modulation (MLM) analysis of such

schemes presented in Section III-5. The key to the proof is showing that the correct decoding event (42)

holds, thus the modulo-lattice operation at the decoder exactly cancels the corresponding operation at the

encoder. This is an event which involves all the source/channel pairs, and its analysis requires verifying

the signal distribution, see Section III-4. Once this holds, the rest of the analysis isscalar, i.e. we can

treat each of theK source/channel pairs separately, andquadratic, i.e. we can ignore the distribution of

signals and deal with variances only. In this scalar quadratic exposition, we find that with a choice of

MMSE filters, the scheme materializes the capacity realization of Proposition 3, nested inside the RDF

realization of Proposition 2; The channel error, scaled down by factorβ, serves as the AWGN in the

RDF realization. The calculations in the lemmas below, showing step by step equivalence to the channels

in Figure 12, result in approaching the optimum performance(31). Throughout the proof we useθC

according to (29), andθS according to (24) at a distortion level corresponding with the optimum (31).

We also useα = αS = αC (36),(39).

We start by showing that the Analog Matching scheme is equivalent at each time instant to the WZ/DPC

scheme of Section III-5. This equivalence is feasible, since In andJn are constructed in the encoder and

6Note that when moving from the high-SNR scheme to the generaloptimal scheme, we find it convenient to replace the ISI

channel (27) by the colored noise channel. For equal source and channel BW, these are interchangeable as discussed in Section

III-2. Consequently we also look at the channel predictorPC(ej2πf ) as a part of a noise-predictor, rather than a Tomlinson

precoder, see [6], [32].
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the decoder usingpast values ofX̃n andVn, respectively, thus at any time instant they can be seen as

side information. Specifically, the equivalent scheme is shown in Figure 12a, which is identical to the

scheme of Figure 10a, with the substitutions summerized in the following table:

AM Un Vn Q̃n Jn X̃n Y′

n Z′

n In Dn θC

WZ/DPC S 1
α
Ŝ Q 1

α
J X αY Z αI D P

It remains to show that an optimum choice of filters indeed results in a channel where the unknown noise

component is white, and evaluate its variance.

Lemma 1: (Equivalent side-information scheme) If we chooseG1(e
j2πf ) andG2(e

j2πf ) according

to (38) and we choosePC(ej2πf ) as the minus of the optimal predictor of the spectrum

SZ̃(ej2πf ) =
(
1 − |G1(e

j2πf )|2
)2

θC + |G1(e
j2πf )|2SZ(ej2πf ) ,

then

Z ′
n

∆
=

Y ′
n − In

α
− X̃n
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is a white process, independent of allUn, with variance

Var{Z ′
n} =

1 − α

α
θC .

Proof: By the properties of the modulo-lattice operation,X̃n is a white process of varianceσ2(Λ) =

θC . Now the channel fromX̃n to Ỹn is identical to the channel in Proposition 3, thus we have that:

Y ′
n = (X̃n + Z̃n) ∗ (δn − pCn) = X̃n + In + Z ′′

n ,

whereZ ′′
n = Z̃n∗(δn+pCn) andZ̃n has spectrumSZ̃(ej2πf ). Since−PC(ej2πf ) is the optimum predictor

of the process̃Zn, we have thatZ ′′
n is a white process, with variance1−α

α θC according to (40). Now since

Ỹn = Y ′
n − In is an optimum estimator for̃Xn given the channel output, we have by the orthogonality

principle that the estimation error is uncorrelated with the processY ′
n, resulting in an additive backward

channel (see e.g. [32]):

X̃n = Y ′
n − In − Z ′′

n .

Reverting back to a forward channel, we have

Y ′
n = α(X̃n + Z ′

n) + In ,

whereZ ′
n is white with the same variance asZ ′′

n

Using this result, the equivalence to the channel of Figure 12b is immediate, as follows.

Lemma 2: (Equivalent modulo-lattice channel) Under the same conditions of Lemma 1, the first

modulo-Λ operation can be dropped, resulting in an equivalent channel:

Vn =
1

β

[
β(Un − Jn) + Zeqn

]
mod Λ + Jn ,

whereZeqn is white additive noise with variance(1 − α)θC .

Proof: We apply Lemma 1 and identify the Analog Matching scheme withthe the WZ/DPC scheme

as described above. Seeing thatα is indeed the Wiener coefficient of the channel from̃Xn to Y ′
n, we

can use [12, Lemma 1] to arrive at the desired channel withVar{Zeqn = αVar{Z ′
n} = (1 − α)θC

Assuming that correct decoding holds, the modulo-lattice operation can be dropped, and we have the

scalar additive channel of Figure 12c:

Vn = Un +
Zeqn

β
. (45)
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We now show, that if correct decoding held at all past times, then the variance of the signal at the input

of the decoder modulo-lattice operation can be bounded fromabove.

Lemma 3:Under the conditions of Lemma 2, and if in addition (45) held for all past instancesn −

1, n − 2, . . ., then the variance of

Tn
∆
= β(Un − Jn) + Zeqn

satisfies:

Var{Tn} = (1 − δ)θC

whereδ = δ
(
SU(ej2πf ), θC , β

)
> 0, provided that

β2 < β2
0

∆
= (1 − α)

ΘC

ΘS
, (46)

F1(e
j2πf ) is chosen according to (35) andPS(ej2πf ) is the optimum predictor of the spectrum

SV (ej2πf ) = β2SU (ej2πf ) + (1 − α)θC .

Proof: We note thatPS(ej2πf ) is the optimum predictor of the processTn. Under our assumption,

Vn = Tn for all past instances, thus it is also the optimum predictorof Vn. Consequently,Un − Jn is

white, with variance

Var{Un − Jn} = Var{Un|Vn−1, Vn−2, . . .}

(a)
= Pe

(
SU +

Var{Zeqn}

β2

)
−

Var{Zeqn}

β2

= Pe

(
SU +

β2
0

β2
θS

)
−

β2
0

β2
θS

<
β2

0

β2

[
Pe(SU + θS) − θS

]

(b)
=

β2
0

β2
·

α

1 − α
θS

=
αθC

β2
,

where(a) holds by (23) and(b) holds by applying the same in the opposite direction, combined with

(37). By the whiteness ofZeqn and its independence of allUn, we have thatUn − Jn is independent of

Zeqn, thus the variance ofTn is given by

Var{Tn} = β2 Var{Un − Jn} + Var{Zeqn} < θC . (47)
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The margin fromθC depends on the margin in the inequality in the chain above, which depends only on

SU (ej2πf ), θC andβ, and is strictly positive for allβ < β0 as required

We now note, that if we could chooseβ = β0, and if (45) holds at all times, then by settingG2(e
j2πf ) =

G∗
1(e

j2πf ) we have the equivalent channel of Proposition 2, thus we achieve the optimum (31). The

following shows in what sense we can approach this.

Lemma 4: (Steady-state behavior of the Analog Matching scheme) Let pe(K) be the probability

that (45) does not hold in the present instance, in an Analog Matching scheme using a lattice of dimension

K. Then

lim
K→∞

pe(K) = 0 ,

under the conditions of Lemma 3, provided thatΛ = ΛK is taken from a sequence of lattices simulta-

neously good for source and channel coding in the sense of [12, Proposition 1].

Proof: The channel of Lemma 2 is equivalent to the (45) if correct decoding (42) holds forTn.

By [12, Proposition 1], the probability approaches zero forlarge K if the input of the modulo-lattice

operation is a combination of Gaussian and uniform (over thebasic lattice cell) components7, and if

the power ofTn is less thanσ2(Λ) = θC . The first condition holds sinceTn is a combination ofZeqn,

Un and past values ofVn, and these, by our assumptions, are composed of the GaussianprocessesUn

andZn and of the process̃Xn uniformly distributed over the basic lattice cell, all passed through linear

filters. The second condition holds by Lemma 3.pe(K) does not depend onn, since the marginδ in

Lemma 3 depends only on the spectra which are fixed.

Now we translate the conditional result above, to an optimality claim for blocks of any finite length.

We assume steady-state behavior, in the sense that the filters’ state is correct.

Definition 1: We say that the Analog Matching scheme iscorrectly initialized at time instancen, if

all signals at all timesn − 1, n − 2, . . . take values according to the correct decoding assumption

Theorem 1:(Asymptotic optimality of the Analog Matching scheme) For anyǫ > 0, the Analog

Matching scheme can achieve

SDR≥ SDRopt − ǫ ,

7Actually, [12] only discusses the combination of a Gaussianvector with a single uniform component, but the extension to

multiple uniform components is straightforward.

23



where SDRopt was defined in (31), in transmitting source blocks of sufficient lengthN , provided that

the lattice dimensionK is high enough and that at the start of transmission the scheme is correctly

initialized.

Proof: We assume that the scheme is correctly initialized at timen = 1. Let N ′ = N + M be the

number of channel uses made. Now as long as correct decoding holds, we have thatVn = Un +
Zeqn

β ,

where the additive noise term has variance

(1 − α)θC

β2
=

β2
0

β2
θS

∆
= θS + ǫ1(β) .

By Proposition 2, if correct decoding always holds andǫ1 = 0, SDR= SDRopt exactly. Now we decide

upon some finiteN ′, and setVn = 0 for all n > N ′. This adds some distortionǫ2(N
′), but for large

enough excess number of usesM the effect vanishes. If at any instancen correct decoding does not

hold anymore,Vn starts taking arbitrary values, bounded by the maximum magnitude of V0 divided by

β. We bound the performance then, by assuming that if that happens, then throughout the whole block

Vn deviates by somevmax. Finally we can bound the probability of such an event: Defining pe(K,N ′)

as the probability that correct decoding fails inany of n = 1, 2, . . . , N ′ we have by Lemma 4 and by

the union bound that

pe(K,N ′) ≤ pe(K) .

Taking all these effects into account, we have that:

D ≤ Dopt + ǫ1(β) + ǫ2(N
′) + v2

max · N ′pe(K) .

By taking β close enough toβ0 we can makeǫ1 as small as desired. By taking large enoughM we

can makeǫ2 as small as desired. Finally, by choosingK large enough we can make the last term small

enough for any finite choice ofβ andN ′. We have madeM extra channel uses, but for large enoughN

the optimum performance forN ′ uses approaches this ofN uses.

From the idealized scheme to implementation:

We now discuss how the scheme can be implemented with finite filters, how the correct initialization

assumption may be dropped, and how the scheme may be used for asingle source/channel pair.

1. Filter length. If we constrain ourself to filters of finite length, we may not be able to implement the

optimum filters. However, it is possible to show, that both the effect on the correct decoding condition

and on the final distortion can be made as small as desired, since the additional signal errors due to the

filters truncation can be all made to have arbitrarily variance by taking long enough filters. In the sequel

we assume the filters all have lengthL.
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2. Initialization. After taking finite-length filters, we note that correct initialization now only involves a

finite history of the scheme. Consequently, we can create this state by adding a finite number of channel

uses. Now we may create a valid state for the channel predictor PC(ej2πf ) by transmittingL values

X̃n = 0, see [9]. For the source predictor the situation is more involved, since in absence of past values

of Vn, the decoder cannot reduce the source power to the innovations power, and correct decoding may

not hold. This can be solved by de-activating the predictor for the firstL values ofUn, and transmitting

them with lowerβ such that (47) holds without subtractingJn. Now in order to achieve the desired

estimation error for these first values ofVn, one simply repeats the same values ofUn a number of times

according to the (finite) ratio ofβ’s. If the block lengthN is long enough relative toL, the number of

excess channel uses becomes insignificant.

3. Single source/channel pair. A pair of interleaver/de-interleaver can serve to emulateK parallel

sources, as done in [9] for an FFE-DFE receiver, and extendedto lattice operations in [33].

General Remarks:

1. Composition of the noise. We bring here a short account of how noises at different points at the

scheme are composed. For simplicity, we substitute hereδ = 0 in the margin of Lemma 3. The channel

equivalent noise,

Zeqn = αZ ′
n − (1 − α)X̃n

is an MMSE linear combination of an “unbiased slicer error” termZ ′
n and a “self-noise” termX̃n. Both

terms are white, andZ ′
n itself is composed of future channel inputs (“residual ISI”) and channel noise.

The ISI and the noise are weighted at each frequency according to the value of the channel post-filter,

which is in turn set by the channel SNR at that frequency. Namely, if we denote the spectrum of the

channel noise and self noise components asSnoise(e
j2πf ) andSISI(e

j2πf ), we have that:

Snoise(e
j2πf )

SISI(ej2πf )
=

|G2(e
j2πf )|2SZ(ej2πf )

|1 − G1(ej2πf )G2(ej2πf )|
2
θC

=
P (ej2πf )SZ(ej2πf )

(θC − P (ej2πf ))
2 =

P (ej2πf )

SZ(ej2πf )
,

where the last equality holds if the SUB is satisfied with equality. The total reconstruction error is then a

pre/post filtered version of the channel equivalent noise, thus again it is composed by a channel equivalent

noise component and a bias component. The ratio between these components can be computed, to find

that at each frequency the higher source spectrum is, the larger the part of the channel equivalent noise

is.

2. Composition of the signal at the decoder modulo-lattice output. We turn to consider the signal

Zeqn + βQn, whereQn
∆
= Un − Jn is the source prediction error or “innovations” process. This signal

should satisfy the output power constraint (47), thus substituting againδ = 0, it has a total powerθC .
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These two components are mutually independent, and both white. The innovations process occupies a

portion α of this power. This is reflected in the zooming coefficient, since we have:

β2
0 = (1 − α)

θC

θS
= α

θC

Var{Qn}
.

Thusβ plays the role of amplifying the source (noisy) innovationsprocess to the lattice power, in order

to enhance the signal to distortion ratio, but theα < 1 factor is still needed for “leaving room for the

noise”. In high SNRα → 1 and this effect vanishes. See [12] for further discussion.

Examples: Bandwidth Expansion and Compression

At this point, we present the special cases ofbandwidth expansionand bandwidth compression, and

see how the analog matching scheme specializes to these cases. In these cases the source and the channel

are both white, but with different bandwidth (BW). The source and channel prediction gains are both

one, and the optimum condition (31) becomes:

SDRopt =
(
1 + S̃NR

)ρ
, (48)

where the bandwidth ratioρ was defined in (32).

For bandwidth expansion, we choose to work with a sampling rate corresponding with the channel

bandwidth, thus in our discrete-time model the channel is white, but the source is band-limited to a

frequency of 1
2ρ . As a result, the channel predictorPc(z) vanishes and the channel pre- and post-filters

become the scalar Wiener factorα. The source water-filling solution allocates all the distortion to the in-

band frequencies, thus we haveθS = ρD and the source pre- and post-filters become both ideal low-pass

filters of width 1
2ρ and height

√
1 −

1

SDRopt =

√
1 −

(
1 + S̃NR

)−ρ
. (49)

As the source is band-limited, the source predictor is non-trivial and depends on the distortion level. The

resulting prediction error ofUn has variance

Var{Un|V
n−1
−∞ } =

ρσ2
S(

1 + S̃NR
)ρ−1 ,

and the resulting distortion achieves the optimum (48).

For bandwidth compression, the sampling rate reflects the source bandwidth, thus the source is white

but the channel is band-limited to a frequency ofBC = ρ
2 . In this case the source predictor becomes

redundant, and the pre- and post-filters become a constant factor equal to (49). The channel pre- and post-

filters are ideal low-pass filter of widthρ2 and unit height. The channel predictor is the SNR-dependent
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DFE. Again this results in achieving the optimum distortion(48). It is interesting to note, that in this

case the outband part of the channel errorZ̃n is entirely ISI (a filtered version of the channel inputs),

while the inband part is composed of both channel noise and ISI, and tends to be all channel noise at

high SNR.

V. UNKNOWN SNR

So far we have assumed in our analysis that both the encoder and decoder know the source and channel

statistics. In many practical communications scenarios, however, the encoder does not know the channel,

or equivalently, it needs to send the same message to different users having different channels. Sometimes

it is assumed that the channel filterH0(e
j2πf ) is given, but the noise levelN is only known to satisfy

N ≤ N0 for some givenN0. For this special case, and specifically the broadcast bandwidth expansion

and compression problems, see [22], [15], [21], [19].

Throughout this section, we demonstrate that the key factorin asymptotic behavior for high SNR

is the bandwidth ratioρ (32). We start in Section V-1 by proving a basic lemma regarding achievable

performance when the encoder is not optimal for the actual channel. In the rest of the section we utilize

this result: In Section V-2 to show asymptotic optimality for unknown SNR in the caseρ = 1, then

in Section V-3 we show achievable performance for the special cases of (white) BW expansion and

compression, and finally in Section V-4 we discuss general spectra in the high-SNR limit.

A. Basic Lemma for Unknown SNR

We prove a result which is valid for the transmission of a colored source over a degraded colored

Gaussian broadcast channel: We assume that the channel is given by (5), whereBC is known but the noise

spectrumSZ(ej2πf ) is unknown, except that it is bounded from above by some spectrum SZ0(e
j2πf )

everywhere. We then use an Analog Matching encoder optimal for SZ0(e
j2πf ), as in Theorem 1, but

optimize the decoder for the actual noise spectrum. Correctdecoding underSZ0(e
j2πf ) ensures correct

decoding underSZ(ej2πf ), thus the problem reduces to alinear estimation problem, as will be evident

in the proof.

For this worst channelSZ0(e
j2πf ) and for optimal distortion (31), we find the water-filling solutions

(24),(29), resulting in the source and channel water levelsθS andθC respectively, and in asource-channel

passbandF0, which is the intersection of the inband frequencies of the source and channel water-filling
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solutions:

FS = {f : SS(ej2πf ) ≥ θS} ,

FC = {f : SZ0
(ej2πf ) ≤ θC} ,

F0 = FS ∩ FC . (50)

Under this notation we have the following.

Lemma 5:For any noise spectrumSZ0(e
j2πf ), exists a single encoder, such that for any equivalent

noise spectrum

SZ(ej2πf ) ≤ SZ0(e
j2πf ) ∀ f ∈ FC , (51)

a suitable decoder can arbitrarily approach:

D =

∫ 1

2

− 1

2

D(ej2πf )df ,

where the distortion spectrumD(ej2πf ) satisfies:

D(ej2πf ) =





SS(ej2πf )
1+Φ(ej2πf ) , if f ∈ F0

min
(
SS(ej2πf ), θS

)
, otherwise



 , (52)

with
Φ(ej2πf ) =

SZ0
(ej2πf )

SZ(ej2πf )

[
1 −

SZ0
(ej2πf ) − SZ(ej2πf )

ΘC

]
SS(ej2πf ) − θS

θS
.

Proof: We work with the optimum Analog Matching encoder for the noise spectrumSZ0(e
j2πf ). At

the decoder, we note that for any choice of the channel post-filter G2(e
j2πf ), we have that the equivalent

noiseZeqn is the noiseZ̃n
∆
= Ỹn − X̃n passed through the filter1 + PC(ej2πf ). Consequently, this noise

has spectrum:

Seq(e
j2πf ) = SZ̃(ej2πf )|1 + PC(ej2πf )|2 .

The filterG2(e
j2πf ) should, therefore, be the Wiener filter which minimizesSZ̃(ej2πf ) at each frequency.

This filter achieves a noise spectrum

SZ̃(ej2πf ) =
θC − SZ0(e

j2πf )

θC − SZ0(ej2πf ) + SZ(ej2πf )
SZ(ej2πf )

insideFC , andθC outside. Denoting the variance of the (white) equivalent noise in the caseSZ0(e
j2πf ) =

SZ(ej2πf ) as we have thatσ2
eq, we find that:

|1 + PC(ej2πf )|2 =
σ2

eqθC

(θC − SZ0(ej2πf ))SZ0(ej2πf )

28



insideFC , and
σ2

eq

θC
outside. We conclude that we have equivalent channel noise with spectrum

Seq(e
j2πf ) =

SZ(ej2πf )

SZ0(ej2πf )
·

θC

θC − SZ0(ej2πf ) + SZ(ej2πf )
σ2

eq =
SS(ej2πf ) − ΘS

Φ(ej2πf )θS
σ2

eq

insideFC , andσ2
eq outside. Now, since this spectrum is everywhere upper-bounded byσ2

eq, we need not

worry about correct decoding. We have now at the source post-filter input the source, corrupted by an

additive noiseZekn

β , with spectrum arbitrarily close to

Seq(e
j2πf )

β2
0

=
SS(ej2πf ) − ΘS

Φ(ej2πf )

insideFC , andΘS outside. Now again we face optimal linear filtering, and we replace the source post-

filter F2(e
j2πf ) by the Wiener filter for the source, to arrive at the desired result

Remarks:

1. Outside the source-channel passbandF0, there is no gain when the noise spectrum density is lower

than expected. InsideF0, the distortion spectrum is strictly monotonously decreasing in SZ(ej2πf ), but

the dependence is never stronger than inversely proportional. It follows, that the overall SDR is at most

linear with the SNR. This is to be expected, since all the gaincomes from linear estimation.

2. In the unmatched case modulation may change performance.That is, swapping source frequency

bands before the analog matching encoder will changeF0 andΦ(ej2πf ), resulting in different performance

asSZ(ej2πf ) varies. It can be shown that the best robustness is achieved whenSS(ej2πf ) is monotonously

decreasing inSZ(ej2πf ).

3. The degraded channel condition (51) is not necessary. A tighter condition for correct decoding to

hold can be stated in terms ofSS(ej2πf ), SZ0(e
j2πf ) andSZ(ej2πf ), though it is cumbersome.

B. Asymptotic Optimality for equal BW

We prove asymptotic optimality in the sense that, if in the channel (27), the ISI filter is known but

the SNR is only known to be above some SNR0, then a single encoder can simultaneously approach

optimality for any such SNR, in the limit that the minimum SNRis high. This follows directly from

Lemma 5, noting that this is equivalent to the channel (5) with SZ(ej2πf ) =
gSNR0gSNR

· SZ0(e
j2πf ).

Theorem 2:(Robustness at high SNR): Assume we are allowed one channel use per source sample,

and let the source and channel be given by (4) and (5), respectively. Then, exists an SNR-independent

encoder that for anyδ > 0 achieves distortion

SDR(SNR) ≥ (1 − δ)SDRopt(SNR)
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for sufficiently large (but finite) SNR, i.e., for all SNR≥ SNR0(δ).

Proof: We apply Lemma 5. If the source spectrum is bounded away from zero and theSZ0(e
j2πf )

is bounded from above, we can always takẽSNR0 high enough such that the source-channel passband

F0 includes all frequencies, and then we have for all̃SNR≥ S̃NR0:

D(ej2πf ) ≤
1

1 − ǫ(S̃NR0)
·

S̃NR0

S̃NR
ΘS

resulting in

SDR≥ (1 − ǫ(S̃NR0))
S̃NR

S̃NR0

SDR0 = (1 − ǫ(S̃NR0))
S̃NR

S̃NR0

ΓSΓC(1 + S̃NR0)

where the second transition is due to Proposition 1. Again due to the same proposition, this is nearly

optimal. If the spectra are not bounded, then we artificiallyset the pre-filters to be1 outside their respective

bands, and in the case of the channel pre-filter we slightly attenuate other frequencies to comply with the

power constraint. While this has the effect of worsening theperformance atS̃NR0, it allows for linear

improvement of the SDR with̃SNR for all frequencies. The effect of worsening at̃SNR0 can be made

as small as desired, by taking large enough̃SNR0.

Alternatively, we could prove this result using a the zero-forcing scheme of Section II with high lattice

dimension. Actually, using such a scheme, an even stronger result can be proven: Not only can the

encoder be SNR-independent, but so can the decoder.

C. BW Expansion and Compression

We go back now to the cases of bandwidth expansion and compression discussed at the end of Section

IV. In these cases, we can no longer have a single Analog Matching encoder which is universal for

different SNRs, even in the high SNR limit. For bandwidth expansion (ρ > 1), the reason is that the

source is perfectly predictable, thus at the limit of high SNR we have that

Var{Un|Vn−1, Vn−2, . . .} → Var{Un|Un−1, Un−2, . . .} = 0 ,

thus the optimumβ goes to infinity. Anyβ value chosen to ensure correct decoding at some finite SNR,

will impose unbounded loss as the SNR further grows. For bandwidth compression, the reason is that

using any channel predictor suitable for some finite SNR, we have in the equivalent noisẽZn some

component which depends on the channel input. As the SNR further grows, this component does not

decrease, inflicting again unbounded loss.

By straightforward substitution in Lemma 5, we arrive at thefollowing.
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Figure 13: Unknown SNR Performance: BW Expansion and Compression

Corollary 1: Assume white source and AWGN channel where we are allowedρ channel uses per

source sample. Then using an optimum Analog Matching schemewhich assumes signal to noise ratio

SNR0 and a suitable decoder, it is possible to approach:

1

SDR
=

1 − min(1, ρ)(
1 + S̃NR0

)ρ +
min(1, ρ)

1 + Φρ(S̃NR, S̃NR0)
, (53)

where
Φρ(S̃NR, S̃NR0)

∆
=

1 + S̃NR

1 + S̃NR0

[(
1 + S̃NR0

)ρ
− 1
]

(54)

and ρ̃ =, for any S̃NR≥ S̃NR0.

Note that the choice of filters in the SNR-dependent decoder remains simple in this case: Forρ > 1

the channel post-filter is flat while the source post-filter isan ideal low-pass filter, while forρ < 1 it is

vice versa. The only parameters which change with SNR, are the scalar filter gains.

Comparison of performance: In comparison, the performance reported by different methods in [15],

[21] for these cases has, in terms of (53):

Φρ(S̃NR, S̃NR0) = (1 + S̃NR) · (1 + S̃NR0)
ρ−1 − 1 (55)

while [21] also proves an outer bound for BW expansion (ρ > 1) on any scheme which is optimal at

some SNR:

Φρ(S̃NR, S̃NR0) =
S̃NR

S̃NR0

[
(1 + S̃NR0)

ρ − 1
]

. (56)
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In both BW expansion and compression, the Analog Matching scheme does not perform as good as

the previously reported schemes, although the difference vanishes for high SNR. The basic drawback of

analog matching compared to methods developed specificallyfor these special cases seems to be, that

these methods apply different “zooming” to different source or channel frequency bands, analog matching

uses the same “zooming factor”β for all bands. Enhancements to the scheme, such as the combination

of analog matching with pure analog transmission, may improve these results. Figure V-3 demonstrates

these results, for systems which are optimal at different SNR levels.

At high SNR, the performance of all these methods and of the outer bound converge to:

1

SDR
=

1 − min(ρ, 1)

SNRρ
0

+
min(ρ, 1)

SNR· SNRρ−1
0

. (57)

Thus the Analog Matching scheme, as well as the schemes of [15], [21], are all asymptotically optimal

for high SNR among the schemes which achieve SDRopt at some SNR.

D. Asymptotic Behavior with BW Change

Finally we turn back to the general case of non-white spectrawith any ρ, and examine it in the high-

SNR regime. As in Section V-2, we assume that the channel ISI filter is known, corresponding with an

equivalent noise spectrumSZ(ej2πf ) known up to a scalar factor.

In the high-SNR limit, Lemma 5 implies:

1

SDR
=

[
1 − min(ρ, 1)

SNRρ
0

+
min(ρ, 1)

SNR· SNRρ−1
0

]
ΓCΓS . (58)

Comparing with (57), we see that the color of the source and ofthe noise determines a constant factor

by which the SDR is multiplied, but the dependence upon the SNR remains similar to the white BW

expansion/compression case. The following definition formalizes this behavior (see [13]).

Definition 2: The distortion slopeof a continuum of SNR-dependent schemes is :

λ
∆
= limgSNR→∞

log SDR

log S̃NR
(59)

where SDR is the signal to distortion attained at signal to noise ratioS̃NR, where the limit is taken for

a fixed channel filter with noise variance approaching0

We use the notationλ = λ(ρ) in order to emphasize the dependance of the asymptotic slopeupon the

bandwidth expansion factor. The following follows directly from Proposition 1.
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Proposition 4: For any source and channel spectra with BW ratioρ, and for a continuum of schemes

achieving the OPTA performance (31),

λ(ρ) = ρ

As for an analog matching scheme which is optimal for a singleSNR, (58) implies:

Corollary 2: For any source and channel spectra and for a single analog-matching encoder,

λ(ρ) =





1, if ρ ≥ 1

0, otherwise





is achievable.

This asymptotic slope agrees with the outer bound of [21] forthe (white) bandwidth expansion problem.

For the bandwidth compression problem, no outer bound is known, but we are not aware of any proposed

scheme with a non-zero asymptotic slope. We believe this to be true for all spectra:

Conjucture 1: For any source and channel spectra of BW ratioρ, no single encoder which satisfies

(31) at someS̃NR0 can have a better slope than that of Corollary 2.

By this conjecture, the analog matching encoder is asymptotically optimal among all encoders ideally

matched to one SNR. It should be noted, that schemes which do not satisfy optimality at one SNRcan

in fact approach the ideal slopeλ(ρ) = ρ, see e.g. approaches for integerρ such as bit interleaving [23].

VI. CONCLUSION: IMPLEMENTATION AND APPLICATIONS

We presented the Analog Matching scheme, which optimally transmits a Gaussian source of any

spectrum over a Gaussian channel of any spectrum, without resorting to any data-bearing code. We

showed the advantage of such a scheme over a separation-based solution, in the sense of robustness for

unknown channel SNR.

The analysis we provided was asymptotic, in the sense that a high-dimensional lattice is needed.

However, unlike digital transmission where reduction of the code block length has a severe impact on

performance, the modulo-lattice framework allows in practice reduction to low-dimensional, evenscalar

lattices, with bounded loss.

One approach for scalar implementation of the Analog Matching scheme, usescompanding[14]. In

this approach, the scalar zooming factorβ is replaced by a non-linear function which compresses the
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unbounded Gaussian source into a finite range, an operation which is reverted at the decoder. There is

a problem here, since the entity which needs to be compressedis actually the innovations process̃Qn,

unknown at the encoder since it depends on the channel noise.This can be solved by compressingQn,

the innovations of the source itself; The effect of this “companding encoder-decoder mismatch” vanishes

in the high-SNR limit. An altogether different approach, isto avoid instantaneous decoding of the lattice;

Instead, the decoder may at each instance calculate the source prediction using several hypothesis in

parallel. The ambiguity will be solved in the future, possibly by a trellis-like algorithm.

Finally, we remark that the robustness analysis made in thispaper is by no means the only application

of Analog Matching. The scheme has the basic property, that it converts any colored channel to an

equivalent additive white noise channel of the same capacity as the original channel, but of the source

bandwidth. In the limit of high-SNR, this equivalent noise becomes Gaussian and independent of any

encoder signal. This property is plausible in multi-user source, channel and joint source/channel problems,

in the presence of bandwidth mismatch. Applications include computation over MACs [18], multi-sensor

detection [17] and transmission over the parallel relay network [11].
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