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Abstract—The recent success of structured solutions for a class
of information-theoretic network problems, calls for exploring
their limits. We show that sum-product channels resist a solution
by structured (as well as random) codes. We conclude that the
structured approach fails whenever the channel operations do not
commute (or for general functional channels, when the channel
function is non decomposable).
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I. INTRODUCTION

Structured codes can be effective, and significantly better
than random codes, for various multiuser problems. Promi-
nent examples include the well known Korner-Marton (KM)
“modulo-two sum” problem [1], as well as more recent setups
such as the “dirty” multiple-access channel (MAC) [2], the
noisy linear network (along with the compute & forward
relaying technique) [3], and more [4]. The effectiveness of
structured codes, in particular linear or lattice codes, is due to
a good match between their linear structure and the additive
nature of the source or channel involved.

In the Korner-Marton problem, for example, the two com-
ponents (X,Y ) of a doubly-symmetric binary source are
encoded separately. The joint decoder is not interested in a
full reconstruction of X and Y , which are viewed as “helper
sources”; rather the decoder is interested in their modulo-two
sum X + Y (or Xor). Writing the statistical relation between
X and Y as a modulo-additive noise channel

Y = X + Z (1)

we can recast the problem as that of lossless reconstruction of
the noise Z from separate encodings of X and Y .

As shown by Korner and Marton, a linear structured coding
scheme, which sends the syndromes of Xn and Y n with
respect to a suitable linear binary code, achieves the minimum
possible rate of H(Z) - the entropy of Z - per each encoder.
In contrast, a conventional random coding scheme cannot do
better than to encode at a sum rate equal to the joint entropy
of X and Y . This corresponds to the Slepian-Wolf solution
[5], i.e., to a lossless reconstruction of both X and Y at the
decoder. The resulting sum rate can be therefore significantly
higher than 2H(Z) for highly correlated sources.

The binary KM problem can be generalized to a q-ary field,
in which case a linear q-ary code replaces the linear binary

code in the KM solution [6]. And it also has a quadratic-
Gaussian version [7].

A dual example with a similar characteristics is that of the
“doubly dirty” MAC. This channel extends Costa’s “writing
on a dirty paper” problem [8], [9] to a MAC; i.e., an additive-
noise channel with two inputs X1 and X2 and an output Y
given by

Y = X1 +X2 + S1 + S2 + noise (2)

where S1 and S2 are two interferences, each known as “side
information” to one of the encoders. Addition in (2) is over
some group in the discrete channel case, or the usual addition
in the continuous case. The problem is made interesting by
imposing input constraints upon X1 and X2, thus the encoders
cannot simply subtract the interferences.

Similarly to the Korner-Marton problem, a linear/lattice pre-
coding scheme (which subtracts the interference “modulo the
code”) achieves the capacity region of this channel [10], [2].1

And in contrast, the rates achieved by a more conventional ran-
dom binning scheme vanish in the limit of strong interference
signals.

This sharp discrepancy is due to the distributive nature of
the side-information; if the knowledge of S1 and S2 were
centralized - i.e., they were both known to one encoder or to
the joint decoder, then random binning could be effective and
(nearly) achieve capacity; see [2].

Sometimes structured codes are inferior to random codes.
This situation occurs when the linear structure of the code
causes ambiguity at the decoder; for example, the symmetric-
rates point of the (clean) MAC capacity region, or of the
Slepian-Wolf rate region.2

In this short note we focus on another, perhaps obvious
weakness of structured codes: they are sensitive to the structure
of the channel. Specifically, we show that if the additive
channel in (1) or in (2) is replaced by one involving both
addition and multiplication, then structured codes - and in
fact, any other coding scheme - are not effective.

II. SUM-PRODUCT KORNER-MARTON

Consider a generalization of the KM problem (1), where the
statistical relation between the component sources is given by

1In the discrete noiseless case the linear coding scheme is exactly optimal,
while in the continuous case it is asymptotically optimal in the continuous
high SNR case.

2This problem can be resolved by using two different (linearly independent)
linear codes [11].



X → enc M
=⇒ dec → Ẑ = ̂F (X,Y )

↑
Y

Fig. 1. Functional source coding with side information at the decoder.

the channel
Y = A+B′ ×B′′ × C (3)

where A,B′, B′′ and C are statistically independent, and
B′, B′′ ̸= 0 with probability one. All variables in (3) belong
to a finite field Fq of size q, and the + and × are the sum
and product operations over Fq. Here A and Y are viewed
as the “helper sources”, C as the desired source, and B′

and B′′ as the “channel states”. The classical KM problem
(1) corresponds to the case where the channel states are
deterministic; specifically, q = 2, A = X is uniform over
{0, 1}, B′ = B′′ = 1, and C = Z.

In the centralized state case, the equivalent channel state
B = B′ × B′′ is either known to the joint decoder (i.e., one
encoder observes A, the other encoder observes Y , and the
decoder has access to B), or to both encoders (i.e., one encoder
observes (A,B), and the other encoder observes (Y,B)). It is
not hard to show that in this case the compression rate is H(Z)
per each encoder, independent of the state distribution, as in
the classical KM problem.3

Our focus is, however, on the de-centralized state case,
where each of the channel states B′ and B′′ is available to a
different encoder. The performance in this case can be bounded
by the simplified setup shown in Fig. 1, where one of the
helper sources is available (un-coded) as “side information” at
the decoder. That is, there is only one encoder which observes
X = (A,B), while

Y = A+B × C

is available at the decoder, who wishes to reconstruct Z = C.
This latter problem is a special case of functional source

coding [6], where a function Z = F (X,Y ) needs to be
reconstructed from separate coded versions of X and Y . The
setup of Fig. 1 corresponds to the case where Y is given un-
coded as “side information” to the decoder (or it is encoded
at a rate greater than or equal to H(Y )), and where

X = (A,B), Y = A+B × C, Z = C

and F (X,Y ) = (Y −A)/B. (4)

A precise definition of functional source coding with side
information at the decoder is as follows. The encoding function
is f : Fn

q → M, where the size of the message space M is

3Regarding the former case (B available at the decoder), note that a random
parity-check matrix H is “good” with high probability for the classical KM
problem (1) (i.e., Zn can be reliably decoded from the syndromes HXn and
HY n); hence, HBn is “good” with high probability for the generalized KM
problem (3). In the latter case, the encoders simply divide their observations
by B, hence get back to the classical KM problem.

2nR, with n being the code block length and R being the
coding rate. The decoding function is g : M × Fn

q → Fn
q .

The probability of error Pe is the probability that g(M,Y n)
is not equal to the vector Zn, where Zi = F (Xi, Yi), i =
1 . . . n, and where M = f(Xn) is the encoded message. For
a given memoryless double source (X1, Y1), (X2, Y2), ... and
a function F (., .), a rate R is said to be “achievable” if we can
make Pe as small as desired for some functions f and g, and
large enough n. Finally, R∗ denotes the minimum achievable
rate.

Clearly, the minimum achievable rate R* satisfies

H(X|Y ) ≥ R∗ ≥ H(F (X,Y )|Y ) (5)

where the LHS corresponds to the case where the decoder fully
reconstructs X before computing F (X,Y ), while the RHS
corresponds to the case where the encoder also has access to
Y , so it can first compute F (X,Y ) and then compress it. In
the sum-product case (4), if A is uniform over Fq, then the
bounds (5) become

H(B) +H(C) ≥ R∗ ≥ H(C). (6)

Note that in the classical KM problem B = 1, i.e, H(B) = 0;
thus the bounds coincide, and the coding rate is merely the
entropy of the desired variable C.

Han and Kobayashi [6] give necessary and sufficient con-
ditions for the LHS of (5) to be tight.4 These conditions are
satisfied in the sum-product case.

Lemma 1. In the sum-product (functional source coding)
problem (4), R∗ = H(X|Y ). Thus, if A is uniform over Fq,
then R∗ = H(B) +H(C).

Proof: Follows since two different lines in Fq intersect
in at most one point, implying the condition in [6, lem.1].

This result implies that the minimum coding rate R∗ is in
general larger than the entropy of the desired variable C, which
is the rate in the classical KM setting (1). In fact, the “extra”
rate can be as large as log(q−1), for B which is uniform over
Fq \ 0.

As a corollary from Lemma 1, it follows that for uniform
channel states B′ and B′′ in the distributed coding setup of
(3), the rate of each encoder is at least log(q−1)+H(C). The
interpretation is that the introduction of the multiplicative state
variables breaks the structure of the classical KM problem; the
states B′ and B′′ must be fully conveyed to the decoder before
the linear structure of the channel can be utilized (by means
of a linear “syndrome” coding) to encode the desired source
C.

III. THE SUM-PRODUCT DIRTY MAC

Consider next a modification of the dirty MAC problem (2),
in which the channel output is given by

Y = A′ +A′′ +B × C (7)

4They in fact consider a more general case where both X and Y are
encoded.



M ⇒ enc X−→
channel

F (X,S1, S2)
Y−→ dec → M̂

↑ ↑
S1 S2

Fig. 2. A deterministic channel with two states, one known to the encoder
and another known to the decoder.

where as in (3) all variables belong to a finite field Fq of size
q, and the + and × are the sum and product operations over
Fq. The inputs of this MAC are A′ and A′′ (corresponding
to X1 and X2 in (2)), while B and C are the channel state
variables (corresponding to S1 and S2 in (2)). There is no
additional noise, nor input constraints.

As in the sum-product KM, the centralized state case is
easy: if both state variables B and C are known to one encoder,
or are known to the joint decoder, then the product B×C can
be simply subtracted; hence the sum capacity is log(q), as if
the channel was noiseless.

The interesting setup is, again, the de-centralized state case.
That is, each encoder has access to only one of the channel
states, while the decoder is completely ignorant of the states.
The capacity in this case is bounded from above by that of
the single-user channel shown in Fig. 2, with

Y = A+B × C. (8)

Here there is a single encoder that has access to one of the
states (S1 = B), while the decoder has access to the second
state (S2 = C), where C is independent of both the input
X = A and B.5

A precise definition of encoding and decoding over such
a channel is as follows. The encoding function is f : M ×
Fn
q → Fn

q and the decoding function is g : Fn
q × Fn

q → M,
where the size of the message space M is 2nR , R being the
coding rate. The error probability Pe is the probability that
g(Y n, Sn

2 ) ̸= M , where Y n depends on Xn, Sn
1 and Sn

2 , and
where Xn = f(M,Sn

1 ) for M ∈ M. A rate R is said to be
“achievable” if we can make Pe as small as desired for some
functions f and g, and large enough n. Finally, the capacity
C is the highest achievable rate.

The sum-product channel (8) is, in fact, a deterministic
channel, where the output Y is a function of the input X ,
and the two states S1 and S2:

Y = F (X,S1, S2). (9)

There is no additional noise in the channel, beyond the
randomness of the two (known) states S1 and S2.

The setup of (9) is an instance of the Gelfand-Pinsker
problem [9], i.e., a channel with non-causal side information
at the encoder. Hence, it has a single letter solution of the
form

C = max I(U ;Y, S2)− I(U ;S1) (10)

5A continuous version of this setup may be thought of as a channel with
a fading interference [12].

where the maximization is over a suitable set of auxiliary
random variables U , and functions X = X(U, S1).6

The structure of the function F in (9) plays a key role
in determining the capacity C. A favorable case is when F
has a composite form, where the dependence on the encoder
variables (X,S1) is separate from the decoder state S2.

Lemma 2. If the function F : Fq × Fq × Fq → Fq can
be decomposed into F (a, b, c) = F̃ (G(a, b), c), where F̃ is
invertible with respect to the first argument (i.e., the equation
y = F̃ (t, c) has a solution t for every y and c), then (10)
is optimized by U = G(X,S1). If also G is invertible with
respect to the first argument, then the capacity is

C = log(q)

and it is achieved by an input p(x|s1) that makes G(X, s1)
uniform over Fq for all values of s1.

Proof: The first part follows from [13, sec. III.F], and the
invertibility of F̃ . See also [14].

The sum-product channel (8) clearly does not satisfy the
first condition of the lemma, as addition and multiplication do
not commute. In fact, this channel is much worse. To assess
its capacity, we shall first establish a relation to a “minimum
entropy” problem.

Lemma 3. The capacity of a deterministic two-state channel
of the form

Y = X + F (S1, S2) (11)

where + denotes addition in Fq, and where S1 and S2 are
available at the encoder and the decoder, respectively, is given
by

C = log(q)− inf
1

n
H
(
g(Sn

1 ) + F (Sn
1 , S

n
2 )|Sn

2

)
(12)

where the second term is the average conditional entropy given
Sn
2 , and where the infimum is over all code block lengths n,

and functions g : Fn
q → Fn

q .

Proof: Easy and will be omitted.
Although (12) is not a single-letter expression, it is some-

times easier for analysis than the Gelfand-Pinsker solution
(10). Specifically, for the sum-product channel (8) we have:

Theorem 1. (Shany-Zamir [15]) For the case where Y =
X + S1 × S2, the minimum average conditional entropy in
(12) is bounded by

log
(q
2

)
≤ Hmin ≤ log

(
q

2− 1/q

)
.

The upper bound is achieved (for all n) by a quadratic per-
letter function g(s) = s2.

As a corollary from this theorem, we conclude that the
capacity of the sum-product channel (8) is at most one bit,

6The admissible U ’s are those for which S2 is independent of (U,X, S1),
and U ↔ (X,S1) ↔ Y form a Markov chain for each value of S2. Since S2

is independent of U , the first term in (10) can be written also as I(U ;Y |S2)
.



for all q. This is quite disappointing when compared to the
capacity of log(q), which is achievable in the centralized-state
case. The same statement is true also for the sum-product dirty
MAC (7); that is, the rate of each user is at most one bit.7

IV. DISCUSSION

The essence of the examples given in this paper is that the
order of performing the sum and product operations matters;
and in fact, they are very “different”. One aspect of this
difference - which is related to the sum-product KM problem
- is that the expression

a+ b× c (13)

cannot be decomposed into the form:
function( function (a, b), c) (not even approximately). A
second aspect - related to the sum-product dirty MAC - is
that it is impossible to find a function of a = a(b) such that
(13) would be only a function of c (not even approximately).
In contrast, these two requirements are easily fulfilled if
the expression in (13) is a pure sum a + b + c (by the
associativity of summation), or a pure product a × b × c (by
the associativity of multiplication).8

It would be interesting to explore further (and perhaps
quantify) the information-theoretic aspects of function decom-
position. Note that this question is almost “distribution free”
(i.e., nearly independent of the probability distributions of
sources and channels). A different aspect of “anti structure”,
which is due to a “bad” noise distribution, can be found in
[16].
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