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Abstract

We present a new generic mechanism for “on-line” construction of a vector

quantizer codebook, based on blockwise backward-adaptive parametric encod-

ing. The workings of the proposed scheme is explained by the principle of

“natural type selection”: In the limit of large vector dimension, the type of

the first distortion-matching codeword within a random codebook coincides

with an iteration of the Blahut-Arimoto algorithm for computation of the rate-

distortion function. We extend this observation to parametric codebooks, and

demonstrate that the parameter sequence converges to an optimum solution

within the reproduction class. In comparison to other methods, adaptation is

simple due to the parametric model, yet it is optimal even in the low coding

rate regime.

Keywords: parametric encoding, natural type selection, Arimoto-Blahut algo-

rithm, vector quantization, alternating minimization, universal coding, approximate

string matching.
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I Introduction

In most scenarios of source coding, source statistics are unknown, or changing over

time. A non-adaptive system may be robust for a family of sources [20], but it usually

suffers a large loss of performance. Thus most compression algorithms use some sort

of adaptation mechanism, e.g., dynamic Huffman coding and Lempel-Ziv coding for

universal lossless compression [26], or adaptive pulse code modulation (ADPCM)

and code excited linear prediction (CELP) for speech coding [17, 13]. For analysis

purposes, we often assume that the source statistics are constant but a priori unknown

[25].

Adaptive compression schemes divide into two main categories: forward adap-

tation and backward adaptation [17]. The former approach is based on a two-stage

code: looking ahead at the source sequence, the encoder learns the source statistics,

computes the optimal codebook parameters and encodes them as a header to the

compressed data; examples include dynamic Huffman coding and CELP. Backward

adaptation does not waste rate on sending header information; instead, both the en-

coder and the decoder learn the statistics “on the fly” by looking backwards at the

past code sequence (which is available to both), and sequentially adapt the codebook

accordingly; examples include Lempel-Ziv-like algorithms and ADPCM.

Can backward-adaptive lossy compression achieve the rate-distortion function of a

source whose statistics is unknown a priori? This question is related to the feasibility

of sequential universal lossy compression.

To put this question on more concrete grounds, consider a state-machine which

sequentially encodes vectors x1,x2, . . . (say of ℓ letters each) emitted by a stationary

and ergodic source:

in = f(xn, Sn)

yn = g(in, Sn)

Sn+1 = h(yn, Sn) (1)

for n = 1, 2, . . ., where f(·, ·) is the encoding function, in is the codeword index sent to

the decoder at step n, g(·, ·) is the decoding function, yn is the reconstruction vector,

Sn is the system state, h(·, ·) is the next-state function, and where the initial state S1

is given. We may think of f(·, S) and g(·, S) as an encoder-decoder pair depending

on some “estimated statistics” S, and of h as a learning or an adaptation mechanism

for S.

An essential difference between lossless and lossy compression in the sequential

model (1), is that system adaptation in the lossy case must be done using the distorted

version of the source yn; the raw source vector xn is not available to the decoder.

This difference obviously becomes more significant at low coding rates, when the

distortion between yn and xn becomes higher. Ideally, we like that the state sequence
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Sn would converge to S∗, the optimal “state” for encoding the current source. Can

backward adaptation achieve this goal even when the distortion between yn and xn

is significant?

Quite surprisingly, as recent work shows [24, 23], the answer - at least in the limit

of large codebook dimension (ℓ → ∞) - is that it can. The key to this observation,

is that we do not seek to estimate the statistics of the source P , but rather these of

the optimal reproduction distribution Q∗ that achieves the rate-distortion function

R(P, d) [6]. It turns out that the frequency the encoding algorithm uses codewords

provides a natural law for optimum backward codebook adaptation that approaches

this optimal Q∗. This phenomena was termed “gold washing” in [24] and “natural

type selection” (NTS) in [23].

In the lossless case the idea of backward-adaptive compression is clear and well

known: The LZ78 algorithm, for example, grows a tree of code words as the coding

progresses, in a way that asymptotically the proportion of typical source sequences

within the code words approaches one. We see that, while the source statistics P may

be unknown, the source reveals them gradually through the sequence it produces [26].

Although less obvious, the NTS principle tells us that also in lossy compression, when

Q∗ 6= P , the matching process supplies a mechanism for learning the statistics Q∗ of

the optimal codebook. Note that the deviation of Q∗ from P usually increases with

distortion; e.g., in the quadratic Gaussian case Q∗ is given by the reverse water-filling

solution which dictates that, at high distortion, at some frequencies where source

energy exists, codebook energy would equal zero.

In [23], the NTS is described as a bootstrap-like procedure, in which one starts with

an initial guess Q1 for the reproduction codebook statistics, and then ”measures” the

type (i.e., empirical distribution) of the first word y in the codebook that matches

a source word x under the fidelity criterion ρ(x,y) ≤ d, where ρ is the distortion

measure. By regenerating the codebook, using the type of the matching codeword

as the random code generating probability, and repeating this process over and over

again, a sequence of codebook distributions Q1, Q2, . . . is generated. It turns out that

for a memoryless source with distribution P , as the word length ℓ goes to infinity,

this sequence of distributions obeys a deterministic recursion rule

Qn+1 = Q∗(P,Qn, d) , n = 1, 2, . . . (2)

(where the function Q∗(·, ·, ·) will be defined in the sequel), that converges to the

optimum reproduction distribution Q∗. Moreover, this recursion corresponds to a

fixed-distortion version of the Blahut-Arimoto iterative algorithm for computation of

the rate-distortion function [2].

In this paper we aim to incorporate the NTS principle into a practical, low com-

plexity coding scheme. Doing so, however, reveals some drawbacks:

1. The procedure involves regenerating the whole codebook after each match is

made.
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2. For small values of the word length ℓ the matching codeword does not capture

the full multi-dimensional distribution of Q∗(P,Q, d) (in particular if it has long

memory).

3. Large block dimension is needed for the empirical distribution of the matching

codeword to converge to Q∗(P,Q, d), causing high complexity of the matching process.

We address the first two problems by restricting the evolving codebooks to ones

that can be generated from a fixed (random) codebook, using some parametric trans-

formation characterized by a parameter θ in a set Θ. Our target rate thus becomes

R(P, Θ, d), the best rate achievable within the resulting family of parametric re-

productions, rather than the rate-distortion function R(P, d). Maximum-likelihood

estimation of θ from the matching codeword y turns out to be the analogy in the

parametric case of the codeword type in (2). Furthermore, the resulting iteration

corresponds to a parametric constrained version of the Blahut algorithm [18]. To

deal with the third problem, we use a the least mean square (LMS)-like algorithm, as

widely used in practical adaptive filters [16], to smooth out the parameter sequence.

We call this new mechanism ”Natural Parameter Adaptation” (NPA).

In Section II we present the NPA scheme and lay the foundations to the analysis of

its performance, and in Section III we prove its convergence to R(P, Θ, d) for discrete

memoryless sources and reproductions. In section IV we discuss the extension of

our results to sources and reproductions with memory. In section V we show special

cases that shed light on possible applications, together with simulation results. We

conclude in section VI by discussing the advantages and the limitations of the NPA

system, and pointing out directions for further research.

II Natural Parameter Adaptation

II-1 System Description

The encoder we present is shown in Figure 1. It is composed of a parametric encoder

and a parameter adaptation feedback loop. Let X and Y denote the source and

reconstruction alphabets. The system uses a base codebook, which is a fixed (non-

adaptive) codebook over the base alphabet Z, C = {ci ∈ Zℓ, i = 0 . . . M − 1}.

Each word of length ℓ is randomly and independently generated by some universal

distribution QU . The distribution QU would typically be simple, e.g. an i.i.d. uniform

or Gaussian distribution1. The number of codewords M will be large enough to ensure

that a matching codeword will be found, in a manner that will be explained in the

sequel. The codebook is an ordered list, where each codeword has an index, and the

search will be always carried out in the same order, according to that index. These

1Alternatively, one may design a structured algebraic code, e.g. a lattice code for the continuous

case or a parity check code for the discrete case
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base codewords are fed into the transformation T . The transformation, for some

set of parameter values Θ = {θ}, is a parameter dependent function Tθ : Zℓ → Yℓ

operating on each codeword, and producing the adaptive codebook

Cθ = {Tθ(c) : c ∈ C}. (3)

The adaptive codebook plays the role of an effective codebook to the rest of the

system. It is equivalent to a codebook where each codeword is randomly and inde-

pendently generated by the adaptive reproduction distribution Qθ which is the distri-

bution of Tθ(U) when U ∼ QU , i.e.

Qθ(y) =
∑

u:Tθ(u)=y

QU(u) , (4)

with the necessary adjustments in the continuous case. Using all possible parameter

values, the adaptive reproduction distribution is restricted to the set:

QΘ
∆
= {Qθ, θ ∈ Θ} . (5)
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This general definition allows a diverse choice of sets, such as memoryless finite-

alphabet distributions (using a memoryless continuous base codebook and a per-letter

step function transformation) or Gaussian auto-regressive (AR) distributions (using

a memoryless gaussian codebook and an AR filter transformation).

The system starts with some initial parameter θ1, and at each coding step it uses

the current parameter and generates a new parameter value for the next step. At

step n, θn+1 is a function of all past reproduction vectors until the current one. One

may think of the parameter θ as representing the system state S of (1). The encoding

and the parameter adaptation are done as follows.

The quantizer selects the first codeword in the codebook that fits the source

sequence with respect to a distortion constraint d, and sends its index to the decoder.

We denote the d-matching codeword chosen by the quantizer at iteration n as yn,

and the corresponding index by in:

yn = Tθn
(cin) ,

in = min
{

i : ρ
(

xn, Tθn
(ci)

)

≤ d
}

. (6)

The index in is losslessly encoded, to create a variable-length representation of the

source. We can use a simple encoder, which asymptotically achieves the logarithm of

the index, such as the Elias coding of the integers [12]. The encoder passes this index

to the decoder.

The backward adaptation loop consists of a maximum likelihood (ML) param-

eter estimator and a ”smoothing” block. The estimator finds the parameter which

maximizes the likelihood of the ”measurement” yn w.r.t. the parametric family QΘ:

θ̂(y) = θML(y) = arg max
θ∈Θ

Qθ(y) . (7)

The smoothing block s
(

θ̂(yn), θn
1

)

produces the parameter for the next iteration,

weighting the estimate with the parameter history in order to average the stochastic

nature of the estimate. One can think of many such functions, but for simplicity we

will restrict ourselves to:

θn+1 = s
(

θ̂(yn), θn
1

)

= αθ̂(yn) + (1 − α)θn , (8)

where 0 < α ≤ 1 is the smoothing coefficient.

The decoder structure is depicted in Figure 2. It has a copy of the base codebook.

It receives the index and decodes it to obtain a copy of the respective base codeword.

Recall that each parameter is only a function of the initial parameter θ1 and of the

past reconstructions. Thus the decoder is able to reconstruct the parameter sequence,

using an adaptation loop identical to the one in the encoder. Using the parameter θn,

the decoder can pass cin through the transformation Tθn
, to obtain the reconstruction

yn.
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II-2 Some Definitions and Observations

The system described so far did not assume any restriction upon the source and

reproduction models, e.g. the source may have memory or Tθ may be a general

vector transformation. We now restrict our attention to memoryless sources and base

codebooks, and to scalar (per letter) transformations Tθ, so that also the adaptive

reproduction distribution Qθ (4) is memoryless.

1. String Matching and Favorite Type: We look at the d-matching process

between a source string and the codebook words. Assume that the codebook is

generated memoryless i.i.d. ∼ Q, and the source is governed by an i.i.d. distribution

P . Define [22, 23]:

R(P,Q, d) = inf
W :ρ(P,W )≤d

{

D(P ◦ W‖P × Q)
}

, (9)

where D(·‖·) is the divergence, or Kullback-Liebler distance between two measures,

defined by:

D(B‖A) =

{

∫

log(dB
dA

)dB, if B ≪ A

∞, otherwise

}

which reduces in the discrete memoryless case to [6]:

D(B‖A) =
∑

i

Bi log
Bi

Ai

where we assume 0 log(0) = 0. On the left hand side of the divergence in (9) is the

joint input-output distribution of a channel W with an input distribution P , while

the right hand side is the product distribution of the source distribution P with

the codebook distribution Q; ρ(P,W ) is the input-output distortion induced by the

aforementioned channel:

ρ(P,W ) = EP,W{ρ(x,y)}. (10)

The function R(P,Q, d) amounts to the minimum rate needed to encode a source

∼ P using a random i.i.d. codebook ∼ Q with distortion d [22]. This holds, even

though the size of codebook needed is, in principle, not bounded. Denoting the index

of the first d-matching codeword of length ℓ by Iℓ (recall (6)), the following holds in

probability:

lim
ℓ→∞

1

ℓ
log(Iℓ) = R(P,Q, d) .

Lossless coding of that index can, thus, achieve R(P,Q, d) asymptotically.

Assume that (9) has a minimizer:

W ∗(P,Q, d) = arg min
W :ρ(P,W )≤d

{

D(P ◦ W‖P × Q)
}

(11)

and let Q∗(P,Q, d) be the output distribution induced by the source distribution P

and that minimizing transition distribution:

Q∗(P,Q, d) = [P ◦ W ∗(P,Q, d)]y . (12)
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Then the type of the first d-matching codeword, denoted by Qy, converges in prob-

ability to Q∗(P,Q, d) as the word length ℓ → ∞ (proven for the finite-alphabet case

in [23, Theorem 4], extended to general alphabets in [19]):

lim
ℓ→∞

Qy = Q∗(P,Q, d) in prob. (13)

We call Q∗(P,Q, d) the “favorite type”. Clearly, these results hold for our equivalent

codebook as well, with the adaptive reproduction distribution Qθ playing the role of

Q. We will denote the rate and the favorite type induced by a parameter θ by:

R(P, θ, d)
∆
= R(P,Qθ, d)

Q∗(P, θ, d)
∆
= Q∗(P,Qθ, d) . (14)

2. Convergence to the optimal reproduction in the non-constrained

case: The rate-distortion function for a random source governed by P is:

R(P, d) = inf
Q

R(P,Q,D) = inf
W :ρ(P,W )≤d

I(P,W ).

The minimizer of R(P,Q, d) (when exists, for instance when P has finite alphabet)

is the optimal reproduction distribution Q∗ = Q∗(P, d).

Recall the iterative procedure Qn+1 = Q∗(P,Qn, d) (2). It describes a process

of regenerating the codebook according to the favorite type (12) after each source

string is encoded. The main result of [23] was that, for finite-alphabet sources, as the

number of iterations n → ∞

Qn → Q∗(P, d) and R(P,Qn, d) → R(P, d) (15)

i.e., the sequence Qn asymptotically approaches the optimal reproduction, and the

coding rate approaches the rate-distortion function of the source.

Moreover, the recursion (2) corresponds to a fixed-distortion version of the Arimoto-

Blahut algorithm as it computes R(P, d) starting from Q1 as an initial distribution

[2, 8, 6].

3. Best achievable performance within a parametric reproduction class:

Recall that the minimum rate for random coding with a given codebook distribution

Q is given by R(P,Q, d) defined in (9). For some set Q of reproduction distributions,

define the set-constrained rate-distortion function to be

R(P,Q, d) = inf
Q∈Q

R(P,Q, d). (16)

If we take Q to be the parametric set QΘ of (5), then the minimum random coding

rate within the parametric class is given by:

R(P, Θ, d)
∆
= R(P,QΘ, d) = inf

θ∈Θ
R(P, θ, d) . (17)
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We call R(P, Θ, d) the (parameter-)constrained rate-distortion function [18]. We de-

note the parameter that achieves this function, whenever it exists and is unique, as

θ∗, namely:

θ∗
∆
= θ∗(P, Θ, d)

∆
= arg min

θ∈Θ
R(P, θ, d) . (18)

If the optimum is not unique, then a similar definition can be made for the set of

optimal parameters. For example, see the Gaussian case: If Qθ = {N (0, θ), θ ≥ 0}

and we use mean square distortion, then

R(P, Θ, d) =
1

2
log(

σ2

d
)

for any source P with variance σ2 ≥ d, and it is achieved by the parameter θ = σ2−d

[9, example 2]. See further examples in [23] and in appendix C below.

4. Maximum Likelihood and divergence projection: In the case of a mem-

oryless reproduction2, the ML estimator depends on the vector y through its type or

empirical distribution Qy only, thus we define: θML(Qy)
∆
= θML(y), where θML(y) is

as in (7). This is equivalent to finding the parameter θ inducing the distribution that

matches the empirical distribution best in the divergence sense:

θML(Qy) = arg max
θ

EQy
log Qθ(y) = arg min

θ
D(Qy‖Qθ) . (19)

The minimizer in (19) is called the reverse I-projection of Qy to QΘ [7].

5. Role of the Smoothing Block: The smoothing block is not actually

necessary for convergence of the system to R(P, Θ, d) in the limit of large word length

(ℓ → ∞). In fact, we will prove convergence regardless of the choice of the smoothing

coefficient α. It is rather a practical way to strike a balance between the speed of

convergence and the steady-state error for finite word length ℓ. The way we replace

the average type by a measured one and compensate for randomness with a small step

size is reminiscent of the way that the least mean square (LMS) algorithm replaces

gradient with its estimation by one measurement with a small step size (see e.g. [16]).

One may suggest ways to change step size over time, as is done with step sizes in

adaptive filtering.

Doing the parameter update by averaging of parameter rather than by averag-

ing of distributions requires, however, the parameterization to satisfy some technical

conditions, that we will specify in the sequel.

II-3 A Simple Example

As discussed above, the base distribution QU and the parametric transformation Tθ(·)

generate a parametric set of distributions {Qθ, θ ∈ Θ}. For a finite-alphabet memory-

less codebook |Y| < ∞, we can choose the parameters as the distributions themselves:

2A generalization of this relation to sources with memory is discussed in Section IV.
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Qθ = θ, which in this case form a finite-dimensional set. To generate a desired Qθ,

the base codebook is uniform i.i.d. over the unit interval, and the transformation

Tθ(·) is a step function which generates Qθ by appropriate thresholding. In general,

the set Θ = {θ} can be any subset of the simplex.

The maximum likelihood estimation is easily computed as follows:

1. Obtain the type of the chosen codeword, Qy.

2. Compute θML(y) = arg minθ∈Θ D(Qy‖θ). Note that if Θ is the whole simplex,

then always θML(Qy) = Qy.

For the case where QΘ is the whole simplex, this system coincides with the one sug-

gested in [23], except for the practical advantages of adaptive codebook and smooth-

ing. Examples to constrained sets QΘ include:

1. Minimum or maximum letter probability in the reproduction (All components

of QΘ are bounded from above or from below).

2. Maximum number of non-zero probability letters from Y used in the reproduc-

tion.

As we shall see in Section III, convergence to the optimum is guaranteed when QΘ

is convex, thus we can prove convergence for the first case mentioned above, but not

for the second one. In Section V we will see other examples for parametric families of

reproduction distributions, such as Gaussian mixtures and auto-regressive process.

III System Performance for Finite-Alphabet Mem-

oryless Sources and Codebooks

Our understanding of the behavior of the feedback loop at each iteration is based

upon the ”favorite type” property (13). This property gives direct insight into the

behavior of an idealized system: As ℓ → ∞, the type of the chosen codeword Qy

approaches the favorite type Q∗(P,Q, d) by (13), the parameter estimate (7) is no

longer random, the smoothing block is no longer needed (i.e., α = 1 in (8)), so we

obtain the deterministic recursion:

θn+1 = θML

(

Q∗(P, θn, d)
)

, n = 1, 2, . . . , (20)

where θML(·) was defined in (19). For this idealized model, Theorem 1 bellow shows

convergence to the constrained rate-distortion function R(P, Θ, d) as the number of

adaptation steps n → ∞ under a convexity condition.

While this theorem demonstrates convergence of the idealized NPA system, it is

not sufficient for showing convergence for finite ℓ. For finite word length ℓ the type of

the selected codeword yn is random and the recursion (20) becomes a stochastic one:

θn+1,ℓ = s
(

θ1,ℓ . . . θn,ℓ, θML(yn,ℓ)
)

, n = 1, 2, . . . , (21)
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where we use θn,ℓ for the parameter vector θn when the word length is ℓ, in order

to emphasize the dependance upon the finite word length. In the stochastic setting,

a single realization of the string matching process (one measurement of a vector yℓ
1)

might produce a type which is very far from the favorite type Q∗(P, θn, d), thus cause

the type sequence to deviate considerably from its idealized course. Theorem 2 in the

sequel will nevertheless prove stochastic convergence of the type sequence defined by

(21) and (8), under a few more technical conditions, in the limit of large word length

ℓ.

The basic ingredients used to prove the theorems, namely the favorite type prop-

erty, convexity and alternating minimization arguments, all hold for sources and

reproductions over general alphabets. We will restrict our theorems, however, to the

finite-alphabet case, for the sake of simplicity.

Theorem 1 (Natural Parameter Adaptation for ℓ = ∞) Let QΘ be a para-

metric set of discrete, memoryless distributions. For any initial guess θ1 inducing an

initial distribution Qθ1 with no zero elements, the deterministic recursion (20) gen-

erates a monotonically non-increasing sequence R(P, θn, d). Moreover, if the set of

reproduction distributions QΘ is convex, then as n → ∞

R(P, θn, d) → R(P, Θ, d)

θn → θ∗ (22)

where R(P, Θ, d) is the best achievable rate in the reproduction class Θ defined in

(17), and θ∗ = θ∗(P, Θ, d) is an optimum parameter defined in (18) (if not unique,

then it may depend upon θ1).

The proof is given below. Note that it follows from the above, that θ∗ is a fixed

point of the recursion (20), thus it is a solution of the equation

θ = θML

(

Q∗(P, θ, d)
)

. (23)

Unlike the fixed point of (2), Q∗(P, θ∗, d) is in general not equal to Qθ∗ and is not even

in QΘ. In other words, the matching codewords are not typical with any parametric

distribution, even in the steady state.

The proof is based upon showing that the recursion (20) is an instant of alternating

minimization of divergence between convex sets [8]: If B and A are convex sets of

non-negative measures (e.g. distributions), then the following recursion:

Bi+1 = arg min
B∈B

D(B‖Ai)

Ai+1 = arg min
A∈A

D(Bi+1‖A) , i = 1, 2, 3 · · · (24)
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A0

A1

B1

A = {P × Qθ}
A∗ = P × Qθ∗

B∗

B = {P ◦ W}
D(B1‖A1) = R(P, θ0, d)

D(B‖A) = R(P, Θ, d)

Figure 3: Alternating Minimization

converges to the minimum divergence between the sets, for any A0 that has finite

divergence from some B ∈ B [8, Theorem 3]. Furthermore, if the measures are on a

finite alphabet and the sets are closed, exist distributions B∗ ∈ B and A∗ ∈ A that

achieve this minimum. This alternating minimization process is depicted in Figure 3.

In our system, we identify these sets as:

B = B(P, d) = {P ◦ W : ρ(P,W ) ≤ d}

A = A(P, Θ) = {P × Qθ : θ ∈ Θ} , (25)

where the optimal point in the set A is connected with the optimal parameter θ∗ of

(18) via A∗ = P ×Qθ∗ . Substituting (9) in (16), R(P, Θ, d) can be written as a double

minimization:

R(P, Θ, d) = min
θ∈Θ

min
W :ρ(P,W )≤d

{

D(P ◦ W‖P × Qθ)
}

(26)

which, using our set definitions, can be rewritten as:

R(P, Θ, d) = min
B∈B

min
A∈A

{

D(B‖A)
}

. (27)

Let us also define the set Ã ⊇ A:

Ã(P ) = {P × Q : any Q} . (28)

Observe from (25) and (12), that a single iteration of (20) can be broken into 3 steps:

1. Minimization of D(B‖A) w.r.t. B ∈ B - finding W ∗(P, θn, d).
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A0

A1

B1

B
A

A∗

B∗

Ã1

Ã

Figure 4: Indirect projection through Ã

2. Minimization of D(B‖Ã) w.r.t. Ã ∈ Ã - finding Q∗(P, θn, d).

3. Minimization of D(Ã‖A) w.r.t. A ∈ A - finding θML

(

Q∗(P, θn, d)
)

.

The key to the proof of Theorem 1 is, that the combination of steps 2 and 3 above

can be viewed as a direct minimization of divergence between B and A, as illustrated

in Figure 43. For this we need the following lemma:

Lemma 1 For any transition distribution W (y|x),

arg min
θ∈Θ

D(P ◦ W‖P × Qθ) = θML

(

[P ◦ W ]y
)

where [P ◦ W ]y denotes the y-marginal of the joint distribution P ◦ W .

Proof: By an identity of Topsoe[21] (see also [6, in Lemma 13.8.1]), for any Q,

D(P ◦ W‖P × Q) = D
(

P ◦ W‖P × [P ◦ W ]y
)

+ D
(

[P ◦ W ]y‖Q
)

. (29)

Since the left term of the right hand side does not depend on the choice of Q, and

since Qθ at θ = θML([P ◦ W ]y) minimizes the right term by (19), the lemma follows.

2

3In Euclidian geometry, Ã1 and B1 would both have to be on the normal to the surface of A at the

same point A1. This is not necessarily the case for minimum divergence projection, as demonstrated

in the figure.
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Proof of Theorem 1: Recall the double minimization representation of R(P, Θ, d)

(27), using the sets B and A of (25). Incorporating (11) and (25), we see that:

arg min
B∈B

D(B‖P × Q) = P ◦ W ∗(P,Q, d) .

Now we use (28) and Lemma 1 with W (y|x) = W ∗(P,Q, d), to see that:

arg min
A∈A

D
(

P ◦ W ∗(P,Q, d)‖A
)

= P × Q
θML

(

Q∗(P,Q,d)

) .

This shows, that (20) realizes alternating minimization between the sets B and A.

The first part of the theorem now follows since each minimization can only reduce

the divergence. The second part follows because when QΘ is convex, so is the set

AΘ. Since B is always convex, and by the theorem conditions the initial divergence

is finite - convergence to the global optimum is assured by [8, Theorem 3]. 2

We now turn to our main result, regarding the convergence of the stochastic

recursion (21) for a finite word length. Here we need to define the following technical

conditions: A parameterization Θ is said to be convex if:

1. The set Θ is convex.

2. D(Qθ′‖Qθ) is convex in θ for all θ′ ∈ Θ (a sufficient condition is that the log-

likelihood function log Qθ(y) is concave in θ for all y).

A parameterization Θ is q-bounded if Qθ(y) ≥ q, where q > 0, for all θ ∈ Θ.

Theorem 2 (Natural Parameter Adaptation for finite ℓ) Let P be the prob-

ability distribution of some discrete memoryless source. Let Θ be some convex, q-

bounded parameterization of finite-alphabet memoryless distributions {QΘ}. Suppose

that Q∗(P, Θ, d) is unique. If the set QΘ is convex, then:

1. With high probability, for sufficiently large word length ℓ, the sequence of code-

books generated by the NPA system (21) arbitrarily approaches the optimal re-

production within the family Θ and the coding rate arbitrarily approaches the

optimum rate, i.e.,

lim
ℓ→∞

lim
n→∞

Pr{‖Qn,ℓ − Q∗(P, Θ, d)‖1 > ǫ} = 0 ∀ǫ > 0

lim
ℓ→∞

lim
n→∞

Pr{R(P, θn,ℓ, d) − R(P, Θ, d) > ǫ} = 0 ∀ǫ > 0 , (30)

where Qn,ℓ = Qθn,ℓ
is the adaptive reproduction distribution at the n-th iteration

and ‖ · ‖1 denotes the L1 norm of the difference between the two distributions

viewed as vectors.

13
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Figure 5: Evolution of a typical type sequence

2. The average rate for the NPA coding session has arbitrary small redundancy

with probability 1, i.e.,

lim
ℓ→∞

Pr
{

lim sup
n→∞

R̄n,ℓ = R(P, Θ, d)
}

= 1 , (31)

where R̄n,ℓ
∆
= 1

n
Σn

i=1R(P, θi,ℓ, d).

The proof is given in appendix A. We sketch an outline of the proof after the

remarks below.

Remarks:

1. In the first part of the theorem we prove convergence of the type and rate

sequence in probability, rather than with probability one, because in fact a

typical realization of the parameter sequence does not have a limit. Eventually,

due to a source string that is atypical or that reveals some atypical behavior of

the codebook, the type of yn,ℓ will be far from Q∗(P, θn,ℓ, d) and the feedback

loop will produce a new parameter far from θ∗(P, Θ, d). Figure 5 demonstrates

this phenomenon.

2. Convergence in probability is with respect to both the source realizations and

the randomness of the base codebook. This implicitly means, that while code-

books that do not achieve this performance may exist, the probability to draw

such a codebook goes to zero as the word length ℓ → ∞.
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3. This result strengthens the natural type selection convergence of [23, Theorem

6], since it refers to the stochastic type sequence rather than the average type

sequence.

4. The second part of the theorem, showing almost sure convergence of the session-

average rate to optimum, resembles classical results on universal coding (e.g.

[26]). The first part, in comparison, can give an idea about the instantaneous

behavior of the system, so it may be useful when the source statistics are slowly

varying.

Outline of proof for Theorem 2 In Lemma 3 we show that for large enough ℓ,

the type of the chosen codeword is δ-close to the favorite type. We define the δ-ball

of types around the favorite type as:

Q∗
n(P, d, δ)

∆
= {Q : ‖Q − Q∗(P, θn, d)‖1 ≤ δ} . (32)

We call the event where the actual chosen word type Qyn,ℓ
falls outside that ball

an escape event and we show that the escape event probability Pe(δ, ℓ) approaches

zero as the word length ℓ → ∞, uniformly in θn, for all δ > 0. Then we turn to

the series of lemmas (Lemmas 4-7), all of ”deterministic” nature. These Lemmas

show that, assuming no escape events, the codebook distribution enters within n0(δ)

iterations into a small neighborhood, ǫ(δ), of the optimal distribution. We call this

neighborhood a ”black hole” since we show that once entered, the system can not

leave this neighborhood, until an escape event occurs. We will show that ǫ(δ) → 0

as δ → 0, while n0(δ) is finite for all δ > 0. These four lemmas follow the proof of

[23, Theorem 6], with slight changes necessary to accommodate for the parametric

setting. For completeness, we will bring proofs of these lemmas in Appendix A. We

then observe, that an escape event merely ”resets” the system back to some arbitrary

initial condition, thus we conclude, that if in the last n0(δ) iterations there was no

escape event, then the system is within the ǫ(δ)-neighborhood of the optimum. But

since Pe(δ, ℓ) can be made arbitrarily small by looking at large ℓ, the probability of

the last n0 iterations not to contain an escape event goes to 1. Figure 5 describes the

behavior of a typical sequence of reproductions.

IV Extension to Sources and Codebooks with Mem-

ory

The system we presented in Subsection II-1 does not assume any specific memory

model, but the discussion and theorems that follow assume memoryless sources and

reproductions. In this section we discuss extension of our optimality results beyond

the memoryless case. Throughout this section, we address finite alphabet sources and
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reproductions only, to avoid mathematical complications that are not necessary to

demonstrate our points.

First, consider the case where the source is stationary with memory, but the

codebook distribution is memoryless. As shown in [22], the coding rate in this case

is the same as if the source were memoryless with the same marginal distribution.

Also the marginal empirical distribution of the chosen codeword is asymptotically the

same as in the memoryless case [19]. It’s easy to see that the ML estimation within

a class of memoryless distributions depends on the marginal measurement statistics

only. It follows that in the limit of large ℓ the type sequence evolves in the same way

as if the source were memoryless, i.e., as in (20), with P standing for the marginal

of the source. We conclude that the observations and convergence theorems for the

memoryless source case remain valid for general stationary source, provided that the

codebook is memoryless. Specifically, R(P, Θ, d) remains unchanged and convergence

of the system to the optimum holds under the same convexity conditions on the set

of memoryless codebook distributions.

This result tells us, that unless we introduce memory into the reproductions, we

can not gain from the memory of the source. We turn our attention, then, to adaptive

codebooks with memory. While we do not pretend to prove rigorously the parallel

of all the results proven or used in Section III, we will show how the concepts of the

NPA system can be extended to codebooks with memory, and how, as the memory

model order grows, our system approaches the rate-distortion function of a general

stationary source. In the following subsections, we will present two different codebook

memory models.

IV-1 Piecewise I.I.D. Codebooks

Assume that the word length ℓ is a multiplication of the model order k. Divide the

base codebook into k-tuples, and draw each one independently using a k-dimensional

base distribution. Let the transformation Tθ work on each k-tuple (typically, this base

distribution will be i.i.d., inducing memoryless base codewords, and memory will be

introduced by the transformation). Then the adaptive codebook is comprised of i.i.d.

k-dimensional ”super-symbols”.

In order to state the performance of the system, we need to redefine the quantities

associated with it. First, the rate-distortion function for a stationary, ergodic discrete-

time source is defined as [1, Chap. 7]:

R(P, d) = lim
k→∞

R̃k(P, d) ,

R̃k(P, d) = inf
Wk:ρ(Pk,Wk)≤d

1

k
I(Pk,Wk) , (33)

where Pk is the k-order marginal of the stationary source distribution, Wk is some

16



k-dimensional transition distribution from the source to reproduction alphabet, and

ρ(Pk,Wk) =
1

k
EPk◦Wk

k−1
∑

j=0

ρ(Xj, Yj) .

Likewise, R(P,Q, d) is defined as:

R(P,Q, d) = lim
k→∞

R̃k(P,Q, d) , (34)

where

R̃k(P,Q, d) = inf
Wk:ρ(Pk,Wk)≤d

1

k
D(Pk ◦ Wk‖Pk × Qk) , (35)

where Qk is the k-order marginal of the stationary reproduction distribution (see [5],

where also the existence of the limit in (34) is proven under some mixing conditions).

If we constrain the stationary reproduction distribution Q to some parametric multi-

dimensional set QΘ of stationary ergodic distributions, we can still define R̃k(P, Θ, d)

and R(P, Θ, d) as the infima over the parametric set of R̃k(P,Qθ, d) and R(P,Qθ, d)

respectively, just as in (17). It’s not hard to show that R̃k(P,Qθ, d) is non-increasing

in k but bounded below by R(P, d), thus it has a limit and we can define:

R(P, Θ, d) = lim
k→∞

R̃k(P, Θ, d) = lim
k→∞

inf
θ∈Θ

R̃k(P,Qθ, d) . (36)

It can also be shown, as in [1] for R(P, d), that R(P, Θ, d) defined that way has the

operational meaning of a rate-distortion function.

Analyzing the system with piecewise i.i.d. codebooks turns out to be very simple,

since it is equivalent to a memoryless system working on k-dimensional super-symbols.

We can apply the favorite type theorem and the i.i.d. coding rate theorem to these

super-symbols. The optimal rate associated with these i.i.d. super-symbols happens

to be R̃k(P,Qθ, d) of (35), thus in the limit of a large number of iterations the system

can achieve R̃k(P, Θ, d). In the limit of large model order k we could also approach

R(P, Θ, d), but since we are interested in simple codebooks and finite parameter

vectors, this limit is of little practical interest. For a finite k, this model has an

obvious drawback: Though the source is stationary and has memory, the matching

process may treat two adjacent letters as independent, only because they happen to

fall into two different super-symbols. To overcome this, we next address the Markov

codebook.

IV-2 Markov Codebooks

Let Qk(yk|y
k−1
0 ) denote some conditional probability distribution. If it is strictly pos-

itive for all yk−1
0 ∈ Yk, then it induces a unique stationary distribution Q(Yℓ−1

0 ). For

finite alphabet, we can always create an adaptive codebook with such a distribution.
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Define:

Rk(P,Q, d)
∆
= inf

Wk:ρ(P0,W0)≤d
Dk|k−1(P ◦ W‖P × Q) (37)

where

Dk|k−1(P ◦ W‖P × Q)
∆
=

∑

x∈X ,y∈Y

P (xk
0)W (yk

0 |x
k
0) log

W (yk|y
k−1
0 , xk)

Q(yk|y
k−1
0 )

. (38)

Rk(P,Q, d) was first defined in [22], though in a different form. In Appendix B

we show that the forms of [22] and (37) are equivalent, thus we can use the main

result of [22] to establish the following: For a Markov-k reproduction Q, and any

stationary ergodic source P , the coding rate of our system with a Markov-k equivalent

codebook with distribution Q converges to Rk(P,Q, d) with probability one4. While

the definition of Rk(P,Q, d) in [22] depends on the full multi-dimensional distribution

of the source string, our definition depends on the source conditional distribution of

order k only. This allows us to make the following proposition, stating that the

encoder performance depends on that distribution only:

Proposition 1 If the codebook distribution Q is Markov-k, then

Rm(P,Q, d) = Rk(P,Q, d) ∀m ≥ k .

This proposition is a natural extension to the result in [22], stating that perfor-

mance is the same for all sources having the same marginal, when the codebook is

memoryless - but to the best of our knowledge, it was never published. We can use

Rk(P,Q, d) to define:

Rk(P, d) = inf
Q

Rk(P,Q, d)

Rk(P, Θ, d) = inf
θ∈Θ

Rk(P,Qθ, d) (39)

The following Lemma, which we prove in Appendix B, establishes the observation that

for a fixed memory order k, a Markov codebook performs better than a piecewise-i.i.d.

codebook:

Lemma 2

Rk(P, d) ≤ R̃k(P, d)

4As a matter of fact, the system discussed in [22] is different than ours, as their encoder searches

for matches through a database rather than a codebook of independent codewords, so that the

”codewords” at the input of the encoder are statistically dependent. It can be shown, though, that

performance of both systems is approximately the same when the word length ℓ is large.
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As a direct consequence of this Lemma and of (33), we have that limk→∞ Rk(P, d) =

R(P, d).

Whenever (39) has a minimizer, we define:

θ∗
∆
= θ∗(P, Θ, d) = arg min

θ∈Θ
Rk(P,Qθ, d) (40)

Defining:

Q∗
k(P,Q, d)

∆
= arg min

Q
Dk|k−1(P ◦ W‖P × Q) (41)

we can write a recursion (recall (20)):

θn+1 = θML

(

Q∗
k(P, θn, d)

)

. (42)

For this recursion we have the following Theorem, which we prove in Appendix

B. It can be seen as the equivalent of Theorem 1 of the memoryless case.

Theorem 3 (Natural Parameter Adaptation for Markov Codebooks, ℓ =

∞) Let QΘ be a set of finite-alphabet, stationary, ergodic distributions. For any initial

guess θ1 inducing an initial distribution Qk,1 with no zero elements, the deterministic

recursion (42) generates a monotonically non-increasing sequence R(P, θn, d). More-

over, if the set of conditional reproduction distributions Qk|k−1,Θ induced by the set Θ

is convex, then as n → ∞

Rk(P, θn, d) → Rk(P, Θ, d)

θn → θ∗ (43)

where θ∗ = θ∗k(P, Θ, d) is defined in (40).

We would like to give Q∗
k(P,Q, d) the meaning of the ”favorite type” as in the

memoryless case (13), but unfortunately we are not aware of any result regarding the

asymptotic statistics of the chosen codeword when the codebook has memory. How-

ever, we believe that this property does hold. For this we need to define Qy,k|k−1(y),

the k-order conditional type of a vector yℓ−1
0 , which is the the ratio between the

number of occurrences of yk−1
0 and the number of occurrences of yk

0 in the vector y.

Conjuncture 1 (Favorite Type for Markov Codebooks)

Qy,k|k−1 → Q∗
k(P,Q, d) in prob.

Ramarks:

1. Convergence of Markov NPA systems. If the conjuncture holds, then

the system does obey recursion (42) in the limit of large codewords. For finite word
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length ℓ, a result similar to to the memoryless Theorem 2 can be derived as well, but

it is outside the scope of this work.

2. ML Estimation in Markov models. The ML estimator is, for any ℓ > k:

θML(y)
∆
= arg max

θ∈Θ
Qθ(y

ℓ−1
0 ) = arg max

θ∈Θ
log Qθ(y

k−1
0 ) +

ℓ−1
∑

m=k

log Qθ(ym|y
m−1
m−k) ,

which, as the word length ℓ → ∞, is equivalent to a divergence projection:

lim
ℓ→∞

θML(y) = arg max
θ∈Θ

ℓ−1
∑

m=k

log Qθ(ym|y
m−1
m−k) = arg min

θ∈Θ
D

(

Qy,k|k−1‖Qθ(yk|y
k−1
0 )

)

.

(44)

Comparing with (19), we see that the divergence between memoryless distributions

is replaced by the divergence between marginal distributions.

3. Convexity condition on conditional distributions. The Theorem re-

quires that the allowed k-order conditional distributions form a convex set. Note,

that this is not equivalent to the requirement that the k-order marginals of the sta-

tionary distributions form a convex set. This is similar to the case with memoryless

distribution: a convex set of single-letter distribution does not induce a convex set of

vector distributions.

4. Dependance of performance upon the source memory. As stated above

in Proposition 1, our definitions of Rk(P, θ, d) and Q∗
k(P, θ, d) depend on the source

through its k-order marginal transition distribution only. We conclude, that asymp-

totic performance of the NPA system with Markov-k codebooks is unaffected by

source characteristics of higher order than k.

V Specific Examples

We turn now to describe the specific structure and behavior of the NPA system for

two special examples of NPA systems.

V-1 Memoryless Mixture Codebook

In this example we model the reproduction as a mixture of M predefined distributions

Qm,m = 1 . . . M , where the unknown parameters are M−1 weights of the components

in this mixture.

Figure 6 illustrates the generation of a single equivalent codeword. The fixed code

letters consist each of M + 1 components: M components drawn according to QM−1
0

and another component drawn uniformly between 0 and 1. All components within

a letter and all code letters are drawn independently. The transformation uses the

parameter vector to threshold the last component of each base code letter (as done
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Figure 6: Formation of a Single Memoryless Mixture Equivalent Code Letter

in Subsection II-3), to produce an integer between 0 and (M − 1). The equivalent

codebook letter is the fixed codebook letter component indexed by that integer.

ote that, in order for these theorems to hold, all distributions must be bounded

away from 0. Thus, a Gaussian mixture is not a valid case, though a mixture of

Gaussians truncated at any value is valid, and the Gaussian mixture case can be

approached. Also note that the memoryless codebook of Subsection II-3 is a special

case of the one described here with |Y| = M , and that when |Y| < M the parametric

representation of a distribution is not single. We will assume that M ≥ |Y|. Typically

it will be large, or even infinite.

Now we turn to the maximum likelihood estimation. This specific ML problem

The parameterization and the parametric set defined above are convex, thus The-

orems 1 and 2 apply. Maximum likelihood estimation of the weighting parameters

θ1 . . . θM has been studied in estimation theory. The straightforward solution is dif-

ficult, but there is an iterative procedure [15]: Start with any initial guess θ(0), and

iteratively compute:

Ci =
∑

y

Q̂n(y)
θ

(n)
i Qi(y)

∑

j θ
(n)
j Qj(y)

θ
(n+1)
i =

Ci
∑

j Cj

(45)
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Figure 7: Adaptation of θ vs. the Optimal Value for the Gaussian Mixture Case

where Q̂n(y) is the marginal of the chosen codeword. This is a special case of the

estimate-maximize (EM) algorithm for ML estimation [10].

For the case where the components Qm are Gaussian, we bring simulation results5.

We took Qm ∼ N(ηm, σ2) with M=3, η1 = −1, η2 = 0, η3 = 1, σ2 = 1
25

. The source

is a Gaussian mixture of the same components Qm of the codebook, with weights

{0.1, 0.3, 0.7}. Distortion measure is square distance.

We used the BA algorithm combined with ML estimation (using the EM algo-

rithm), to find that the optimal parameter vector at the point of slope −1 of the

constrained rate-distortion function is {0, 0.427, 0.533} (about such computations see

[18]). Then we run the system, using word length ℓ = 10 and the smoothing of (8)

with α = 0.02. For initial condition we choose equal weights to all components. the

results are shown in Figure 7 (the third parameter is omitted from the plot since it

is redundant). It is evident that the system tends towards the optimal solution.

5Since in this case the adaptive distributions are continuous, it doesn’t fall under the convergence

Theorems that we formally proved. Also note that Gaussian distributions are not bounded away

from zero, although a continuous-alphabet version of the theorems proven with similar technique

would require that boundness property. This can be solved by truncating the densities at some finite

but large value.

22



Figure 8: Source and Reconstruction Spectrum

V-2 Auto-Regressive Gaussian Codebooks

To demonstrate Markov codebooks of Subsection IV-2, we choose the example of

auto-regressive (AR)-Gaussian models. The base codebook is drawn Gaussian i.i.d.,

and the transformation is an all-pole filter, with the parameter vector being its

coefficients6. ML estimation of Gaussian-AR parameters is straightforward: It is

the empirical value of the correlations of the chosen codeword,

θi
ML(yn) =

1

ℓ − i

ℓ−i
∑

j=1

yj
n · yj+i

n , i = 0 . . . k − 1 . (46)

The optimal reproduction for this case is well known, and it is obtained through

the water-filling method [6]. The next figure demonstrates the convexity problem:

It shows the spectrum to which the system converges (ℓ = ∞) against the water-

filling spectrum. In the case on the left, the AR spectrum well approximates the

optimal spectrum, whereas on the right, for a more difficult case where the water-

filling spectrum consists of two separate bands, for some initial condition only one of

the bands exists in the AR spectrum.

6A codebook generated this way is only asymptotically stationary. One may think of ways to

set filter initial conditions in order to comply with the stationary distribution, but when the word

length ℓ is much larger than the filter order k this is not substantial.
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VI Discussion

We showed that a block-wise backward adaptive parametric encoder, with maximum

likelihood estimation of the parameters from the reconstructed source, converges to the

parameter-constrained rate distortion function. In particular, this system reproduces

the best weights in the family of Gaussian mixture reproductions, and (ignoring

the convexity issue) for quadratic distortion it reproduces the reverse water-filling

spectrum within the family of stationary Gaussian reproductions [6].

In the special case of linear auto-regressive (AR) reproduction, the proposed sys-

tem is similar to adaptive differential pulse code modulation (ADPCM), the parame-

ters being the linear prediction coefficients (LPC) [17]. The main difference between

the two systems is that while in ADPCM the quantizer is scalar, our analysis requires

large block length in order to obtain the “natural parameter adaptation” (NPA) prop-

erty. It is interesting to note, though, that parameter estimation in ADPCM is done

over a block of past samples; so in a sense it can be viewed as a hybrid scalar-vector

system, whose exact low rate behavior requires further study.

Another related coding system, which does employ vector quantization, is code ex-

cited linear prediction (CELP) [13]. However, regular CELP uses forward-adaptation

scheme, hence it reproduces the source spectrum rather than the optimum reverse

water-filling solution. As discussed in the Introduction, this spectral mismatch may

result in large loss of performance at low coding rate. A backward adaptive variant

of CELP, called Low-Delay CELP, [4], corresponds to the linear AR reproduction

case of the NPA system. Hence, a possible implication of our results is that LD-

CELP indeed has the potential of achieving the Gaussian rate-distortion function at

any coding rate, provided that the issue of non-convexity of this family is properly

resolved (see the discussion below).

An alternative popular method for source-matched non-parametric lossy compres-

sion is the generalized Lloyd algorithm, which allows to iteratively design an optimal

vector quantizer [14]. However, this method suffers from very high complexity, and

therefore is limited to off-line applications and small codebook dimensions.

A few remarks are in order regarding the limitations of NPA as the basis for a

practical universal lossy coding scheme.

1. Choice of the parametric family: When the parametric family QΘ is “too nar-

row” relative to the sources to be compressed, the resulting performance may be

poor. For example, as discussed in Section IV, memoryless reproduction cannot pro-

vide “memory gain”, thus it is not efficient for encoding sources with strong memory.

Another example is that of encoding non-Gaussian sources under quadratic distor-

tion using Gaussian reproduction. As shown in Appendix C, if Θ corresponds to the

family of all Gaussian distributions, then for any source P

R(P, Θ, d) = R(PG, Θ, d) = R(PG, d)
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where PG denotes the Gaussian source having the same auto-correlation as P . This

rate may be much higher than the rate-distortion function, R(P, d), if the source is

far from Gaussianity.

2. Lossless encoding of the index: We may reduce this sensitivity of the coding

performance to the choice of the reproduction family Θ, by conditional entropy coding

of the index in given the current codebook. Specifically, it follows from [19] that for

uniform or flat Gaussian reproductions and for any source, H(in|θn) is asymptotically

at most C∗(ρ) bits away from the rate-distortion function, where for quadratic dis-

tortion C∗ = 1/2 bit. In practice, the conditional index entropy may be achieved by

re-ordering the codewords according to their probability to match the source. Thus,

the increased robustness comes at the cost of lossless encoding complexity. Further-

more, entropy coding the index would cause higher variations of the output coding

rate, which is un-desired for some real-time applications. Finally, to achieve exactly

zero redundancy, QΘ must contain the true Q∗ corresponding to the source, even

when lossless encoding of the index is applied.

3. Codebook search complexity: The search for the first matching codeword re-

quires computation of distortion for ∼ 2ℓR codewords. Normally, to avoid exponential

search time, random codebooks are replaced by structured ones, e.g., lattice codes.

But then also the search is for the closest word and not for the first match within

a desired distortion. This gives rise to a fixed rate (minimum distortion) universal

scheme. It remains for further study how the search for the first distortion-matching

codeword, needed for the NTS mechanism, can be implemented with a structured

codebook.

4. Convexity of the parametric family: Many parametric families of interest, such

as the linear AR-Gaussian family, are not convex. As discussed in Section V, we can-

not ensure convergence of NPA to Q∗ in these cases. To overcome the convexity issue,

we suggest to select a set of “corner” points of Θ, and approximate QΘ by the convex

hull of the distributions associated with these base parameters. Specifically, Choose

some M parameter values θ1, θ1, . . . , θM . Define a new M -dimensional parameter

vector θ̃, which will play the role of the weight of each original parameter. For each

codeword letter, draw (according to θ̃) which θ value is to be used. All the adaptation

is done on the vector θ̃, and since QΘ̃ is the simplex, the resulting family is convex,

and convergence to the best parameters is ensured. Clearly, the set of reproduction

distributions over which we optimize, is a subset of the convex hull of the original

QΘ. Also, using a large number of base parameters M , we can approach this convex

hull. However, we are interested in a system with low parameter dimension, thus the

remaining open question is, how to choose a small number of points that will form a

good basis.

As a concluding remark, we go back to the connection between the NPA system

and the Blahut-Arimoto algorithm for computation of the rate-distortion function

[2]. Each step of the deterministic recursion (20) is equivalent to one step of the
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BA algorithm7, followed by a step of maximum likelihood estimation, thus we have

at hand a computational means for finding the constrained rate-distortion function.

This may still be a difficult computational task since the ML estimator itself is not

always readily computed. An iterative way to compute the ML estimator is the

estimate-maximize (EM) algorithm [10]. In cases where this algorithm is applicable,

a step of (20) may be broken into a BA step, followed by a large number of EM steps

- but, in fact, an alternative recursion, which at each step performs one BA step

and one EM step converges to θ∗ under the same conditions [18]. This allows easier

computation of the constrained rate-distortion function, and also allows us to replace

the ML estimate block of the NPA system with an “EM-step” block.
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Appendix

A Proof of Theorem 2

Lemma 3 (Maximal deviation from favorite type) For any δ > 0 and any

Pe > 0, there exists ℓ large enough such that for any n the escape event probability

Pr{Qyn,ℓ
/∈ Q∗

n(P,Q, d, δ)} ≤ Pe.

Proof: By [19, Theorem 2], Pr{Qyn,ℓ
/∈ Q∗

n(P,Q, d, δ)} → 0 exponentially fast in ℓ

for all δ > 0, w.p.1 w.r.t. the source string realization. Furthermore, the exponential

coefficient is R(P,Q, d), which is bounded from below by R(P, d) > 0. Thus the

convergence is uniform in θ, hence holds for all θn 2

For the following series of ”deterministic” lemmas we use the notation: Divergence

distance of a parameter θ from the optimum parameter θ∗ of (18) is:

L(θ)
∆
= D

(

Qθ∗‖Qθ

)

, (47)

while the redundancy of a parameter over the constrained R − d function is:

∆(θ)
∆
= R(P, θ, d) − R(P, Θ, d) . (48)

Figure 9 demonstrates these basic quantities used in analysis of the NPA iterations.

We also use the abbreviation Ln = L(θn) and ∆n = ∆(θn), for the true divergence

from the optimum and the redundancy at step n, respectively. We will also use en(δ)

7or rather, a fixed-distortion version of the BA algorithm
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θ∗(P, Θ, d)

θ̂n,ℓ L(θn)

θ̂n

θn

θn+1

α

1 − α

R(P, θn, d) = R(P, Θ, d) + ∆(θn)

R(P, Θ, d)

Figure 9: NPA iteration

to denote the escape event defined in (32), and en(δ) to denote the complimentary

of the escape event (i.e. when the selected type falls within the δ-ball of the favorite

type).

Lemma 4 (Minimum decrease of divergence in NPA iteration with ℓ = ∞:

”ideal projection”)

L(θ̂n) ≤ Ln − ∆n ,

where θ̂n = θML

(

Q∗(P, θn, d)
)

was defined in (20).

Since this Lemma deals with ideal (deterministic) projections, it follows directly

from analysis in [8] (see also [23, Lemma 1]), but we will bring it here to keep this

paper self-contained.

Proof: From the ”three points property” and ”four points property” of [8, The-

orem 3] it follows that in an alternating minimization of D(B‖A):

D(Bn‖An) − D(B∗‖A∗) ≤ D(B∗‖An) − D(B∗‖An+1)

where B∗ and A∗ are the points of minimum divergence. Now we turn to the iteration

of NTS + ML shown in the proof of Theorem 1 to be a special case of this mechanism.

The left hand side is, by definition, ∆n, while the right hand side is:

D
(

P ◦ W ∗(P,Q, d)‖P × Qn

)

− D
(

P ◦ W ∗(P,Q, d)‖P × Qθ̂n

)

= EP (x)◦W ∗(y|x) log
Qθ̂n

(y)

Qn(y)

= D(Q∗‖Qn) − D(Q∗‖Qθ̂n
) = Ln − L(θ̂n) .
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2

Lemma 5 (Minimum decrease of divergence in NPA iteration with finite

ℓ: ”noisy projection”) If there was no escape event at step n, i.e. en(δ), then

Ln+1 ≤ Ln − α
(

∆n − ν(δ)
)

(49)

where 0 < α ≤ 1 is the smoothing coefficient of (8) and ν(δ) = ν(δ, q) → 0 as δ → 0

for all q > 0, where q is a lower bound on the letter probability in all distributions of

QΘ (see before Theorem statement).

Proof: By definition,

Ln+1 = L(θn+1) = D(Qθ∗‖Qθn+1)

and using the smoothing formula (8) we have that:

Ln+1 = D
(

Qθ∗‖Q(1−α)θn+αθ̂n,ℓ

)

≤ (1 − α)Ln + αD
(

Qθ∗‖Qθ̂n,ℓ

)

≤ Ln − α∆n + α

[

D
(

Qθ∗‖Qθ̂n,ℓ

)

− D
(

Qθ∗‖Qθ̂n

)

]

where θ̂n, the parameter associated with the ideal projection, is as in the previous

lemma, and θ̂n,ℓ, is the parameter associated with the noisy projection. The first

inequality is justified by the convex parameterization assumption, and the second is

a consequence of Lemma 4. Then it remains to be seen that:

D
(

Qθ∗‖Qθ̂n,ℓ

)

− D
(

Qθ∗‖Qθ̂n

)

≤ ν(δ) , (50)

where ν(δ) → 0 as δ → 0. To see this, choose

ν(δ) =
δ log(e)

(|Y| · q)−
1
q − δ

where |Y| is the reproduction alphabet size and q is the minimum reproduction letter

probability within the parametric class, positive by the theorem conditions. The in-

equality (50) then follows by the uniform bound on divergence difference, [23, Lemma

6], whenever δ is small enough to ensure that the denominator of the expression above

is positive. Using this choice, ν(δ) → 0 as δ → 0 as required. 2

For the following two lemmas we will need the definition:

Lν = sup
θ∈Θ:∆(θ)<ν

L(θ) (51)
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for the maximum distance from optimal distribution at a given redundancy. Note that

when Qθ∗ is unique as in the conditions of the theorem, then Lν is a monotonically

non-decreasing function of ν, and Lν → 0 as ν → 0. Using this, define:

ǫ(δ) = αν(δ) + Lν(δ) , (52)

where ν(δ) is as in Lemma 5 and α is the smoothing coefficient.

Lemma 6 (Entering an ǫ-neighborhood of Qθ∗ in finite time) For any δ > 0

and for ǫ(δ) of (52), there exists a finite n0 = n0(δ), such that if there were no escape

events for all first n0 iterations, i.e. en(δ) for n = 1, . . . n0, then Ln ≤ ǫ(δ) for some

n ≤ n0. This holds uniformly in the initial parameter θ1.

Proof: First, we prove that for some n ≤ n0,

∆n ≤ αν(δ) +
L1

n0

.

The way we derive that is somewhat similar to the deterministic analysis of conver-

gence for the BA algorithm in [3]. Summing the result of Lemma 5 for n = 1, . . . , n0,

we have that:

Ln0 ≤ L1 − α[Σn0
n=1∆n − n0ν(δ)] .

Asserting Ln0 ≥ 0 and rearranging, we see that:

∆̄n0 ≤
L1 − Ln0

n0

+ αν(δ) ≤
L1

n0

+ αν(δ) ,

where ∆̄n is the average of ∆1 . . . ∆n
8. Since at least one term of the average must

be as small as the average, exists n ≤ n0 s.t. ∆n is as required. Thus, for every

∆ > αν(δ) we can find a finite n0 s.t. ∆n ≤ ∆. Now we turn to Lν as defined in

(51). By monotonicity and continuity of Lν , Ln ≤ ǫ for all ǫ > Lαν(δ) within a finite

number iterations. Since ǫ(δ) satisfies this condition, the Lemma follows. 2

Lemma 7 (”Black Hole”) If there was no escape event at step n, i.e. en(δ), and

if Ln ≤ ǫ(δ), where ǫ(δ) is defined in (52), then Ln+1 ≤ ǫ(δ) as well.

Proof: By Lemma 5 Ln+1 ≤ Ln + αν, thus if Ln ≤ Lν then Ln+1 ≤ Lν + αν ≤ ǫ.

On the other hand, if Ln > Lν then by definition (51) ∆n > ν, thus Ln ≤ Ln+1 ≤ ǫ.

2

As a direct result of these last two lemmas, we have:

8In the deterministic case, i.e. ν(δ) = 0, this reduces to the result of [3].

29



Corollary 1 (Type sequence limit without escape events) If there were no

escape events for all first n0 iterations, i.e. en(δ) for n = 1, 2, . . . n0, then Ln0 ≤ ǫ(δ)

of (52).

Proof of Theorem 2: For the first part, consider an escape event at some

iteration n. In such case, the type sequence may take some value outside the ǫ

neighborhood of Qθ∗ even if it was inside that neighborhood already. But since we

assumed that θ1 could be any θ ∈ Θ, for instance the one leading to the largest L-

difference, the distance from optimum after such event can not be worse. Therefore,

Corollary 1 holds, with a time shift, to the parameter evolution after an escape event.

Thus, for any δ > 0 and n ≥ n0(δ) we can write:

Pr{Ln > ǫ} ≤ Pr{
n
⋃

k=n−n0+1

en(δ)} , n > n0(δ) ,

with ǫ = ǫ(δ) = αν(δ) + Lν(δ) as in the corollary and n0 = n0(δ) of Lemma 6. Now,

using a union bound for these (dependent) events, we assert:

Pr{Ln > ǫ} ≤ Σn
k=n−n0+1 Pr{en(δ)} , n > n0 .

Incorporating Lemma 3, we have that for any Pe > 0 and large enough ℓ:

Pr{Ln > ǫ(δ)} ≤ n0(δ)Pe(δ) , n > n0(δ) (53)

where n0 is finite, and ǫ → 0 whenever δ → 0. The first limit in (30) now follows

since closeness in the divergence sense implies closeness in L1, while the second limit

follows since by Lemma 4 Ln ≥ ∆n.

For the second part, define:

∆ℓ
∆
= inf

{

∆ : Pr{lim sup
n→∞

∆̄n,ℓ ≤ ∆} = 1} ,

where ∆̄n,ℓ is the average of ∆1 . . . ∆n when the word length is ℓ. To bound this

asymptotic redundancy, we recall that there exists some LM < ∞ s.t. sup{∆n} ≤

sup{Ln}
∆
= LM , to assert:

∆̄n,ℓ ≤ ǫ(δ, ℓ) +
ne(n, δ, ℓ)

n
LM ,

where ne(n, δ, ℓ) is the count of iterations in which ∆k,ℓ > ǫ(δ, ℓ) in the period k =

1, 2 . . . n. So we see that:

∆ℓ ≤ inf
{

∆ : Pr{lim sup
n→∞

{
ne(n, δ, ℓ)

n
} ≤ K(∆, δ)} = 1

}

,

where K(∆, δ)
∆
= ∆−ǫ(δ)

LM
. By the Borell-Cantelli Lemma [11], the limit will hold with

probability one as required, if:

∞
∑

n=1

Pr{
ne(n, δ, ℓ)

n
> K(∆, δ)} < ∞ . (54)
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Now, we define a new process, which is i.i.d., taking the value LM w.p. n0(δ)Pe(δ),

and the value ǫ(δ) otherwise. Let ñe(n, δ, ℓ) be the number of i.i.d. samples taking

the high value (LM) out of the first n samples, then by (53) we have that:

Pr{ne(n, δ, ℓ) > nK(∆, δ)} ≤ Pr{ñe(n, δ, ℓ) > nK(∆, δ) − n0(δ)} .

But, by the central limit theorem, ñe is asymptotically Gaussian, thus the probability

drops exponentially with n and the sum is finite as required by (54). 2

B Proofs for Markov Codebooks

B-1 Equivalence of Definitions for Rk(P, Q, d)

Rk(P,Q, d) is defined in [22] as follows: Let Y ∼ Q be a semi-infinite stationary

database sequence, defined for negative indices. Let X ∼ P be a semi-infinite sta-

tionary source sequence, defined for non-negative indices. Then:

RY K
k (P,Q, d)

∆
= inf

Uk
0

{

I(X; Uk|U
k−1
0 )

+ D
(

Q′(Uk|U
k−1
0 )‖Q(Y−1|Y

−2
−k−1)

)}

, (55)

where conditional divergence is, as defined in [6]:

D
(

P (X|Y )‖Q(X|Y )
)

∆
= D

(

P (X|Y )‖Q(X|Y )|P (X)
)

∆
=

∑

y

Pr(Y = y)D
(

P (X|Y = y)‖Q(X|Y = y)
)

, (56)

and the infimum is taken over all random vectors Uk
0 jointly distributed with X s.t.:

1. stationarity: (X,Uk−1
0 ) and (X∞

2 ,Uk
1) have the same joint distribution.

2. Distortion: (X0, U0) satisfy the distortion constraint.

Lemma 8 RY K
k (P,Q, d) = Rk(P,Q, d) defined by (37), and furthermore, if exists a

distribution W (Uk+1
1 |X) minimizing (55), then it induces Wk minimizing (37).

Proof: Consider the argument of the infimum in (55):

I(X; Uk|U
k−1
0 ) + D

(

Q′(Uk|U
k−1
0 )‖Q(Y−1|Y

−2
−k−1)

)

≥ I(Xk; Uk|U
k−1
0 ,Xk−1

0 ) + D
(

Q′(Uk|U
k−1
0 )‖Q(Y−1|Y

−2
−k−1)

)

= I(Xk
0; Vk|V

k−1
0 ) + D

(

Q′(Vk|U
k−1
0 )‖Q(Y−1|Y

−2
−k−1)

)

,
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where Vk
0 is a random vector, such that

Pr{Vk|X,Vk−1
0 } = Pr{Vk|Xk,V

k−1
0 } = EP (Xk−1

−∞
,X∞

k+1
) Pr{Uk|X,Uk−1

0 } .

Now, if Uk
0 belongs to the set over the infimum in (55) is taken, then so is Vk

0 . The

reason is, that averaging over conditions can not affect stationarity. The distortion

condition is still satisfied, since the distortion only depends on Pr(U0, X0), and this

marginal does not change by the averaging. Thus we can redefine Rk(P,Q, d) as an

infimum over all random vectors that satisfy the conditions 1 and 2, and also satisfy

that Vk is independent of X for all times other than k, given V k−1
0 . For such V, we

have:

I(Xk
0; Vk|V

k−1
0 ) + D

(

Q′(Uk|V
k−1
0 )‖Q(Y−1|Y

−2
−k−1)

)

(a)
= D

(

P (Xk
0)W (Vk|Xk,Y

k−1
0 )‖P (Xk

0 )Q′(Yk|Y
k−1
0 )

)

+ D
(

Q′(Yk|Y
k−1
0 )‖Q(Yk|Y

k−1
0 )

)

(b)
= D

(

P (Xk
0)W (Yk|Xk,Y

k−1
0 )‖P (Xk

0)Q(Yk|Y
k−1
0 )

)

(c)
= Dk|k−1(P ◦ W‖P × Q) (57)

Equality (a) involves a change of notation and substituting divergence for mutual

information, in (b) we used the identity of Topsoe [21], and (c) follows from the defi-

nition (38). Remains to be seen that each vector V in the infimum range corresponds

to a distribution W in the infimum range of (37). But this follows, since the distortion

condition is identical, and P ◦ W is stationary since it’s defined by stationary P and

W . 2

B-2 Markov vs. Piecewise-I.I.D. Rate (Proof of Lemma 2)

We will first show, that Rk(P,Q, d) ≤ R̃k(P,Q, d) for all Q. By the chain rule for

divergences, we have that:

D(Pk ◦ Wk‖Pk × Qk) = Dk|k−1(Pk ◦ Wk‖Pk × Qk) + D(Pk−1 ◦ Wk‖Pk−1 × Qk) .

Since this holds for all W , and the set over which infima are taken depends on the

zero-order marginals only, we conclude that:

(k + 1)R̃k+1(P,Q,D) = inf
Wk

D(Pk ◦ Wk‖Pk × Qk)

= inf
Wk

{Dk|k−1(Pk ◦ Wk‖Pk × Qk) + D(Pk−1 ◦ Wk‖Pk−1 × Qk)}

≥ inf
Wk

Dk|k−1(Pk ◦ Wk‖Pk × Qk) + inf
Wk

D(Pk−1 ◦ Wk‖Pk−1 × Qk)

= kR̃k(P,Q,D) + Rk(P,Q, d) . (58)

Reordering, we have that:

Rk(P,Q, d) ≤ R̃k(P,Q, d) − k
[

R̃k(P,Q, d) − R̃k+1(P,Q, d)
]

≤ R̃k(P,Q, d) .

Since this holds for all Q, then it also holds for the infima and Lemma 2 follows.
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B-3 Proof Outline of Convergence for Markov Reproduction

(Theorem 3)

Proof of Theorem 3 is based upon the concept of alternating minimization, similar to

the proof of Theorem 1. However, in this case we are not able to present the problem

as minimization of divergence between convex sets, thus we resort to a more generic

result of [8]. To this end, we will define the following sets:

B = {P (Xk
0 )W (Y k

0 |X
k
0 ) : W stationary, ρ(P,W ) ≤ d}

A = {P (Xk
0 )Qθ(Yk|Y

k−1
0 ) : θ ∈ Θ} . (59)

Also, define the conditional divergence as the ”distance” between points in the

sets:

d(B,A) = Dk|k−1(P ◦ W‖P × Q) .

We can now redefine Rk(P,Q, d) as:

Rk(P,Q, d)
∆
= d(B,A)

∆
= inf

B∈B
inf
A∈A

d(B,A) . (60)

For the proof, we also need to define a ”distance” between two points in B:

δ(B,B′) =
∑

xk
0

P (xk
0)

∑

yk
0

W (yk
0 |x

k
0) log

W (yk+1|x, yk
1)

W ′(yk+1|x, yk
1)

Next we observe, that the set B is convex, and if the set of conditional distributions

QΘ is convex then the set A is convex as well. This allows to prove two inequalities:

Lemma 9 (3-points property) For convex QΘ, if B′ = arg minB∈B d(B,A′) then

δ(B,B′) + d(B′, A′) ≤ d(B,A′)

Lemma 10 (4-points property) If A′ = arg minA∈A d(B′, A) and Q is convex,

then

d(B,A′) ≤ δ(B,B′) + d(B,A)

Proof of these Lemmas is very similar to the proof of [8, Lemmas 2 and 3] for

the case of divergence between convex sets. This assures, by [8, Theorem 2], that

alternating minimization between the sets B and A as defined above does converge to

the global optimum whenever QΘ is convex. Remains to be shown, that the recursion

(42) materializes this alternating minimization, and that follows from conditional

divergence version of Lemma 1.
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C Redundancy of R(P,Q,d) for Gaussian Code-

books under Mean Square Distortion

In this appendix, we show that if the parametric family QΘ is Gaussian (with any

memory model), then the system can not gain from any non-Gaussianity of the source,

i.e., R(P, Θ, d) is the same for all sources that have the same first two moments.

Lemma 11 Let P be some k-dimensional distribution with expectation vector η and

covariance matrix S. Let PG be the Gaussian distribution with same η and S. Then,

for a Gaussian distribution Q and mean square distortion,

R̃k(P,Q, d) = R̃k(PG, Q, d)

where R̃k(P,Q, d) was defined in (35).

Proof: For any k-dimensional transition distribution Wk. Let WG,k denote the

Gaussian transition distribution such that P ◦ WG,k has the same expectations and

joint covariance as P ◦ W . Now, for Gaussian Qk:

D(Pk ◦ Wk‖Pk × Qk)

=
∑

x,y

P (x)W (y|x) log
W (y|x)

Q(y)

=
∑

x,y

P (x)W (y|x)[log
W (y|x)

WG(y|x)
+ log

WG(y|x)

Q(y)
]

(a)
=

∑

x,y

P (x)W (y|x) log
W (y|x)

WG(y|x)
+

∑

x,y

PG(x)WG(y|x) log
WG(y|x)

Q(y)

= D(Wk‖WG,k|Pk) + D(PG,k ◦ WG,k‖PG,k × Qk)

≥ D(PG,k ◦ WG,k‖PG,k × Qk) ,

with equality if and only if Wk = WG,k. The equality (a) follows because log WG(y|x)
Q(y)

,

the logarithm of the ratio of Gaussian distributions, is a quadratic function of (x,y)

and since P ◦W and PG◦WG have the same first and second order moments. Recall the

definition of R̃k(P,Q, d) in (35). For any distribution Wk satisfying the mean square

distortion constraint, also WG,k satisfies the same constraint, thus it is sufficient to

take the infimum over Gaussian transition distributions only. But for a Gaussian

WG,k we saw above that D(Pk ◦WG,k‖Pk ×Qk) = D(PG,k ◦WG,k‖PG,k ×Qk), thus the

infimum is equal as well 2

A similar result can be shown for the Markov codebooks of Subsection IV-2.

Recalling the definitions is Subsection IV-1, it follows that for a stationary source

P and a stationary Gaussian Q,

R(P,Q, d) = R(PG, Q, d) ,
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and consequently for a Gaussian class of reproductions Θ,

R(P, Θ, d) = R(PG, Θ, d) .

In the special case of the class of all Gaussian reproductions, we have that

R(P, Θ, d) = R(PG, d) .

Recalling Figure 4, the set Ã corresponds to all stationary reproductions Q, while

the set A corresponds to Gaussian reproductions only. Note, that the reproduction

Q∗(P, θ∗, d) is the output induced by a non-Gaussian input P and a Gaussian transi-

tion distribution WG, thus it is not Gaussian in general.
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