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Abstract

We consider the problem of broadcasting a single Gaussian source
to two listeners over a Gaussian broadcast channel, with p channel uses
per source sample, where p > 1. A distortion pair (D1, D5) is said to
be achievable if one can simultaneously achieve a mean-squared-error
(MSE) D; at receiver 1 and Dy at receiver 2. The main result of
this paper is an outer bound for the set of all achievable distortion
pairs. That is, we find necessary conditions under which (D, Ds) is
achievable. We then apply this result to the problem of point-to-point
transmission over a Gaussian channel with unknown signal to noise
ratio (SNR) and p > 1. We show that if a system must be optimal
at a certain (high) SNR,,;,, then as the SNR improves, the distortion
cannot decay faster than 1/SNR. As for achievability, we show that
a previously reported scheme, due to Mittal and Phamdo (2002), is
optimal at high SNR. We introduce two new schemes for broadcasting
with bandwidth expansion, combining digital and analog transmis-
sions. Additionally, we show how a partial feedback, returning from
the bad receiver to the transmitter and to the good receiver, can im-
prove the performance beyond that of the proposed schemes. Interest-
ingly, the distortion pair achieved with this feedback lies on the outer
bound derived here.

Index terms - distortion region, joint source-channel coding, lossy broadcasting

*The material in this paper was presented in part at the 40th Annual Allerton Confer-
ence on Communication, Control and Computing, Oct. 2002.
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Figure 1: Lossy transmission of a source through a broadcast channel

1 Introduction

The broadcast channel, illustrated in Figure 1, is a communication channel
in which one sender transmits to two or more receivers. Suppose that we are
given an analog source and a fidelity criterion, and we want to convey the
source to both receivers simultaneously. The problem of joint source-channel
coding for the broadcast channel is to find the distortion region which is
the set of all simultaneously achievable distortion pairs (D;, D) at the two
receivers. For a general source, broadcast channel and distortion measure,
this problem is yet open [1]. We recall that in the channel coding problem
for broadcast channels, the capacity region depends only on the marginal
distributions of the channel [2, page 422]. We shall show in Appendix I that
the same is true for the distortion region.

We investigate below an important special case, of transmitting a band-
limited white Gaussian source over a band-limited white Gaussian broad-
cast channel with squared-error distortion measure. Note that a Gaussian
broadcast channel is a degraded broadcast channel, and we shall say that
receiver 1 is connected to the good channel and receiver 2 is connected to the
bad channel. Also note that this type of problem can be characterized by the
parameter p. In continuous time systems, we define p 2 W./Ws, where W, is
the channel bandwidth and W, is the source bandwidth. In a discrete-time
systems, p is defined as the number of channel uses per source sample. Since
band-limited continuous-time systems can be translated to discrete-time sys-
tems, we shall use the discrete time representation. We shall focus on the
bandwidth expansion scenario, in which p > 1.



Following Shannon’s theory, a trivial Cartesian outer bound on the dis-
tortion region is given by D; > R™'(pC}) and Dy > R™'(pCs), where

1 o?

R(x) = §log; (1)

is the rate-distortion function of a Gaussian source with variance o (in bits
per source sample) [2], and Cy and Cy are the individual point-to-point ca-
pacities (in bits per channel use) of the good and bad channels respectively.
In the case of p =1, the trivial outer bound is achieved by analog transmis-
sion, i.e., by sending the source uncoded [3]. This means that in this special
case, there is no conflict between the needs of the two receivers, and both of
them perform as if the needs of the other receiver could be ignored.

For the case of p > 1, Mittal and Phamdo [4] suggested a hybrid digital-
analog scheme which achieves the distortion pair

(D1, Ds) = (R_l ((p—1)C2+ Ch), R_l(PCQ)) : (2)

Other schemes were developed for the case of p > 1, providing other achiev-
able distortion pairs [3, 5, 6]. However, no non-trivial outer bound (converse)
on the distortion region was ever derived. The main result of this paper is
such an outer bound. For deriving the outer bound we use an auxiliary ran-
dom variable, similar to the one used by Ozarow [7] for proving the converse
for the Gaussian multiple description problem. It follows from our outer
bound that the distortion pair (2) is optimal in the limit of high SNR.

Regarding an inner bound for the distortion region, we develop a new
coding scheme which combines elements from the Mittal-Phamdo scheme to-
gether with a Wyner-Ziv source encoding and a broadcast channel encoding.
In addition, we outline a second scheme, whose concept resembles that of
Chen and Wornell [3], making further use of analog transmission.

A variant of the problem above is the problem of sending a Gaussian
source over an Additive White Gaussian Noise (AWGN) channel, where the
SNR is unknown except that SNR > SNR,,;,, where SNR,,,;,, is known. Using
our outer bound on the distortion region for the broadcast channel, we prove
that for any system, if SNR,,,;, is high, and if the system is tuned to be optimal
at SNR,,;,, then, as the SNR improves, the distortion cannot decay faster
than 1/SNR for all values of p. For comparison, we recall that the solution
of R(D') = pC' is given by D' = 0?/(1 + SNR)”, and hence, the MSE of
a collection of systems, each optimally designed for a different (high) SNR
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decays as 1/SNR”. We note that our result is stronger than a previous result
by Ziv [8], who showed that asymptotically, the distortion cannot decay faster
than 1/SNR? for all values of p.

2 Outer bound on the distortion region

We shall now derive the outer bound. We denote the source by S = (Si,...,Snm),
and the decoders output by S; = (§1,1, el gl,m) and Sp = (5’2,1, o SQ,m).
We denote the channel input by X = (X,...,X,,) and the channel outputs
by Yy =(Yi,...,Y1,) and Yo = (Ys,....Y5,). The bandwidth expansion

ratio p is defined by
n
pP=— (3)
m

and we shall focus on the case where p > 1.

Definition 1 A Gaussian broadcast channel with input X = (Xy,...,X},)
and outputs Y1 = (Yi1,...,Y1,) and Yo = (Yo,,....Ys,), satisfies for i =
1,2:

SE(X)<P, Yii=Xi+Ziy, Zizg~NON), t=1,...,n, (4)

t=1

S|

where Zy 4, Zyy are memoryless and statistically independent of Xy, and Ny >
Ny.

The capacities C; and C of the good and bad channel, respectively, are given
by:

1 P
C; = 5 log (1 + ﬁ) bits per channel use, i=1,2. (5)

We denote the distortion measure by d(S,S;) for (i = 1,2), and define
the following:

Definition 2 (Dy, Dy) is an achievable distortion pair if, for any ¢ > 0,
there exist integers m and n = pm, an encoding function X = i (S) and
reconstruction functions Sy = g7, (Y1) and Sa = g5 (Y2), such that

E(d(S,8)) < Di+e€  fori=1,2. (6)

The achievable distortion region is defined as the convex closure of the set of
achievable distortion pairs.




Note that it follows from Definition 2 that p is a rational number. This does
not limit the scope of the results in any practical way, since any non-rational
value could be replaced by a rational value which is arbitrary close to it.

In this paper the source is memoryless with S; ~ A(0,0?), and the dis-
tortion measure is squared-error, that is:

1m
D= Ed(S,8:) = — > E(S, — i=1,2, t=1,....,m. (7)

m;35

In summary, we wish to send a memoryless Gaussian source over the
Gaussian broadcast channel, with p > 1, minimizing the squared-error dis-
tortion. Our main result is the following:

Theorem 1 (outer bound): Let (Dy, Dy) be an achievable distortion pair,
and let o > 1 be defined by

Dy = aR '(pCy) = ac?2 2, (8)
Then 2
Dy > sup —— f( ) (9)
k>0
where
A 1 NQ P 4 1/p NQ 1 P
f(/ﬁl)—; Ea+<ﬁ2+1>m —(E—1>(1+/{) —-1].

(10)

We note that « is in fact an excess distortion ratio, which is the ratio between
D, and the smallest possible distortion in receiver 2. We shall prove The-
orem 1 in section 3 and we shall now outline the properties of the function
f(k), in order to shed some light on the RHS of (9). Examples of f(x) are
illustrated in Figures 2-4.

Property 1 The function f(k) is continuous in k.
Property 2 If a > 1 then

lim f(k) = o0. (11)



Property 3 If a =1 then

<P+N2>p‘1 P+N, N,—N;

lim f(k) = N, N W,

k—0

(12)

Property 4 In the limit of kK — oo, the function f(k) is independent of o
and is given by

lim f(k) = (1 + £>p e (13)

K—00 N,

Property 5 The derivative of f(k) with respect to k is given by:

where ol) = hy(k)hs (k) 1 (15)
NY ’
where
hi(k) = {NQ [% + (1 + N%)p] " (Ny — Ny) (% + 1)1/’)}[11 . (16)
and

ho (k) = Na(—a) [% + (1 + N%)p] R (N, — ) (% + 1)1/p_1 . an

Property 6 If follows from Property 5 that

lim —8]0(/{)

K—00 K

=0. (18)
Property 7 lim, , g(x) < 0 if and only if:

A P>p1 N, ( N, )pl Ny — Ny
214 o Sz h 19
o > ( Y, v, \pew, TN | (19)

where g(k) was defined in (15).
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Figure 2: f(k) in the case of @ =1 . Solid: f(k), dotted: the limit of f(k)
as K — oo according to Property 4, dashed: the limit of f(k) as kK — 0
according to Property 3. Note that the slope of f(k) approaches zero as
k — oo according to Property 6. (Parameters: P = 0.15, Ny = 0.01,
NQ = 01, P = 3)
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Figure 3: f(x) in the case of 1 < o < ay, . Solid: f(k), dotted: the limit
of f(k) as k — oo. Note that f(k) — oo as kK — 0 according to Property 2,
and that the minimal value of f(k) is smaller than its asymptotic value at
k — oo, according to Properties 5-7. (Parameters: P = 0.15, N; = 0.01,
No=0.1, p=3, a =2, ay, = 5.63)
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Figure 4: f(k) in the case of a > ay, . Solid: f(k), dotted: the limit of
f(k) as k — oo. Note that f(k) is always larger than its asymptotic value
at k£ — oo, according to Properties 5-7. (Parameters: P = 0.15, N; = 0.01,
Ny =0.1, p=3, a =6, ay, = 5.63)



We shall show in the proof of Corollary 2 that a4, is in fact a lower bound
on the excess distortion ratio which is possible when receiver 1 is optimal.
Figures 2-4 demonstrate the properties of f(k).

An important special case is when we make no compromise in receiver 2
in favor of receiver 1. That is, we require that receiver 2 performs as if it was
an optimal point-to-point scenario. In this case, there is no excess distortion,
and a = 1. Corollary 1 addresses this case.

Corollary 1 (lower bound on D; when D, is optimal): Let (D;, D,)
be an achievable distortion pair where

Dy = R™'(pCs). (20)
Then )
P+NAN\”'P+N, N,— N\

D, > o2 ( ) — ) 21

L= ( N, N, N, (21)

a

Proof: By Theorem 1 we have that D; > Wi) for all k > 0, and in particular
for Kk — 0 (from above). By (20) and (8) we have that « = 1. Combining
this with Property 3 proves the theorem. O

For comparison, Mittal and Phamdo [4] suggested a coding scheme which
achieves the distortion pair

D'QZR_l(PCQ)
and
D = R ((p—1)Cy+CY) (22)
P+NA" P+ N\
_ 2
- a<< - ) - > . (23)

Comparing this with (20) and (21), we see that their scheme is asymptotically
optimal in the case of high SNR (P/N; — o). Additionally, it can be shown
that their scheme is optimal in the limit of Ny — oo, although this case is
less interesting.

Corollary 2 addresses the special case in which we make no compromise
in receiver 1 in favor of receiver 2.
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Corollary 2 (lower bound on D, when D, is optimal): Let (D;, D,)
be an achievable distortion pair where

Dy = R™'(pC}). (24)
Then ot
_ Ny Ny Ny -
Dy > RN Cy) |1 - — 4+ — ( ) . 25
2= (2)[ N, TN \PEN, ] (23)
Proof: By Property 4 we have that
.1
Jim o log f(k) = pC: (26)
Hence, the requirement set by (24) can be written as
1
R(Dy) = lim  log f(). (27)
Using (1), we can write (27) as:
2
D, = ’ (28)

A )
Combining this with Theorem 1 yield that (D;, Dy) may only be achievable
if f(k1) > limy, o f(K) for all kK > 0. (Otherwise, there would be a lower
bound on D; that contradicts (24).) By Properties 7 and 5 this may only
happen if @ > «ay,. This means that «ay, is in fact a lower bound on the excess
distortion ratio which is possible when receiver 1 is optimal. Combining the
definition of ay, (19) with (1), (5) and (8) proves the Corollary. O
For comparison, the scheme of Shamai, Verdi and Zamir (although not
designed originally for broadcast channels) achieves the distortion pair:

D1 = Ril(pcl), D2 = Ril(CQ).

Hence, their scheme is optimal in the limit of N;/Ny — 0.

3 Proof of Theorem 1

Proof of Theorem 1: We introduce an auxiliary random variable U, similar
to the one used by Ozarow [7]. Specifically, let U = (Uy,...,U,,) and V =
(Vi,...,Vin) be memoryless vectors such that

Vi~ N(0,k0%), and U; =S, +V, (t=1,...,m), (29)

11
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Figure 5: The Gaussian broadcast channel with the auxiliary variable U.

Y

where x > 0. Hence we have Markov chains U <+ S + X < Y,; & gl for

i = 1,2. (See figure 5). By the chain rule for mutual information we have
for (1 =1,2):

I(X;Yy) = I(X;U) + I(X;Y4|U) = I(X; U[Yq) (30)
= I(X;U) + h(Y1/U) = h(Z:) - I(X; U[Y4) (31)
= I(X;U) + h(Y1|U) — h(Z1) = K(U|Y1) + A(U|X, Yy)
= I(X;U) + h(Y41|U) = h(Zy) — H(U|Y1) + H(UX) (32
= h(U) = h(U[Y1) + A(Y1|U) = h(Zy) (33)

where (31) follows from (4), and in (32) we used the Markov chain relation
to replace h(U|X,Y ) with h(U|X).

In (33) I(X;Y}) is expressed as a sum of four terms. We shall now upper
bound I(X;Y;) by bounding those terms. First, we note that U and Z; are
Gaussian memoryless vectors, where U has variance (k+ 1)o? and length m,
and Z; has variance N; and length n. Hence, their differential entropies [2]
are given by :

h(U) = %log%re(/i—i—l)a? (34)
and h(Z,) = glogQWeNl. (35)

We shall now lower bound the second term in (33), which is A(U|Y}y).
By the conditional form of the entropy power inequality [9], and since U is

12



the independent sum of S and V we have that:

2mhSIY1) | onepa?, (38)

where (38) follows since V is Gaussian [2]. The term h(S|Y7) in (38) can be
further bounded as follow:

hS[Y:) = h(S)—1(S;Yy) (39)
= %log 2mec” — 1(S;Y,) (40)
> %log 2mec’ — I1(X;Yy), (41)

where (40) is since S is Gaussian and (41) is by the data processing inequality.
Combining (38) and (41) with the fact that p = m/n yields:

h(UYy) > %log (2mec? (27 #1050 4 ) . (42)

We shall now upper bound the third term in (33), which is A(Y|U). We
note that Y, is the sum of Y; and a noise with variance N, — N;. Hence,
using the conditional form of the entropy power inequality [9], we can show
(see Appendix II) that:

93h(Y2|U) > 92h(Y1|U) | glog(2me(Na=N1)), (43)

(Note that a similar derivation was done in [10].) The LHS of (43) can be
expressed as follow:

92h(Y2|U) _ 92(n(Y2)-1(Y2;U)) < 2me(P + N2)2*%1(Y2;U), (44)

where we used the fact that the variance of Y5 is P + Ny, and hence its
differential entropy cannot exceed % log(2me(P+Ns)) [2, page 262]. Note that
the combination of (43) and (44) can serve as an upper bound for h(Y1|U)
in terms of I(Y2; U). We shall now use rate distortion theory to derive a
lower bound on 7(Y5; U). Using (5), we can rewrite (8) as:

2 N. P
Dy = a2 0 = 0 —ao? () 15
2= a0 1+ P/Nyye "7\ PN, (45)
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We have:

P (a8 0) = F (23 (5a - ) (16
_ B (% g(g,t — S48 - Ut)2> (47)
_ (% é(ég,t - 5;)2) L E (% i(st _ Ut)2> (48)
- e r(23) (19
— a0 (%‘*’NQY + ko, (50)

where (48) follows since S; — U; = V} is independent of gQ,t — Sy, (49) follows
from (7) and (29), and (50) follows from (29) and (45). We now have:

1 1 .
“I(Y,:U) > =I(8,:U 51
n(z,)_n(g,) (51)
1 ~
> ZmR(Ed(S,; U)) (52)
n
1 1)o?
>~ log (k + )f , (53)
2p ao? (P{Z?Vz) + ko?

where (51) is by the data processing inequality, (52) is by rate-distortion
theory, and (53) follows since U is Gaussian with variance (x + 1)o?, and by
(1) and (50). Combining (43), (44) and (53) yields:

1/p
a (=22 + K
h(Y1|U) < glog (2we(P + o) ( (P;Nj >1 — 21e(Ny — Ny)

(54)
Hence, we have bounded all four terms in (33). Combining these terms,
that is, combining (33), (34), (35), (42) and (54) yields:

1/p

(P o) (2 (i) +1) " = (o — 8 (=2)
N, (lQ—Q%I(X;Yﬂ + 1)1/p

1
—I(X;Y4) < Slog
n

DO | —

(55)
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for all K > 0. Algebraic manipulation of (55) yields:
L% vs) < Ltog £(k) (56)
—I(X; —log f(k
n y +1) > 2p g

for all Kk > 0, where f(x) is defined in (10).
By rate distortion theory, by the data processing inequality, and by (56)
we have that if (D;, D) is achievable than

1 1 1

—R(Dy) < —I(X;Y;) < —1 57
for all kK > 0. Combining this with the rate distortion function (1) and taking
the supermum over all K > 0 proves the theorem. O

4 Transmission over Channels with Unknown
SNR

We now turn to the issue of lossy transmission over a channel with unknown
SNR. Corollary 1 sets a lower bound on the distortion D;, achieved at SNR
of P/Ny, given that the transmitter is optimal at SNR of P/N,. Hence,
by defining SNRyin 2 P/Ns and SNR £ P/N; and by (21) we prove the
following corollary:

Corollary 3 For every p > 1, if a transmitter is designed to be optimal
at signal-to-noise ratio SNR,,;, and the actual signal-to-noise ratio is SNR,
where SNR > SNRin, then, the resulting distortion D(SNR) must satisfy:

0_2

D(SNR) > @ - (1~ o(1),

where ® is independent of the actual SNR and is given by

) ! !
N (SNRmm> ’

and o(1) = 0 as SNRyi, — 00.
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Figure 6: MSE vs. SNR. Solid: the lower bound of Corollary 3. Dotted: the
solution of R(D) = pC(SNR)

Figure 6 illustrates the results of Corollary 3 in the case of high SNR,,;,,. The
bold dots represent the distortion achieved by systems which were designed
for specific SNRs (e.g. by separating source coding from channel coding).
The dotted line, which connects the bold points, represents the solution for
D of the equation

R(D) = pC(SNR).

The slope of the dotted line (at the limit of high SNR), on a log-log scale is
—p. It follows from Corollary 3 that no scheme can achieve the dotted line for
more than one value of SNR. In fact, the solid line, whose slope (at the limit
of high SNR) is —1, represents the lower bound of Corollary 3. Thus, the
MSE(SNR) behavior of any system, must be worst than what is represented
by the solid line.

It is interesting to compare these results to a previous result of Ziv who
analyzed the same problem [8]. Our result is stronger than Ziv’s result, since
we showed that the distortion cannot decay faster than 1/SNR, while Ziv

16



showed that it cannot decay faster than 1/SNR?2. Additinally, we bounded
the performance of any system, while Ziv restricted his result to a class of
systems, which he called “practical”.

5 Inner bound on the distortion region

We shall now describe an encoding scheme for lossy transmission of a Gaus-
sian source over a Gaussian broadcast channel with p > 1. We shall show
that one of the Mittal-Phamdo schemes [4], as well as the scheme of Shamai,
Verdi and Zamir [5], are special cases of the scheme which we shall now
describe. The encoder, and the two decoders are illustrated in Figure 7. The
transmission block X of length n = pm is generated by concatenating (i.e.
multiplexing in time) a “digital” block Xp of length (p — 1)m, and an “ana-
log” block X5 of length m. The digital block is generated by a broadcast
channel transmitter [2], such that a common message W is losslessly sent to
to both receivers, and a private message W, is sent only to receiver 1. To
allow lossless decoding, we set the rates Ry and Ry of W; and W, respec-
tively, (measured in bits per channel use) such that for some 0 < 8 < 1 and
some € > 0 (see [2, page 380]):

R, = %log (1 + (1_]\[76)P> —€ (58)
1
and Ry, = %log (1 + N T (BlP_ 5)P> — €. (59)

Since we transmit (W, W) over a channel with p—1 channel uses per source
sample, the rates in the source domain are ((p — 1)Ry, (p — 1)R2) bits per
source sample.

We shall now describe the content of the messages and the analog signal,
referring to Figure 7. The source is quantized by a k-dimensional Vector
Quantizer Q(-), with 2k(°~DFz quantization points and average distortion
Dg. We fix €; > 0, choose k sufficiently large, and design the VQ such that
it achieves

(b= V)R, = R(Dg) +c1, (60)

where R(Dg) is measured in bits per source sample. We ldenote the VQ
output by Sq = (Sq1, ..., Sgm). That is, S5,y = Q(S{_y)41), where,

SOtk = (SqG-1k41s- -+ Sqiw) and STy = (Sg-nksrs -5 Sjr)- (We
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assume that m/k is an integer). The quantization error E = (Ey,..., E,;)
is defined as E; = Sg; — S;. Each sample in E is scaled by a scalar K to
produce Xa.

The message W5 is an integer which uniquely describes the vector Sq.
Since the length of Sg is m, and its rate is (p — 1) Ry bits per source sample,
we have that W, € (1,...,2m~DRz),

Using broadcast channel decoders, both receivers will decode the message
Wj losslessly, and hence will be able to regenerate Sq losslessly. Hence, the
problem reduces to that of lossy transmission of E, whose variance is Dy.

Let (D), D) be the distortion pair which is achievable by our scheme.
Referring again to Figure 7, we denote by Yp; and Yps the noisy outputs
of the broadcast channel, in response to the input Xp, and by Ya; and Yo
the noisy outputs of the broadcast channel, in response to the input Xjy.
Receiver 2 estimates E by multiplying the input Yo by a gain factor K.

By setting K = ,/% and Ky = —}fﬁf, and taking the limit as ¢ — 0 and

€1 — 0 we have:

P = % (o1
= R (= D) (62)
ZN.
_ P<7+ ]322—2@—1)& (63)
2 —(p—1)
- PJ+N;/2 (1 TN (ﬁlp— 5)13) | (64)

where (61) follows from standard MSE calculations, (62) is by (60), (63) is
by (1) and (64) is by (59).

As for the good receiver, we note that we can make use of the private
message W to further reduce the distortion. However, as a temporary stage,
suppose that receiver 1 would estimate the source while completely ignoring
the private message. We shall denote this estimate by g’{ Let Di be the
average distortion between S and S%. Repeating the steps that led to (64)
one can verify that

o2N, 3P —(p—1)
Di=—— |1+ . 65
! P+N1( No+ (1 =pB)P (65)
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Figure 7: A coding scheme for lossy transmission with bandwidth expansion
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Our problem with respect to decoder 1 reduces now to the following:
the encoder needs to send a message Wi, (at rate (p — 1)R; bits per source
sample) to the decoder, describing the source S, taking into account that
the decoder already has side information g’i This is in fact the Wyner-Ziv
problem [11, 12]. Fortunately, since the source S is Gaussian, the Wyner-Ziv
result ensures that we can achieve (as € — 0):

D'1 — DT.QfQ(pfl)Rl

- ren e ()}

where (66) follows from (58) and (65).

Note that in the special case of § = 1 (R; = 0), this scheme is the same as
one of the Mittal-Phamdo schemes [4]. On the other extreme, setting § = 0,
(Ry = 0) reduces this scheme to the one of Shamai, Verdi and Zamir [5].
Re-writing (66) and (64) in terms of « of (8), leads to the following theorem:

Theorem 2 (inner bound): For sending a Gaussian source with variance

o? over the Gaussian broadcast channel, any distortion pair (D}, D}) of the

form:

D) = aR™ ' (pCy) = ao? < Nz )P (67)

and

N, p—1 N, N, B —(p—1)
D > 2 < ) <1 2 (M) > 68
1= A\PIN, P+ Ny +N1(a ) - 68)

for some o > 1, is achievable.

Figure 8 shows the inner bound of Theorem 2 with the outer bound of
Theorem 1. The graphs are shown for the case of p = 2, 02 = 1, P = 1,
N; = 0.001 and N, = 0.01. For the outer bound we used a computer program

to find the maximum of

0.2

f ()
over all K > 0. It can be seen from the graphs that the gap between the
bounds is small. In [13] we compare the performance of the above scheme

to the performance of the scheme of Mittal and Phamdo. The comparison is
limited due to some mathematical difficulties.
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Figure 8: Numerical analysis of the inner and outer bounds.
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Figure 9: Modulo-Lattice modulation for lossy transmission with bandwidth
expansion. (a) Transmitter. (b) Receivers (i = 1, 2)

6 Inner Bound by Modulo-Lattice Modula-
tion

In this section we introduce the modulo-lattice modulation scheme. The
scheme is designed for the case of p = 2 and @ = 1 (minimal Ds), although it
could be generalized to other values of p. We shall only outline the concept
of the scheme. A more detailed description and analysis can be found in [13].

Before proceeding, we refer back to Figure 7 and point out that in the
case of @ = 1, we have that Ry = Cy and Ry = 0. Hence, the Wyner-Ziv
encoder could be omitted, and the broadcast channel encoder reduces to a
point-to-point channel encoder.

The new transmitter that we suggest is depicted in Figure 9(a). Tt is
similar to the one of Figure 7 (with p = 2 and o = 1), except that the
message Wy is not transmitted at all. Instead we transmit the source S
uncoded. (We denote X'y = IN(QS). In addition, the vector quantizer is a
lattice vector quantizer. Therefore E can be expressed as E = S mod A,
where A is the lattice. For this reason, we call this scheme the modulo-lattice
modulation scheme. E is sent uncoded and we denote X — f(lE.

Receiver 1 and receiver 2, depicted in Figure 9(b) are identical, except
for different gain factors. The quantization-level-decoder employs a modified-
nearest-neighbor algorithm which losslessly decodes gQi. Hence, with high
probability, SQi = Sq for @ = 1,2. We then add a scaled version of Y a;
(a noisy version of X) to Sq; and generate an estimate S} of S. The final
estimate S; is then generated by weighted averaging of Y'y; (a noisy version
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of X',) and Si.

In [13] we show that the modulo-lattice has the same performance as the
hybrid digital-analog scheme described in section 5. Yet, we described it here
because of the following reasons:

1. The modulo-lattice scheme is interesting since it allows correct “hard
decision” in the receiver, although the transmitted signals are “soft”.
(A similar concept appears in [3].) “Soft” transmission has a potential
for improved performance in broadcast scenarios, although we were not
able to exploit this potential.

2. In light of the result of section 7, we conjecture that small modification
to the modulo-lattice scheme can result in optimal performance that
meets the outer bound of Corollary 1.

3. The structure of the modulo-lattice scheme resembles the nested-lattice
Wyner-Ziv encoding scheme of [14], if we view the channel noise as
“quantization noise”. Hence, modulo-lattice modulation can also be
interpreted as analog communication with side information, or as a
joint Wyner-Ziv-channel-coding scheme. This aspect will be explored
in a future work.

7 Improved Performance Using Partial Feed-
back

We recall that the distortion region of a stochastically degraded broadcast
channel is the same as that of the corresponding physically degraded channel
(see Appendix I). We shall now focus on the physically degraded channel
and, as in section 6, we shall only consider the case where the bad receiver
is kept optimal and there are two channel uses per source sample (p = 2).
We shall show how a partial feedback can improve the performance relative
to the schemes that were presented so far (and did not require a feedback).
Moreover, we shall see that the resulting distortion pair meets the lower
bound of Corollary 1 for p = 2. Note however, that this does not imply
optimality since the scheme assumes the existence of a feedback, whereas the
lower bound did not assume any feedback.

The encoder, the channel, the feedback and the decoders are illustrated
in Figure 10. We concentrate on physically degraded channels since in all
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Figure 10: Broadcasting with feedback
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other cases, the feedback would give the good receiver an “unfair” advantage.
This is since, in these cases, the feedback actually serves as a new observation
of the source which is given to the good receiver. On the other hand, in
physically degraded channels the feedback conveys no new information about
the source (only new information about the reception at the bad receiver).

The encoder output block X of length n = 2m is a concatenation of
two length-m blocks X, and Xy, where X, = K;S and K} = /P/o?.
Alternatively we can write:

Xa’t:KikSt, t:1,2,"',m. (69)
The channel is a physically degraded channel and therefore [2]:

Yoru, = Xog+ Zary (70)
Y;z?,t = Xa,t + Zal,t + Z;,t = ]-7 2a T, m, (71)

where Z,1;, ~ N(0,N;) and 7, ~ N(0,N; — Ny) and Z,, and Z; are
memoryless and independent of each other and of X.

The noisy signal Y5, returns as a feedback to the transmitter and to
receiver 1. The transmitter generates X, by

Xy = K;(S — K3Yay), t=1,2,---,m, (72)
where K5 = Pi“]fh is the Wienner gain for receiver 2, and
(P+ Ny)P
K =\————
3 ]\]'20'2

is a gain factor that scales X;, to have a power of P. As before we have:

Yiie = Xoo+ Zoiy (73)
Y;)Qt = Xb,t+Zb1,t+Zl,;,t = ]-a27"'7ma (74)

where Zy1, ~ N(0, Ny) and Z; ; ~ N'(0, Ny — Ny) and Zy; and Zj, are mem-
oryless and independent of each other and of X.
We shall now describe the operation of the two receivers. Let

Yal,t
Yz,té[m’t] and Yye= | Yooy |, t=1,--,m.  (75)
Yo Yo+
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(Recall that Y5, is the feedback). The two receivers employ the following
optimal linear estimation of S;. Let

Ryi=F(Y{, Yis) and ryi=F(SYie). (76)
Combining (69)-(76) yields:

R. _ | PtN 0 N
v T 0 P4+Ny | v2 =

vV Po?
[ P4+N, P+N TN

/| NaPo? ] ) (77)
P+ No
NQ(P+N2)

Ry,l == P—|— Nl P—|— N2 0 (78)

LIM), P+ N,
NQ(P+N2)

and reyq =

[ /Po?
VPo? |, (79)
/ NoPo?

L P+N»

The linear estimation is given by
Sie = ai' « Yig, (80)

where
a; = R_’} Isy,i- (81)

The resulting distortion is then given by
Di = 0'2 — ait *Tgy i (82)
Combining (77) - (82) yields:

0'2N1N2 0'2]\[22
= and Dy=-— 2
P2+ 2PN, + N, N, (P + Ny)?

D, (83)

Using the rate distortion function of a Gaussian source (1) and the capacity
of a Gaussian channel (5), one can verify that the distortion pair of (83)
meets the lower bound of Corollary 1 for p = 2. We emphasize again that
this does not imply optimality since the scheme assumed the existence of a
feedback, whereas the lower bound did not assume any feedback.
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Shannon showed that feedback does not improve the capacity of a point-
to-point channel. There are other communication scenarios in which a feed-
back cannot improve the performance. We conjecture that in our case as
well, there exists a scheme that does not require a feedback, and yields the
same distortion pair as the one achieved with feedback. We also conjecture
that the distortion pair described in Corollary 1 is achievable (and therefore
optimal) for any p > 1.

8 Conclusions

For lossy transmission of a Gaussian source over a (Gaussian broadcast chan-
nel with bandwidth expansion, we have derived inner and outer bounds on
the set of all achievable distortion pairs (D;, D5), and showed that one of the
Mittal-Phamdo schemes is optimal at high SNR. The inner bound generalizes
both the Mittal-Phamdo scheme and the Shamai-Verdi-Zamir scheme.
Although the distortion in point-to-point communications is given by D =
0?/(1 + SNR)”, we showed that if a system must be optimal at a certain
SNR in, then asymptotically the distortion cannot decay faster than 1/SNR.

27



Appendix I The Distortion Depends Only on
the Channel’s Marginals

We shall now describe a general property of lossy broadcasting. We recall that
in the channel coding problem for broadcast channels, the capacity region
depends only on the marginal distributions of the channel [2, page 422].
We shall now show that the same is true for the distortion region in lossy
broadcasting. We start with a definition.

Definition 3 A broadcast channel consists of an input alphabet X and two
output alphabets Y, and Y, and a probability transition function fy, y,12(¥1,y2|X),
where X, y1 and ys are of length n.

Now, suppose that we are given two broadcast channels, (with the same
input and output alphabets) one with probability transition function fy, ,,.(y1, y2/x)
and one with probability transition function f; . (y1,y2[x), such that:

fyr2(y1]x) = yl‘x(yl\x) forall y; € Yi" and x¢€ X" (84)
fyz\x(y2‘x) yg\z(y2‘x) for all Y2 € an and x € X" (85)

but

fyraal2(¥1: Y2|X) # f;l,yQ\x(}’1,}’2|X) for some  (x,y1.y2). (86)
Now, using the notations of Definition 2, suppose that we arbitrarily choose
an encoder i,,(S) and decoders ¢1,,(Y1) and g, (Y2), and we calculate the
average distortion that result from the use of these decoders. We denote
by D! (i = 1,2) the distortions in the case where the channel probability
transition function is fy, ,,1-(y1, y2|x) and by D! (i = 1,2) the distortions in
the case where the channel probability transition functionis f; . (y1,y2(%).
Then, the distortions can be written for ¢ = 1,2 as follow:

= [ [, £ Fua(Yilin(8)) - d (S gun(Y1)) d¥idS (87

and
// oo (Yilim(S)) - d (S, gim(Y3)) dY:dS — (88)

Combining (84), (85), (87) and (88) yields:

(pf",pf") = (p{, Df). (89)
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It follows that any distortion pair that is achievable on fy, 4, 2(y1, ¥2|%x) is
also achievable on f;‘l’ym(yl, y2|x) and vice versa. We therefore proved the
following lemma:

Lemma 1 The distortion region depends on the broadcast channel probability
transition function fy, 4,(¥1,y2|x) only through the marginal distributions

fyn2(y11x) and fy,.(y2|x).

An immediate conclusion from Lemma 1 is that the distortion region
of a stochastically degraded broadcast channel is the same as that of the
corresponding physically degraded broadcast channel.
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Appendix IT Proof on Equation (43)

We shall now prove equation (43). Let
Y,2Y,+7Z, (90)

where Z' = Z|,...,Z! is memoryless with Z] ~ N(0, N; — Ny), and Z' is
independent of U, X and Z;. Define Z" = Z;1+Z'. Hence, Y5 = X+Z" where
Z" is memoryless, zero mean, Gaussian, with variance N, and independent
of X. Additionally we have that

Yz :X+Z2, (91)

where Zs is also memoryless, zero mean, Gaussian, with variance N,, and
independent of X. Now, since we have Markov chains U — X — Y, and
U — X — Y, we conclude that f(yhlu) = f(yz|u) for all (u,ys,y5) and
therefore

h(Y2|U) = h(Y5|U). (92)

Now, by the conditional entropy power inequality [9], and since Y} is an
independent sum of Yy and Z', and Z' is Gaussian with variance Ny — Ny,

we have:
9Eh(Y3|U) > 92h(Y1|U) | glog(2me(Na—N1)) (93)

Combining (92) and (93) leads to (43).
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