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tWe 
onsider the problem of broad
asting a single Gaussian sour
eto two listeners over a Gaussian broad
ast 
hannel, with � 
hannel usesper sour
e sample, where � > 1. A distortion pair (D1;D2) is said tobe a
hievable if one 
an simultaneously a
hieve a mean-squared-error(MSE) D1 at re
eiver 1 and D2 at re
eiver 2. The main result ofthis paper is an outer bound for the set of all a
hievable distortionpairs. That is, we �nd ne
essary 
onditions under whi
h (D1;D2) isa
hievable. We then apply this result to the problem of point-to-pointtransmission over a Gaussian 
hannel with unknown signal to noiseratio (SNR) and � > 1. We show that if a system must be optimalat a 
ertain (high) SNRmin, then as the SNR improves, the distortion
annot de
ay faster than 1=SNR. As for a
hievability, we show thata previously reported s
heme, due to Mittal and Phamdo (2002), isoptimal at high SNR. We introdu
e two new s
hemes for broad
astingwith bandwidth expansion, 
ombining digital and analog transmis-sions. Additionally, we show how a partial feedba
k, returning fromthe bad re
eiver to the transmitter and to the good re
eiver, 
an im-prove the performan
e beyond that of the proposed s
hemes. Interest-ingly, the distortion pair a
hieved with this feedba
k lies on the outerbound derived here.Index terms - distortion region, joint sour
e-
hannel 
oding, lossy broad
asting�The material in this paper was presented in part at the 40th Annual Allerton Confer-en
e on Communi
ation, Control and Computing, O
t. 2002.
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Figure 1: Lossy transmission of a sour
e through a broad
ast 
hannel1 Introdu
tionThe broad
ast 
hannel, illustrated in Figure 1, is a 
ommuni
ation 
hannelin whi
h one sender transmits to two or more re
eivers. Suppose that we aregiven an analog sour
e and a �delity 
riterion, and we want to 
onvey thesour
e to both re
eivers simultaneously. The problem of joint sour
e-
hannel
oding for the broad
ast 
hannel is to �nd the distortion region whi
h isthe set of all simultaneously a
hievable distortion pairs (D1; D2) at the twore
eivers. For a general sour
e, broad
ast 
hannel and distortion measure,this problem is yet open [1℄. We re
all that in the 
hannel 
oding problemfor broad
ast 
hannels, the 
apa
ity region depends only on the marginaldistributions of the 
hannel [2, page 422℄. We shall show in Appendix I thatthe same is true for the distortion region.We investigate below an important spe
ial 
ase, of transmitting a band-limited white Gaussian sour
e over a band-limited white Gaussian broad-
ast 
hannel with squared-error distortion measure. Note that a Gaussianbroad
ast 
hannel is a degraded broad
ast 
hannel, and we shall say thatre
eiver 1 is 
onne
ted to the good 
hannel and re
eiver 2 is 
onne
ted to thebad 
hannel. Also note that this type of problem 
an be 
hara
terized by theparameter �. In 
ontinuous time systems, we de�ne � �=W
=Ws, where W
 isthe 
hannel bandwidth and Ws is the sour
e bandwidth. In a dis
rete-timesystems, � is de�ned as the number of 
hannel uses per sour
e sample. Sin
eband-limited 
ontinuous-time systems 
an be translated to dis
rete-time sys-tems, we shall use the dis
rete time representation. We shall fo
us on thebandwidth expansion s
enario, in whi
h � > 1.2



Following Shannon's theory, a trivial Cartesian outer bound on the dis-tortion region is given by D1 � R�1(�C1) and D2 � R�1(�C2), whereR(x) = 12 log �2x (1)is the rate-distortion fun
tion of a Gaussian sour
e with varian
e �2 (in bitsper sour
e sample) [2℄, and C1 and C2 are the individual point-to-point 
a-pa
ities (in bits per 
hannel use) of the good and bad 
hannels respe
tively.In the 
ase of � = 1, the trivial outer bound is a
hieved by analog transmis-sion, i.e., by sending the sour
e un
oded [3℄. This means that in this spe
ial
ase, there is no 
on
i
t between the needs of the two re
eivers, and both ofthem perform as if the needs of the other re
eiver 
ould be ignored.For the 
ase of � > 1, Mittal and Phamdo [4℄ suggested a hybrid digital-analog s
heme whi
h a
hieves the distortion pair(D1; D2) = �R�1 ((�� 1)C2 + C1) ; R�1(�C2)� : (2)Other s
hemes were developed for the 
ase of � > 1 , providing other a
hiev-able distortion pairs [3, 5, 6℄. However, no non-trivial outer bound (
onverse)on the distortion region was ever derived. The main result of this paper issu
h an outer bound. For deriving the outer bound we use an auxiliary ran-dom variable, similar to the one used by Ozarow [7℄ for proving the 
onversefor the Gaussian multiple des
ription problem. It follows from our outerbound that the distortion pair (2) is optimal in the limit of high SNR.Regarding an inner bound for the distortion region, we develop a new
oding s
heme whi
h 
ombines elements from the Mittal-Phamdo s
heme to-gether with a Wyner-Ziv sour
e en
oding and a broad
ast 
hannel en
oding.In addition, we outline a se
ond s
heme, whose 
on
ept resembles that ofChen and Wornell [3℄, making further use of analog transmission.A variant of the problem above is the problem of sending a Gaussiansour
e over an Additive White Gaussian Noise (AWGN) 
hannel, where theSNR is unknown ex
ept that SNR � SNRmin, where SNRmin is known. Usingour outer bound on the distortion region for the broad
ast 
hannel, we provethat for any system, if SNRmin is high, and if the system is tuned to be optimalat SNRmin, then, as the SNR improves, the distortion 
annot de
ay fasterthan 1=SNR for all values of �. For 
omparison, we re
all that the solutionof R(D0) = �C is given by D0 = �2=(1 + SNR)�, and hen
e, the MSE ofa 
olle
tion of systems, ea
h optimally designed for a di�erent (high) SNR3



de
ays as 1=SNR�. We note that our result is stronger than a previous resultby Ziv [8℄, who showed that asymptoti
ally, the distortion 
annot de
ay fasterthan 1=SNR2 for all values of �.2 Outer bound on the distortion regionWe shall now derive the outer bound. We denote the sour
e by S = (S1; : : : ; Sm),and the de
oders output by Ŝ1 = (Ŝ1;1; : : : ; Ŝ1;m) and Ŝ2 = (Ŝ2;1; : : : ; Ŝ2;m).We denote the 
hannel input by X = (X1; : : : ; Xn) and the 
hannel outputsby Y1 = (Y1;1; : : : ; Y1;n) and Y2 = (Y2;1; : : : ; Y2;n). The bandwidth expansionratio � is de�ned by � = nm; (3)and we shall fo
us on the 
ase where � > 1.De�nition 1 A Gaussian broad
ast 
hannel with input X = (X1; : : : ; Xn)and outputs Y1 = (Y1;1; : : : ; Y1;n) and Y2 = (Y2;1; : : : ; Y2;n), satis�es for i =1; 2 :1n nXt=1E(X2t ) � P; Yi;t = Xt + Zi;t; Zi;t � N (0; Ni); t = 1; : : : ; n; (4)where Z1;t; Z2;t are memoryless and statisti
ally independent of Xt, and N2 �N1.The 
apa
ities C1 and C2 of the good and bad 
hannel, respe
tively, are givenby: Ci = 12 log�1 + PNi� bits per 
hannel use, i = 1; 2: (5)We denote the distortion measure by d(S; Ŝi) for (i = 1; 2), and de�nethe following:De�nition 2 (D1; D2) is an a
hievable distortion pair if, for any �� > 0,there exist integers m and n = �m, an en
oding fun
tion X = inm(S) andre
onstru
tion fun
tions Ŝ1 = gn1m(Y1) and Ŝ2 = gn2m(Y2), su
h thatE �d(S; Ŝi)� < Di + �� for i = 1; 2. (6)The a
hievable distortion region is de�ned as the 
onvex 
losure of the set ofa
hievable distortion pairs. 4



Note that it follows from De�nition 2 that � is a rational number. This doesnot limit the s
ope of the results in any pra
ti
al way, sin
e any non-rationalvalue 
ould be repla
ed by a rational value whi
h is arbitrary 
lose to it.In this paper the sour
e is memoryless with St � N (0; �2); and the dis-tortion measure is squared-error, that is:Di = Ed(S; Ŝi) = 1m mXt=1E(St � Ŝi;t)2 i = 1; 2; t = 1; : : : ; m: (7)In summary, we wish to send a memoryless Gaussian sour
e over theGaussian broad
ast 
hannel, with � > 1, minimizing the squared-error dis-tortion. Our main result is the following:Theorem 1 (outer bound): Let (D1; D2) be an a
hievable distortion pair,and let � � 1 be de�ned byD2 = �R�1(�C2) = ��22�2�C2 : (8)Then D1 � sup�>0 �2f(�) ; (9)wheref(�) �= 1� 0�8<:N2N1 "� + � PN2 + 1�� �#1=� � �N2N1 � 1� (1 + �)1=�9=;� � 11A :(10)We note that � is in fa
t an ex
ess distortion ratio, whi
h is the ratio betweenD2 and the smallest possible distortion in re
eiver 2. We shall prove The-orem 1 in se
tion 3 and we shall now outline the properties of the fun
tionf(�), in order to shed some light on the RHS of (9). Examples of f(�) areillustrated in Figures 2-4.Property 1 The fun
tion f(�) is 
ontinuous in �.Property 2 If � > 1 then lim�!0 f(�) =1: (11)5



Property 3 If � = 1 thenlim�!0 f(�) = �P +N2N2 ���1 P +N2N1 � N2 �N1N1 : (12)Property 4 In the limit of � ! 1, the fun
tion f(�) is independent of �and is given by lim�!1 f(�) = �1 + PN1�� = 22�C1 : (13)Property 5 The derivative of f(�) with respe
t to � is given by:�f(�)�� = g(�)�2 ; (14)where g(�) = h1(�)h2(�)N�1 + 1; (15)whereh1(�) = 8<:N2 "�� + �1 + PN2��#1=� � (N2 �N1)�1� + 1�1=�9=;��1 ; (16)andh2(�) = N2(��) "�� + �1 + PN2��#1=��1 + (N2 �N1)�1� + 1�1=��1 : (17)Property 6 If follows from Property 5 thatlim�!1 �f(�)�� = 0: (18)Property 7 lim�!1 g(�) < 0 if and only if:� > �th �= �1 + PN2���1 "N1N2 � N1P +N1���1 + N2 �N1N2 # ; (19)where g(�) was de�ned in (15). 6



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

κ

f(
κ)

Figure 2: f(�) in the 
ase of � = 1 . Solid: f(�), dotted: the limit of f(�)as � ! 1 a

ording to Property 4, dashed: the limit of f(�) as � ! 0a

ording to Property 3. Note that the slope of f(�) approa
hes zero as� ! 1 a

ording to Property 6. (Parameters: P = 0:15, N1 = 0:01,N2 = 0:1, � = 3)
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Figure 3: f(�) in the 
ase of 1 < � < �th . Solid: f(�), dotted: the limitof f(�) as �!1. Note that f(�)!1 as �! 0 a

ording to Property 2,and that the minimal value of f(�) is smaller than its asymptoti
 value at� ! 1, a

ording to Properties 5-7. (Parameters: P = 0:15, N1 = 0:01,N2 = 0:1, � = 3, � = 2, �th = 5:63)
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Figure 4: f(�) in the 
ase of � > �th . Solid: f(�), dotted: the limit off(�) as � ! 1. Note that f(�) is always larger than its asymptoti
 valueat � !1, a

ording to Properties 5-7. (Parameters: P = 0:15, N1 = 0:01,N2 = 0:1, � = 3, � = 6, �th = 5:63)
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We shall show in the proof of Corollary 2 that �th is in fa
t a lower boundon the ex
ess distortion ratio whi
h is possible when re
eiver 1 is optimal.Figures 2-4 demonstrate the properties of f(�).An important spe
ial 
ase is when we make no 
ompromise in re
eiver 2in favor of re
eiver 1. That is, we require that re
eiver 2 performs as if it wasan optimal point-to-point s
enario. In this 
ase, there is no ex
ess distortion,and � = 1. Corollary 1 addresses this 
ase.Corollary 1 (lower bound on D1 when D2 is optimal): Let (D1; D2)be an a
hievable distortion pair whereD2 = R�1(�C2): (20)Then D1 � �2  �P +N2N2 ���1 P +N2N1 � N2 �N1N1 !�1 : (21)Proof: By Theorem 1 we have that D1 � �2f(�) for all � > 0, and in parti
ularfor � ! 0 (from above). By (20) and (8) we have that � = 1. Combiningthis with Property 3 proves the theorem. 2For 
omparison, Mittal and Phamdo [4℄ suggested a 
oding s
heme whi
ha
hieves the distortion pair D02 = R�1(�C2)and D01 = R�1 ((�� 1)C2 + C1) (22)= �2  �P +N2N2 ���1 P +N1N1 !�1 : (23)Comparing this with (20) and (21), we see that their s
heme is asymptoti
allyoptimal in the 
ase of high SNR (P=N2 !1). Additionally, it 
an be shownthat their s
heme is optimal in the limit of N2 ! 1, although this 
ase isless interesting.Corollary 2 addresses the spe
ial 
ase in whi
h we make no 
ompromisein re
eiver 1 in favor of re
eiver 2. 10



Corollary 2 (lower bound on D2 when D1 is optimal): Let (D1; D2)be an a
hievable distortion pair whereD1 = R�1(�C1): (24)Then D2 � R�1(C2) "1� N1N2 + N1N2 � N1P +N1���1# : (25)Proof: By Property 4 we have thatlim�!1 12 log f(�) = �C1 (26)Hen
e, the requirement set by (24) 
an be written asR(D1) = lim�!1 12 log f(�): (27)Using (1), we 
an write (27) as:D1 = lim�!1 �2f(�) : (28)Combining this with Theorem 1 yield that (D1; D2) may only be a
hievableif f(�1) � lim�!1 f(�) for all �1 > 0. (Otherwise, there would be a lowerbound on D1 that 
ontradi
ts (24).) By Properties 7 and 5 this may onlyhappen if � � �th. This means that �th is in fa
t a lower bound on the ex
essdistortion ratio whi
h is possible when re
eiver 1 is optimal. Combining thede�nition of �th (19) with (1), (5) and (8) proves the Corollary. 2For 
omparison, the s
heme of Shamai, Verd�u and Zamir (although notdesigned originally for broad
ast 
hannels) a
hieves the distortion pair:D1 = R�1(�C1); D2 = R�1(C2):Hen
e, their s
heme is optimal in the limit of N1=N2 ! 0.3 Proof of Theorem 1Proof of Theorem 1: We introdu
e an auxiliary random variable U, similarto the one used by Ozarow [7℄. Spe
i�
ally, let U = (U1; : : : ; Um) and V =(V1; : : : ; Vm) be memoryless ve
tors su
h thatVt � N (0; ��2); and Ut = St + Vt (t = 1; : : : ; m); (29)11



EncoderS XV U
Y1Z1

Z2 Y2
Figure 5: The Gaussian broad
ast 
hannel with the auxiliary variable U.where � > 0. Hen
e we have Markov 
hains U $ S $ X $ Yi $ Ŝi fori = 1; 2. (See �gure 5). By the 
hain rule for mutual information we havefor (i = 1; 2):I(X;Y1) = I(X;U) + I(X;Y1jU)� I(X;UjY1) (30)= I(X;U) + h(Y1jU)� h(Z1)� I(X;UjY1) (31)= I(X;U) + h(Y1jU)� h(Z1)� h(UjY1) + h(UjX;Y1)= I(X;U) + h(Y1jU)� h(Z1)� h(UjY1) + h(UjX) (32)= h(U)� h(UjY1) + h(Y1jU)� h(Z1) (33)where (31) follows from (4), and in (32) we used the Markov 
hain relationto repla
e h(UjX;Y1) with h(UjX).In (33) I(X;Y1) is expressed as a sum of four terms. We shall now upperbound I(X;Y1) by bounding those terms. First, we note that U and Z1 areGaussian memoryless ve
tors, where U has varian
e (�+1)�2 and length m,and Z1 has varian
e N1 and length n. Hen
e, their di�erential entropies [2℄are given by : h(U) = m2 log 2�e(�+ 1)�2 (34)and h(Z1) = n2 log 2�eN1: (35)We shall now lower bound the se
ond term in (33), whi
h is h(UjY1).By the 
onditional form of the entropy power inequality [9℄, and sin
e U is12



the independent sum of S and V we have that:2 2mh(UjY1) � 2 2mh(SjY1) + 2 2mh(VjY1) (36)= 2 2mh(SjY1) + 2 2mh(V) (37)= 2 2mh(SjY1) + 2�e��2; (38)where (38) follows sin
e V is Gaussian [2℄. The term h(SjY1) in (38) 
an befurther bounded as follow:h(SjY1) = h(S)� I(S;Y1) (39)= m2 log 2�e�2 � I(S;Y1) (40)� m2 log 2�e�2 � I(X;Y1); (41)where (40) is sin
e S is Gaussian and (41) is by the data pro
essing inequality.Combining (38) and (41) with the fa
t that � = m=n yields:h(UjY1) � m2 log �2�e�2 �2� 2�n I(X;Y1) + ��� : (42)We shall now upper bound the third term in (33), whi
h is h(Y1jU). Wenote that Y2 is the sum of Y1 and a noise with varian
e N2 � N1. Hen
e,using the 
onditional form of the entropy power inequality [9℄, we 
an show(see Appendix II) that:2 2nh(Y2jU) � 2 2nh(Y1jU) + 2log(2�e(N2�N1)): (43)(Note that a similar derivation was done in [10℄.) The LHS of (43) 
an beexpressed as follow:2 2nh(Y2jU) = 2 2n (h(Y2)�I(Y2;U)) � 2�e(P +N2)2� 2n I(Y2;U); (44)where we used the fa
t that the varian
e of Y2 is P + N2, and hen
e itsdi�erential entropy 
annot ex
eed n2 log(2�e(P+N2)) [2, page 262℄. Note thatthe 
ombination of (43) and (44) 
an serve as an upper bound for h(Y1jU)in terms of I(Y2;U). We shall now use rate distortion theory to derive alower bound on I(Y2;U). Using (5), we 
an rewrite (8) as:D2 = ��22�2�C2 = ��2(1 + P=N2)� = ��2 � N2P +N2�� : (45)13



We have:E �d(Ŝ2;U)� = E  1m mXt=1(Ŝ2;t � Ut)2! (46)= E  1m mXt=1(Ŝ2;t � St + St � Ut)2! (47)= E  1m mXt=1(Ŝ2;t � St)2!+ E  1m mXt=1(St � Ut)2! (48)= D2 + E  1m mXt=1 V 2t ! (49)= ��2 � N2P +N2�� + ��2; (50)where (48) follows sin
e St�Ut = Vt is independent of Ŝ2;t�St, (49) followsfrom (7) and (29), and (50) follows from (29) and (45). We now have:1nI(Y2;U) � 1nI(Ŝ2;U) (51)� 1nmR(Ed(Ŝ2;U)) (52)� 12� log (�+ 1)�2��2 � N2P+N2�� + ��2 ; (53)where (51) is by the data pro
essing inequality, (52) is by rate-distortiontheory, and (53) follows sin
e U is Gaussian with varian
e (�+1)�2, and by(1) and (50). Combining (43), (44) and (53) yields:h(Y1jU) � n2 log0B�2�e(P +N2)0�� � N2P+N2�� + ��+ 1 1A1=� � 2�e(N2 �N1)1CA :(54)Hen
e, we have bounded all four terms in (33). Combining these terms,that is, 
ombining (33), (34), (35), (42) and (54) yields:1nI(X;Y1) � 12 log (P +N2) ��� � N2P+N2�� + 1�1=� � (N2 �N1) ��+1� �1=�N1 � 1�2�2 �n I(X;Y1) + 1�1=� ;(55)14



for all � > 0. Algebrai
 manipulation of (55) yields:1nI(X;Y1) � 12� log f(�) (56)for all � > 0; where f(�) is de�ned in (10).By rate distortion theory, by the data pro
essing inequality, and by (56)we have that if (D1; D2) is a
hievable than1�R(D1) � 1nI(X;Y1) � 12� log f(�) (57)for all � > 0. Combining this with the rate distortion fun
tion (1) and takingthe supermum over all � > 0 proves the theorem. 24 Transmission over Channels with UnknownSNRWe now turn to the issue of lossy transmission over a 
hannel with unknownSNR. Corollary 1 sets a lower bound on the distortion D1, a
hieved at SNRof P=N1, given that the transmitter is optimal at SNR of P=N2. Hen
e,by de�ning SNRmin �= P=N2 and SNR �= P=N1 and by (21) we prove thefollowing 
orollary:Corollary 3 For every � > 1, if a transmitter is designed to be optimalat signal-to-noise ratio SNRmin and the a
tual signal-to-noise ratio is SNR,where SNR > SNRmin, then, the resulting distortion D(SNR) must satisfy:D(SNR) � � � �2SNR � (1� o(1));where � is independent of the a
tual SNR and is given by� = � 1SNRmin���1 ;and o(1)! 0 as SNRmin !1.
15
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SNRmin SNR [dB℄Figure 6: MSE vs. SNR. Solid: the lower bound of Corollary 3. Dotted: thesolution of R(D) = �C(SNR)Figure 6 illustrates the results of Corollary 3 in the 
ase of high SNRmin. Thebold dots represent the distortion a
hieved by systems whi
h were designedfor spe
i�
 SNRs (e.g. by separating sour
e 
oding from 
hannel 
oding).The dotted line, whi
h 
onne
ts the bold points, represents the solution forD of the equation R(D) = �C(SNR):The slope of the dotted line (at the limit of high SNR), on a log-log s
ale is��. It follows from Corollary 3 that no s
heme 
an a
hieve the dotted line formore than one value of SNR. In fa
t, the solid line, whose slope (at the limitof high SNR) is �1, represents the lower bound of Corollary 3. Thus, theMSE(SNR) behavior of any system, must be worst than what is representedby the solid line.It is interesting to 
ompare these results to a previous result of Ziv whoanalyzed the same problem [8℄. Our result is stronger than Ziv's result, sin
ewe showed that the distortion 
annot de
ay faster than 1=SNR, while Ziv16



showed that it 
annot de
ay faster than 1=SNR 2. Additinally, we boundedthe performan
e of any system, while Ziv restri
ted his result to a 
lass ofsystems, whi
h he 
alled \pra
ti
al".5 Inner bound on the distortion regionWe shall now des
ribe an en
oding s
heme for lossy transmission of a Gaus-sian sour
e over a Gaussian broad
ast 
hannel with � > 1. We shall showthat one of the Mittal-Phamdo s
hemes [4℄, as well as the s
heme of Shamai,Verd�u and Zamir [5℄, are spe
ial 
ases of the s
heme whi
h we shall nowdes
ribe. The en
oder, and the two de
oders are illustrated in Figure 7. Thetransmission blo
k X of length n = �m is generated by 
on
atenating (i.e.multiplexing in time) a \digital" blo
k XD of length (�� 1)m, and an \ana-log" blo
k XA of length m. The digital blo
k is generated by a broad
ast
hannel transmitter [2℄, su
h that a 
ommon message W2 is losslessly sent toto both re
eivers, and a private message W1 is sent only to re
eiver 1. Toallow lossless de
oding, we set the rates R1 and R2 of W1 and W2, respe
-tively, (measured in bits per 
hannel use) su
h that for some 0 � � � 1 andsome � > 0 (see [2, page 380℄):R1 = 12 log 1 + (1� �)PN1 !� � (58)and R2 = 12 log 1 + �PN2 + (1� �)P !� �: (59)Sin
e we transmit (W1;W2) over a 
hannel with ��1 
hannel uses per sour
esample, the rates in the sour
e domain are ((� � 1)R1; (� � 1)R2) bits persour
e sample.We shall now des
ribe the 
ontent of the messages and the analog signal,referring to Figure 7. The sour
e is quantized by a k-dimensional Ve
torQuantizer Q(�); with 2k(��1)R2 quantization points and average distortionDQ. We �x �1 > 0 , 
hoose k suÆ
iently large, and design the VQ su
h thatit a
hieves (�� 1)R2 = R(DQ) + �1; (60)where R(DQ) is measured in bits per sour
e sample. We denote the VQoutput by SQ = (SQ1; : : : ; SQm). That is, SjkQ(j�1)k+1 = Q(Sjk(j�1)k+1), where,SjkQ(j�1)k+1 = (SQ(j�1)k+1; : : : ; SQjk) and Sjk(j�1)k+1 = (S(j�1)k+1; : : : ; Sjk). (We17



assume that m=k is an integer). The quantization error E = (E1; : : : ; Em)is de�ned as Et = SQt � St. Ea
h sample in E is s
aled by a s
alar K toprodu
e XA.The message W2 is an integer whi
h uniquely des
ribes the ve
tor SQ.Sin
e the length of SQ is m, and its rate is (�� 1)R2 bits per sour
e sample,we have that W2 2 (1; : : : ; 2m(��1)R2).Using broad
ast 
hannel de
oders, both re
eivers will de
ode the messageW2 losslessly, and hen
e will be able to regenerate SQ losslessly. Hen
e, theproblem redu
es to that of lossy transmission of E, whose varian
e is DQ.Let (D01; D02) be the distortion pair whi
h is a
hievable by our s
heme.Referring again to Figure 7, we denote by YD1 and YD2 the noisy outputsof the broad
ast 
hannel, in response to the input XD, and by YA1 and YA2the noisy outputs of the broad
ast 
hannel, in response to the input XA.Re
eiver 2 estimates E by multiplying the input YA2 by a gain fa
tor K2.By setting K = q PDQ and K2 = pPDQP+N2 , and taking the limit as � ! 0 and�1 ! 0 we have:D02 = DQ1 + PN2 (61)= N2P +N2R�1 ((�� 1)R2) (62)= �2N2P +N2 2�2(��1)R2 (63)= �2N2P +N2  1 + �PN2 + (1� �)P !�(��1) ; (64)where (61) follows from standard MSE 
al
ulations, (62) is by (60), (63) isby (1) and (64) is by (59).As for the good re
eiver, we note that we 
an make use of the privatemessage W1 to further redu
e the distortion. However, as a temporary stage,suppose that re
eiver 1 would estimate the sour
e while 
ompletely ignoringthe private message. We shall denote this estimate by Ŝ�1. Let D�1 be theaverage distortion between S and Ŝ�1. Repeating the steps that led to (64)one 
an verify thatD�1 = �2N1P +N1  1 + �PN2 + (1� �)P !�(��1) : (65)18
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Our problem with respe
t to de
oder 1 redu
es now to the following:the en
oder needs to send a message W1, (at rate (�� 1)R1 bits per sour
esample) to the de
oder, des
ribing the sour
e S, taking into a

ount thatthe de
oder already has side information Ŝ�1. This is in fa
t the Wyner-Zivproblem [11, 12℄. Fortunately, sin
e the sour
e S is Gaussian, the Wyner-Zivresult ensures that we 
an a
hieve (as �! 0):D01 = D�1 � 2�2(��1)R1= �2N1P +N1 ( 1 + �PN2 + (1� �)P ! 1 + (1� �)PN1 !)�(��1) ; (66)where (66) follows from (58) and (65).Note that in the spe
ial 
ase of � = 1 (R1 = 0), this s
heme is the same asone of the Mittal-Phamdo s
hemes [4℄. On the other extreme, setting � = 0,(R2 = 0) redu
es this s
heme to the one of Shamai, Verd�u and Zamir [5℄.Re-writing (66) and (64) in terms of � of (8), leads to the following theorem:Theorem 2 (inner bound): For sending a Gaussian sour
e with varian
e�2 over the Gaussian broad
ast 
hannel, any distortion pair (D01; D02) of theform: D02 = �R�1(�C2) = ��2 � N2P +N2�� (67)and D01 � ��2 � N2P +N2���1 N1P +N1 �1 + N2N1 ��1=(��1) � 1���(��1) ; (68)for some � > 1, is a
hievable.Figure 8 shows the inner bound of Theorem 2 with the outer bound ofTheorem 1. The graphs are shown for the 
ase of � = 2, �2 = 1, P = 1,N1 = 0:001 and N2 = 0:01. For the outer bound we used a 
omputer programto �nd the maximum of �2f(�)over all � > 0. It 
an be seen from the graphs that the gap between thebounds is small. In [13℄ we 
ompare the performan
e of the above s
hemeto the performan
e of the s
heme of Mittal and Phamdo. The 
omparison islimited due to some mathemati
al diÆ
ulties.20
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eivers (i = 1; 2)6 Inner Bound by Modulo-Latti
e Modula-tionIn this se
tion we introdu
e the modulo-latti
e modulation s
heme. Thes
heme is designed for the 
ase of � = 2 and � = 1 (minimalD2), although it
ould be generalized to other values of �. We shall only outline the 
on
eptof the s
heme. A more detailed des
ription and analysis 
an be found in [13℄.Before pro
eeding, we refer ba
k to Figure 7 and point out that in the
ase of � = 1, we have that R2 = C2 and R1 = 0. Hen
e, the Wyner-Ziven
oder 
ould be omitted, and the broad
ast 
hannel en
oder redu
es to apoint-to-point 
hannel en
oder.The new transmitter that we suggest is depi
ted in Figure 9(a). It issimilar to the one of Figure 7 (with � = 2 and � = 1), ex
ept that themessage W2 is not transmitted at all. Instead we transmit the sour
e Sun
oded. (We denote X0A = ~K2S). In addition, the ve
tor quantizer is alatti
e ve
tor quantizer. Therefore E 
an be expressed as E = S mod �,where � is the latti
e. For this reason, we 
all this s
heme the modulo-latti
emodulation s
heme. E is sent un
oded and we denote XA = ~K1E.Re
eiver 1 and re
eiver 2, depi
ted in Figure 9(b) are identi
al, ex
eptfor di�erent gain fa
tors. The quantization-level-de
oder employs a modi�ed-nearest-neighbor algorithm whi
h losslessly de
odes ŜQi. Hen
e, with highprobability, ŜQi = SQ for i = 1; 2. We then add a s
aled version of YAi(a noisy version of XA) to ŜQi and generate an estimate Ŝ0i of S. The �nalestimate Ŝi is then generated by weighted averaging of Y0Ai (a noisy version22



of X0A) and Ŝ0i.In [13℄ we show that the modulo-latti
e has the same performan
e as thehybrid digital-analog s
heme des
ribed in se
tion 5. Yet, we des
ribed it herebe
ause of the following reasons:1. The modulo-latti
e s
heme is interesting sin
e it allows 
orre
t \hardde
ision" in the re
eiver, although the transmitted signals are \soft".(A similar 
on
ept appears in [3℄.) \Soft" transmission has a potentialfor improved performan
e in broad
ast s
enarios, although we were notable to exploit this potential.2. In light of the result of se
tion 7, we 
onje
ture that small modi�
ationto the modulo-latti
e s
heme 
an result in optimal performan
e thatmeets the outer bound of Corollary 1.3. The stru
ture of the modulo-latti
e s
heme resembles the nested-latti
eWyner-Ziv en
oding s
heme of [14℄, if we view the 
hannel noise as\quantization noise". Hen
e, modulo-latti
e modulation 
an also beinterpreted as analog 
ommuni
ation with side information, or as ajoint Wyner-Ziv-
hannel-
oding s
heme. This aspe
t will be exploredin a future work.7 Improved Performan
e Using Partial Feed-ba
kWe re
all that the distortion region of a sto
hasti
ally degraded broad
ast
hannel is the same as that of the 
orresponding physi
ally degraded 
hannel(see Appendix I). We shall now fo
us on the physi
ally degraded 
hanneland, as in se
tion 6, we shall only 
onsider the 
ase where the bad re
eiveris kept optimal and there are two 
hannel uses per sour
e sample (� = 2).We shall show how a partial feedba
k 
an improve the performan
e relativeto the s
hemes that were presented so far (and did not require a feedba
k).Moreover, we shall see that the resulting distortion pair meets the lowerbound of Corollary 1 for � = 2. Note however, that this does not implyoptimality sin
e the s
heme assumes the existen
e of a feedba
k, whereas thelower bound did not assume any feedba
k.The en
oder, the 
hannel, the feedba
k and the de
oders are illustratedin Figure 10. We 
on
entrate on physi
ally degraded 
hannels sin
e in all23
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other 
ases, the feedba
k would give the good re
eiver an \unfair" advantage.This is sin
e, in these 
ases, the feedba
k a
tually serves as a new observationof the sour
e whi
h is given to the good re
eiver. On the other hand, inphysi
ally degraded 
hannels the feedba
k 
onveys no new information aboutthe sour
e (only new information about the re
eption at the bad re
eiver).The en
oder output blo
k X of length n = 2m is a 
on
atenation oftwo length-m blo
ks Xa and Xb, where Xa = K�1S and K�1 = qP=�2.Alternatively we 
an write:Xa;t = K�1St; t = 1; 2; � � � ; m: (69)The 
hannel is a physi
ally degraded 
hannel and therefore [2℄:Ya1;t = Xa;t + Za1;t (70)Ya2;t = Xa;t + Za1;t + Z 0a;t t = 1; 2; � � � ; m; (71)where Za1;t � N (0; N1) and Z 0a;t � N (0; N2 � N1) and Za1 and Z0a arememoryless and independent of ea
h other and of X.The noisy signal Ya2;t returns as a feedba
k to the transmitter and tore
eiver 1. The transmitter generates Xb;t byXb;t = K�3(S �K�2Ya2;t); t = 1; 2; � � � ; m; (72)where K�2 = q P�2P+N2 is the Wienner gain for re
eiver 2, andK�3 = s(P +N2)PN2�2is a gain fa
tor that s
ales Xb;t to have a power of P . As before we have:Yb1;t = Xb;t + Zb1;t (73)Yb2;t = Xb;t + Zb1;t + Z 0b;t t = 1; 2; � � � ; m; (74)where Zb1;t � N (0; N1) and Z 0b;t � N (0; N2 �N1) and Zb1 and Z0b are mem-oryless and independent of ea
h other and of X.We shall now des
ribe the operation of the two re
eivers. LetY2;t �= " Ya2;tYb2;t # and Y1;t �= 264 Ya1;tYa2;tYb1;t 375 ; t = 1; � � � ; m: (75)25



(Re
all that Ya2;t is the feedba
k). The two re
eivers employ the followingoptimal linear estimation of Ŝt. LetRy;i = E �Y ti;t �Yi;t� and rsy;i = E (StYi;t) : (76)Combining (69)-(76) yields:Ry;2 = " P +N2 00 P +N2 # ; rsy;2 = 24 pP�2qN2P�2P+N2 35 ; (77)Ry;1 = 26664 P +N1 P +N1 P (N2�N1)pN2(P+N2)P +N1 P +N2 0P (N2�N1)pN2(P+N2) 0 P +N1 37775 (78)and rsy;1 = 2664 pP�2pP�2qN2P�2P+N2 3775 : (79)The linear estimation is given bŷSi;t = ait �Yi;t; (80)where ai = R�1y;i rsy;i: (81)The resulting distortion is then given byDi = �2 � ait � rsy;i: (82)Combining (77) - (82) yields:D1 = �2N1N2P 2 + 2PN2 +N1N2 and D2 = �2N22(P +N2)2 : (83)Using the rate distortion fun
tion of a Gaussian sour
e (1) and the 
apa
ityof a Gaussian 
hannel (5), one 
an verify that the distortion pair of (83)meets the lower bound of Corollary 1 for � = 2. We emphasize again thatthis does not imply optimality sin
e the s
heme assumed the existen
e of afeedba
k, whereas the lower bound did not assume any feedba
k.26



Shannon showed that feedba
k does not improve the 
apa
ity of a point-to-point 
hannel. There are other 
ommuni
ation s
enarios in whi
h a feed-ba
k 
annot improve the performan
e. We 
onje
ture that in our 
ase aswell, there exists a s
heme that does not require a feedba
k, and yields thesame distortion pair as the one a
hieved with feedba
k. We also 
onje
turethat the distortion pair des
ribed in Corollary 1 is a
hievable (and thereforeoptimal) for any � > 1.8 Con
lusionsFor lossy transmission of a Gaussian sour
e over a Gaussian broad
ast 
han-nel with bandwidth expansion, we have derived inner and outer bounds onthe set of all a
hievable distortion pairs (D1; D2), and showed that one of theMittal-Phamdo s
hemes is optimal at high SNR. The inner bound generalizesboth the Mittal-Phamdo s
heme and the Shamai-Verd�u-Zamir s
heme.Although the distortion in point-to-point 
ommuni
ations is given byD =�2=(1 + SNR)�, we showed that if a system must be optimal at a 
ertainSNRmin, then asymptoti
ally the distortion 
annot de
ay faster than 1=SNR.

27



Appendix I The Distortion Depends Only onthe Channel's MarginalsWe shall now des
ribe a general property of lossy broad
asting. We re
all thatin the 
hannel 
oding problem for broad
ast 
hannels, the 
apa
ity regiondepends only on the marginal distributions of the 
hannel [2, page 422℄.We shall now show that the same is true for the distortion region in lossybroad
asting. We start with a de�nition.De�nition 3 A broad
ast 
hannel 
onsists of an input alphabet X and twooutput alphabets Y1 and Y2 and a probability transition fun
tion fy1;y2jx(y1;y2jx),where x, y1 and y2 are of length n.Now, suppose that we are given two broad
ast 
hannels, (with the sameinput and output alphabets) one with probability transition fun
tion fy1;y2jx(y1;y2jx)and one with probability transition fun
tion f �y1;y2jx(y1;y2jx), su
h that:fy1jx(y1jx) = f �y1jx(y1jx) for all y1 2 Y1n and x 2 X n (84)fy2jx(y2jx) = f �y2jx(y2jx) for all y2 2 Y2n and x 2 X n (85)but fy1;y2jx(y1;y2jx) 6= f �y1;y2jx(y1;y2jx) for some (x;y1;y2): (86)Now, using the notations of De�nition 2, suppose that we arbitrarily 
hoosean en
oder im(S) and de
oders g1m(Y1) and g2m(Y2), and we 
al
ulate theaverage distortion that result from the use of these de
oders. We denoteby Dfi (i = 1; 2) the distortions in the 
ase where the 
hannel probabilitytransition fun
tion is fy1;y2jx(y1;y2jx) and by Df�i (i = 1; 2) the distortions inthe 
ase where the 
hannel probability transition fun
tion is f �y1;y2jx(y1;y2jx).Then, the distortions 
an be written for i = 1; 2 as follow:Dfi = ZS ZYi f(S) � fyijx(Yijim(S)) � d (S; gim(Yi)) dYi dS (87)and Df�i = ZS ZYi f(S) � f �yijx(Yijim(S)) � d (S; gim(Yi)) dYi dS (88)Combining (84), (85), (87) and (88) yields:�Df�1 ; Df�2 � = �Df1 ; Df2� : (89)28



It follows that any distortion pair that is a
hievable on fy1;y2jx(y1;y2jx) isalso a
hievable on f �y1;y2jx(y1;y2jx) and vi
e versa. We therefore proved thefollowing lemma:Lemma 1 The distortion region depends on the broad
ast 
hannel probabilitytransition fun
tion fy1;y2jx(y1;y2jx) only through the marginal distributionsfy1jx(y1jx) and fy2jx(y2jx).An immediate 
on
lusion from Lemma 1 is that the distortion regionof a sto
hasti
ally degraded broad
ast 
hannel is the same as that of the
orresponding physi
ally degraded broad
ast 
hannel.
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Appendix II Proof on Equation (43)We shall now prove equation (43). LetY02 �= Y1 + Z0; (90)where Z0 = Z 01; : : : ; Z 0n is memoryless with Z 0t � N (0; N2 � N1), and Z0 isindependent ofU,X and Z1. De�ne Z00 = Z1+Z0. Hen
e,Y02 = X+Z00 whereZ00 is memoryless, zero mean, Gaussian, with varian
e N2, and independentof X. Additionally we have thatY2 = X+ Z2; (91)where Z2 is also memoryless, zero mean, Gaussian, with varian
e N2, andindependent of X. Now, sin
e we have Markov 
hains U � X � Y2 andU � X � Y02 we 
on
lude that f(y02ju) = f(y2ju) for all (u;y2;y02) andtherefore h(Y2jU) = h(Y02jU): (92)Now, by the 
onditional entropy power inequality [9℄, and sin
e Y02 is anindependent sum of Y1 and Z0, and Z0 is Gaussian with varian
e N2 � N1,we have: 2 2nh(Y02jU) � 2 2nh(Y1jU) + 2log(2�e(N2�N1)): (93)Combining (92) and (93) leads to (43).Referen
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