
Distortion Bounds for Broadasting withBandwidth Expansion �Zvi Rezni, Meir Feder and Ram ZamirDept. of EE-Systems, Tel-Aviv University, Israele-mails: zvi�amimon.om, meir,zamir�eng.tau.a.ilJanuary 22, 2005AbstratWe onsider the problem of broadasting a single Gaussian soureto two listeners over a Gaussian broadast hannel, with � hannel usesper soure sample, where � > 1. A distortion pair (D1;D2) is said tobe ahievable if one an simultaneously ahieve a mean-squared-error(MSE) D1 at reeiver 1 and D2 at reeiver 2. The main result ofthis paper is an outer bound for the set of all ahievable distortionpairs. That is, we �nd neessary onditions under whih (D1;D2) isahievable. We then apply this result to the problem of point-to-pointtransmission over a Gaussian hannel with unknown signal to noiseratio (SNR) and � > 1. We show that if a system must be optimalat a ertain (high) SNRmin, then as the SNR improves, the distortionannot deay faster than 1=SNR. As for ahievability, we show thata previously reported sheme, due to Mittal and Phamdo (2002), isoptimal at high SNR. We introdue two new shemes for broadastingwith bandwidth expansion, ombining digital and analog transmis-sions. Additionally, we show how a partial feedbak, returning fromthe bad reeiver to the transmitter and to the good reeiver, an im-prove the performane beyond that of the proposed shemes. Interest-ingly, the distortion pair ahieved with this feedbak lies on the outerbound derived here.Index terms - distortion region, joint soure-hannel oding, lossy broadasting�The material in this paper was presented in part at the 40th Annual Allerton Confer-ene on Communiation, Control and Computing, Ot. 2002.
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Figure 1: Lossy transmission of a soure through a broadast hannel1 IntrodutionThe broadast hannel, illustrated in Figure 1, is a ommuniation hannelin whih one sender transmits to two or more reeivers. Suppose that we aregiven an analog soure and a �delity riterion, and we want to onvey thesoure to both reeivers simultaneously. The problem of joint soure-hanneloding for the broadast hannel is to �nd the distortion region whih isthe set of all simultaneously ahievable distortion pairs (D1; D2) at the tworeeivers. For a general soure, broadast hannel and distortion measure,this problem is yet open [1℄. We reall that in the hannel oding problemfor broadast hannels, the apaity region depends only on the marginaldistributions of the hannel [2, page 422℄. We shall show in Appendix I thatthe same is true for the distortion region.We investigate below an important speial ase, of transmitting a band-limited white Gaussian soure over a band-limited white Gaussian broad-ast hannel with squared-error distortion measure. Note that a Gaussianbroadast hannel is a degraded broadast hannel, and we shall say thatreeiver 1 is onneted to the good hannel and reeiver 2 is onneted to thebad hannel. Also note that this type of problem an be haraterized by theparameter �. In ontinuous time systems, we de�ne � �=W=Ws, where W isthe hannel bandwidth and Ws is the soure bandwidth. In a disrete-timesystems, � is de�ned as the number of hannel uses per soure sample. Sineband-limited ontinuous-time systems an be translated to disrete-time sys-tems, we shall use the disrete time representation. We shall fous on thebandwidth expansion senario, in whih � > 1.2



Following Shannon's theory, a trivial Cartesian outer bound on the dis-tortion region is given by D1 � R�1(�C1) and D2 � R�1(�C2), whereR(x) = 12 log �2x (1)is the rate-distortion funtion of a Gaussian soure with variane �2 (in bitsper soure sample) [2℄, and C1 and C2 are the individual point-to-point a-paities (in bits per hannel use) of the good and bad hannels respetively.In the ase of � = 1, the trivial outer bound is ahieved by analog transmis-sion, i.e., by sending the soure unoded [3℄. This means that in this speialase, there is no onit between the needs of the two reeivers, and both ofthem perform as if the needs of the other reeiver ould be ignored.For the ase of � > 1, Mittal and Phamdo [4℄ suggested a hybrid digital-analog sheme whih ahieves the distortion pair(D1; D2) = �R�1 ((�� 1)C2 + C1) ; R�1(�C2)� : (2)Other shemes were developed for the ase of � > 1 , providing other ahiev-able distortion pairs [3, 5, 6℄. However, no non-trivial outer bound (onverse)on the distortion region was ever derived. The main result of this paper issuh an outer bound. For deriving the outer bound we use an auxiliary ran-dom variable, similar to the one used by Ozarow [7℄ for proving the onversefor the Gaussian multiple desription problem. It follows from our outerbound that the distortion pair (2) is optimal in the limit of high SNR.Regarding an inner bound for the distortion region, we develop a newoding sheme whih ombines elements from the Mittal-Phamdo sheme to-gether with a Wyner-Ziv soure enoding and a broadast hannel enoding.In addition, we outline a seond sheme, whose onept resembles that ofChen and Wornell [3℄, making further use of analog transmission.A variant of the problem above is the problem of sending a Gaussiansoure over an Additive White Gaussian Noise (AWGN) hannel, where theSNR is unknown exept that SNR � SNRmin, where SNRmin is known. Usingour outer bound on the distortion region for the broadast hannel, we provethat for any system, if SNRmin is high, and if the system is tuned to be optimalat SNRmin, then, as the SNR improves, the distortion annot deay fasterthan 1=SNR for all values of �. For omparison, we reall that the solutionof R(D0) = �C is given by D0 = �2=(1 + SNR)�, and hene, the MSE ofa olletion of systems, eah optimally designed for a di�erent (high) SNR3



deays as 1=SNR�. We note that our result is stronger than a previous resultby Ziv [8℄, who showed that asymptotially, the distortion annot deay fasterthan 1=SNR2 for all values of �.2 Outer bound on the distortion regionWe shall now derive the outer bound. We denote the soure by S = (S1; : : : ; Sm),and the deoders output by Ŝ1 = (Ŝ1;1; : : : ; Ŝ1;m) and Ŝ2 = (Ŝ2;1; : : : ; Ŝ2;m).We denote the hannel input by X = (X1; : : : ; Xn) and the hannel outputsby Y1 = (Y1;1; : : : ; Y1;n) and Y2 = (Y2;1; : : : ; Y2;n). The bandwidth expansionratio � is de�ned by � = nm; (3)and we shall fous on the ase where � > 1.De�nition 1 A Gaussian broadast hannel with input X = (X1; : : : ; Xn)and outputs Y1 = (Y1;1; : : : ; Y1;n) and Y2 = (Y2;1; : : : ; Y2;n), satis�es for i =1; 2 :1n nXt=1E(X2t ) � P; Yi;t = Xt + Zi;t; Zi;t � N (0; Ni); t = 1; : : : ; n; (4)where Z1;t; Z2;t are memoryless and statistially independent of Xt, and N2 �N1.The apaities C1 and C2 of the good and bad hannel, respetively, are givenby: Ci = 12 log�1 + PNi� bits per hannel use, i = 1; 2: (5)We denote the distortion measure by d(S; Ŝi) for (i = 1; 2), and de�nethe following:De�nition 2 (D1; D2) is an ahievable distortion pair if, for any �� > 0,there exist integers m and n = �m, an enoding funtion X = inm(S) andreonstrution funtions Ŝ1 = gn1m(Y1) and Ŝ2 = gn2m(Y2), suh thatE �d(S; Ŝi)� < Di + �� for i = 1; 2. (6)The ahievable distortion region is de�ned as the onvex losure of the set ofahievable distortion pairs. 4



Note that it follows from De�nition 2 that � is a rational number. This doesnot limit the sope of the results in any pratial way, sine any non-rationalvalue ould be replaed by a rational value whih is arbitrary lose to it.In this paper the soure is memoryless with St � N (0; �2); and the dis-tortion measure is squared-error, that is:Di = Ed(S; Ŝi) = 1m mXt=1E(St � Ŝi;t)2 i = 1; 2; t = 1; : : : ; m: (7)In summary, we wish to send a memoryless Gaussian soure over theGaussian broadast hannel, with � > 1, minimizing the squared-error dis-tortion. Our main result is the following:Theorem 1 (outer bound): Let (D1; D2) be an ahievable distortion pair,and let � � 1 be de�ned byD2 = �R�1(�C2) = ��22�2�C2 : (8)Then D1 � sup�>0 �2f(�) ; (9)wheref(�) �= 1� 0�8<:N2N1 "� + � PN2 + 1�� �#1=� � �N2N1 � 1� (1 + �)1=�9=;� � 11A :(10)We note that � is in fat an exess distortion ratio, whih is the ratio betweenD2 and the smallest possible distortion in reeiver 2. We shall prove The-orem 1 in setion 3 and we shall now outline the properties of the funtionf(�), in order to shed some light on the RHS of (9). Examples of f(�) areillustrated in Figures 2-4.Property 1 The funtion f(�) is ontinuous in �.Property 2 If � > 1 then lim�!0 f(�) =1: (11)5



Property 3 If � = 1 thenlim�!0 f(�) = �P +N2N2 ���1 P +N2N1 � N2 �N1N1 : (12)Property 4 In the limit of � ! 1, the funtion f(�) is independent of �and is given by lim�!1 f(�) = �1 + PN1�� = 22�C1 : (13)Property 5 The derivative of f(�) with respet to � is given by:�f(�)�� = g(�)�2 ; (14)where g(�) = h1(�)h2(�)N�1 + 1; (15)whereh1(�) = 8<:N2 "�� + �1 + PN2��#1=� � (N2 �N1)�1� + 1�1=�9=;��1 ; (16)andh2(�) = N2(��) "�� + �1 + PN2��#1=��1 + (N2 �N1)�1� + 1�1=��1 : (17)Property 6 If follows from Property 5 thatlim�!1 �f(�)�� = 0: (18)Property 7 lim�!1 g(�) < 0 if and only if:� > �th �= �1 + PN2���1 "N1N2 � N1P +N1���1 + N2 �N1N2 # ; (19)where g(�) was de�ned in (15). 6
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Figure 2: f(�) in the ase of � = 1 . Solid: f(�), dotted: the limit of f(�)as � ! 1 aording to Property 4, dashed: the limit of f(�) as � ! 0aording to Property 3. Note that the slope of f(�) approahes zero as� ! 1 aording to Property 6. (Parameters: P = 0:15, N1 = 0:01,N2 = 0:1, � = 3)
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Figure 3: f(�) in the ase of 1 < � < �th . Solid: f(�), dotted: the limitof f(�) as �!1. Note that f(�)!1 as �! 0 aording to Property 2,and that the minimal value of f(�) is smaller than its asymptoti value at� ! 1, aording to Properties 5-7. (Parameters: P = 0:15, N1 = 0:01,N2 = 0:1, � = 3, � = 2, �th = 5:63)
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Figure 4: f(�) in the ase of � > �th . Solid: f(�), dotted: the limit off(�) as � ! 1. Note that f(�) is always larger than its asymptoti valueat � !1, aording to Properties 5-7. (Parameters: P = 0:15, N1 = 0:01,N2 = 0:1, � = 3, � = 6, �th = 5:63)
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We shall show in the proof of Corollary 2 that �th is in fat a lower boundon the exess distortion ratio whih is possible when reeiver 1 is optimal.Figures 2-4 demonstrate the properties of f(�).An important speial ase is when we make no ompromise in reeiver 2in favor of reeiver 1. That is, we require that reeiver 2 performs as if it wasan optimal point-to-point senario. In this ase, there is no exess distortion,and � = 1. Corollary 1 addresses this ase.Corollary 1 (lower bound on D1 when D2 is optimal): Let (D1; D2)be an ahievable distortion pair whereD2 = R�1(�C2): (20)Then D1 � �2  �P +N2N2 ���1 P +N2N1 � N2 �N1N1 !�1 : (21)Proof: By Theorem 1 we have that D1 � �2f(�) for all � > 0, and in partiularfor � ! 0 (from above). By (20) and (8) we have that � = 1. Combiningthis with Property 3 proves the theorem. 2For omparison, Mittal and Phamdo [4℄ suggested a oding sheme whihahieves the distortion pair D02 = R�1(�C2)and D01 = R�1 ((�� 1)C2 + C1) (22)= �2  �P +N2N2 ���1 P +N1N1 !�1 : (23)Comparing this with (20) and (21), we see that their sheme is asymptotiallyoptimal in the ase of high SNR (P=N2 !1). Additionally, it an be shownthat their sheme is optimal in the limit of N2 ! 1, although this ase isless interesting.Corollary 2 addresses the speial ase in whih we make no ompromisein reeiver 1 in favor of reeiver 2. 10



Corollary 2 (lower bound on D2 when D1 is optimal): Let (D1; D2)be an ahievable distortion pair whereD1 = R�1(�C1): (24)Then D2 � R�1(C2) "1� N1N2 + N1N2 � N1P +N1���1# : (25)Proof: By Property 4 we have thatlim�!1 12 log f(�) = �C1 (26)Hene, the requirement set by (24) an be written asR(D1) = lim�!1 12 log f(�): (27)Using (1), we an write (27) as:D1 = lim�!1 �2f(�) : (28)Combining this with Theorem 1 yield that (D1; D2) may only be ahievableif f(�1) � lim�!1 f(�) for all �1 > 0. (Otherwise, there would be a lowerbound on D1 that ontradits (24).) By Properties 7 and 5 this may onlyhappen if � � �th. This means that �th is in fat a lower bound on the exessdistortion ratio whih is possible when reeiver 1 is optimal. Combining thede�nition of �th (19) with (1), (5) and (8) proves the Corollary. 2For omparison, the sheme of Shamai, Verd�u and Zamir (although notdesigned originally for broadast hannels) ahieves the distortion pair:D1 = R�1(�C1); D2 = R�1(C2):Hene, their sheme is optimal in the limit of N1=N2 ! 0.3 Proof of Theorem 1Proof of Theorem 1: We introdue an auxiliary random variable U, similarto the one used by Ozarow [7℄. Spei�ally, let U = (U1; : : : ; Um) and V =(V1; : : : ; Vm) be memoryless vetors suh thatVt � N (0; ��2); and Ut = St + Vt (t = 1; : : : ; m); (29)11
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Figure 5: The Gaussian broadast hannel with the auxiliary variable U.where � > 0. Hene we have Markov hains U $ S $ X $ Yi $ Ŝi fori = 1; 2. (See �gure 5). By the hain rule for mutual information we havefor (i = 1; 2):I(X;Y1) = I(X;U) + I(X;Y1jU)� I(X;UjY1) (30)= I(X;U) + h(Y1jU)� h(Z1)� I(X;UjY1) (31)= I(X;U) + h(Y1jU)� h(Z1)� h(UjY1) + h(UjX;Y1)= I(X;U) + h(Y1jU)� h(Z1)� h(UjY1) + h(UjX) (32)= h(U)� h(UjY1) + h(Y1jU)� h(Z1) (33)where (31) follows from (4), and in (32) we used the Markov hain relationto replae h(UjX;Y1) with h(UjX).In (33) I(X;Y1) is expressed as a sum of four terms. We shall now upperbound I(X;Y1) by bounding those terms. First, we note that U and Z1 areGaussian memoryless vetors, where U has variane (�+1)�2 and length m,and Z1 has variane N1 and length n. Hene, their di�erential entropies [2℄are given by : h(U) = m2 log 2�e(�+ 1)�2 (34)and h(Z1) = n2 log 2�eN1: (35)We shall now lower bound the seond term in (33), whih is h(UjY1).By the onditional form of the entropy power inequality [9℄, and sine U is12



the independent sum of S and V we have that:2 2mh(UjY1) � 2 2mh(SjY1) + 2 2mh(VjY1) (36)= 2 2mh(SjY1) + 2 2mh(V) (37)= 2 2mh(SjY1) + 2�e��2; (38)where (38) follows sine V is Gaussian [2℄. The term h(SjY1) in (38) an befurther bounded as follow:h(SjY1) = h(S)� I(S;Y1) (39)= m2 log 2�e�2 � I(S;Y1) (40)� m2 log 2�e�2 � I(X;Y1); (41)where (40) is sine S is Gaussian and (41) is by the data proessing inequality.Combining (38) and (41) with the fat that � = m=n yields:h(UjY1) � m2 log �2�e�2 �2� 2�n I(X;Y1) + ��� : (42)We shall now upper bound the third term in (33), whih is h(Y1jU). Wenote that Y2 is the sum of Y1 and a noise with variane N2 � N1. Hene,using the onditional form of the entropy power inequality [9℄, we an show(see Appendix II) that:2 2nh(Y2jU) � 2 2nh(Y1jU) + 2log(2�e(N2�N1)): (43)(Note that a similar derivation was done in [10℄.) The LHS of (43) an beexpressed as follow:2 2nh(Y2jU) = 2 2n (h(Y2)�I(Y2;U)) � 2�e(P +N2)2� 2n I(Y2;U); (44)where we used the fat that the variane of Y2 is P + N2, and hene itsdi�erential entropy annot exeed n2 log(2�e(P+N2)) [2, page 262℄. Note thatthe ombination of (43) and (44) an serve as an upper bound for h(Y1jU)in terms of I(Y2;U). We shall now use rate distortion theory to derive alower bound on I(Y2;U). Using (5), we an rewrite (8) as:D2 = ��22�2�C2 = ��2(1 + P=N2)� = ��2 � N2P +N2�� : (45)13



We have:E �d(Ŝ2;U)� = E  1m mXt=1(Ŝ2;t � Ut)2! (46)= E  1m mXt=1(Ŝ2;t � St + St � Ut)2! (47)= E  1m mXt=1(Ŝ2;t � St)2!+ E  1m mXt=1(St � Ut)2! (48)= D2 + E  1m mXt=1 V 2t ! (49)= ��2 � N2P +N2�� + ��2; (50)where (48) follows sine St�Ut = Vt is independent of Ŝ2;t�St, (49) followsfrom (7) and (29), and (50) follows from (29) and (45). We now have:1nI(Y2;U) � 1nI(Ŝ2;U) (51)� 1nmR(Ed(Ŝ2;U)) (52)� 12� log (�+ 1)�2��2 � N2P+N2�� + ��2 ; (53)where (51) is by the data proessing inequality, (52) is by rate-distortiontheory, and (53) follows sine U is Gaussian with variane (�+1)�2, and by(1) and (50). Combining (43), (44) and (53) yields:h(Y1jU) � n2 log0B�2�e(P +N2)0�� � N2P+N2�� + ��+ 1 1A1=� � 2�e(N2 �N1)1CA :(54)Hene, we have bounded all four terms in (33). Combining these terms,that is, ombining (33), (34), (35), (42) and (54) yields:1nI(X;Y1) � 12 log (P +N2) ��� � N2P+N2�� + 1�1=� � (N2 �N1) ��+1� �1=�N1 � 1�2�2 �n I(X;Y1) + 1�1=� ;(55)14



for all � > 0. Algebrai manipulation of (55) yields:1nI(X;Y1) � 12� log f(�) (56)for all � > 0; where f(�) is de�ned in (10).By rate distortion theory, by the data proessing inequality, and by (56)we have that if (D1; D2) is ahievable than1�R(D1) � 1nI(X;Y1) � 12� log f(�) (57)for all � > 0. Combining this with the rate distortion funtion (1) and takingthe supermum over all � > 0 proves the theorem. 24 Transmission over Channels with UnknownSNRWe now turn to the issue of lossy transmission over a hannel with unknownSNR. Corollary 1 sets a lower bound on the distortion D1, ahieved at SNRof P=N1, given that the transmitter is optimal at SNR of P=N2. Hene,by de�ning SNRmin �= P=N2 and SNR �= P=N1 and by (21) we prove thefollowing orollary:Corollary 3 For every � > 1, if a transmitter is designed to be optimalat signal-to-noise ratio SNRmin and the atual signal-to-noise ratio is SNR,where SNR > SNRmin, then, the resulting distortion D(SNR) must satisfy:D(SNR) � � � �2SNR � (1� o(1));where � is independent of the atual SNR and is given by� = � 1SNRmin���1 ;and o(1)! 0 as SNRmin !1.
15
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SNRmin SNR [dB℄Figure 6: MSE vs. SNR. Solid: the lower bound of Corollary 3. Dotted: thesolution of R(D) = �C(SNR)Figure 6 illustrates the results of Corollary 3 in the ase of high SNRmin. Thebold dots represent the distortion ahieved by systems whih were designedfor spei� SNRs (e.g. by separating soure oding from hannel oding).The dotted line, whih onnets the bold points, represents the solution forD of the equation R(D) = �C(SNR):The slope of the dotted line (at the limit of high SNR), on a log-log sale is��. It follows from Corollary 3 that no sheme an ahieve the dotted line formore than one value of SNR. In fat, the solid line, whose slope (at the limitof high SNR) is �1, represents the lower bound of Corollary 3. Thus, theMSE(SNR) behavior of any system, must be worst than what is representedby the solid line.It is interesting to ompare these results to a previous result of Ziv whoanalyzed the same problem [8℄. Our result is stronger than Ziv's result, sinewe showed that the distortion annot deay faster than 1=SNR, while Ziv16



showed that it annot deay faster than 1=SNR 2. Additinally, we boundedthe performane of any system, while Ziv restrited his result to a lass ofsystems, whih he alled \pratial".5 Inner bound on the distortion regionWe shall now desribe an enoding sheme for lossy transmission of a Gaus-sian soure over a Gaussian broadast hannel with � > 1. We shall showthat one of the Mittal-Phamdo shemes [4℄, as well as the sheme of Shamai,Verd�u and Zamir [5℄, are speial ases of the sheme whih we shall nowdesribe. The enoder, and the two deoders are illustrated in Figure 7. Thetransmission blok X of length n = �m is generated by onatenating (i.e.multiplexing in time) a \digital" blok XD of length (�� 1)m, and an \ana-log" blok XA of length m. The digital blok is generated by a broadasthannel transmitter [2℄, suh that a ommon message W2 is losslessly sent toto both reeivers, and a private message W1 is sent only to reeiver 1. Toallow lossless deoding, we set the rates R1 and R2 of W1 and W2, respe-tively, (measured in bits per hannel use) suh that for some 0 � � � 1 andsome � > 0 (see [2, page 380℄):R1 = 12 log 1 + (1� �)PN1 !� � (58)and R2 = 12 log 1 + �PN2 + (1� �)P !� �: (59)Sine we transmit (W1;W2) over a hannel with ��1 hannel uses per souresample, the rates in the soure domain are ((� � 1)R1; (� � 1)R2) bits persoure sample.We shall now desribe the ontent of the messages and the analog signal,referring to Figure 7. The soure is quantized by a k-dimensional VetorQuantizer Q(�); with 2k(��1)R2 quantization points and average distortionDQ. We �x �1 > 0 , hoose k suÆiently large, and design the VQ suh thatit ahieves (�� 1)R2 = R(DQ) + �1; (60)where R(DQ) is measured in bits per soure sample. We denote the VQoutput by SQ = (SQ1; : : : ; SQm). That is, SjkQ(j�1)k+1 = Q(Sjk(j�1)k+1), where,SjkQ(j�1)k+1 = (SQ(j�1)k+1; : : : ; SQjk) and Sjk(j�1)k+1 = (S(j�1)k+1; : : : ; Sjk). (We17



assume that m=k is an integer). The quantization error E = (E1; : : : ; Em)is de�ned as Et = SQt � St. Eah sample in E is saled by a salar K toprodue XA.The message W2 is an integer whih uniquely desribes the vetor SQ.Sine the length of SQ is m, and its rate is (�� 1)R2 bits per soure sample,we have that W2 2 (1; : : : ; 2m(��1)R2).Using broadast hannel deoders, both reeivers will deode the messageW2 losslessly, and hene will be able to regenerate SQ losslessly. Hene, theproblem redues to that of lossy transmission of E, whose variane is DQ.Let (D01; D02) be the distortion pair whih is ahievable by our sheme.Referring again to Figure 7, we denote by YD1 and YD2 the noisy outputsof the broadast hannel, in response to the input XD, and by YA1 and YA2the noisy outputs of the broadast hannel, in response to the input XA.Reeiver 2 estimates E by multiplying the input YA2 by a gain fator K2.By setting K = q PDQ and K2 = pPDQP+N2 , and taking the limit as � ! 0 and�1 ! 0 we have:D02 = DQ1 + PN2 (61)= N2P +N2R�1 ((�� 1)R2) (62)= �2N2P +N2 2�2(��1)R2 (63)= �2N2P +N2  1 + �PN2 + (1� �)P !�(��1) ; (64)where (61) follows from standard MSE alulations, (62) is by (60), (63) isby (1) and (64) is by (59).As for the good reeiver, we note that we an make use of the privatemessage W1 to further redue the distortion. However, as a temporary stage,suppose that reeiver 1 would estimate the soure while ompletely ignoringthe private message. We shall denote this estimate by Ŝ�1. Let D�1 be theaverage distortion between S and Ŝ�1. Repeating the steps that led to (64)one an verify thatD�1 = �2N1P +N1  1 + �PN2 + (1� �)P !�(��1) : (65)18
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Our problem with respet to deoder 1 redues now to the following:the enoder needs to send a message W1, (at rate (�� 1)R1 bits per souresample) to the deoder, desribing the soure S, taking into aount thatthe deoder already has side information Ŝ�1. This is in fat the Wyner-Zivproblem [11, 12℄. Fortunately, sine the soure S is Gaussian, the Wyner-Zivresult ensures that we an ahieve (as �! 0):D01 = D�1 � 2�2(��1)R1= �2N1P +N1 ( 1 + �PN2 + (1� �)P ! 1 + (1� �)PN1 !)�(��1) ; (66)where (66) follows from (58) and (65).Note that in the speial ase of � = 1 (R1 = 0), this sheme is the same asone of the Mittal-Phamdo shemes [4℄. On the other extreme, setting � = 0,(R2 = 0) redues this sheme to the one of Shamai, Verd�u and Zamir [5℄.Re-writing (66) and (64) in terms of � of (8), leads to the following theorem:Theorem 2 (inner bound): For sending a Gaussian soure with variane�2 over the Gaussian broadast hannel, any distortion pair (D01; D02) of theform: D02 = �R�1(�C2) = ��2 � N2P +N2�� (67)and D01 � ��2 � N2P +N2���1 N1P +N1 �1 + N2N1 ��1=(��1) � 1���(��1) ; (68)for some � > 1, is ahievable.Figure 8 shows the inner bound of Theorem 2 with the outer bound ofTheorem 1. The graphs are shown for the ase of � = 2, �2 = 1, P = 1,N1 = 0:001 and N2 = 0:01. For the outer bound we used a omputer programto �nd the maximum of �2f(�)over all � > 0. It an be seen from the graphs that the gap between thebounds is small. In [13℄ we ompare the performane of the above shemeto the performane of the sheme of Mittal and Phamdo. The omparison islimited due to some mathematial diÆulties.20
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of X0A) and Ŝ0i.In [13℄ we show that the modulo-lattie has the same performane as thehybrid digital-analog sheme desribed in setion 5. Yet, we desribed it herebeause of the following reasons:1. The modulo-lattie sheme is interesting sine it allows orret \harddeision" in the reeiver, although the transmitted signals are \soft".(A similar onept appears in [3℄.) \Soft" transmission has a potentialfor improved performane in broadast senarios, although we were notable to exploit this potential.2. In light of the result of setion 7, we onjeture that small modi�ationto the modulo-lattie sheme an result in optimal performane thatmeets the outer bound of Corollary 1.3. The struture of the modulo-lattie sheme resembles the nested-lattieWyner-Ziv enoding sheme of [14℄, if we view the hannel noise as\quantization noise". Hene, modulo-lattie modulation an also beinterpreted as analog ommuniation with side information, or as ajoint Wyner-Ziv-hannel-oding sheme. This aspet will be exploredin a future work.7 Improved Performane Using Partial Feed-bakWe reall that the distortion region of a stohastially degraded broadasthannel is the same as that of the orresponding physially degraded hannel(see Appendix I). We shall now fous on the physially degraded hanneland, as in setion 6, we shall only onsider the ase where the bad reeiveris kept optimal and there are two hannel uses per soure sample (� = 2).We shall show how a partial feedbak an improve the performane relativeto the shemes that were presented so far (and did not require a feedbak).Moreover, we shall see that the resulting distortion pair meets the lowerbound of Corollary 1 for � = 2. Note however, that this does not implyoptimality sine the sheme assumes the existene of a feedbak, whereas thelower bound did not assume any feedbak.The enoder, the hannel, the feedbak and the deoders are illustratedin Figure 10. We onentrate on physially degraded hannels sine in all23
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other ases, the feedbak would give the good reeiver an \unfair" advantage.This is sine, in these ases, the feedbak atually serves as a new observationof the soure whih is given to the good reeiver. On the other hand, inphysially degraded hannels the feedbak onveys no new information aboutthe soure (only new information about the reeption at the bad reeiver).The enoder output blok X of length n = 2m is a onatenation oftwo length-m bloks Xa and Xb, where Xa = K�1S and K�1 = qP=�2.Alternatively we an write:Xa;t = K�1St; t = 1; 2; � � � ; m: (69)The hannel is a physially degraded hannel and therefore [2℄:Ya1;t = Xa;t + Za1;t (70)Ya2;t = Xa;t + Za1;t + Z 0a;t t = 1; 2; � � � ; m; (71)where Za1;t � N (0; N1) and Z 0a;t � N (0; N2 � N1) and Za1 and Z0a arememoryless and independent of eah other and of X.The noisy signal Ya2;t returns as a feedbak to the transmitter and toreeiver 1. The transmitter generates Xb;t byXb;t = K�3(S �K�2Ya2;t); t = 1; 2; � � � ; m; (72)where K�2 = q P�2P+N2 is the Wienner gain for reeiver 2, andK�3 = s(P +N2)PN2�2is a gain fator that sales Xb;t to have a power of P . As before we have:Yb1;t = Xb;t + Zb1;t (73)Yb2;t = Xb;t + Zb1;t + Z 0b;t t = 1; 2; � � � ; m; (74)where Zb1;t � N (0; N1) and Z 0b;t � N (0; N2 �N1) and Zb1 and Z0b are mem-oryless and independent of eah other and of X.We shall now desribe the operation of the two reeivers. LetY2;t �= " Ya2;tYb2;t # and Y1;t �= 264 Ya1;tYa2;tYb1;t 375 ; t = 1; � � � ; m: (75)25



(Reall that Ya2;t is the feedbak). The two reeivers employ the followingoptimal linear estimation of Ŝt. LetRy;i = E �Y ti;t �Yi;t� and rsy;i = E (StYi;t) : (76)Combining (69)-(76) yields:Ry;2 = " P +N2 00 P +N2 # ; rsy;2 = 24 pP�2qN2P�2P+N2 35 ; (77)Ry;1 = 26664 P +N1 P +N1 P (N2�N1)pN2(P+N2)P +N1 P +N2 0P (N2�N1)pN2(P+N2) 0 P +N1 37775 (78)and rsy;1 = 2664 pP�2pP�2qN2P�2P+N2 3775 : (79)The linear estimation is given bŷSi;t = ait �Yi;t; (80)where ai = R�1y;i rsy;i: (81)The resulting distortion is then given byDi = �2 � ait � rsy;i: (82)Combining (77) - (82) yields:D1 = �2N1N2P 2 + 2PN2 +N1N2 and D2 = �2N22(P +N2)2 : (83)Using the rate distortion funtion of a Gaussian soure (1) and the apaityof a Gaussian hannel (5), one an verify that the distortion pair of (83)meets the lower bound of Corollary 1 for � = 2. We emphasize again thatthis does not imply optimality sine the sheme assumed the existene of afeedbak, whereas the lower bound did not assume any feedbak.26



Shannon showed that feedbak does not improve the apaity of a point-to-point hannel. There are other ommuniation senarios in whih a feed-bak annot improve the performane. We onjeture that in our ase aswell, there exists a sheme that does not require a feedbak, and yields thesame distortion pair as the one ahieved with feedbak. We also onjeturethat the distortion pair desribed in Corollary 1 is ahievable (and thereforeoptimal) for any � > 1.8 ConlusionsFor lossy transmission of a Gaussian soure over a Gaussian broadast han-nel with bandwidth expansion, we have derived inner and outer bounds onthe set of all ahievable distortion pairs (D1; D2), and showed that one of theMittal-Phamdo shemes is optimal at high SNR. The inner bound generalizesboth the Mittal-Phamdo sheme and the Shamai-Verd�u-Zamir sheme.Although the distortion in point-to-point ommuniations is given byD =�2=(1 + SNR)�, we showed that if a system must be optimal at a ertainSNRmin, then asymptotially the distortion annot deay faster than 1=SNR.
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Appendix I The Distortion Depends Only onthe Channel's MarginalsWe shall now desribe a general property of lossy broadasting. We reall thatin the hannel oding problem for broadast hannels, the apaity regiondepends only on the marginal distributions of the hannel [2, page 422℄.We shall now show that the same is true for the distortion region in lossybroadasting. We start with a de�nition.De�nition 3 A broadast hannel onsists of an input alphabet X and twooutput alphabets Y1 and Y2 and a probability transition funtion fy1;y2jx(y1;y2jx),where x, y1 and y2 are of length n.Now, suppose that we are given two broadast hannels, (with the sameinput and output alphabets) one with probability transition funtion fy1;y2jx(y1;y2jx)and one with probability transition funtion f �y1;y2jx(y1;y2jx), suh that:fy1jx(y1jx) = f �y1jx(y1jx) for all y1 2 Y1n and x 2 X n (84)fy2jx(y2jx) = f �y2jx(y2jx) for all y2 2 Y2n and x 2 X n (85)but fy1;y2jx(y1;y2jx) 6= f �y1;y2jx(y1;y2jx) for some (x;y1;y2): (86)Now, using the notations of De�nition 2, suppose that we arbitrarily hoosean enoder im(S) and deoders g1m(Y1) and g2m(Y2), and we alulate theaverage distortion that result from the use of these deoders. We denoteby Dfi (i = 1; 2) the distortions in the ase where the hannel probabilitytransition funtion is fy1;y2jx(y1;y2jx) and by Df�i (i = 1; 2) the distortions inthe ase where the hannel probability transition funtion is f �y1;y2jx(y1;y2jx).Then, the distortions an be written for i = 1; 2 as follow:Dfi = ZS ZYi f(S) � fyijx(Yijim(S)) � d (S; gim(Yi)) dYi dS (87)and Df�i = ZS ZYi f(S) � f �yijx(Yijim(S)) � d (S; gim(Yi)) dYi dS (88)Combining (84), (85), (87) and (88) yields:�Df�1 ; Df�2 � = �Df1 ; Df2� : (89)28



It follows that any distortion pair that is ahievable on fy1;y2jx(y1;y2jx) isalso ahievable on f �y1;y2jx(y1;y2jx) and vie versa. We therefore proved thefollowing lemma:Lemma 1 The distortion region depends on the broadast hannel probabilitytransition funtion fy1;y2jx(y1;y2jx) only through the marginal distributionsfy1jx(y1jx) and fy2jx(y2jx).An immediate onlusion from Lemma 1 is that the distortion regionof a stohastially degraded broadast hannel is the same as that of theorresponding physially degraded broadast hannel.
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Appendix II Proof on Equation (43)We shall now prove equation (43). LetY02 �= Y1 + Z0; (90)where Z0 = Z 01; : : : ; Z 0n is memoryless with Z 0t � N (0; N2 � N1), and Z0 isindependent ofU,X and Z1. De�ne Z00 = Z1+Z0. Hene,Y02 = X+Z00 whereZ00 is memoryless, zero mean, Gaussian, with variane N2, and independentof X. Additionally we have thatY2 = X+ Z2; (91)where Z2 is also memoryless, zero mean, Gaussian, with variane N2, andindependent of X. Now, sine we have Markov hains U � X � Y2 andU � X � Y02 we onlude that f(y02ju) = f(y2ju) for all (u;y2;y02) andtherefore h(Y2jU) = h(Y02jU): (92)Now, by the onditional entropy power inequality [9℄, and sine Y02 is anindependent sum of Y1 and Z0, and Z0 is Gaussian with variane N2 � N1,we have: 2 2nh(Y02jU) � 2 2nh(Y1jU) + 2log(2�e(N2�N1)): (93)Combining (92) and (93) leads to (43).Referenes[1℄ M. D. Trott, \Unequal error protetion odes: Theory and pratie," inPro. of IEEE IT-Workshop, Haifa, Israel, June 1996.[2℄ T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley,New York, 1991.[3℄ B. Chen and G. Wornell, \Analog error-orreting odes based onhaoti dynamial systems," IEEE Transations on Communiation,vol. 46, pp. 881{890, July 1998.[4℄ U. Mittal and N. Phamdo, \Joint soure-hannel odes for broadast-ing and robust ommuniation," IEEE Transations on InformationTheory, vol. IT-48, pp. 1082{1103, May 2002.30
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