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Abstract

Given a set of n vectors in Rm, m < n, we wish to find a subset of m vectors
that are good ”predictors” for the complementary set. We consider two criteria
of goodness, one leads to requiring that the least-squares expansion coefficients
of the complementary set be bounded by one, the other leads to maximizing the
determinant of the selected subset. Exhaustive search requires checking all n choose
m possible subsets. We present a low-complexity iterative selection algorithm, and
examine its worst loss with respect to the optimum solution under both goodness
criteria. We show that with linear complexity in n, the proposed algorithm achieves
expansion coefficients which are uniformly bounded by 1+ε, while the determinant
of the selected subset is at most mm/2 below the true maximum determinant.

1 Introduction

Finding a good basis for a vector space is a classical question in harmonic analysis and
frame theory [1]. A more restrictive question is to find a good basis from a given finite
set of vectors, a topic treated in the signal processing area under names like “matching
pursuit” [2] and “basis pursuit” [3].

Our work on basis selection is motivated by a question arising in multiple source
coding or in multiple channel coding. In the former, we look for “context sources” for
encoding a vector of correlated sources. In the latter, we look for “sensor channels” for
interference cancellation over a vector of adjacent channels. Both scenarios may be either
in a point-to-point or in a multipoint-to-point configuration. These two problems lead
to the following question: Given a set a1, . . . , an of n vectors in Rm, where m < n, find
a subset S of size m′ which can serve as a good basis for the remaining n −m′ vectors.
Hence, in this problem the goodness of the basis is evaluated relative to the same set
from which it is selected. We shall mainly be interested in the m′ = m case.

To make the notion of a “good basis” concrete, consider the following model of n
linearly distorted noisy measurements of a vector u = (u1, . . . , um)T :

xi =< ai,u > +zi, i = 1, . . . , n (1)

where xi is the i-th measurement, ai = (ai1, . . . , aim)T is the corresponding vector of linear
distortion coefficients, zi is the corresponding noise, and < .. > denotes inner product.
We wish to find a subset S ⊂ {1, . . . , n} of size |S| = m′ such that the measurements
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{xk, k ∈ S} are a “good context” or “good sensors” for the remaining measurements
{xi, i 6∈ S} .

We define subset goodness in two ways:

• Low noise amplification;

• Small residual entropy.

The former notion leads to a criterion of small expansion coefficients of {ai, i 6∈ S} in
terms of {ak, k ∈ S}. The latter notion leads, for m′ = m, to a criterion of maximum
absolute determinant of the matrix AS composed of the basis vectors {ak, k ∈ S}. It’s
worth noting that in general, the best basis of size l + 1 is not an extension of the best
basis of size l. See an example in the next section.

Noise Amplification

We arrive at the two criteria above from probabilistic arguments. Assume that (u1, . . . , um)
in (1) are i.i.d. random variables ∼ N (0, σ2

u), mutually independent of (z1, . . . , zm) which
are i.i.d. ∼ N (0, σ2

z). Since all the random variables are jointly Gaussian, the minimum
Mean Squared Error (MSE) estimate of xi from {xk, k ∈ S} takes a linear form:

x̂i =< gi,xS > (2)

where xS is the vector of the measurements {xk, k ∈ S}, and gi = (gi1, . . . , gim′)T is a
vector of linear estimation coefficients. Moreover, as the “signal-to-noise” ratio (SNR)

γ2 =
σ2

u

σ2
z

becomes large, the optimal estimation coefficients vector gi approaches the Least Squares
(LS) solution, i.e., the expansion of the projection of ai on the linear sub-space spanned
by the basis vectors {ak, k ∈ S}. If m′ ≥ m, and assuming the basis spans the whole
space, we have

ai =
∑
k∈S

gik · ak = AS · gi (3)

where
AS = [ai1 ; . . . ; aim′ ]

is the m × m′ matrix whose columns are the basis vectors {ak, k ∈ S}, where here
S = {i1, . . . , im′}. Combining (1), (2) and (3), it follows that for high SNR and if
m′ ≥ m, the error vector contains only noise elements, and it is given by

x̂i − xi =< gi, zS > −zi (4)

where zS is the vector of noises {zk, k ∈ S}. Hence the resulting MSE is

E(x̂i − xi)
2 = σ2

z(‖gi‖2 + 1). (5)

(Note that this is the MSE of the LS solution for any signal-to-noise ratio γ, not only
high, and in the general case it is an upper bound on the optimum (Baysian) MMSE.)

We see that the noise is amplified by the expansion coefficients of ai relative to the
basis S. We say that a basis S is an α-amplifier if the expansion coefficients of all the
vectors outside S are absolutely bounded by α, i.e., for i 6∈ S

|gik| ≤ α ∀k ∈ S. (6)

Finally, we say that a basis is good in the sense of noise amplification if it is a 1-amplifier,
i.e., if |gik| ≤ 1 for all i, and all k in S.



Residual Entropy and Basis Determinant

We turn to motivate the second criterion of basis goodness. The residual entropy of the
measurements relative to a basis S is defined as the conditional differential entropy of
the measurements outside S given the measurements in S,

h(xSc |xS)

(see [4] for the definition of h(.)). This quantity determines the Shannon capacity of
an n-lines vector channel, with additive noises x1, . . . , xn , assuming lines k ∈ S act as
“sensors” (provide channel side information) for the rest of the lines. The smaller the
residual entropy is, the higher is the capacity of lines i 6∈ S. This is also the minimum
rate in compressing an n-component vector source x1, . . . , xn, if sources k ∈ S serve as
“context” for encoding the rest of the sources. Now, by the chain rule for joint entropy
we have, (cf. [4]):

h(x1, . . . , xn) = h(xS) + h(xSc|xS) (7)

so minimizing h(xSc |xS) over S is equivalent to maximizing h(xS). Furthermore, since
x1, . . . , xn are zero-mean jointly Gaussian, xS = AT

Su + zS is a Gaussian vector with
covariance σ2

uA
T
SAS + σ2

zI, and we have

e2h(xS) = K · det(AT
SAS + γ−2I) (8)

where K = (σ2
u

√
2πe)m′

is a constant. Assuming m′ = m and γ → ∞, it follows that
minimizing the residual entropy over the choice of S amounts to maximizing the absolute
determinant of the m×m matrix AS:

S∗ = arg max
S: |S|=m

| det(AS)|. (9)

Since the set a1, . . . , an is finite, this maximum is always achieved. In the sequel we
assume that the set a1, . . . , an is not degenerate (i.e., it is not contained in a strict
sub-space of Rm), so the maximum in (9) is always strictly positive.

As we shall see next, the two notions of goodness (unit noise amplification and max-
imum basis determinant) are closely related via Cramer’s law.

Proposition 1 (Existence of a 1-Amplifier Basis) Every locally optimal solution
for (9) (i.e., a subset such that replacing one vector does not increase its determinant)
is a 1-amplifier basis. In particular, any determinant maximizing set S∗ is a 1-amplifier
basis.

Proof: This is a simple consequence of Cramer’s law,

gik =
det(AS,k)

det(AS)
, (10)

where AS,k is obtained by replacing the k-th column of AS by ai.
Note that the opposite, however, is not true; not every 1-amplifier basis achieves the

global maximum in (9).
Geometrically, the determinant of AS amounts to the product of the lengths of {ak, k ∈

S} and the sines of the angles between each vector and the linear subspace spanned by
the previous vectors (in some order). Hence, a large determinant corresponds to long
and close to orthogonal vectors. This partially resembles a search for a short basis for a



lattice. All bases of a given lattice have the same determinant (it is the volume of the
lattice basic cell), so minimizing the vectors’ lengths is equivalent to making the angles
as close to 90o as possible. See the LLL algorithm, [5], for an efficient search for a short
basis for a lattice.

As mentioned above, a greedy search is in general not optimal. Thus, solving (9)

requires, in principle, searching all
(

n
m

)
subsets and calculating their determinants. This

implies ∼ nm determinant calculations (i.e. polynomial in n, exponential in m). On
the other hand, a greedy solution (as in matching pursuit [2]) sequentially selects the
longest residual vector in a Gram-Schmidt-like process, implying linear complexity in n.
However, this solution only guarantees a 2m−1-amplifier basis (see Section 3), and a far
from optimum basis determinant.

In this work we investigate the gap in performance between the optimum solution
and low complexity variations on the greedy solution above. We consider both the noise
amplification and the maximum determinant basis selection criteria. The next section
introduces the algorithmic approach to basis selection. Section 3 upper bounds the noise
amplification achieved by greedy selection. Section 4 presents an iterative enhancement
algorithm which approaches a 1-amplifier basis. Section 5 gives some pessimistic results
about the complexity of determinant maximization. The last section discusses alternative
approaches and goodness criteria for basis selection.

2 Basis Selection Algorithms

Before discussing the algorithmic approach we are going to take, we illustrate why
“greedy” basis selection is in general sub-optimal. Consider first the following simple
example. Let the vectors a,b and c be orthogonal, and suppose we wish to expand the
vector a in terms of a subset of l vectors from the set

{a + b, a + b + c,b + c}

with minimum squared error. For l = 1, the best subset is clearly the first vector
(resulting in squared error ‖b‖2), while for l = 2 the best choice is clearly the second and
third vectors (resulting in zero error). Hence, from the point of view of “estimating” the
vector a, the best subset of size two is not an extension of the best subset of size one!

Consider next the set

{a, (1− 2ε)(a + b), (1− 2ε)(a− b)} (11)

where the vectors a and b are orthogonal as above, and ‖b‖ = ε‖a‖ for some ε � 1.
Note that the length of the second and the third vectors is roughly (1 − ε) times the
length of the first vector. The only 1-amplifier basis of size one is the first vector, a. On
the other hand, the only 1-amplifier basis of size two is composed of the second and third
vectors. ( a is roughly 0.5 (second vector) + 0.5 (third vector), while the third vector
is roughly 2a - (second vector).) Also the determinant of the latter two is almost twice
the determinant of any combination of a with another vector. Hence, we see that also
with respect to our general criteria for basis selection, the best subset of size two is not
an extension of the best subset of size one.

These examples show that simple “greedy” selection algorithms may fail to find the
best basis. In the following sections, we shall consider two algorithms for selecting a
self-basis of size m from the set a1, . . . , an of vectors in Rm:



• Longest Residual Vector (LRV) Selection.

• One by One Replacement Algorithm.

The former is an m-stage recursive selection algorithm, which starts with a single vector
set, S1, and at each stage adds a new vector to the existing set. That is, for l =
0, . . . ,m − 1, we have Sl+1 = Sl ∪ i for some i 6∈ Sl, where S0 is the empty set. The
latter is an iterative algorithm, which starts with some set S of size m, and at each
iteration tries to improve its goodness by replacing one vector from S by a vector outside
S. Eventually, we shall combine the two algorithms to get an algorithm with linear
complexity in n, for choosing a basis close to a 1-amplifier basis.

In the last section we discuss an alternative selection approach using SDP relaxation.

3 Longest Residual Vector Selection

Under any “reasonable” criterion, the best subset of size one is the longest vector in the
set a1, . . . , an. Choosing a vector achieving

AS1 = arg max
ai

‖ai‖

clearly maximizes the general determinant criterion in (8). And from the noise amplifi-
cation point of view, this choice guarantees gi ≤ 1 for every i 6∈ S1. Thus, the longest
vector is also a 1-amplifier basis.

If we are restricted to recursive selection, then the most natural next choice is the
longest residual vector (LRV). That is, for 1 ≤ l < m, suppose Sl is given, and we must
create Sl+1 by augmenting Sl by a single vector. Let ãi denote the projection error of ai

on the vectors in Sl. Then, LRV selects

Sl+1 = Sl ∪ il+1,

where
il+1 = arg max

i6∈Sl

‖ãi‖. (12)

More specifically, let ASl
denote the m × l matrix whose columns are the vectors ak,

with k in Sl. Let ASl
= QlRl be QR decomposition of ASl

, where Ql is an m× l matrix
with orthonormal columns which span the column space of ASl

, and Rl is an l× l upper
triangular matrix. Then, the projection error ãi in (12) is given by

ãi = (I −QlQ
T
l )ai.

Note that in this recursion, the next orthonormal matrix Ql+1 results in by augmenting
Ql with a unit vector in the direction of the projection error of the newly selected vector
ail+1

.
After m recursive steps of LRV, we get the final selected basis S = Sm. The total

complexity is linear in n. It includes m steps of n linear projections in Rm, that is ∼ m3n
operations.



3.1 Performance Bounds for LRV Selection

It follows from the example regarding the set in (11), that the LRV recursive selection is
not optimal for l > 1. In what sense, then, LRV is a good choice? As a greedy algorithm,
LRV guarantees that at step l the coefficient gil is bounded by one for all i (while possibly
increasing gij for j < l). It also makes the largest increase in the determinant of AT

SAS

(given that we cannot change previously selected vectors).
The principle of this algorithm is similar to that of Matching Pursuit [2]. It is a

classical result in Matching Pursuit [2] that for high SNR, the LRV is the MSE minimizing
choice.

From our point of view, the most appealing feature of LRV for self-basis selection is
that it provides some uniform bounds on the noise amplification and on the maximal
determinant, although these bounds are quite high.

Theorem 1 (Noise Amplification Bound) If the basis S is selected by the LRV al-
gorithm, then for every i not in S, the k-th expansion coefficient (2) satisfies

|gik| ≤ 2m−k, k = 1, . . . ,m (13)

where gi1 is the coefficient of the first selected vector, gi2 is the coefficient of the second
selected vector, etc. Thus, S is a 2m−1 -amplifier. Furthermore, the bound is arbitrarily
tight in the sense that there exists examples of a vector set for which LRV selection
achieves the bound with almost equality.

Proof: 1. Upper bound. For ease of notation, assume that the set selected by LRV
is S = {1, . . . ,m} in that order, i.e, the first selected vector is a1, the second is a2, and
so on. Let ã1, . . . , ãm denote the corresponding residual vectors as defined above, where
ã1 ≡ a1. By construction, the ãi’s are orthogonal. Furthermore, each of the basis vectors
a1, . . . , am can be written as

ai = βi,1ã1 + . . . + βi,i−1ãi−1 + ãi (14)

while each vector outside S can be written as

ai = βi,1ã1 + . . . + βi,mãm (15)

for m + 1 ≤ i ≤ n. The key to the proof is the observation that the LRV selection rule
implies that

|βij| ≤ 1 ∀i, j,

otherwise the residual of ai at step j was longer than that of the vector actually selected.
This implies that a2 contains a1 at most once; a3 contains a1 at most twice, one directly
and one through ã2; a4 contains a1 at most four times, one directly, one through ã2, and
two through ã3; and so on. To make this argument formal, we write the residual vectors
as

ãi = ai − [gi,1a1 + . . . + gi,i−1ai−1]. (16)

Combining (14) and (16), we see that gi,j (the total contribution of aj in aj), satisfies
the following recursion in i = 1, . . . ,m

gij = βij − [βi,j+1gj+1,j + . . . + βi,i−1gi−1,j], 1 ≤ j ≤ i− 1.



Since |βij| ≤ 1, it follows that

|gij| ≤ 1 + |gj+1,j|+ . . . + |gi−1,j|, 1 ≤ j ≤ i− 1.

Using the initial condition |g21| ≤ 1, a simple induction in i implies

|gij| ≤ 2i−j−1, (17)

1 ≤ i ≤ m, 1 ≤ j ≤ i − 1. Extending the derivation to the vectors outside S, we have
for m + 1 ≤ i ≤ n, |gij| ≤ 1 +

∑m
l=j+1 |gl,j|, which together with (17) implies the desired

result (13).
2. Achievability: To see that this bound can be arbitrarily approached, consider the

set below of five (column) vectors in R4 (i.e., m = 4, n = 5). To better illustrate their
special structure, we write a1, . . . , a4 in a 4× 4 matrix and put a5 separately:

1 −1 −1 −1
0 +ε −ε −ε
0 0 +ε2 −ε2

0 0 0 +ε3

 ·D, (1− ε2)3


1
ε
ε2

ε3

 (18)

where ε � 1 and D is the diagonal matrix diag[1, (1 − ε2), (1 − ε2)2, (1 − ε2)3]. The
multiplication by D from the right scales the second column by (1−ε2), the third column
by (1 − ε2)2, and so on. This guarantees that the longest vector in the set is a1. After
projecting a2, . . . , a5 on a1, the residual vectors have exactly the same structure, so ã2 is
the next longest. Continuing this process, we see that the LRV selected set S is a1, . . . , a4.
Furthermore, it follows that

a2 = −(1− ε2)a1 + ã2 (19)

a3 = −2(1− ε2)2a1 − (1− ε2)a2 + ã3 (20)

a4 = −4(1− ε2)3a1 − 2(1− ε2)2a2 − (1− ε2)a3 + ã4 (21)

a5 = +8(1− ε2)4a1 + 4(1− ε2)3a2 + 2(1− ε2)2a3 + (1− ε2)a4. (22)

Thus, in the limit as ε → 0, the bounds (17) and (13) become tight. The extension of
this example to any m should be clear.

Theorem 2 (Determinant Loss Bound) Let det∗ = det(AS∗) denote the maximum
determinant of an m-subset (see (9)). Then, the LRV basis AS satisfies

| det(AS)| ≥ det∗

mm/2
. (23)

Furthermore, this bound may be arbitrarily tight for certain vector sets.

Proof: Let
ÃS = [ã1; . . . ; ãm]

denote the matrix whose columns are the residual vectors, where again for ease of notation
we assume that S = {1, . . . ,m}, in this order. Since AS and ÃS are related via a triangu-
lar transformation with ones on the diagonal (see (14)), we have det(ÃS) = det(AS). On
the other hand, (14) and (15) imply that for any set of vectors S ′, the corresponding ma-
trix AS′ is related to ÃS via a transformation whose elements are all absolutely bounded
by one (the βij’s). The norm of the rows of the such a transformation is bounded by



√
m. Since the absolute determinant of any transformation is bounded by the product

of the norms of the rows, we have

| det(AS′)| ≤ mm/2| det(ÃS)|. (24)

This holds in particular for S ′ = S∗, and the bound follows.
To see that the bound can be approached, note that to get equality in (24) all the βi,j’s

must be either +1 or -1, and the rows of the transformation from ÃS to AS′ should be
orthogonal. These two conditions are met if AS′ = ÃSH, where H is a Hadamard matrix,
in which case det(H) = mm/2. In dimension 4 a Hadamard matrix exists; it consists of
the four orthogonal vectors [1, 1, 1, 1], [1,−1, 1,−1], [1, 1,−1,−1] and [1,−1,−1, 1], the
norm of each is equal to

√
4 = 2, so det(H) = 16. We use this transformation to extend

the example given in the proof of achievability in Theorem 1 above. See the four vectors
basis AS in (18), whose corresponding matrix of residual vectors is ÃS = diag[1, ε, ε2, ε3].
We augment the set AS by the the following four (column) vectors, which form the matrix
AS′ :

(1− ε2)3


+1 +1 +1 +1
+ε −ε +ε −ε
+ε2 +ε2 −ε2 −ε2

+ε3 −ε3 −ε3 +ε3

 .

It’s not hard to verify that, again, the scaling by (1−ε2)3 guarantees that the set selected
by LRV will remain the vectors AS = [a1, . . . , a4] of example (18). Their determinant
is roughly 1 · ε · ε2 · ε3 = ε6. On the other hand, due to the Hadamard transformation,
the determinant of the new basis AS′ is almost mm/2 = 42 = 16 larger. In the limit as
ε → 0, these approximations become exact, and the bound (23) is arbitrarily approached.
This example can easily be extended to any dimension m for which a Hadamard matrix
exists.

4 One by One Replacement Algorithm

We next propose a simple iterative replacement algorithm. Given a first choice for an m
subset S and the corresponding matrix AS, the algorithm proceeds as follows:

a. Define a threshold α > 1 and a maximal number of iterations N .

b. Compute the expansion coefficients of all the vectors a1, . . . , an, relative to the
given basis (i.e. for each ai compute gi = A−1

S ai ).

c. Find G = maxi,j(|gij|) and the coordinates i, j for which the maximum is achieved.

d. Compare G with α. If it is greater than α, then replace the j-th vector of AS by
ai, and update the set S and the matrix AS. If the maximal number of iterations
N has not been reached, repeat the algorithm from step b.

e. If G is not greater than α, then the algorithm stops, and by Cramer’s law the
current basis is an α-amplifier or better.

By the bound on the determinant loss of LRV selection in Theorem 2, it follows that
if this algorithm starts with the LRV set (or better) and completes N replacements, then
the resulting determinant will be at least

| det(AS)| ≥ det∗

mm/2
αN .



In this case, Cramer’s Law (10) implies that the basis is a (
√

m)m/αN -amplifier. On the
other hand, the stopping rule above implies that if we stop in less than N iterations then
we get an α-amplifier. It follows that combining the LRV selection algorithm for initial-
ization with the one-by-one replacement algorithm above guarantees noise amplification
which is the maximum between α and mm/2/αN . Optimizing over α, we get the following
corollary.

Corollary 1 (Close to 1-amplifier) If we choose α = mm/(2(N+1)), then after at most
N iterations we get an mm/(2(N+1))-amplifier.

Substituting, for example, N = m2/2, we get an m1/m-amplifier. Note that m1/m

goes to 1 as m goes to infinity, and it is always less than 1.5.
The complexity of the one-by-one replacement algorithm is O(n ·m2 ·N), which for

N = O(m2) becomes O(n · m4) (i.e. linear in n, polynomial in m), and it results in a
basis which is quite close to a 1-amplifier. As noted above, the complexity of full search
is O(

(
n
m

)
) which can be considerably higher than O(n ·m4) for n � m � 1.

5 Maximum Determinant Results

Small residual entropy is associated with finding a set with maximal determinant. The
results we have in this case are more pessimistic, i.e. our results suggest that finding the
maximal determinant may be a problem of high complexity. The proofs are omitted for
lack of space.

As stated in Theorem 2 above, the Longest Residual Vector Selection algorithm guar-
antees determinant loss of at most

√
m

m
, and we can construct examples where this

bound is tight. In particular, for each ε > 0, there exist examples for which the Residual
Longest Vector Selection results in a 1-amplifier basis (i.e. any replacement of only 1
vector will not increase the determinant of AS), however the maximal determinant det∗

satisfies
det∗ ≥ (

√
m/(1 + ε))m| det(AS)|.

Moreover, for every m > k > 1, we can construct examples of a set of vectors where
in addition to the above, replacing any subset of k vectors from AS by any k vectors does
not increase the determinant of AS, yet the maximal determinant det∗ satisfies

det∗ ≥ (
√

m/k)m| det(AS)|.

For k = m− 1 we have a tighter bound. If replacing any m− 1 vectors of AS by any
m − 1 vectors will not increase the determinant of AS, then the maximal determinant
det∗ is bounded by

det∗ ≤ (
√

m)m/(m−1)| det(AS)|,

and there exist examples for which the bound is achieved.

6 Alternative Approaches and Extensions

As suggested by Y. Eldar, [7], a relaxed version of the setting discussed in this paper can
be formulated as a semi-definite programming (SDP) problem. In particular, the residual
entropy optimization is related to the experiment design variant of the max-det problem



considered by Vandenberghe, Boyd and Wu in [6]. They present an interior-point method
to maximize the determinant of a matrix subject to linear matrix inequalities (LMIs).
The relaxation of [6] is that the set of different vectors chosen may be larger than m. This
can be thought of as “soft selection” of each of the n vectors by a parameter between zero
and one, rather than “hard selection” of exactly m vectors. This does not necessarily lead
to un-ambiguous selection of the best m-subset, and some post processing mechanism
should be used to make the final selection.

The complexity of the interior-point method seems larger than the complexity of the
iterative algorithm presented here. Another benefit of the current algorithm is that it only
uses computations of the same type as the ones used anyway by the system after the basis
is selected (i.e., prediction coefficients computations). On the other hand, SDP related
methods have the advantage that they can handle a much wider variety of problems, for
example, direct minimization of the total MSE in (5). We tend to believe that beyond
a complexity gain, the algorithm presented here may in some cases give better results.
This issue is currently under study.

Future extensions of this work include: (i) extending the discussion to signal space,
i.e., selecting a good m-subset of n signals derived from m “hidden” signals; (ii) extending
the discussion to non additive-Gaussian settings, i.e., minimization of H(XSc|XS) or∑

I 6∈S H(Xi|XS) over S for more general joint distributions.
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