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Abstract

In a causal source coding system the reconstruction of the present source sample is
restricted to be a function of the present and past source samples, while the code streamn
itself may be non-causal and have variable rate. Neuhoff and Gilbert showed that for
memoryless sources, optimum performance among all causal source codes is achieved
by time-sharing at most two memoryless codes (quantizers) followed by entropy coding.
In this work, we extend Neuhoff and Gilbert’s result in the limit of small distortion
(high resolution) to two new settings. First we show that at high resolution an optimal
causal code for a stationary source with finite differential entropy rate consists of a
uniform quantizer followed by a (sequence) entropy coder. This implies that the price
of causality at high resolution is approximately 0.254 bits, i.e., the space-filling loss
of the uniform quantizer. Then we consider individual sequences and introduce a
deterministic analogue of differential entropy, which we call “Lempel-Ziv differential
entropy.” We show that for any bounded individual sequence with finite Lempel-
Ziv differential entropy rate, optimum high-resolution performance among all finite-
memory variable-rate causal codes is achieved by dithered scalar uniform quantization
followed by Lempel-Ziv coding. As a by-product, we also prove an individual-sequence

version of the Shannon lower bound.
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1 Introduction

The performance gap between vector and scalar quantization is a basic figure of interest
in lossy data compression. On the one extreme, scalar quantizers are the most easy-to-
implement and commonly used source coding devices. On the other extreme, vector quan-
tizers of unbounded dimension yield the rate-distortion function, R(D), the minimum rate
theoretically attainable by coding the source with distortion D [1]. The performance gain
resulting from going to higher quantization dimensions is attributed to three factors in the
quantization literature: ability to exploit memory in the source, ability to shape the quantizer
codebook, and existence of better space-filling quantization cells (see the illuminating paper
by Lookabaugh and Gray [2].) If the quantizer output sequence is “entropy coded,” (encoded
with a variable-rate lossless code), then most of the gain due to the first two factors can be
achieved even with scalar quantization. In fact, in the limit of small distortion (D — 0),
known as “high resolution conditions,” the rate loss of an optimum entropy-coded quantizer
(ECQ) with respect to the rate-distortion function is due solely to the quantizer’s space-filling
(in)efficiency. By a classic result of Gish and Pierce [3], a uniform quantizer is approximately
an optimum scalar ECQ at high resolution, and hence the rate loss of scalar quantization is
asymptotically the space-filling loss of a cubic cell; i.e., (1/2)log, (27re / 12) ~ (.254 bits per
sample (assuming the squared error distortion measure).

The popularity of scalar quantizers is due not only to their very simple structure, but
also to the fact that (fixed-rate) scalar quantizers have no encoding delay. However, scalar
(memoryless) quantizers form only a special subclass of codes having zero delay, which, in
general, can also have memory. It is an interesting and challenging problem to determine
how much (if any) of the advantage offered by vector quantization can be realized with codes
that introduce no additional delay, but allow the encoder output to depend also on the past
samples of the source. For memoryless sources, Ericson [4] and Gaarder and Slepian [5, 6]
showed that optimal performance among (fixed-rate) zero-delay codes is achieved by optimal
scalar quantization, and thus zero-delay coding of memoryless sources does not offer any of
the advantages of vector quantization. For sources with memory, the problem in general is
still unresolved and only partial results are known (see, e.g., [6, 7]). Zero-delay codes [§]
and limited-delay codes [9] have also been investigated in the individual-sequence setting.
Recently, source coding exponents for zero-delay, finite-memory coding of memoryless sources
have been derived by Merhav and Kontoyiannis [10].

In the context of entropy-coded quantization, the problem is also complicated by the
fact that with entropy coding the overall system delay cannot be strictly zero. Neuhoff

and Gilbert [11] proposed an alternative model, called “causal source coding,” which ignores



delays created by the variable-rate coding of the quantizer output. In a causal source code the
reconstruction of the present source sample depends only on the present and the past source
samples, but the decoder can generate the reconstruction with arbitrary delay. The minimum
coding rate achievable with distortion D by such systems is denoted r.(D). With this
definition, Neuhoff and Gilbert were able to show that for memoryless sources causal source
coding cannot achieve any of the vector quantization advantages. Specifically, as described
in detail in the Section 3, the optimum causal source coder times-shares at most two entropy-
coded scalar quantizers. In essence, this result implies that by looking into the source’s past
one cannot create multidimensional cells that have better space-filling properties than the
cubic cell. In the limit of high resolution, the loss of causality r.(D) — R(D) is therefore the
same as the space-filling loss of the scalar ECQ); i.e., approximately 0.254 bits per sample.

When trying to extend Neuhoff and Gilbert’s result to sources with memory, one en-
counters a substantial difficulty: due to the dependence between consecutive source samples,
the quantized current and past samples become the “context” for quantizing the next sam-
ple. The optimization of such a system requires the little-understood optimal design of the
quantization function over the entire (correlated) sequence.

In this paper we extend Neuhoff and Gilbert’s result for two new settings under high
resolution conditions. Intuitively, the high resolution assumption allows us to circumvent
the difficulty outlined above because the finely-quantized past samples effectively provide an
unquantized context for entropy coding. The first setting we consider is that of probabilistic
stationary sources. Assuming the squared error distortion measure, we prove an asymptotic
lower bound on the performance of causal coding of stationary sources with finite differen-
tial entropy rate, and show that an entropy-coded uniform scalar quantizer asymptotically
achieves this bound. Hence, just as in the memoryless case, the rate loss in causal coding is
asymptotically the space-filling loss of the cubic cell.

The second setting is inspired by Ziv and Lempel’s model of coding an “individual se-
quence” using a finite-state machine [12, 13]. We consider encoding a deterministic bounded
sequence of real numbers using a finite-resolution, finite-memory causal coder followed by a
finite-state lossless encoder. We prove an asymptotic converse theorem for the performance
of such systems. The resulting lower bound is given in terms of a new quantity, called the
“Lempel-Ziv differential entropy rate,” which, in the context of deterministic sequences and
complexity-constrained encoders, plays a role similar to Shannon’s differential entropy rate.
We show via a direct coding theorem that a dithered uniform scalar quantizer ([14, 15])
combined with a finite-state lossless coder achieves the lower bound of the converse theo-
rem. We also derive an individual-sequence version of the Shannon lower bound [1] to the

rate-distortion function in which the Lempel-Ziv differential entropy rate replaces the Shan-



non differential entropy rate. This bound implies that the loss of causality for individual
sequences is the same as in the probabilistic setting.

The paper is organized as follows. After reviewing some notation and definitions in
Section 2, we derive the converse and direct coding theorems for causal coding of probabilistic
stationary sources in Section 3. In Section 4, causal coding of deterministic sequences is
studied. In Section 4.1, we introduce the notion of Lempel-Ziv differential entropy rate and
present a result which characterizes individual sequences for which this quantity is finite.
The converse and direct coding theorems for causal coding of individual sequences are given
in Section 4.2. We prove the Shannon lower bound for individual sequences in Section 4.3.
Section 5 concludes the paper. Some of the more technical proofs are relegated to the

Appendix.

2 Preliminaries

For any sequence of random variables {X,, },er, where [ is either the set of integers or the
set of positive integers, and for any n > m, the segment (vector) (X,,, Ximt1,..., X,) will
be denoted by X. We allow m and n to be infinite; for example, we write X2 for the
entire sequence {X,}>2 _ . A similar convention applies to deterministic sequences which
are usually denoted by lower case letters.

The entropy of an n-dimensional discrete random vector X7 with values in the countable
set A is defined by

H(X7) = =) Pr(X] = 2)log Pr(X} = )
zeA

where log denotes base-2 logarithm. If the distribution of the real random vector X7 is ab-
solutely continuous with respect to the Lebesgue measure on R”, having probability density
function (pdf) f, the differential entropy of X7 is

h(XT) = = | f(x)log f(@) da

provided the integral exists. The normalized versions of H(X7') and h(X7) are denoted by
H(X?) and h(XD), respectively; i.e.,

XY 2 In(xy)  and R 2

n

h(XT).

S

The entropy rate of a stationary sequence of discrete random variables X7° is

1
H(XX) = lim —H(XT)

n—oo 1
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where the limit exists and is finite if H (X)) is finite [16].
If X7 is stationary and X" has a pdf and finite differential entropy h(X7) for all n > 1,
then the differential entropy rate of X{° is defined by

1
hMX®) = lim —h(XT).

n—oo 1,

By stationarity, the above limit is either finite or equal to —oo. Entropy rates and differential
entropy rates for double-sided stationary sequences are defined in a similar way. For example,
h(X>) = lim, £h(X™,).
Entropy rates will also be expressed via conditional entropies [16, 17|. For any discrete
stationary X _,
A

H(X*) = lim H(X;|X°)= H(X.|X°)

n—o0

while if X2 _ is stationary and has finite differential entropy rate,

A(X%,) = lim A(X[X0,) 2 h(XGIX0,).

n—oo

A scalar quantizer is a measurable function ¢ : R — R with a countable range. A scalar
quantizer of particular interest is the uniform quantizer with step size A > 0: Let QA denote
the quantizer defined by Qa(z) = kA+A/2if kA <z < (k+1)A, k=0,£1,£2.... When
Qa is applied componentwise to X7, we write Qa(X7]) to denote the resulting (discrete)
random vector (Qa(X1),...,Qa(X,)). A similar convention holds for infinite sequences of
random variables; e.g., Qa(X>,) denotes the sequence {Qa (X))} ..

The following result by Csiszar [18] shows a fundamental connection between the differ-
ential entropy of a random vector and the the asymptotic entropy of its uniformly quantized

version.

Lemma 1 Assume X7 is an n-vector of real random variables such that H(Q1(X7])) < oo.
If X7 has finite differential entropy, then

tim [(Q (X7)) + log A] = A(X7). 1)
It is also shown in [18] that the limit is equal to —oo if h(X]) = —oo0 or X7 does not have

a pdf. Since h(X7]) < H(Q1(X7)) by Jensen’s inequality, we obtain that in case H(Q1(X7))
is finite,! X7 possesses a pdf and finite differential entropy if and only if the limit on the
left-hand side of (1) is finite.

The following extension of Csiszar’s result to stationary processes will play an important

role in this paper.

Tt is straightforward to show that H(Qq(X7)) is finite if and only if H(Qa (X)) is finite for all A > 0.
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Lemma 2 [f X is stationary, has finite differential entropy rate, and H(Q1(X1)) < oo,
then

1 [H(Qa(XZ,)) +1og Al = A(XZ). (2)

The proof is given in Appendix A. Combined with the previous remark, the proof also
implies that whenever H(Q1(X7)) is finite, the process has a finite differential entropy rate
if and only is the limit on the left-hand side is finite.

3 Causal coding of stationary sources

Consider the following model for causal (non-anticipating) encoding a discrete-time real
random process X>_.2 The encoder accepts the source sequence ..., X_1, X, X1, Xo, ...
and applies to it a sequence of reproduction functions {g,},, where g, maps X"__ into the
real-valued reproduction symbol
Xp=ga(X"), n=1,2,...

Each g, is assumed to be a measurable function of one-sided infinite real sequences x”
and have a countable range (thus each X, is a discrete random variable). The encoder
losslessly encodes the reproduction sequence X 1, Xz, X 3, ... and thereby creates the variable-
rate binary representation /i, Z5, Z3.... The decoder receives 7, Z5, Z3, ... and losslessly
decodes the reproduction sequence Xl,Xg,Xg, .... The code is called causal because the
reproduction X, depends only on the present and past source symbols X" __. This means
that all delays are due to the lossless coding part of the code. Note that although the encoder
has access to the entire source sequence X2 _, only X7° is to be represented and reproduced
by the code.

The collection {g,}2 ; is called a casual reproduction coder. The distortion of the system

is defined by the accumulated expected mean-squared error
1< .
d({gn}) = limsup — Y E(X; — X;)*.
({gn}) = timsup - ; ( )
Note that the distortion is determined solely by the reproduction coder.

The rate of the code is measured by

lim sup lE [Ln(X2)]

n—oo n

2We follow the model introduced by Neuhoff and Gilbert [11]. They allowed general source and repro-
duction alphabets and an arbitrary single-letter distortion measure; we only consider the case of real sources
and squared error distortion measure which is amenable to high-resolution analysis.



where L, (X ) is the cumulative number of bits received by the encoder when it produces
X,.. Neuhoff and Gilbert [11] showed that the infimum of rates for all causal codes with a
given reproduction coder {g,} is the limsup entropy rate of the reproduction process, defined
by

lim sup %H()A(ln)

where X,, = g,(X"_.) for all n. > 1. We follow [11] to define the rate of the system to be

T({gn}) = lim sup 1H(X”)

n—oo

which makes the rate definition independent of the particular choice of the lossless code used
in the scheme.

An important class of reproduction coders is the class of sliding-block coders (also called
stationary or time-invariant coders). A causal sliding-block coder is characterized and de-
noted by a real function g of one-sided infinite sequences such that X, = g(X™) for all
n > 1. In this case, the distortion and rate are denoted, respectively, by d(g) and r(g). Note
that if X°°_ is stationary, then X2 and {X,, X, }22, are both stationary. Thus r(g) is equal
to the (ordmary) entropy-rate of X and d(g) = B(X; — X1)% If X, = ¢(X,), n=1,2,.. .,
for a scalar quantizer ¢, then g = ¢ is called a memoryless reproduction coder, and r(g) is
given by the entropy rate of the stationary sequence {q(X,)}°>_ .

The optimal performance theoretically attainable (OPTA) with causal source codes is the
minimum rate achievable when encoding the source X°¢_ by any causal code with distortion
D or less. Formally, for all D > 0 the causal OPTA function is defined by

rD)2 it r({g)

where the infimum is over all causal reproduction coders with distortion not exceeding D.

The main result of [11] shows that if X>_ is stationary and memoryless, then

where 7,,(D) is the lower convex hull of the OPTA function, r,,(D), for memoryless repro-

duction coders (scalar quantizers), given by

rm(D) = inf H{(q(X)). (3)

¢: B(X—q(X))?<D

Here X is a random variable having the common distribution of the X,, and the infimum is
over all scalar quantizers having squared distortion E(X — ¢(X))? < D. r,,(D) is called the
OPTA function for scalar entropy-constrained quantization of the memoryless source X
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[19, 20]. Any quantizer g such that H(g(X)) = r,,(D) and E(X — ¢(X))? < D is called an
optimal quantizer.

Since any point on the graph of r,,(D) can be obtained as the convex combination of at
most two points on the graph of r,,(D), Neuhoff and Gilbert’s result is equivalent to the
statement that for memoryless sources, optimum performance among all causal source codes
is achieved by time-sharing at most two optimal entropy-constrained scalar quantizers. The
following shows that this result continues to hold for sources with memory in the limit of
small distortion, in which case uniform quantizers are known to be (asymptotically) optimal
in the entropy-constrained sense.

Theorem 1 Assume the real stationary source X has finite differential entropy rate and
suppose H(Q1(X1)) < oo. Then

lim (TC(D) + % log(12D)) = h(X>2). (4)

D—0

Furthermore, r.(D) is asymptotically achieved by a uniform scalar quantizer Qa with step
size A = /12D in the sense that limp_o d(Q s3p5)/D = 1 and

lim (r(Q\/@) + %log(le(Q@))) = h(XZ). (5)

D—0

Remarks.
1. Let r(D) denote the rate-distortion function (with respect to the squared error distor-

tion) of the stationary source X2 . The rate loss of causal coding is the difference
3(D) = ro(D) = (D).

Since r(D) is the OPTA function of all unrestricted coding schemes, the rate loss is

always nonnegative. We have the Shannon lower bound [1] on (D),
1
r(D) Z rsup(D) = h(X%,) —  log (2meD) (6)

which is known to be asymptotically tight [21, 22] under the present conditions in the
sense that limp_o(r(D) — reLp(D)) = 0. Combining this with Theorem 1 shows that

the “price of causality” at high rates is

1
lim §(D) = lim (TC(D) . TSLB(D)) = - log <E) — 0.254 bits/sample.

D=0 D=0 2 6

This is the “space-filling loss” of the uniform quantizer; i.e., the high-resolution rate
loss of a uniform scalar quantizer with respect to an optimal vector quantizer with

asymptotically large dimension [3, 2].



2. The requirement of causality can be relaxed by allowing finite anticipation K > 0 for
the reproduction coder. In this case X, = g(ng'oK ), and casual codes correspond to
the K = 0 case. In view of the (high-resolution) causal solution, it is tempting to
replace the scalar uniform quantizer by a (K + 1)-dimensional lattice quantizer [23] as
a candidate for source coding with anticipation K. Indeed, by quantizing the source
in blocks of size K + 1 and applying sequence entropy coding, one obtains, for small
distortion, the achievable rate-distortion curve A(X> ) — Llog(D/G k1), where Gg4q
is the normalized second moment of the (K + 1)-dimensional lattice. Denoting the
OPTA for anticipation K by ") (D) the rate loss with respect to unlimited anticipation
is upper bounded as

. 1
}}gl(](r(K)(D) —r(D)) < 3 log(2meGr41).

The lattice scheme and the bound are asymptotically optimal for K = 0 by Theorem 1,
and also for large anticipation since for “good” lattices G — 1/(2me) as K — oo [24].
However, it is not at all clear whether this scheme is optimal and hence this bound is
tight for any finite positive K.

Proof of Theorem 1 We start with proving the second statement (5). Recall that the
(common) marginal distribution of the X, is absolutely continuous (i.e., has a pdf). From
high-resolution quantization theory [25, Lemma 1], this implies without any further condi-

tions that
E(X1 —Qa(X1))?

Ay A2/12 =
Since Qa is a memoryless reproduction coder, d(Qa) = E(X; — Qa(X1))?, and hence we
obtain 20 )
. VisD) _
mh L 0

The rate of the memoryless reproduction coder Qa is the entropy rate of Qa(X>,). Using
Lemma 2 with A = /12D we obtain

D—0

lim (H(Q vp(X20) + %log(l?D)) = h(X>,). 8)

This proves the second statement of the theorem on the asymptotic optimality of Q.
Since d(Qa) is clearly continuous in A, it is easy to see that (7) and (8) also imply the

following asymptotic upper bound on r.(D):

lim sup (rC(D) + % log(12D)> < h(XZ). 9)

D—0
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The rest of the proof is devoted to showing the reverse inequality

lim inf <TC(D) + %log(12D)) > h(XZ). (10)

D—0

We use the proof technique of [11] (proof of Theorem 3, steps 1 and 2) which needs
to be adapted to sources with memory in the limit of small distortion. The key to this
is the following “conditional” version of a classic result on high-rate entropy-constrained

quantization by Zador [26, 27] and Gish and Pierce [3]. The lemma is proved in Appendix A.

Lemma 3 Assume X is stationary, has finite differential entropy rate, and suppose
H(Q:1(X1)) < oco. Forany D > 0 define

r.(D) = inf H(g(X* )|X°)

g: B(X1—g(X1 ))2<D
where the infimum is over all measurable real functions g of X' __ that have countable range

and satisfy E(X1 — g(Xloo))2 < D. Then

1
liminf(r, (D) + 3 log(12D)) > h(X1|X° ).

D—0

The inequality (10) follows once we show that

liminf (r({9”}) + § log(12D)) > h(X,|X7,,) (1)

D—0

for an arbitrary family of causal reproduction coders {{ gr(LD)} : D > 0} such that d({ g,(LD)}) <
D for all D > 0. In the proof of Theorem 3 in [11] the following lower bound on the the rate

of any causal reproduction coder {g,(LD)} was shown to hold:

1< . ,
r({g”)) 2 tmsup o >IN (12)

el i=1
where Xi(D) = gﬁLD)(XiOO). Define d,(D) = E(X,, — )AQ(ID))? Then from the definition of 7,
HXGPNXI) 2 i (dn(D).

Now let 7, denote the the lower convex hull of rr. Since r(d, (D)) > 71(d, (D)), and 71 (d)

is nonincreasing and convex (and therefore continuous at any d > 0) we obtain

A : IR
n— 00 i—1 n— 00 i1



vV (AV4
=3 =
= =
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02} =
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v
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S

From Lemma 3,

D—

1
11m1nf< (D) + 5 log(12D) — h(X1|XOOO)) >0

As we show in Appendix A, this implies

lim inf <7~L(D) + %log(lQD) — h(X1|X900)) > 0. (13)
Hence
hmlnf (hmsup ZH X’ - T(D))
> ligl_i})lf (TL(D) + %log(lQD) — h(X1|Xgoo)) > 0.
Combined with (12), this proves (11) and completes the proof of the theorem. O

4 Causal coding of individual sequences

In this section, our aim is to investigate the high-resolution behavior of causal codes when no
probabilistic assumption is made on the sequence to be encoded. We introduce the “Lempel-
Ziv differential entropy rate” of a bounded deterministic sequence, a concept that will prove
crucial in characterizing the OPTA function of finite-memory causal codes for individual
sequences. As well, it will provide an individual sequence version of the Shannon lower
bound.

We begin with introducing some new notation and definitions. Let P’ denote the set of all
probability measures on the Borel subsets of R!, and let P! C P! be the collection of all P in
P! that are absolutely continuous with respect to the /-dimensional Lebesgue measure (i.e.,
each P € P! has a pdf). For any P in P, h(P) denotes the differential entropy of P, and if
P € Plis discrete, H(P) denotes its entropy. The normalized versions of h(P) and H(P) are
denoted by h(P) and H(P), respectively, i.e., h(P) = Th(P) and H(P) = = 1H(P). We write
X ~ P if a random vector X has distribution P, so that h(P) = h(X) or H(P) = H(X)
(whichever is appropriate) if X ~ P.

10



Given a sequence of real numbers z3° = x1, x9, ..., and positive integers n > [, let pé?
denote the “sliding-window” empirical distribution of -blocks in the initial segment x. That
is, for any Borel set B C R/,

1 n—Il+1
Pin(B) = P > (it
i=1

where 15(y) =1 if y € B and 15(y) = 0 otherwise.
For simplicity we always assume in the sequel that z5° (the sequence to be encoded) is
bounded so that each z,, is from the interval [0, 1]. All results can be trivially extended for

arbitrary bounded sequences of real numbers.

4.1 Lempel-Ziv differential entropy

To define the individual-sequence analogue of differential entropy, we use the concept of finite-
state compressibility of an individual sequence y{° over a finite alphabet ) introduced by
Ziv and Lempel [12]. A variable-length finite-state lossless coder E = (g, e) is characterized
by a next state function g : S x Y — S, where S is a finite set of states, and an encoder
function e : S x Y — {0,1}*, where {0, 1}* denotes the set of finite-length binary strings,
including the empty string. The sequence y{° is encoded into the bit stream bibsbs. .., (a
concatenation of finite-length binary strings) while going through an infinite sequence of

states si, So,83..., according to

b, = 6(51'-/%)
Si+1 = g(siayi) 1=1,2,...

It is assumed that the initial state s; is a prescribed element of S. The coder (g, e) is assumed
to be information lossless [12] so that y$° can be losslessly recovered from sy and bybobs . . ..
Let 1(b;) denote the length of the binary string b; (the empty string has length zero), and let
L(y*, E) = 37" 1(b;). The finite-state compressibility of 4% is defined by

=1
A . . . L(y?,E)
) = lim lims — =
i) £ Jny s i =

(14)
where £(s) is the set of all finite-state coders with the number of states bounded as |S| < s.
Clearly, prz(ys°) < log|Y| and prz(y{°) is an ultimate lower bound on the rate of any
finite-state binary lossless code for y7°.

A fundamental result [12, Thm. 3] states that the finite-state compressibility of y§° is the

limit of the [th order normalized “empirical entropies” of y{°, i.e,
prz(yi) = lim Hi(yy) (15)

11



where
Hy(y5°) = lim sup f[(p;?) (16)

n—oo

The limit in (15) exists since [H;(y5°) is subadditive in [ [12, Lemma 1].

Another fundamental characterization of ppz(y3°), given in [12], is that

o) . 1 n n
(i) = lmnsup —c(yf) log c(u?)

n—oo

where ¢(y7]') denotes the number of phrases obtained via the incremental parsing of y7; i.e.,
when y}' is sequentially parsed into shortest strings that have not appeared so far. It follows
that prz(yf°) can be achieved by the universal Lempel-Ziv algorithm based on incremental
parsing.

The following definition provides an individual-sequence analogue of differential entropy:.
We adapt Csiszar’s operational characterization (Lemmas 1 and 2) of differential entropy
via the asymptotic entropy of a uniform quantizer, but replace the process entropy with
the finite-state compressibility of the sequence. Recall that Qa(z$°) denotes the uniformly

quantized sequence {Qa(z,)}5%,.

Definition 1 The Lempel-Ziv differential entropy rate of a sequence of real numbers x3°,
with x,, € [0,1] for all n, is defined by

hig(af) = lim sup [P12(Qa(aT)) + log Al. (17)

Remarks.

1. Note that Qa(z) can take at most [+] values as @ varies in [0,1], where [a] de-
notes the smallest integer that is greater than a.®> Thus prz(Qa(z5°)) < log[+] and
prz(Qa(x3°)) +log A < log(A + 1), implying hpz(23°) < 0. Consequently, hpz(x3°) is

either finite or hyz(z3°) = —oo.

2. If each z,, belongs to the same finite set X C [0, 1], one always has hpz(z9°) = —oo
since in this case prz(Qa(23°)) is bounded from above by the logarithm of the size of
X.

3. Examples where hpz(z5°) is finite can be generated by letting z5° be a typical sam-
ple path of a stationary and ergodic process {X,}22, with finite differential entropy

rate h(X{°). From the ergodic theorem, with probability one, we have for all [,

3Note that this definition slightly differs from the usual definition of the ceiling function.

12



lim,, o ﬁ)lql (B) = Pr(X! € B) for any Borel set B C R!. Thus, for almost all re-

alizations z7°, for all A,

A

lim H(P), ) = H(Qa(X1))

n—oo

and hence, from (15),
Qo)) = Tim H(Qa(X1).

From Lemma 2,

lim [lim H(Qa(X7)) +log A] = h(X7)

so, for almost all realizations z°,

huz(27°) = h(X7°). (18)

4. For nonstationary processes the Lempel-Ziv differential entropy rate of a typical sample
path may not coincide with the ordinary differential entropy rate of the process (or the
latter may not exist at all.) For example, typical sample paths of a discrete process
can also have finite Lempel-Ziv differential entropy rate. Let X7° be a sequence of
independent random variables such that X, is uniformly distributed in {O, A B
1/ 2”}. Then for any positive integer m, Q1/2m(X¥) is a sequence of independent and
identically distributed (i.i.d.) random variables that are uniformly distributed on a set
with 2 elements. Since the effect of the initial segment @Q/om(X7"™") on pé)A(X]”)
vanishes as n — oo, with probability one, we have for all [ > 1,

hm H(Pélmm(X?)) =m

n—oo

so by (15), prz(Q1/2m (X7°)) = m. Thus,

lim sup (prz(Qa(X7°)) +log A) > 0.

A—0

Since the left-hand side is always nonpositive (see Remark 1), we obtain that hyz(X7°) =

0 with probability one, while h(X7°) does not exist.

We need some new definitions to state some important facts about hrz(25°). If a sequence
of probability measures P, € P!, n = 1,2,..., converges weakly to some P € P!, we write
P, = P. Let PY(x%°) denote the collection of all P € P! for which there is an infinite
subsequence {ny} of the positive integers such that f):i?k = P. Thus P(z{°) is the set of

subsequential limits (with respect to weak convergence) of the sequence Jf’é?, n=1I01+1,...
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Also, define P(23°) = P (25°) N PL, the set of probability measures in P'(25°) that possess
a density. Note that for an arbitrary 25°, both P!(25°) and P! (2$°) may be empty.

We have seen that an individual sequence with finite Lempel-Ziv differential entropy
rate might or might not be a typical sample path of a stationary and ergodic process.
Nevertheless, the next result shows that any such individual sequence can be characterized

via an associated stationary random source having finite differential entropy rate.

Theorem 2 Assume 9° is a sequence with z,, € [0, 1] for all n such that hyz(x3°) is finite.
Then there exists a real-valued stationary process X{° with finite-dimensional distributions
X! ~ B such that Py € PL(a5°) for alll > 1. Furthermore, X7° has finite differential entropy
rate h(X3°), and

hrz(z3°) = h(X°) = lim  sup  h(P). (19)

=00 pepl (a50)

The proof is given in Appendix B. The theorem states that for all 3° with finite hyz(25°),
there is a stationary process X7° with finite differential entropy rate whose finite-dimensional
distributions are the subsequential limits of empirical distributions of overlapping blocks of
2°. (In particular, P!(23°) is nonempty for all [.) Furthermore, the differential entropy
rate of the process coincides with hpz(2$°), and for asymptotically large I, the blocks X!
have maximum differential entropy. Thus, in a sense, X7° represents the dominant empirical
behavior of 23°. This characterization of x7° will prove crucial in our development of casual

coding of individual sequences.

4.2 Finite-memory causal coding of individual sequences

Consider an infinite bounded sequence of real numbers $° = x1, zo, . .., such that z,, € [0, 1]
for all n. A causal, finite-resolution, finite-memory (CFRFM) encoder with memory of size
M > 0 is described by a reproduction coder f which, for each ¢ > 1, maps the source
string x¢_,, into a reproduction letter &;, and by a finite-state coder which losslessly encodes
2° = Z1, 29, ... into a sequence of variable-length binary strings. To unambiguously specify
&= f(at_y,) fori=1,..., M, we formally define x_p11 = --- = x5 = 0, but only zy, zs, ...
are reproduced. The reproduction coder is said to have finite resolution because it is assumed
that it only sees a finely quantized version of the input. Formally, f : RM+1 — R is called a

reproduction coder with input resolution ¢ > 0 if for all (zy, ..., zar41) € RM*!

flz v zm) = f(Qs(21), - -+, Qs(2ar41)) (20)

where, as before, Q5 is the uniform quantizer with step size d.

14



Since we assume that each z; is in [0, 1], the finite input resolution property implies that
there are only finitely many possible values of Z; = f(x¢ ,,), the collection of which we
denote by X r. The reproduction sequence z7° is encoded by a finite-state, variable-length
lossless coder E = (g,e) which emits the bit stream biby ..., where the binary string b;
has length [(b;). Analogously to causal codes for random sources, we define the rate of the

system, measured in bits per source letter, by

n—oo

oo 3 1 .
r(z%°, f, F) = limsup - ;l(bi).

We eliminate the dependence of the system performance on the particular choice of the loss-
less coder by considering the minimum rate achievable by finite-state, variable-rate lossless
coding of the reproduction sequence. Hence the rate of the CFRFM code with reproduction
coder f is

r(#, /) £ infr(a, £ B) (21)

where the infimum is taken over all codes F with an arbitrary (but finite) number of states.
Comparing definitions (14) and (21), we clearly have prz(23°) < r(z?°, f). On the other
hand, the fact that prz(25°) is achievable by wuniversal finite-state schemes [12, Thm. 2]

implies the reverse inequality, so we have

r(z1°, f) = prz(27°).

The distortion of the CFRFM coder (which only depends on the reproduction coder f)

is given by the average cumulative squared error

1 n
d(a$e, f) =i - P — )%
(3% f) linﬁsogpn;(x )

For § > 0 and M > 0, let FM denote the family of all reproduction coders with input
resolution & and memory M; then F = | ws0Usso Fa is the collection of all finite input
resolution reproduction coders having finite memory. The OPTA function for CFRFM codes

with respect to 23° is defined by

A

re(D, x7°) nf r(z3°, f). (22)

1
feF:d(z°,f)<D

Thus r£(D, 25°) is the minimum rate achievable at distortion level D by any CFRFM code
with reproduction coder having arbitrarily fine input resolution and arbitrarily large (but
finite) memory size, and lossless coder having arbitrarily large (but finite) number of states.

The following is an individual-sequence analogue of the converse part of Theorem 1.

15



Theorem 3 (Converse) Assume x5° is a sequence with x, € [0,1] for all n for which
hrz(x5°) is finite. Then the OPTA function for CFRFM codes with respect to x3° satisfies
liijgf(rf(D, ) + % log(12D)) > hrz(23°).

Remark. Note that CFRFM coders form a subclass of the set of all causal reproduction
coders we considered in the probabilistic setting. The condition that every coder in F is
time-invariant is a natural restriction in the individual sequence setting. The other two
conditions are imposed for technical reasons (and are quite heavily relied on in the proof).
The finite-memory requirement, also assumed in [10] when studying the large deviations
performance of special classes of causal codes, does restrict generality, although codes with
long enough (but finite) memory may well approximate codes with infinite, but rapidly
fading memory. On the other hand, the finite-resolution condition is non-restrictive from
a practical viewpoint since any coder implemented on a digital computer must have finite

input resolution.

Proof. Let X{° be the stationary process associated with x7° via Theorem 2. For conve-
nience, we extend X7 into a two-sided process X*°_ by specifying that the n-blocks X* it
i=n—1,n—2,... have the same distribution as X7 for all n > 1. We show that rz(D, x7°)
is lower bounded by the causal OPTA function of X . from which the result will follow.

Consider any reproduction coder f with arbitrary input resolution 6 > 0 and memory
M > 0. Since r(z5°, f) = prz(27°), where z; = f(z!_,,) for all 7, from (15) and (16),

r(a, f) = lim H(55)

where
H;(25°) = limsup H(Paé?).

n—oo

Fix [ > 1 and define f : RM+ — R! by

FE) = (FET @), FET)

for any z* € RM*, Since f has input resolution 8, the range of the 2;, Xy = f([0, 1]M+1),

is finite. Thus for all n > [, f’é? is a discrete distribution such that for any w € f([0, 1]M+) C
Vi

1 n—I+1

Pl — Loy (21471
3y (w) n—1+1 Z_Zl {w}(xz )

1 n—I+1
_ X iHl—1
= 7 2 w )
=1
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= P (fw)).

I —M+1

(Recall that x_pr41 = --+ = 1y = 0 by definition.) Hence Pln = PMH o f~1, where for

any probability measure P € P! and measurable function g : Rl — R™, P o g~! denotes the

probability measure in P™ induced by P and g; i.e., for any Borel set B C R™,

Pog'(B) = P(g'(B)) = P({x: g(z) € B}). (23)

Since XM* ~ Py € PMH(2%°) by Theorem 2, there is a subsequence {n;} such

that PMH = Py Clearly, we also have P;”: = Py since the effect of the initial
41

segment 9, 41 vanishes asymptotically. By the  input resolution property, f (z

FQMH(ZMH)) so f is constant on the interior of each of the cells of QM+ which are

(M + 1)-dimensional hypercubes, and the discontinuities of f occur on the faces of the

M+l) _

hypercubes. Thus the set of discontinuities of f have zero P4, probability (recall that
Pyr41 has a pdf), and so PM+l o f7L = Pyio fL by (28, Thm. 5.1]. Since Pysy; 0 f1is

—M+1
discrete with finite support, this implies

Hy(2°) = limsup F]([f’én)

> lim H(P.,)
j—00 3171

— lim H(PM“ o f™h

Jj—o0

= H(Pyy0f™)
= H(f(X]"™), ... f(XH).

We obtain
r(2f°, f) = lim H(35°) > lim A(XP) = H(XP)

where X; = (X ,)).
Similarly, let {n;} be a subsequence such that P+
T_M+1
nuities of the bounded function (241 — f(217 )2, 27T € [0, 1]+, has Pysy1 probability

zero, we obtain

= P41 Since the set of disconti-
00 : 1 £ 0\2
A, f) = lmsup— > (7 — &)

= i [ Coanr — SRR ()
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- / (ears1 — F(T)2 APy (1)

= B, — f(XLy ) = d(f).
Thus the rate and distortion of any CFRFM code for z{° are lower bounded by the rate and

distortion, respectively, of its stationary causal reproduction coder f encoding X _. Hence

(a7, f) = re(d(f)) = re(d(at, f))

where 7. denotes the casual OPTA function of the stationary source X% . Since the above
holds for any reproduction coder f having arbitrary input resolution and memory size, by
definition of the OPTA function for CFRFM codes (22), for all D > 0,

Tf(Da 1,?0) = TC(D)‘
Therefore we obtain

1 1
hminf(rf(D,x;O)+§10g(12D)) > lim (TC(D)+§log(12D))

D—0 — D—0

= h(XZ,) = hiz(277)

where the first equality follows from Theorem 1 (whose conditions are clearly satisfied by

X_) and the second from Theorem 2. This completes the proof. O

Theorem 2 and the preceding proof suggest that similarly to the random source case,
the asymptotic lower bound for rz(D,z$°) in Theorem 3 is achievable by a simple scheme
in which the output of a memoryless uniform scalar quantizer Qa is encoded using a finite-
state lossless coder. Indeed, all one needs to show is that the finiteness of hpz(25°) implies
d(z5°,Qa) =~ A?/12 as A — 0 (which is according to high-rate quantization theory the
typical asymptotic behavior of uniform quantizers for sources with a density). Then one
could conclude directly from the definition of hyz(x$°) that

i sup(r (7%, Qa) + 5 1o5(12d(s, Qa))) = (o)

since (2%, Qa) = prz(Qa(z5°)). However, as the next example shows, it is not hard to

construct sequences x3° with finite hpz(x7°) that do not exhibit this behavior.

(Counter) Example. Let {Y,}>2; be a sequence of i.i.d. random variables with each Y,
being uniformly distributed on [0, 1], and let y° by a typical sample path of {Y,,} such that
ﬁé? = u! as n — oo for all [ > 1, where u! denotes the uniform distribution on [0, 1]’. Let

no = 0 and {nj};?‘;l be an increasing sequence of positive integers such that

lim M-t
Jj—o0 ’)’Lj

= 1. (24)



For each m =1,2,3,... and j =m(m +1)/2, let

Uz _ Ty
'Inj,1+1 - yl

and for j=m(m+1)/2+k, k=1,...,m, let Z’Zj_1+1 be any sequence with components

1 k—1
xiE{O,E,...,( ? ),1} fori=mn;_1+1,...,n,. (25)

The condition (24) clearly implies that along the subsequence n;, 7 = m(m +1)/2, m =

1,2, ... the empirical distribution of y® dominates in the sense that P, = ul as

Z‘17n(m,<|—1)/2

m — oo for any [ > 1. Letting Q'\ denote the [-fold product of Qa, we thus have
H(Qa(27) 2 H(u' 0 (Q4) ™) = H(u' 0 Q4))
and, since H(u' o Q') +log A — h(u') =0 as A — 0 by Lemma 1, we obtain
lim inf (prz(Qa(27°) +log A) > 0.
Since prz(Qa(z°) <log(l/A + 1), this yields

gLHO(PLZ(QA(foO) +logA) =0

so we conclude that £3° has (maximum) Lempel-Ziv differential entropy rate hyz(25°) = 0.
On the other hand, for any fixed integer £ > 1, ift A = 1/k and j = m(m + 1)/2 + k for
m=k,k+1,k+2,..., then from (25) we have

(QA(xz) — .Ti)Q = A2/4 for all i = nj—1 + 1, ceey g (26)
Since (Qa(x) — x)? < A?/4 for all x, (26) and (24) imply

00 . 1 " 9 AZ
o, Qa) = i LS (@atr) g = &
i=1

n—oo 4

forall A=1/k, k=1,2,.... Thus

) o 1 o 1 %
i (r(5°, Qa) + 5 log(12d(s3°, Qu)) = 5 log3 > hu(a5).

so the asymptotic lower bound of Theorem 3 is not achieved by memoryless uniform scalar

quantization.

Next we show that the asymptotic lower bound of Theorem 3 can be achieved by scalar

uniform quantization and subtractive dithering [14, 15] (followed by Lempel-Ziv coding). Let
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{Z,}5%, be a sequence of ii.d. random variables with each Z, uniformly distributed on
(—1/2,1/2]. It is assumed that {Z,} is available to both the encoder and the decoder. The

dithered uniform quantizer maps each x; into
2 = Qalz; + Za,)

where Za ; = AZ; (so that Za ; is uniformly distributed on (—=A/2,A/2] ), and the sequence
27° is encoded using a finite-state, variable-length coder. We measure the rate of the system,

r(x3°, Z7°,Qa), by the minimum rate achievable by finite-state variable-length coding of 23°:
(a3, 77, Qa) = pra(dt). (27)

Note that for any bounded sequence z{° and fixed A > 0, Z; is a sequence from a finite
alphabet, so prz(25°) is well defined. Moreover, the Lempel-Ziv coding of #5° achieves this
rate [12].

At the decoder (where Z{° is also available) x; is reproduced as

A

T =2 — Zpn; = Qalxi +Zn;) — Zn,

and, accordingly, the distortion of the system is measured by

n—oo

00 1700 . 1 ¢ _
d(x7°, Z7°, Q) = limsup Z(:c — &) (28)

Both the rate and the distortion of the dithered scheme are random quantities which
depend on the dither sequence Z7°. The next result states that for any fixed input sequence
x7°, with probability one the asymptotic lower bound of Theorem 3 can be achieved by

dithered schemes that use the same realization of the dither sequence for all A.

Theorem 4 (Achievability) Assume x$° is a sequence with x,, € [0,1] for all n such that
hi7(x$°) is finite. Then for almost all realizations 23° of Z7°, the dithered scalar uniform

quantizer has asymptotic performance

) 1
limsup (25", 7. Q) + 5 log(12d(af". 2%, Qn))) < hus(a).

Proof.  First we consider the distortion. It is well known [29] that if Z is uniformly
distributed on (—A/2, A/2], then for any = € R the random variable

Qalr+2)—7Z —x
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is also uniformly distributed on (—A/2, A/2], and therefore

AQ
BQale+7)~ 72— = T
(see also [15] for a generalization to dithered lattice quantizers). Thus for any A > 0,
{Qa(zi+2Za,;)—Zn,i—xi }32, is a sequence of i.i.d. random variables with common distribution

that is uniform on (—A/2, A/2]. Hence, by the strong law of large numbers, with probability

one,
00 [e'¢) : 1 - 2 AQ
d(@7°, Z7°,Qa) = hin_gp - ;(QA(% +Zni) — Zai—Ti) = 7
which implies
AQ
Pr (d(a:‘l’c, 77°,QA) = D) for all rational A > 0) = L.
It is easy to check that for any x € [0,1], z € (—1/2,1/2], and A, A’ > 0,
|Qa(z + Az) — 2 — Az| — |Qar(z + A'2) —z — A'z|| < |A—A'|+2M
A A - min{A, A, 1}

It follows that d(z3°, Z7°,Qa) is a continuous function of A with probability one, so we
obtain
A2
Pr (d(a:‘l’o, Z7°,QA) = T for all A > 0) = 1. (29)

Next recall that by (15),
P05, 2. Qa) = paf6T) = lim H(67) (30)

where &, = Qa(x, + Za,) for all n. Fix [ > 1 and n > [, let (2a1,.-.,2a,) be any length
n sequence such that za,; € (=A/2,A/2] for all i, and let y; = x; + za,; for i = 1,...,n.
Consider the joint empirical probability of overlapping [-blocks, P! , given for all Borel

(=T97)
sets B C R? by

n—I+1
. 1 . .
l _ i+l—1 | i+l—1
Playan (B) = g 2 1™ hui™ ),
=1

Furthermore, let X! = (X1,...,X;) and Y = (Y1,...,Y}) be random vectors such that the
pair (X!, Y]) has joint distribution ﬁ(lx?’y?)_ Then | X; — Y| < A/2 for all i = 1,...,] with

probability one. Hence for any z and A’ > 0, we have

Pr(Yielz—A/2, 2+ AN+ A2]|X; €z, 2+ A]) =1
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so that, conditioned on the event that Qa/(X;) is a given constant, Qa(Y;) can take at most

[%’1 + 2 different values. Consequently,
I
H(Qa()|Qa(X])) < Y H(QaY)|Qu (X))
i=1

< Z H(Qa(Y:) | Qar(X5))

< llog (%+3).

Therefore
H(Qa(Y])) < H(Qa(Y!),Qa (X))
= H(Qa(X])) + H(Qa(Y]) | Qa(X]))
< H(Qa(Xh)) +1log (% +3) .

Note that H(QA’(XD) = H(pch/(z?)) and, if (ZA,la ceey ZA,n) = (ZA,la ceey ZA,n)a then H(QA(Yf)) ==
H([A’é?) Thus we obtain that with probability one, for any A, A’ > 0,1 > 1, and n > I,

_ . N A
! !
Taking the limit superior of both sides as n — oo and then the limit as [ — oo we obtain
from (15) and (30) that with probability one, for all A, A" >0

A/
T(x(fov Zloov QA) = pLZ(i?) < IOLZ(QA’(:UTO)) + log <Z + 3) .

Thus for every fixed A’ > 0,

limsup (r(z3°, Z°, Qa) + log A) < prz(Qas(25°)) + limsup log (A" + 3A)
A—0 A—0

= pz(Qa(z7)) +log A

which, combined with the definition of hpz(25°), implies, with probability one,

lim sup (r(25%, 27, Qa) + log A) < hyz(z5°).
A—0

Combined with (29), this proves the theorem. O
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4.3 A Shannon lower bound for individual sequences

For two sequences of real numbers x° and 23°, let

1 n
d(x>°. 7 é Ii - .- Ai 2.
(x7°,27°) = limsup - ;:1 (x; — 2y)

n—oo

It 23° is a bounded sequence of real numbers and D > 0, let

p(x5°, D) = inf DPLz(fcfo)

0 d(x5°,25°)<

where the infimum is over all sequences Z7° from some finite set of reals (so that ppz(#5°) is
well defined) that satisfy d(x9°,23°) < D. In analogy to [13], where a similar quantity was de-
fined with the finite-state fixed-rate complexity of 23° replacing the finite-state variable-rate
complexity prz(23°), we call p(z$°, D) the variable-rate rate-distortion function of z$°. Intu-
itively, p(x9°, D) expresses the minimum achievable rate in encoding the individual sequence
x7° with unbounded delay using a variable-rate finite-state encoders.

The following lower bound on p(z9°, D) gives an individual-sequence version of the Shan-

non lower bound for stationary sources with finite entropy rate.

Theorem 5 Assume x3° is a sequence with x, € [0,1] for all n, and suppose hyz(x°) is
finite. Then for any D > 0,

1
p(x3°, D) > hyz(2]°) — 5 log(2meD).

Remarks.

1. Although we do not have a coding theorem showing the exact operational significance
of p(x$°, D) for individual sequences, it can be proved using results of Yang and Kieffer
[30] that with probability one, p(X7°, D) = R(D) for any bounded stationary and
ergodic source X7° with rate-distortion function R(D). Thus the theorem gives back
the Shannon lower bound for sample paths of bounded stationary and ergodic sources

with finite differential entropy.

2. Theorems 4 and 5 imply that for systems that allow subtractive dithering, the price of
causality for small distortion is upper bounded by (1/2)log(2me/12) bits per sample.
It can also be shown that the lower bound of Theorem 5 is asymptotically tight in
the sense that it can be asymptotically achieved with schemes using multidimensional
dithered lattice quantization followed by Lempel-Ziv coding. Thus in the limit of small
distortion, the price of causality is the same as in the probabilistic case; i.e., the rate

loss of the cubic quantizer cell.
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Proof of Theorem 5 First we note that finite-state compressibility preserves some impor-

tant properties of (Shannon) entropy. In particular, if J and Z are finite sets, T : Y — Zis

A

an arbitrary function, y{° is sequence from Y, and T'(y°) = T'(y1), T(y2), T (y3), - . ., then

prz(T(y1%)) < prz(yr°). (31)

Note that equality must hold if 7" has an inverse. Furthermore, if u$® and y{® are sequences
from the finite alphabets U and Y, respectively, and (u(®, y7°) = (ur, 1), (ug, y2), (us, ys), - - -
(a sequence from the finite alphabet ¢ x ), then we have

prz(ui®) < prz(ui®, ¥7°) < prz(us®) + prz(yr®). (32)

These inequalities follow directly from the characterization of finite-state compressibility of
a sequence in terms of the empirical entropies of overlapping blocks, but for completeness
they are proved in Appendix D.
Let D > 0 and #5° any sequence over a finite subset of reals such that d(x3°, 23°) < D.
We will show that .
pra(it) > hug(a°) — 5 log(2meD) (33)

which clearly implies the theorem.

Note that we can assume that z,, € [0, 1] for all n, since otherwise we can define

0 ifz,<0
Tp=1%, if0<z,<1

1 ifd, >1

and replace 3° by Z3°. The new sequence will satisfy prz(Z3°) < prLz(23°) by (31), and
d(x3°,23°) < d(x9°, 29°) since z,, € [0, 1] for all n.
For 6 > 0 let Qs(23°) — Qs(23°) denote the sequence {Qs(z,) — Qs(Z,) 02 ,. First using
—v

(32), then applying (31) with the invertible mapping 7'(u,v) = (u — v,v), and then using

(32) again, we obtain

prz(Qs(777)) < prz(Qs(27°), Qs(277))
= prz(Qs(z7°) — Qs(27°), Qs(27°))
< prz(Qs(27°) — Qs(277)) + prz(Qs(27°)).

Note also that by (31), prz(Qs(23°)) < pLz(27°). Hence

prz(25°) > prz(Qs(277)) — prz(Qs(27°) — Qs(27°)). (34)
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Let Hpax(D, 0) denote the maximum entropy of any discrete random variable with values

in Ay = {0, 0,424, ...} having second moment at most D, i.e.,
Hyax(D,6) = max{H(Z) : Pr(Z € As) =1 and F(Z*) < D}.

We show in Appendix D that d(Qs(253°), Qs(23°)) < D + 36 for all 0 < § < 1, and also that

this implies

pLz(Qs(277) — Q5(27°)) < Hunax(D + 36, 9). (35)

Hence by (34),
pLz(27°) > prz(Qs(25°)) — Hmax(D + 36,9).

We also show in Appendix D that for all D > 0,

1
lim sup Hyax (D, 0) +logd < 5 log(2meD). (36)

6—0

Since H,ax(D, d) is monotone increasing in D for any fixed J, the preceding implies

1
lim sup Huax (D + 30,9) + logd < 5 log(2meD).

6—0
Thus
prz(27°) = ﬁl?SUP(PLZ(Qé(x(fO)) — Honax(D + 30, 0))
—0
> limsup(pLz(Qs(27°)) + log6) — limsup(Hyax(D + 36,6)) + log §)
6—0 §—0
1
> hpz(x?) — 5 log(2meD)
where the last inequality follows from the definition of hApz(x3°). O

5 Concluding remarks

We extended results on causal coding by Neuhoff and Gilbert to (stationary) sources with
memory, and to individual sequences encoded by complexity-limited systems, under high
resolution conditions. The price of causality was identified in both cases as the space-filling
loss of the cubic lattice cell; i.e., approximately 0.254 bits.

For the individual sequence setting we also derived a lower bound on the performance
of non-causal encoding systems. The bound, which parallels the Shannon lower bound on
the rate-distortion function, is based on the notion of Lempel-Ziv (finite-state) complexity

of a discrete individual sequence. We note that similar results can be obtained using other

25



sequence complexity measures (e.g., Kolmogorov complexity), provided they satisfy the two
very intuitive properties used in the proof.

Our analyses focused on the high-resolution limit, which, in effect, allowed the decoupling
of the quantizer’s rate-distortion behavior from its ability to form contexts for entropy coding.
It is worth noting that at the other extreme (that of high distortion) the price of causality
is expected to be smaller. For example, at the maximum distortion the loss is zero since
a memoryless scalar quantizer with one level (placed at the mean of the source) achieves
optimum rate-distortion performance. At intermediate distortion values one can always
bound the price of causality by the rate loss of an entropy-coded dithered scalar quantizer,
which is at most (approximately) 0.754 bits [14, 15] at all distortion values.

In light of these results, one could use similar intuition and tools to analyze fixed-rate
zero-delay encoding with high resolution. The corresponding asymptotic performance limit
in this case should be given in terms of Bennett’s integral (e.g., [20]). We conjecture that for
stationary sources possessing a conditional pdf given the infinite past, a conditional version
of Bennett’s integral, calculated with respect to the conditional pdf and averaged over the

condition, gives the minimum distortion in zero-delay coding with high resolution.

Appendix A

Proof of Lemma 2 Since h(X>) exists and is finite, the mutual information between X
and the past X°__ is finite:

I(X1; X° ) = h(Xy) — h(X1|X°) < .
Also, the condition H(Q:(X,,)) < oo implies that for all A > 0, H(Qa(X>,)) < co and

I(Qa(X1); Qa(X? ) = H(Qa(X1)) — H(QA(X1)|Qa (X)) < oo.

Since for any decreasing sequence {A,, } with lim,, A,, = 0, the partitions (quantizer cells) of
{Qa,,} asymptotically generate the Borel sigma field on the real line, by [17, Lemma 5.5.5]
we have
lim 7(Qa(Xy); X0 ) =1(X1;X°).
Therefore
W(X1) = h(X1|XT) = lim T(Qa(X1); X0.0)
= lim [ H(Qa(X1)) — H(Qa(X1)[X?,) ]

A—0

= lim [ H(Qa(X1)) +log A = H(Qa(X1)|X%) —log A]
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= h(Xy) - ELIB[H(QA(XIHXSOO) —log A]

where the last equality follows from Lemma 1. Hence we obtain
hAm_%f [H(Qa(X2)) +log A]
= liminf[ 7(Qa(X1)|Qa(X2)) +log A ]
> liminf[ H(Qa(X1)[X2) +logA]
= h(X|X0.) = R(X%).

To prove a reverse inequality, note that by stationarity,

H(Qa(XZ,)) < H(Qa(XT))

for any n > 1. Thus by Lemma 1,

limsup [(H(Qa (X)) + log A] < h(X7).
A—0
As n — oo, the right-hand-side converges to h(X>_). Thus
limsup[H(Qa(X2,)) +log A] < R(XZ,)
A—0
which completes the proof. ]
Proof of Lemma 3 We need the following fact characterizing r,,,(D) in the limit of low
distortion. The proposition is essentially due to Zador [26, 27| and Gish and Pierce [3]; it

was proved with the present general conditions in [31].

Proposition 1 If X is a real random variable with a pdf such that h(X) and H(Q1(X)) are
finite, then
lim (r,, (D) + %log(IZD)) = h(X).

D—0
To prove the lemma, it suffices to show that if the family of functions {gp; D > 0} satisfies
E(X) —gp(X!'_))> < D for all D > 0, then
1
tim inf (H (gn(X2.0)| X0.0) + 5 los(12D)) > h(X,|X0.,).

0

—0oQ?

To simplify the notation, let Y denote X and let y denote a particular realization z° __.
Let Px,y—, denote the conditional distribution of X; given the infinite past ¥ = y, and note

that Py, |y, exist as a regular conditional probability [32]. Define
dp(y) = E[(X1 — gp(X1.Y))’|Y = yl.
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Since E[dp(Y)] < D and by the concavity of the logarithm, we have
1
H(gp(X20)|X2) + 5 log(12D)
1
> [ [Ho(x V1Y = )+ 5 log(12d0(0))] duty)

where p denotes the distribution of Y = X°__. Thus it suffices to show that

liminf/[H(gD(Xl, Y =vy) + %log(mdp(y))] du(y) > h(X1]Y). (A1)

D—0

The finiteness of h(X;|Y') implies that Px,|y—, is absolutely continuous with pdf fx, v (z1|y)
for p-almost all y. For any y and d > 0 let 7,,(d, Px,|y=y) denote the OPTA of entropy-
constrained scalar quantizers for a random variable X with distribution Px,y—, and differ-
ential entropy h(Px,jy=y) = h(X1]Y =y) (see definition (3)). Furthermore, define

1
F(y,d) = rp(d, Px,|y—y) + 5 log(2med) — h(X4|Y = y).

By definition, H(gp(X1,Y)|Y =v) > 7 (dp(y), Px,jy=y). Thus (A.1) holds if

. . 1 2'/Te A
lim inf / F(y,dp(y)) du(y) = 5 log <§) =c (A.2)

The rest of the proof is devoted to showing that (A.2) holds.
Observe that by the conditions of the lemma, both A(X;]Y = y) and H(Q1(X1)|Y = y]

are finite for p-almost all y. Therefore Proposition 1 implies that for p-almost all ¥,
ligljélfF(y, d) > c. (A.3)
Also, by the Shannon lower bound (6), for u-almost all y
F(y,d) >0 foralld> 0. (A.4)
For any positive integer k and D, > 0, define the sets
Apy = {y - do(y) < 1/k}

and
Bsr={y: F(y,d)>c—¢ forall de(0,1/k)}.

Then, using (A.4),
[Fwadsdut) = [ Fdot) duts)
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> H(AD,k N B(;’k)(c — 5)

Since dp(y) is nonnegative and E[dp(Y')] < D, Markov’s inequality implies that limp_,o u(Apx) =
1 for all £ > 1. Hence,

igpint [ F.do) du(s) > T inf p(Ap 0 Be)(e— )
— u(Bape— ). (A5)

Since
: lim1i >
{y hgl_}lglf F(y,d) > c} C | | Bsx

k>1
we have M(Uk21 Bsy) =1 for all § > 0 by (A.3). Since Bsy, C Bsy if k < k', the continuity
of u as a set function implies that limy . p(Bsg) = 1. Thus letting & — oo in (A.5), we
obtain

liminf [ Py do(y) du(y) = c =5
which completes the proof since ¢ > 0 was arbitrary. O
Proof of (13): By appropriate shifting, normalization, and scaling, it suffices to show that

if r(t), t > 0 is a positive nonincreasing function such that

liminf (r(¢) +1Int) > 0

t—0

then its lower convex hull 7(¢) satisfies

h??ﬂﬂw+mﬂzo (A.6)

We prove (A.6) by contradiction. If (A.6) does not hold, then there is an ¢ > 0 and a
sequence of decreasing positive numbers t,, n = 1,2..., with lim, ¢,, = 0 such that

7(t,) < —Int, —e€ (A.7)

for all n. Now consider the affine functions
t
Gne(t) =1— T Int, —e€/2

that represent the lines supporting the convex function —Int — ¢/2 at the points ¢t = ¢,
(i.e., g1, e(tn) = —Int, —¢/2 and ¢, (t) < —Int —¢/2 for all t > 0). Let t* > 0 be such
that r(t) > —Int — €/2 if 0 < t < ¢*. Since gy, ((t) is strictly decreasing and g, (t) = 0 at
t =t,(1—¢€/2) —t,Int,, by choosing n large enough (so that ¢, is small enough) we have
Gt,n.e(t) <0 for all t > t*. Hence, we have for 0 < ¢t < t*

Gt,c(t) < —Int —¢/2 < r(t)
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and for ¢t > t*
Gt,.c(t) <0 < r(t).

Thus gy, (t) < r(t) for all ¢ > 0. Since 7(t) is the pointwise supremum of all affine functions
that are majorized by r(t), it follows that 7(t) > gy, (t) for all £ > 0. But from (A.7) we
have

7(t,) < —Int, —e < —Int, —€/2 = g4, (1))

a contradiction. ]

Appendix B

Proof of Theorem 2 First we construct the desired stationary process. Let {Ag}32; be a

decreasing sequence of positive numbers converging to zero such that
hiz(a1?) = lim [P12(Qa, (25°)) + log Ay].
From (15) and (16) we have

hiz(23°) = lim (lim H(Qa,(27°)) + log Ay)

k—o00 " l—00

= lim ( lim limsup H(PéAk(w?)) +log Ay).

k—oo =00 poeo

Recall that [H;(y$°) is subadditive in [. Thus lim; H;(y$°) = inf; H;(y$°), so we have for all [,

hiz(29°) < lirljis;jp(lig:sogp H(ﬁéAk(x?)) +1log Ay) = L(1). (B.1)
Now note that Jf’é? is supported in the hypercube [0,1]!, so the family of probability mea-
sures {f’é?; n=1,01+1,...} is uniformly tight. Therefore Prokhorov’s theorem [32] implies
that every subsequence of pgﬁ?, n = 1,2,... has a sub-subsequence, say f’ink, k=1,2,...
converging weakly to some P € P!. In particular, P!(xS°) is nonempty for 1all [. Tt follows
that for each [ there exists a P! € P!(25°) and a subsequence {n;} (which depends on 1)
such that
Pl = P' and  limsup(H (P! (@) Tlog Ax) = L(1). (B.2)

T b 00 Qa

The collection {P’; [ > 1} thus obtained will play an important role in the subsequent proof.
Let a; = A [a- ] and wj, denote the uniform distribution (Lebesgue measure) on [0, ax)'".
Also, let u! denote the uniform distribution on [0,1)" and Q% the I[-fold product of the
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uniform quantizer Qa. Then the induced distribution u}, o (Q )" (recall definition (23)),

is the uniform distribution on Q% ([0, 1]'), a set of cardinality [ A,Jl' Thus we have
. A 1. =
l ky _ + l l I \—1
H(PQAk(ka)) + log (a—k> = ZD(PQAk(m;Lk)Huk o (QAk) )
where D(P||P’) denotes the relative entropy (Kullback-Leibler divergence) [16, 17] between
two probability measures P and P’. In Appendix C we show that Plnk = P! implies
o

ﬁéAk @y = P (B.3)

Since ar — 1 as k — oo, it follows similarly that u} o (Q%,)™* = u!. Thus from (B.1) and
B2)

hiz(25°) < L(l) = limsup(ﬁ(ﬁl ney) + 1og A)

k—oo QAk(wlk)
- Lop l I -1
= llglsup _jD(PQAk(x?k)Huko(QAk) ) — log ay,
= it 1D o ko (Qh,)7)
1
< —7D(P'|u) (B.4)

where P! is defined in (B.2), and the inequality follows from the lower semicontinuity (with
respect to weak convergence) of the relative entropy [33]. For any P € P! supported on
[0, 1)%, the relative entropy D(P||u!) is finite if and only if P has a pdf and finite differential
entropy, in which case h(P) = —D(P||u!). Hence (B.4) implies that P! € P!(2$°) (thus
PL(25°) is nonempty) and it has finite differential entropy which is bounded as

h(P') > L(l) > hyz(z5). (B.5)

Now let P € P!(z5°) be arbitrary and {n;} a subsequence such that P;i = P. Then

1

L(l) = limsup( lim sup H(PQA (ar)) +108 Ay)

k—o00 n—00

> limsup( lim H(Pl N j)) +log Ay)

—00 (

k—oo J

= limsup( H(Po (Q4,)™") +log Ax)
k—oo

= h(P)

where the second equality follows from Lemma 1 and the first equality holds since P has
a pdf and the discontinuities of Q' form a set of Lebesgue measure zero, and so from [28,
Thm. 5.1], Pl., = P implies that as j — oo,

Ty

Pl iy =P o (@) = Po (@)™ (B.6)
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Thus h(P) < L(I) for all P € PL(z$°). Since h(P') > L(I) by (B.5), this implies

h(PY= sup h(P). (B.7)
PePl(x$°)

Next, using the collection {P'; 1 > 1}, we construct the desired stationary process
{X,} with marginal distributions in P!(z°). For m > [, let P/™ denote the [-dimensional
marginal of P™ corresponding to the first [ coordinates; i.e., P"*(B) = P™(B x R™™)
for any measurable B C R!. Since each P™ is supported in [0,1]!, for each [ the family
{P";m=1+1,1+2,...} is uniformly tight. Thus we can use Cantor’s diagonal method to

pick a subsequence {m;} of the positive integers such that for all [ > 1,
P" = P, for some P, € P, (B.8)

We show that the marginals {F; [ = 1,2, ...} define a stationary process that satisfies the
theorem statement. Recall that P'(z3°) is the set of subsequential limits (with respect to
weak convergence) of the sequence }A’é?; n = I,l+1,.... Since the weak convergence of
probability measures on a Euclidean space is metrizable [32], it follows that P!(25°) is closed

under weak convergence. As shown in Appendix C,
P™ e Pl(x$°) for all 1 > 1 and m > 1 (B.9)

and hence P = P, implies that P, € P!(2%°). By construction, the family of finite-
dimensional distributions {FP;;1 = 1,2,...} is consistent in the usual sense: for all [ > 1 and
' > 1, P(B) = Py(B xR') for all measurable B C R’ Thus by the Kolmogorov extension
theorem there exists a stochastic process {X,,}°°, with marginals X! ~ P. Furthermore,
note that P, € P!(x$°) means that each P, is the limit of sliding-block empirical distributions,
and as such is stationary in the sense that if X! ~ P, then for any I’ < [, the I’-blocks
XV, X5+ ... X}, have identical distribution. Hence {X,}32, is a stationary process.

We prove the first equality in (19) via matching upper and lower bounds. Fix m > 1 and
let Z1" = (Zy,..., Zy) be jointly distributed according to P™ (defined in equation (B.2)).
Since P™ € P™(x5°), we have h(Z!) = h(ZiJf]) for all 1 < j < m — (. Thus, writing m as
m = NI+ 1 for integers N > 1 and 0 < i < [, we have

AP = bz

1

< (WD + R + Y ) )
N

< —nZi

< Ny
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1—1/m
l

< h(Z3)

where the second and third inequalities hold since the differential entropies are nonpositive
since each Z; is supported in [0,1]. Since Z! ~ P/, we have h(Z!) = h(P") for all | < m.
Hence (B.5) implies that for all m > I,

_ [\ -
hiz(23°) < h(P™) < (1 — —) h(P™). (B.10)
m
Thus for the subsequence {m;} associated with the P, in (B.8), similarly to (B.4), we obtain

hrz(z3°) < limsuph(P™)

Jj—oo

1

= limsup—jD(Pl 7|l

Jj—oo
= —liminf - D( 9 ||t

j—oo 1

1
< DA
= h(P) (B.11)

where the last equality holds since the preceding inequalities show that D(P|u!) is finite, so
P, € P!(z5°). Since h(P,) = h(X!), the above implies

hiz(25°) < Jim h(X1h). (B.12)

To show the reverse inequality, recall that P € P!(23°), so there is a subsequence {n;}
such that Pl., = P™. Since P,"” has a pdf, similarly to (B.6), we have P’ o (Q4)™! =
T, Ty
P™ o (Q%)™". Hence

limsup H;(Qa(z})) = thUPH( no<QA) 9

> Jim H(Phy o (@)
— AR o QM)

Since P,"¥ = P, ~ X!, this implies

limsup H;(Qa(z})) > lim H(P™ o (Q4)™)

n—oo Jj—00

= H(Po(QX)™)
= H(Qa(X1)):



Thus we obtain

hiz(25°) = limsup( lim limsup H;(Qa(z7)) + log A)

A—0 =00 pnooo

> limsup(llim H(QA(X])) +log A)
A—0 —o0
= lim h(X?}) (B.13)

where the last equality holds by Lemma 2. Combined with (B.12), this proves the first
equality in (19).
To show the second equality in (19), note that by (B.5) and (B.7) we have for all [ > 1

ha(e®) < swp A(P).
PePl(x5°)

Conversely, since P/ € Pl(23°) and h(P') = SUP pept (250 h(P), (B.10) implies

h(P™) < (1 — i) h(P")

m

for all m > [. Thus the limit lim,, h(P™) exists, and from (B.10) and (B.11) we obtain

h(X!) > lim A(P™)= lim sup h(P)

Combining these bounds with (B.12) and (B.13) proves the second equality in (19). [

Appendix C

Proof of (B.3): Recall that P, = P if and only if [ gdP, — [ gdP for any bounded and
continuous real function g. Pick such a ¢ and note that we can also assume that g has a

compact support since a large enough hypercube contains the support of all ﬁé ) We
1

Dl Pl
9P, [aatt

Since g is uniformly continuous and ||Qa, (27 1) — 27771 < VIAL/2, the right-hand side

A

converges to zero as k — o0o. Thus Pé?A @) = Pl if and only if f’lnk = Pl 0]
K\ L1 Ty

Proof of (B.9): We show that P/ € P!(z%°) for all m > [. Let g; : R" — R be bounded and
continuous and define g : R™ — R by g(z7") = g1(2}) for all 27" € R. Then g : R™ — R is

A
have

1 nkfl+1
i+l—1 i+l—1
< P ; |9(Qa, (a77) = g7 )]
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bounded and continuous. Suppose P, = P™. Then,
1y

1 n;—m-+1
aPm, = —— pml
[oabn = — > g™

1 n;—m-+1

_ i—l+1

n;—Il+1 n;—Il+1

1 n; — l + 1 E idl— E idl—

T o ialn—mal ( Z gz — Z gzt 1))

v v i=1 i=n;—m+2

where a; — 0 and b; — 0 as i — oco. Also,
lim [ gdPm, = /gde = /g1 AP
1

1—00

Thus if P, = P™, then PlL., = P™, and so P/ € PL(a°). O
1 1

Appendix D

Proof of (31) and (32): To show the first inequality, let T'(a) = (T'(a1),...,T(a;)) for any
a=(a,...,aq;) €Y' and [ > 1. Fix n > [ and let Y be any Y'-valued random variable with
distribution pé? It is easy to check that T'(Y') has distribution p%(y?), so the well known
inequality H(T'(Y)) < H(Y) gives

H(Ppyp) < H(Pyp)
implying

pra(T(y®)) = lim limsup A (Ppp)

=0 pnooo

< lim lim sup ]:I(]E’?j?) = prLz(y°). (D.1)

=00 pnoeo

To show (32), let (U,Y) be a U' x Y'-valued pair of random variables with distribution

P! ) Then U and Y have distributions ]35? and ]3;?, respectively, so from the correspond-

(uf syt
ing inequality for the entropy of random variables, for all n > [,

pl Hl Pl pl
from which (32) follows similarly to (D.1). O
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Proof of (35): Since x,, %, € [0, 1] for all n, we have for arbitrary ¢ € (0, 1),
|Qs(wn) — Qs(@n)|* < (0 + |20 — #])* < 30 + [z — 2|
so that

d(Qs(27°), Qs(277)) < D + 34,
Let z, = Qs(xn) — Qs(Z,) for all n, and {n,} be a subsequence such that

- 1
limsup H(P.,) = lim H(P %)

n—00 k—oo

and
Ph, = P for some P € P'(2°).
1

Since all elements of z{° are from the finite set A = As N[0, 1], the PZI{L, as well as P, are

concentrated on A. Thus, recalling that [F;(25°) is subadditive in [, we have

H(P) = lin H(Phy) = H\(:%) > lm () = pro(=F) (D.2)

k—o0

and furthermore

1
£?dP(t) = li t*dPn.(t) = lim — 2
1 &

< limsup — Z z;

< D+ 36.
Since P(As) = 1, it follows that

H(P) < Huax(D + 30,9).

Combining this with (D.2) proves (35). O]

Proof of (36): We use differential entropy to bound discrete entropy as in [16, Thm. 9.7.1].
Let Zp s be an As-valued discrete random variable achieving H.x(D,6). (Although we will
not need the specific form of the distribution, it can be shown that Pr(Zp s = i6) = ae~"@)’
with constants a and b such that E[Z}, 5] = D.) Let Us be independent of Zp 5 and uniformly
distributed on the interval (—4/2,/2]. Then, since in each interval of length § centered at

10, the pdf of Zp 5 + Us is constant with magnitude % Pr(Zps = id), we have
h(ZD’(; + U(;) = H(ZA’(;) + log 0.
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Also, by independence,

2

P
E(Zps+Us)? = E[Z3 4 + E[U}) < D + 3

which implies
1
hZps+ Us) < 3 log(2me(D + §/12))

since the Gaussian maximizes differential entropy over all pdf’s satisfying a second moment

constraint [16]. Combining these we obtain

lim sup(HmaX(D, ) + log 5) = limsup h(Zps + Us)
6—0 §—0

1
< limsup 3 log(2me(D + §/12))
6—0

1
=3 log(2meD)

which completes the proof. [J
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