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Abstract

In this paper we address the connection between the muttgsgeription (MD)
problem and Delta-Sigma quantization. Specifically, wd@kthe inherent redundan-
cy due to oversampling in Delta-Sigma quantization, andsih®le linear-additive
noise model resulting from dithered lattice quantizationgrder to construct a sym-
metric MD coding scheme. We show that the use of feedback @nmef a noise
shaping filter makes it possible to trade off central digtarfor side distortion. Asymp-
totically as the dimension of the lattice vector quantizedt arder of the noise shaping
filter approach infinity, we show that the symmetric two-amanMD rate-distortion
function for the memoryless Gaussian source and MSE fidwitigrion can be achieved
at any resolution. This realization provides a new intémgsinterpretation for the
information theoretic solution. The proposed design isrsatmic in rate by construction
and there is therefore no need for source splitting.

1 Introduction

Delta-Sigma analogue to digital (A/D) conversion is a tegha where the input signal is
highly oversampled before being quantized by a low resmtuguantizer. The quantization
noise is then processed by a noise shaping filter which redheeenergy of the so-called
in-band noise spectrum, i.e. the part of the noise spectrbimhaverlaps the spectrum of
the input signal. The end result is high bit-accuracy (A/Biwersion even in the presence
of imperfections in the analogue components of the systdnjl¢

The process of oversampling and use of feedback to reducdigaton noise is not
limited to A/D conversion of continuous-time signals butnigact equally applicable to, for
example, discrete time signals in which case we will usedira Delta-Sigma quantization.
Hence, given a discrete time signal we can apply Delta-Sigoantization in order to
discretize the amplitude of the signal and thereby obtaing#ad signal. It should be
clear that the process of oversampling is not required irmota obtain a digital signal.
However, oversampling leads to a controlled amount of rdeuoay in the digital signal.
This redundancy can be exploited in order to achieve a cedtagree of robustness towards
a partial loss of information of the signal due to quantimatand/or transmission of the
digital signal over error-prone channels.

In the information theory community the problem of quania is usually referred
to as a source coding problem whereas the problem of reltadtesmission is referred
to as a channel coding problem. Their combination then foanjsint source-channel
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coding problem. The multiple-description (MD) problem,[@fhich has recently received
a lot of attention, is basically a joint source-channel ogdproblem. The MD problem
is concerned with lossy encoding of information for transsion over an unreliabl& -
channel communication system. The channels may break desuiting in erasures and
a loss of information at the receiving side. Which of tHe — 1 non-trivial subsets of the
K channels that is working is assumed known at the receivohg st not at the encoder.
The problem is then to design an MD system which, for givemaleérates, minimizes the
distortions due to reconstruction of the source using mfdron from any subsets of the
channels. Currently, the achievable MD rate-distortiagiae is only completely known
for the case of two channels, squared-error fidelity coteand the memoryless Gaussian
source [2, 3].

Practical symmetric MD lattice vector quantization (MD-QYbased schemes for two
descriptions have been introduced in [4, 5], which in theitliof infinite-dimensional
lattices and under high-resolution assumptions, appritecsymmetric MD rate-distortion
bound. An extension t& > 2 descriptions was presented in [6, 7]. Asymmetric MD-LVQ
allows for unequal side distortions as well as unequal safiesrand was first considered
in [8, 9] for the case of two descriptions and extended in [ttOthe case ofK > 2
descriptions. Common for all of the designs [4—10] is thag@tal quantizer is first applied
on the source after which an index-assignment algorithrsrttagreconstruction points of
the central quantizer to reconstruction points of the siglengjzers, which is an idea that
was first presented in [11].

To avoid the difficulty of designing efficient index-assigamh algorithms it was sug-
gested in [12] that the index assignments of a two-desonpiystem can be replaced by
successive quantization and linear estimation. More palty, the two side descriptions
can be linearly combined and further enhanced by a refinetaget to yield the central
reconstruction. The design of [12] suffers from a rate Id€&s ® bit/dim. at high resolution
and is therefore not able to achieve the MD rate-distortionnil. Recently, however,
this gap was closed by Chen et al. [13] who recognized thatdteeregion of the MD
problem forms a polymatroid, and showed that the cornerntpaithis rate region can be
achieved by successive estimation and quantization. Téigref Chen et al. is inherently
asymmetric in the description rate since any corner poira nbn-trivial rate region will
lead to asymmetric rates. To symmetrize the coding ratds, niecessary to break the
guantization process into additional stages, which is dateknown as “source splitting”
(following Urbanke and Rimoldi’s rate splitting approadr the multiple access channel).
When finite-dimensional quantizers are employed, theresigage-filling loss due to the
fact that the quantizer’s Voronoi cells are not completplyesical and as such each descrip-
tion suffers a rate loss. The rate loss of the design givebdhif that of2 K’ — 1 quantizers
because source splitting is performed by using an additiBna 1 quantizers besides the
conventionalK” side quantizers. In comparison, the designs based on irgsggranents
suffer from a rate loss of only that &f quantizers (actually, when using index assignments,
the space-filling loss is that df quantizers having spherical Voronoi cells [4-7,10]). An
interesting open question is: can we avoid both the comiyieXithe index assignments
and the loss due to source splitting in symmetric MD coding?

Inspired by the works presented in [12—-14], we present adwainel MD scheme
based on two times oversampled dithered Delta-Sigma aqadiatn, which is inherently



symmetric in the description rate and as such there is no fegexburce splitting. The

rate loss when employing finite-dimensional quantizerpérellel) is therefore given by
that of two quantizers. Asymptotically as the dimensionha&f vector quantizer and order
of the noise shaping filter approach infinity, we show thatsyiametric two-channel MD

rate-distortion function for the memoryless Gaussian@@and MSE fidelity criterion can

be achieved at any resolution. It is worth emphasizing thatdesign is not limited to

two descriptions but, in fact, an arbitrary number of dggarns can be created simply by
increasing the oversampling ratio. However, in this paper,focus on the case of two
descriptions.

In the Delta-Sigma quantization literature, there seemseta consensus of avoiding
long feedback filters. We suspect this is mainly due to thetfaat the quantization error
in traditional Delta-Sigma quantization is a determimiston-linear function of the input
signal, which makes it difficult to perform an exact systemalgsis. Thus, there might
be concerns regarding the stability of the system. In oukwee use dithered (lattice)
guantization, so that the quantization error is a stochasticess, independent of the input
signal, and the whole system becomes linear. This line#izés highly desirable, since
it allows an exact system analysis for any filter order andhgtrasolution. For finite filter
order, it can be shown that the optimal filter coefficientsfatend by solving a set of Yule-
Walker equations. The case of infinite filter order, which w# fecus on in this paper,
has a very simple solution, which (for large lattice dimengiguarantees that the proposed
scheme achieves the symmetric two-channel MD rate-digtofinction [2, 3].

To gain some insight into why this solution is asymptotigaptimal, observe that
the Delta-Sigma quantization structure resembles tha@atuthe optimum test channel
that achieves the two-channel MD rate-distortion regiqr8]2This channel (as shown in
Fig. 3) has two additive noise branchgs= X + N; andY; = X + N,, where the pair
(N1, N2) is negativelycorrelated. At high resolution conditions and symmetriesaand
distortions, the side reconstructiois and X, becomeX; = Y; and X, = Y,, while the
central reconstructio, becomes a simple average, . = (X, + X;)/2. We may view
the negatively correlated additive noises as adjacentlegnop”high pass noise”, and the
averaging operation of the central reconstruction as "Esggfiltering”. Intuitively, for a
fixed side distortion the central distortion is reduced bgmhg the spectrum of the noise
to be away from the source band (the source componeYit andY; is the same which
amounts to a lowpass signal). Thus, Delta-Sigma quantizgirovides a time-invariant
filter version of this double branch test channel. This istfer addressed in Section 3.1.

2 Dithered Delta-Sigma quantization

Let X be an i.i.d. zero-mean unit-variance Gaussian random gsodeurthermore, let
denote a realization of and let boldface letters indicate vectors.

The signale is oversampled by a factor of two to produce the oversampigthba.
It follows thata is a redundant representation of the input signal, whichbsanbtained
simply by inserting a zero between every samplecadnd apply an interpolating (ideal
lowpass) filterh(z) as shown in Fig. 1. At the other end of the system we apply an ant
aliasing filterh, (z) and downsample by two in order to get back to the original damgpe.
After being oversampled, the signal is then quantized usmigpy-coded dithered (lattice)



guantization (ECDQ) [15]. ECDQ relies upon subtractivéeit which makes sure that the
quantization erroF is an i.i.d. zero-mean random process of variarjceFurthermore, the
guantization error is independent of the input signal ardiit be assumed that the rate (or
entropy) of the quantized variables is given by the condél@ntropyH (Q (X + Z)|Z)

of the L-dimensional dithered quantizé}; (where the conditioning is with respect to
the dither sequencg). It is known that this conditional entropy is equal to thetoal
information over the additive dither channgl = X + E whereE (the channel’s noise)
is distributed as-Z, see [15] for details. The rate of the quantizer is therefpven by
I(X;Y) = h(X + E) — h(E), wherel(-,-) denotes the mutual information ard-)
denotes the differential entropy. In the quadratic Gaunssase, if optimal pre and post
filters are used, the rate redundancy over the rate-distoftinction ?(D) of a Gaussian
source satisfies [16]

%H(QL(X +2)|Z) < R(D) + % logy (2meG), (1)

where G, is the dimensionless normalized second moment of/tltkmensional lattice
quantizer@;, [17]. The quantity2we,, is the space-filling loss of the quantizer and
%logz(QWeGL) is the divergence of the quantization noise from Gaussiarittfollows
that it is desirable to have Gaussian distributed quamtizatoise in order to maké&';, as
small as possible and thereby drive the rate of the quartimeardsR(D). Fortunately,

it is known that, there exists lattices wherg — 1/27e asL — oo and the quantization
noise of such quantizers becomes asymptotically (in dilbaehS&aussian distributed in the
divergence sense [18].

From the preceding arguments it is clear that we would likage high-dimensional
guantizers. However, at first sight, it might appear as tly@esetial scalar nature of Delta-
Sigma quantization prevents the use of anything but scalantigers. That this is not so
will soon become clear. But before going into more detailsualthis issue we will first
introduce the dithered Delta-Sigma quantization systemchvis sketched in Fig. 1. As
previously mentioned, an i.i.d. source sequends upsampled by a factor of two to yield
the redundant sequenae The sequence is then sequentially quantized on a sample by
sample basis and the quantization empof the k&th sample is then input to the feedback
filter ¢*(2) = Y7, ¢;z~". Atthis point we also introduce theh order noise shaping filter
c¢(z), which is defined as

c(z) = Z ciz 2
i=0

wherec, = 1 so thate(z) = 1 4 ¢*(z). The purpose of*(z) is to predict the in-band noise
componeng;, (after the synthesis) based on the pasbise samples;_1, e o, ..., er_p
as shown in Fig. 1. It follows that(z) = ¢*(z)e(z) or equivalentlye, = " | c;ex_;.

It is known that the additive noise model is exact for ECDQ a&lcan therefore
represent the quantization operation as an additive neise.t Thus, the output of the
guantizer is given by, = a;+e,+¢€,. The reconstruction error in the oversampled domain
is then given by, = a, — a,. Furthermoreg, is obtained by passing, through the noise
shaping filtere(z). To see this, notice that the outputiis) = a(z) +e(z) + ¢*(z)e(z) and
the reconstruction error is therefore givenddy) = c(z)e(z).
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Figure 1. Dithered Delta-Sigma quantization.

As previously mentioned, the rafe of the ECDQ is given by the mutual information
between the input and the output of the quantizer. Thus atee(per sample) is given by

R = I(A}; Ay) = I(A; A + By), 3)

where if A, and E,, are Gaussian (wherg), is independent of of the present and past
samples of4), by the dithered quantization assumption), then we get

R = log, (1 & YA, >) , (4)

UE

where Vaf A}, ) denotes the variance of the random variabje At high resolution, VafA;,)+
0% ~ 0% which implies that
R~ 1og2 <“X) . (5)

Og

We will now address the issue of high-dimensional quaritediut first let us consider
the scalar case, i.é. = 1. The input to the quantizer ig, = a, + > _._, cie,—; and the
outputisay, = ax+Y -, ciex—;. Sincea), is a scalar the input to the quantizer is a scalar and
the quantizer depicted in Fig. 1 is therefore a scalar gmantiTo justify the use of high-
dimensional vector quantizers we will consider a setuplinag L independent sources.
These sources can, for example, be obtained by demultigétie scalar process into L
independent parallel i.i.d. process€€) = {X,;;_1},Vn € Zandl = 1,..., L. Inthis
case thesth sample of théth processY ) is identical to thgn x L + [ — 1)th sample of
the original procesX . In the case wheré = 2 we have two independent scalar processes,
where X ™ consists of the even samplesdfand X (? consists of the odd samples &f.
The processeX (Y and X® are each upsampled by a factor of two so that we obtain the
two processest(!) and A, which each are input to a Delta-Sigma quantization system.
Hence, in this case, two coders are operating in paralleirssidad of a single sampig
we have the pair of independent sam[:(le,é1 ’(2 . This makes it possible to apply two-
dimensional ECDQ on the vector formed by cascadlng the rbancadars IfL coders are
operating in parallel, we can form the setlofndependent samplegak, , ;52), cee a;@)
and make use ol.-dimensional ECDQ on the vect((w/(1 , /(2), . .,aﬁf”). In general,
we will allow L to become large so that, according to (1) and the paragratiatows
just below (1), the rate loss can be made arbitrarily smatiusT for largeL, E, will be

approximately Gaussian distributed.

Notice that the delay between two consecutive samples dftiocess will be that of input samples.



3 Multiple-description coding

In this section we show that the sequential dithered Dalj@& quantization system,
which is shown in Fig. 1, can be regarded as an MD coding sy$tEor example, in the
case of an oversampling ratio of two, each input sample l&sii¢o output samples and we
have in fact a two-channel MD coding system as shown in Figih&re we have replaced
the dithered quantizer with its additive noise model. Irstbase the first description is
given by the even output samples and the second descripfitimebodd output samples.
The filter h,(2) corrects the phase of the second description and the pesstiltand 5
are described in Section 3.3. The distortion due to recoastig using both descriptions
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Figure 2: Two-channel MD coding based on dithered Delta-Sigma gmatitin.

is traditionally called the central distortiel) and the distortion due to reconstructing using
only a single description is called the side distortin

3.1 New interpretation of Ozarow’s double branch test chanel

We now show that the proposed Delta-Sigma quantizationnseheshen analyzed in the
frequency domain, leads to a new interpretation of Ozaralwigble branch test channel
shown in Fig. 3. In addition, this frequency interpretatiemeals that the role of the noise
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Figure 3: The MD optimum test channel of Ozarow [3]. At high resolutigh= 1 and 3, =
1/2,i =1,2s0 thatX'l = Yl,XQ =Y, anch = %(Xl + XQ)

shaping filter is not simply to shape away the quantizatiosenfvom the in-band spectrum,

°Recent related works include that of Boufounos and Oppemhsho considered Delta-Sigma
guantization with deterministic quantization and finiteler noise shaping for frame expansions [19].
Boufounos and Oppenheim also addressed the case of erasupeantized frame expansions, where the
transmitter is aware of the erasures [20].



as is the case in traditional Delta-Sigma quantization ratiter to delicately control the
tradeoff between the in-band noise versus the out-of-bars#nThis tradeoff is done while
keeping the coding rate fixed, which, at least at high regmiyis equivalent to keeping?,
fixed.

The power spectrumx of the i.i.d. processX is constant over the complete interval
—m to . Now recall that we assume ideal sinc interpolation wheamgging. As such,
since we upsample by a factor of two, the power spectsiynof the upsampled signal
ranges from-7/2 to = /2. This is illustrated in Fig. 4.
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Figure 4: The power spectrum of (a) the input signal and (c) the ovepsadnsignal. (b) illustrates
the oversampling process where the input signal is first ojed by two and then filtered by an
ideal half-band lowpass filter.

The quantization operation, which is based on ECDQ, addsit whise signaF to
the oversampled signal, after which the feedback filter ensures that the noise ¢efsex
appropriately. At the decoder we apply the anti-aliasirtgffi{ideal lowpass filtering) and
then downsample. Hence, the central distortion is giverhbyenergy of the quantization
noise that falls within the in-band spectrum. The inclusiba noise shaping filter makes
it possible to shape away the quantization noise from theaimd spectrum and thereby
reduce the central distortion. By increasing the order eftbise shaping filter it is possible
to reduce the central distortion accordingly.

It is also interesting to understand what influences the diskertion. Recall that the
side descriptions are constructed by using either all odapszs or all even samples of
the outputA. Hence, we effectively downsampleby a factor of two. It is important to
see that this downsampling process takes place withouapgdying an anti-aliasing filter.
Thus, aliasing is inevitable. It follows, that not only thase which falls within the in-band
spectrum contributes to the side distortion but also theenthat falls outside the in-band
spectrum (i.e. the out-of-band noise) affects the digiorti Since, in traditional Delta-
Sigma quantization, the noise is shaped away from the id-ispectrum as efficiently
as possible, the out-of-band noise is likely to be the dotimigacontributor to the side
distortion. We have illustrated this in Fig. 5.

It should now be clear that, in two-channel MD Delta-Sigmanmfization, the role
of the noise shaping filter is to trade off the in-band noiseswe the out-of-band noise.
For example, in the asymptotical case where the order of dieershaping filter goes to
infinity, it is possible to construct a brick-wall filter whichas a power spectrum of§ in
the passband (i.e. fow| < 7/2) and ofs in the stopband (i.e. for/2 < |w| < 7). In this
case, the central distortion is proportional @ whereas the side distortion is proportional
to 1/0 + 6. This situation, which is illustrated in Fig. 5(b), will bésdussed in more detail
in the next section.
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Figure 5: The power spectrum of (a) the quantization noise (b) theethgpantization noise. In (b)
the energy of the lowpass noise spectrum (the bright regiomesponds to the central distortion
and the energy of the full spectrum corresponds to the sistention.

Let us now revisit Ozarow’s double branch test channel assiFig. 3. In this model
the noise paif Ny, N,) is negatively correlated (except from the case of no-excesginal
rates, in which case the noises are independent). Notitehtisas in line with the above
observations, since the highpass nature of the noise shéfier causes adjacent noise
samples to be negatively correlated. The more negativehgleded they are, the greater
is the ratio of side distortion over central distortion. th@rmore, at high resolution, the
filters in Ozarow’s test channel degenerate and the cemcahstruction is simply given
by the average of the two side channels. This averaging bpei@an be seen as a lowpass
filtering operation, which leaves the signal (since it ispass) and the in-band noise intact
but removes the out-of-band noise.

3.2 Achieving the MD distortion product at high resolution

The two-channel MD rate-distortion region is completelgiccterized only in the case of
memoryless Gaussian sources and MSE fidelity criterion][B&sed on the results of [3]
it was shown in [21] that, at high resolution, the productid tentral and side distortions
of an optimal two-channel MD scheme satisfies

ot 1
dd,=-—X—— 974k 6
4 1—d./d, (6)

Lemma 3.1. At high resolution and asymptotically as— oc the distortion product given
by (6) is achievable.

Proof. The central distortion is equal to the total enefgjy of the in-band noise spectrum

where
o2 /2 '
P, =-E |c(e)|Pdw. (7)

© o7
—7/2
The side distortion is equal to the energy, of the in-band noise spectrum of the side

descriptions which contains aliasing due to the subsampliacess. Since we downsample

by two we have
2 ™

P =22 [ L) + e ) Pdw. ®)

v

—Tr



The noise shaping filter is part of a feedback loop and it mhesefore be minimum phase.
Sincecy = 1 it can be shown that the spectrum of such a minimum phasedatesfies

™

1 )
o) log, |c(e?*)*dw = 0. 9)

It follows that the area undéog, (|c(e’~)|?) must be equally distributed above and below
the 0 dB line. Itis easy to see that if we |ete’)|? = 1/6 for |w| < /2 and|c(e?*)|* = §
form/2 < |w| < whereO < 4 € Rthen (9) is satisfied. Hence, for any> 0 it follows
from (8) thatd, = 0%(6 + ¢~') and from (7) we see that. = 5% /4 which yields the
distortion producti d 0 51
Under high resolution assumptions the description fatsepends only upon the ratio
0% /0% and as such itis independent of the noise shaping filteridméser ~ log,(c% /%)
which implies that}, ~ o%274%. Finally, sinced./d, = 67'/(5 + 6!) it follows that
I

1—d./d, & O

3.3 Optimal post filters for two descriptions at general restution

Letp — oo and let the side distortion be given by.(6 + §~!)/2 and the central distortion

by o1 /2. It can then be shown that the post filters- a; andg = ;,7 = 1,2, are given
2 2

by o = m andg = 7251 It can also be shown that the side distortion

when using post filters is given by

0%02(6+671)

s = , 10
20% + 03,(0+071) (10)

and the central distortion when using post filters is given by
. 030501 (11)

20% + 050~

3.4 Achieving the symmetric two-channel rate-distortion éinction

Let us first recall the solution to the quadratic Gaussian Mibfgm as proven by Ozarow [3],
i.e. the set of achievable distortions given the descriptate 12 which is the union of all
distortion pairqd,, ds) satisfying

dy > 0%2” 2R (12)
and 2 oin
— o -
d. > X , 13
T 1= (VII=VA)? (13)

wherell = (1 — d,/0%)? andA = d2/o% — 274,

Lemma 3.2. The side distortion given by (10) and the central distortgiven by (11)
achieve the lower bound of Ozarow’s MD rate-distortion fiwrc.

Proof. The description rate, at general resolution, can be showe tiven by

2 2 1
R = %log2 <0X+UE(5+5 )/2) ) (24)

2
Ok

By expressindgl andA via (10) and (14) it can be shown that (11) is identical to (13)]
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