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Abstract

In this paper we address the connection between the multiple-description (MD)
problem and Delta-Sigma quantization. Specifically, we exploit the inherent redundan-
cy due to oversampling in Delta-Sigma quantization, and thesimple linear-additive
noise model resulting from dithered lattice quantization,in order to construct a sym-
metric MD coding scheme. We show that the use of feedback by means of a noise
shaping filter makes it possible to trade off central distortion for side distortion. Asymp-
totically as the dimension of the lattice vector quantizer and order of the noise shaping
filter approach infinity, we show that the symmetric two-channel MD rate-distortion
function for the memoryless Gaussian source and MSE fidelitycriterion can be achieved
at any resolution. This realization provides a new interesting interpretation for the
information theoretic solution. The proposed design is symmetric in rate by construction
and there is therefore no need for source splitting.

1 Introduction

Delta-Sigma analogue to digital (A/D) conversion is a technique where the input signal is
highly oversampled before being quantized by a low resolution quantizer. The quantization
noise is then processed by a noise shaping filter which reduces the energy of the so-called
in-band noise spectrum, i.e. the part of the noise spectrum which overlaps the spectrum of
the input signal. The end result is high bit-accuracy (A/D) conversion even in the presence
of imperfections in the analogue components of the system, c.f. [1].

The process of oversampling and use of feedback to reduce quantization noise is not
limited to A/D conversion of continuous-time signals but isin fact equally applicable to, for
example, discrete time signals in which case we will use the term Delta-Sigma quantization.
Hence, given a discrete time signal we can apply Delta-Sigmaquantization in order to
discretize the amplitude of the signal and thereby obtain a digital signal. It should be
clear that the process of oversampling is not required in order to obtain a digital signal.
However, oversampling leads to a controlled amount of redundancy in the digital signal.
This redundancy can be exploited in order to achieve a certain degree of robustness towards
a partial loss of information of the signal due to quantization and/or transmission of the
digital signal over error-prone channels.

In the information theory community the problem of quantization is usually referred
to as a source coding problem whereas the problem of reliabletransmission is referred
to as a channel coding problem. Their combination then formsa joint source-channel
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coding problem. The multiple-description (MD) problem [2], which has recently received
a lot of attention, is basically a joint source-channel coding problem. The MD problem
is concerned with lossy encoding of information for transmission over an unreliableK-
channel communication system. The channels may break down resulting in erasures and
a loss of information at the receiving side. Which of the2K − 1 non-trivial subsets of the
K channels that is working is assumed known at the receiving side but not at the encoder.
The problem is then to design an MD system which, for given channel rates, minimizes the
distortions due to reconstruction of the source using information from any subsets of the
channels. Currently, the achievable MD rate-distortion region is only completely known
for the case of two channels, squared-error fidelity criterion and the memoryless Gaussian
source [2,3].

Practical symmetric MD lattice vector quantization (MD-LVQ) based schemes for two
descriptions have been introduced in [4, 5], which in the limit of infinite-dimensional
lattices and under high-resolution assumptions, approachthe symmetric MD rate-distortion
bound. An extension toK ≥ 2 descriptions was presented in [6,7]. Asymmetric MD-LVQ
allows for unequal side distortions as well as unequal side rates and was first considered
in [8, 9] for the case of two descriptions and extended in [10]to the case ofK ≥ 2
descriptions. Common for all of the designs [4–10] is that a central quantizer is first applied
on the source after which an index-assignment algorithm maps the reconstruction points of
the central quantizer to reconstruction points of the side quantizers, which is an idea that
was first presented in [11].

To avoid the difficulty of designing efficient index-assignment algorithms it was sug-
gested in [12] that the index assignments of a two-description system can be replaced by
successive quantization and linear estimation. More specifically, the two side descriptions
can be linearly combined and further enhanced by a refinementlayer to yield the central
reconstruction. The design of [12] suffers from a rate loss of 0.5 bit/dim. at high resolution
and is therefore not able to achieve the MD rate-distortion bound. Recently, however,
this gap was closed by Chen et al. [13] who recognized that therate region of the MD
problem forms a polymatroid, and showed that the corner points of this rate region can be
achieved by successive estimation and quantization. The design of Chen et al. is inherently
asymmetric in the description rate since any corner point ofa non-trivial rate region will
lead to asymmetric rates. To symmetrize the coding rates, itis necessary to break the
quantization process into additional stages, which is a method known as “source splitting”
(following Urbanke and Rimoldi’s rate splitting approach for the multiple access channel).
When finite-dimensional quantizers are employed, there is aspace-filling loss due to the
fact that the quantizer’s Voronoi cells are not completely spherical and as such each descrip-
tion suffers a rate loss. The rate loss of the design given in [13] is that of2K −1 quantizers
because source splitting is performed by using an additional K − 1 quantizers besides the
conventionalK side quantizers. In comparison, the designs based on index assignments
suffer from a rate loss of only that ofK quantizers (actually, when using index assignments,
the space-filling loss is that ofK quantizers having spherical Voronoi cells [4–7, 10]). An
interesting open question is: can we avoid both the complexity of the index assignments
and the loss due to source splitting in symmetric MD coding?

Inspired by the works presented in [12–14], we present a two-channel MD scheme
based on two times oversampled dithered Delta-Sigma quantization, which is inherently



symmetric in the description rate and as such there is no needfor source splitting. The
rate loss when employing finite-dimensional quantizers (inparallel) is therefore given by
that of two quantizers. Asymptotically as the dimension of the vector quantizer and order
of the noise shaping filter approach infinity, we show that thesymmetric two-channel MD
rate-distortion function for the memoryless Gaussian source and MSE fidelity criterion can
be achieved at any resolution. It is worth emphasizing that our design is not limited to
two descriptions but, in fact, an arbitrary number of descriptions can be created simply by
increasing the oversampling ratio. However, in this paper,we focus on the case of two
descriptions.

In the Delta-Sigma quantization literature, there seems tobe a consensus of avoiding
long feedback filters. We suspect this is mainly due to the fact that the quantization error
in traditional Delta-Sigma quantization is a deterministic non-linear function of the input
signal, which makes it difficult to perform an exact system analysis. Thus, there might
be concerns regarding the stability of the system. In our work we use dithered (lattice)
quantization, so that the quantization error is a stochastic process, independent of the input
signal, and the whole system becomes linear. This linearization is highly desirable, since
it allows an exact system analysis for any filter order and at any resolution. For finite filter
order, it can be shown that the optimal filter coefficients arefound by solving a set of Yule-
Walker equations. The case of infinite filter order, which we will focus on in this paper,
has a very simple solution, which (for large lattice dimension) guarantees that the proposed
scheme achieves the symmetric two-channel MD rate-distortion function [2,3].

To gain some insight into why this solution is asymptotically optimal, observe that
the Delta-Sigma quantization structure resembles the nature of the optimum test channel
that achieves the two-channel MD rate-distortion region [2, 3]. This channel (as shown in
Fig. 3) has two additive noise branchesY1 = X + N1 andY2 = X + N2, where the pair
(N1, N2) is negativelycorrelated. At high resolution conditions and symmetric rates and
distortions, the side reconstructionŝX1 andX̂2 becomeX̂1 = Y1 andX̂2 = Y2, while the
central reconstruction̂Xc becomes a simple average, i.e.X̂c = (X̂1 +X̂2)/2. We may view
the negatively correlated additive noises as adjacent samples of ”high pass noise”, and the
averaging operation of the central reconstruction as ”lowpass filtering”. Intuitively, for a
fixed side distortion the central distortion is reduced by shaping the spectrum of the noise
to be away from the source band (the source component inY1 andY2 is the same which
amounts to a lowpass signal). Thus, Delta-Sigma quantization provides a time-invariant
filter version of this double branch test channel. This is further addressed in Section 3.1.

2 Dithered Delta-Sigma quantization
Let X be an i.i.d. zero-mean unit-variance Gaussian random process. Furthermore, letx
denote a realization ofX and let boldface letters indicate vectors.

The signalx is oversampled by a factor of two to produce the oversampled signal a.
It follows thata is a redundant representation of the input signal, which canbe obtained
simply by inserting a zero between every sample ofx and apply an interpolating (ideal
lowpass) filterh(z) as shown in Fig. 1. At the other end of the system we apply an anti-
aliasing filterha(z) and downsample by two in order to get back to the original sample rate.
After being oversampled, the signal is then quantized usingentropy-coded dithered (lattice)



quantization (ECDQ) [15]. ECDQ relies upon subtractive dither, which makes sure that the
quantization errorE is an i.i.d. zero-mean random process of varianceσ2

E. Furthermore, the
quantization error is independent of the input signal and itcan be assumed that the rate (or
entropy) of the quantized variables is given by the conditional entropyH(QL(X + Z)|Z)
of the L-dimensional dithered quantizerQL (where the conditioning is with respect to
the dither sequenceZ). It is known that this conditional entropy is equal to the mutual
information over the additive dither channelY = X + E whereE (the channel’s noise)
is distributed as−Z, see [15] for details. The rate of the quantizer is thereforegiven by
I(X; Y ) = h(X + E) − h(E), whereI(·, ·) denotes the mutual information andh(·)
denotes the differential entropy. In the quadratic Gaussian case, if optimal pre and post
filters are used, the rate redundancy over the rate-distortion functionR(D) of a Gaussian
source satisfies [16]

1

L
H(QL(X + Z)|Z) ≤ R(D) +

1

2
log2(2πeGL), (1)

whereGL is the dimensionless normalized second moment of theL-dimensional lattice
quantizerQL [17]. The quantity2πeGL is the space-filling loss of the quantizer and
1
2
log2(2πeGL) is the divergence of the quantization noise from Gaussianity. It follows

that it is desirable to have Gaussian distributed quantization noise in order to makeGL as
small as possible and thereby drive the rate of the quantizertowardsR(D). Fortunately,
it is known that, there exists lattices whereGL → 1/2πe asL → ∞ and the quantization
noise of such quantizers becomes asymptotically (in dimension) Gaussian distributed in the
divergence sense [18].

From the preceding arguments it is clear that we would like touse high-dimensional
quantizers. However, at first sight, it might appear as the sequential scalar nature of Delta-
Sigma quantization prevents the use of anything but scalar quantizers. That this is not so
will soon become clear. But before going into more details about this issue we will first
introduce the dithered Delta-Sigma quantization system, which is sketched in Fig. 1. As
previously mentioned, an i.i.d. source sequencex is upsampled by a factor of two to yield
the redundant sequencea. The sequencea is then sequentially quantized on a sample by
sample basis and the quantization errorek of thekth sample is then input to the feedback
filter c∗(z) =

∑p
i=1 ciz

−i. At this point we also introduce thepth order noise shaping filter
c(z), which is defined as

c(z) ,

p
∑

i=0

ciz
−i, (2)

wherec0 = 1 so thatc(z) = 1 + c∗(z). The purpose ofc∗(z) is to predict the in-band noise
component̃ek (after the synthesis) based on the pastp noise samplesek−1, ek−2, . . . , ek−p

as shown in Fig. 1. It follows that̃e(z) = c∗(z)e(z) or equivalentlỹek =
∑p

i=1 ciek−i.
It is known that the additive noise model is exact for ECDQ andwe can therefore

represent the quantization operation as an additive noise term. Thus, the output of the
quantizer is given bŷak = ak+ek+ẽk. The reconstruction error in the oversampled domain
is then given byǫk = âk − ak. Furthermore,ǫk is obtained by passingek through the noise
shaping filterc(z). To see this, notice that the output isâ(z) = a(z)+ e(z)+ c∗(z)e(z) and
the reconstruction error is therefore given byǫ(z) = c(z)e(z).
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Figure 1: Dithered Delta-Sigma quantization.

As previously mentioned, the rateR of the ECDQ is given by the mutual information
between the input and the output of the quantizer. Thus, the rate (per sample) is given by

R = I(A′

k; Âk) = I(A′

k; A
′

k + Ek), (3)

where if Ak and Ek are Gaussian (whereEk is independent of of the present and past
samples ofA′

k by the dithered quantization assumption), then we get

R =
1

2
log2

(

1 +
Var(A′

k)

σ2
E

)

, (4)

where Var(A′

k) denotes the variance of the random variableA′

k. At high resolution, Var(A′

k)+
σ2

E ≈ σ2
X which implies that

R ≈ 1

2
log2

(

σ2
X

σ2
E

)

. (5)

We will now address the issue of high-dimensional quantization but first let us consider
the scalar case, i.e.L = 1. The input to the quantizer isa′

k = ak +
∑p

i=1 ciek−i and the
output isâk = ak+

∑p
i=0 ciek−i. Sincea′

k is a scalar the input to the quantizer is a scalar and
the quantizer depicted in Fig. 1 is therefore a scalar quantizer. To justify the use of high-
dimensional vector quantizers we will consider a setup involving L independent sources.
These sources can, for example, be obtained by demultiplexing the scalar processX into L
independent parallel i.i.d. processesX(l) = {XnL+l−1}, ∀n ∈ Z andl = 1, . . . , L.1 In this
case thenth sample of thelth processX(l) is identical to the(n × L + l − 1)th sample of
the original processX. In the case whereL = 2 we have two independent scalar processes,
whereX(1) consists of the even samples ofX andX(2) consists of the odd samples ofX.
The processesX(1) andX(2) are each upsampled by a factor of two so that we obtain the
two processesA(1) andA(2), which each are input to a Delta-Sigma quantization system.
Hence, in this case, two coders are operating in parallel andinstead of a single samplea′

k

we have the pair of independent samples(a
′(1)
k , a

′(2)
k ). This makes it possible to apply two-

dimensional ECDQ on the vector formed by cascading the pair of scalars. IfL coders are
operating in parallel, we can form the set ofL independent samples(a′(1)

k , a
′(2)
k , . . . , a

′(L)
k )

and make use ofL-dimensional ECDQ on the vector(a′(1)
k , a

′(2)
k , . . . , a

′(L)
k ). In general,

we will allow L to become large so that, according to (1) and the paragraph that follows
just below (1), the rate loss can be made arbitrarily small. Thus, for largeL, Ek will be
approximately Gaussian distributed.

1Notice that the delay between two consecutive samples of thelth process will be that ofL input samples.



3 Multiple-description coding
In this section we show that the sequential dithered Delta-Sigma quantization system,
which is shown in Fig. 1, can be regarded as an MD coding system.2 For example, in the
case of an oversampling ratio of two, each input sample leadsto two output samples and we
have in fact a two-channel MD coding system as shown in Fig. 2,where we have replaced
the dithered quantizer with its additive noise model. In this case the first description is
given by the even output samples and the second description by the odd output samples.
The filterhp(z) corrects the phase of the second description and the post filtersα andβ
are described in Section 3.3. The distortion due to reconstructing using both descriptions
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Figure 2: Two-channel MD coding based on dithered Delta-Sigma quantization.

is traditionally called the central distortiondc and the distortion due to reconstructing using
only a single description is called the side distortionds.

3.1 New interpretation of Ozarow’s double branch test channel

We now show that the proposed Delta-Sigma quantization scheme, when analyzed in the
frequency domain, leads to a new interpretation of Ozarow’sdouble branch test channel
shown in Fig. 3. In addition, this frequency interpretationreveals that the role of the noise
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Figure 3: The MD optimum test channel of Ozarow [3]. At high resolutionαi = 1 and βi =

1/2, i = 1, 2 so thatX̂1 = Y1, X̂2 = Y2 andX̂c = 1
2(X̂1 + X̂2).

shaping filter is not simply to shape away the quantization noise from the in-band spectrum,

2Recent related works include that of Boufounos and Oppenheim who considered Delta-Sigma
quantization with deterministic quantization and finite order noise shaping for frame expansions [19].
Boufounos and Oppenheim also addressed the case of erasuresin quantized frame expansions, where the
transmitter is aware of the erasures [20].



as is the case in traditional Delta-Sigma quantization, butrather to delicately control the
tradeoff between the in-band noise versus the out-of-band noise. This tradeoff is done while
keeping the coding rate fixed, which, at least at high resolution, is equivalent to keepingσ2

E

fixed.
The power spectrumSX of the i.i.d. processX is constant over the complete interval

−π to π. Now recall that we assume ideal sinc interpolation when resampling. As such,
since we upsample by a factor of two, the power spectrumSA of the upsampled signalA
ranges from−π/2 to π/2. This is illustrated in Fig. 4.

SX

π−π π/2−π/2 ω0

σ2

X

(a) Spectrum ofX

AX
2

(b) Oversampling by two

π−π

SA

π/2−π/2 ω0

σ2

X

(c) Spectrum ofA

Figure 4: The power spectrum of (a) the input signal and (c) the oversampled signal. (b) illustrates
the oversampling process where the input signal is first upsampled by two and then filtered by an
ideal half-band lowpass filter.

The quantization operation, which is based on ECDQ, adds a white noise signalE to
the oversampled signalA, after which the feedback filter ensures that the noise gets shaped
appropriately. At the decoder we apply the anti-aliasing filter (ideal lowpass filtering) and
then downsample. Hence, the central distortion is given by the energy of the quantization
noise that falls within the in-band spectrum. The inclusionof a noise shaping filter makes
it possible to shape away the quantization noise from the in-band spectrum and thereby
reduce the central distortion. By increasing the order of the noise shaping filter it is possible
to reduce the central distortion accordingly.

It is also interesting to understand what influences the sidedistortion. Recall that the
side descriptions are constructed by using either all odd samples or all even samples of
the outputA. Hence, we effectively downsampleA by a factor of two. It is important to
see that this downsampling process takes place without firstapplying an anti-aliasing filter.
Thus, aliasing is inevitable. It follows, that not only the noise which falls within the in-band
spectrum contributes to the side distortion but also the noise that falls outside the in-band
spectrum (i.e. the out-of-band noise) affects the distortion. Since, in traditional Delta-
Sigma quantization, the noise is shaped away from the in-band spectrum as efficiently
as possible, the out-of-band noise is likely to be the dominating contributor to the side
distortion. We have illustrated this in Fig. 5.

It should now be clear that, in two-channel MD Delta-Sigma quantization, the role
of the noise shaping filter is to trade off the in-band noise versus the out-of-band noise.
For example, in the asymptotical case where the order of the noise shaping filter goes to
infinity, it is possible to construct a brick-wall filter which has a power spectrum of1/δ in
the passband (i.e. for|ω| ≤ π/2) and ofδ in the stopband (i.e. forπ/2 < |ω| < π). In this
case, the central distortion is proportional to1/δ whereas the side distortion is proportional
to 1/δ + δ. This situation, which is illustrated in Fig. 5(b), will be discussed in more detail
in the next section.
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Figure 5: The power spectrum of (a) the quantization noise (b) the shaped quantization noise. In (b)
the energy of the lowpass noise spectrum (the bright region)corresponds to the central distortion
and the energy of the full spectrum corresponds to the side distortion.

Let us now revisit Ozarow’s double branch test channel as shown in Fig. 3. In this model
the noise pair(N1, N2) is negatively correlated (except from the case of no-excessmarginal
rates, in which case the noises are independent). Notice that this is in line with the above
observations, since the highpass nature of the noise shaping filter causes adjacent noise
samples to be negatively correlated. The more negatively correlated they are, the greater
is the ratio of side distortion over central distortion. Furthermore, at high resolution, the
filters in Ozarow’s test channel degenerate and the central reconstruction is simply given
by the average of the two side channels. This averaging operation can be seen as a lowpass
filtering operation, which leaves the signal (since it is lowpass) and the in-band noise intact
but removes the out-of-band noise.

3.2 Achieving the MD distortion product at high resolution

The two-channel MD rate-distortion region is completely characterized only in the case of
memoryless Gaussian sources and MSE fidelity criterion [2,3]. Based on the results of [3]
it was shown in [21] that, at high resolution, the product of the central and side distortions
of an optimal two-channel MD scheme satisfies

dcds =
σ4

X

4

1

1 − dc/ds
2−4R. (6)

Lemma 3.1. At high resolution and asymptotically asp → ∞ the distortion product given
by (6) is achievable.

Proof. The central distortion is equal to the total energyPdc
of the in-band noise spectrum

where

Pdc
=

σ2
E

2π

∫ π/2

−π/2

|c(ejω)|2dω. (7)

The side distortion is equal to the energyPds
of the in-band noise spectrum of the side

descriptions which contains aliasing due to the subsampling process. Since we downsample
by two we have

Pds
=

σ2
E

4π

∫ π

−π

|c(ejω/2)|2 + |c(ej(ω/2+π))|2dω. (8)



The noise shaping filter is part of a feedback loop and it must therefore be minimum phase.
Sincec0 = 1 it can be shown that the spectrum of such a minimum phase filtersatisfies

1

2π

∫ π

−π

loge |c(ejω)|2dω = 0. (9)

It follows that the area underloge(|c(ejω)|2) must be equally distributed above and below
the 0 dB line. It is easy to see that if we let|c(ejω)|2 = 1/δ for |ω| ≤ π/2 and|c(ejω)|2 = δ
for π/2 < |ω| < π where0 < δ ∈ R then (9) is satisfied. Hence, for anyδ > 0 it follows
from (8) thatds = 1

2
σ2

E(δ + δ−1) and from (7) we see thatdc = 1
2
σ2

E/δ which yields the
distortion productdcds = δ+δ−1

4δ
σ4

E.
Under high resolution assumptions the description rateR depends only upon the ratio

σ2
X/σ2

E and as such it is independent of the noise shaping filter. In this caseR ≈ log2(σ
2
X/σ2

E)
which implies thatσ4

E ≈ σ4
X2−4R. Finally, sincedc/ds = δ−1/(δ + δ−1) it follows that

1

1 − dc/ds

=
δ + δ−1

δ
.

3.3 Optimal post filters for two descriptions at general resolution
Let p → ∞ and let the side distortion be given byσ2

E(δ + δ−1)/2 and the central distortion
byσ2

Eδ−1/2. It can then be shown that the post filtersα = αi andβ = βi, i = 1, 2, are given

by α =
σ2

X

σ2

X
+σ2

E
(δ+δ−1)/2

andβ =
σ2

X

2σ2

X
+σ2

E
δ−1

. It can also be shown that the side distortion
when using post filters is given by

ds =
σ2

Xσ2
E(δ + δ−1)

2σ2
X + σ2

E(δ + δ−1)
, (10)

and the central distortion when using post filters is given by

dc =
σ2

Xσ2
Eδ−1

2σ2
X + σ2

Eδ−1
. (11)

3.4 Achieving the symmetric two-channel rate-distortion function
Let us first recall the solution to the quadratic Gaussian MD problem as proven by Ozarow [3],
i.e. the set of achievable distortions given the description rateR which is the union of all
distortion pairs(d̄c, d̄s) satisfying

d̄s ≥ σ2
X2−2R (12)

and

d̄c ≥
σ2

X2−4R

1 − (
√

Π −
√

∆)2
, (13)

whereΠ = (1 − d̄s/σ
2
X)2 and∆ = d̄2

s/σ
4
X − 2−4R.

Lemma 3.2. The side distortion given by (10) and the central distortiongiven by (11)
achieve the lower bound of Ozarow’s MD rate-distortion function.

Proof. The description rate, at general resolution, can be shown tobe given by

R =
1

2
log2

(

σ2
X + σ2

E(δ + δ−1)/2

σ2
E

)

. (14)

By expressingΠ and∆ via (10) and (14) it can be shown that (11) is identical to (13).
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