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Abstract

It was recently shown that the symmetric multiple-des@ipt(MD) quadratic
rate-distortion function for memoryless Gaussian sousaras two descriptions can
be achieved by dithered Delta-Sigma quantization combividdmemoryless entropy
coding. In this paper, we generalize this result to statip(eolored) Gaussian sources
by combining noise shaping and source prediction. We fikgh@se a new represen-
tation for the test channel that realizes the MD rate-distorfunction of a Gaussian
source, both in the white and in the colored source case. @&eghow that this test
channel can be materialized by embedding two source piedlilciops, one for each
description, within a common noise shaping loop. While tbhis@& shaping loop con-
trols the tradeoff between the side and the central distwstithe role of prediction
(like in differential pulse code modulation) is to extralbetsource innovations from
the reconstruction at each of the side decoders, and thusedide coding rate. Finally,
we show that this scheme achieves the MD rate-distortiontiimm at all resolutions
and all side-to-central distortion ratios, in the limit afjh dimensional quantization.

1 Introduction

The traditional multiple description (MD) problem [1] desdxes a source sequendégn|
which is encoded into two descriptioni§,n] andY;[n], using rates?; and R, respectively.
Given one of these descriptions, the decoder produces ageaotionX;[n] or X,[n]. If
both descriptions are available, the reconstructiakisn]. The achieved distortion triplet

is D; 2 E{d(X, X))}, Dy 2 B{d(X, X,)}, andD¢ 2 E{d(X, Xc)}, whered(-, ) is a
distortion measure, and) denotes time-averaging over the source sequence.

The MD quadratic rate-distortion function (RDF) for memless Gaussian sources
was found by Ozarow [1] and the extension to stationary Ganssources was recently
completed by Chen et al. [2].

In [3], it was shown that Ozarow’s white Gaussian MD RDF canacbieved by
dithered Delta-Sigma quantization (DSQ) and memoryles®py coding. Furthermore,
by exploiting the fact that Ozarow’s test channel becomgmasotically optimal for sta-
tionary sources in the high-rate regime [4], it was showrBirtlat, at high resolution, the
stationary MD RDF is achievable by DSQ ajaiht entropy coding.

In [2] it is demonstrated how one can achieve any point on thentary of the col-
ored Gaussian achievable rates region by a frequency-dmsuoheme, where the source is
divided into sub-bands, and in each sub-band the schemd wf §pplied. In this paper,
we apply atime domaimapproach: We show that these optimum points can be achi¢ved a
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all resolutions, in the symmetric case, using noise-stppiadictive coding anchemory-
lessentropy coding. We establish this result by forming a neptediction / noise-shaping
structure containing a dithered DSQ scheme similar to [Bj@outer loop and a predictive
coder per each description in the inner loop, see for exafigles. Each of the predictive
coders has the structure of the DPCM scheme, shown to beaptithe single-description
(SD) setting in [6].

The idea of exploiting prediction in MD coding has previguiséen proposed by other
authors, see for example the following related works [7-18]] these works faced the
basic problem: Since DPCM uses prediction from the recanstm rather than from the
source itself, and this prediction should be reproducedeatiecoder, it is not clear which of
the possible reconstructions should be used for prediclibis work solves this problem.

The role of the DSQ loop is to shape the quantization noiséaba desired tradeoff
between the side distortions and the central distortiorcisexed. It was shown in [3]
that the central distortion is given by the power of the naiss falls within the in-band
spectrum (i.e. the part of the frequency spectrum which laperthe source spectrum)
whereas the side distortion is given by the power of the ceteploise spectrum, i.e. the
in-band and the out-of-band noise spectrum. It was furtbeenshown that any ratio of
side-to-central distortion can be obtained by proper sttapf the quantization noise. We
establish a similar result here.

To summarize, the predictive coders take care of the souereary and thereby mini-
mize the coding rate and make sure that memoryless entrapggs optimal. Moreover,
the DSQ loop performs the noise shaping which is requiredderao achieve any desired
pair of distortiong Dg, D).

This paper is organized as follows. In Section 2 we deschbarain problem which
is considered in this work. Then, in Section 3, we proposetacteannel which provides a
new interpretation of the MD quadratic Gaussian RDF. Witk tast channel in mind, we
present, in Section 4, an SD scheme which encodes a soureetsiaba distortion mask.
Finally, in Section 5, we extend the SD scheme of Section Ad¢dMD case.

2 Problem Formulation and Notation

In this work, we are interested in the symmetric case, wiigre= R, 2 RandD; =
D, 2 Dg. We will consider a discrete-time stationary Gaussiana®ii{n| with spectrum
Sx(e72™1), |f| < 1/2. We assume that the spectrum obeys the Paley-Wiener comliti
[12], such that it has a positive entropy-power. P.(X) < oo, where the entropy power
of a spectrunt(¢/*/) is defined as:

P.(S) 2 exp /_ log (S(eﬂ“f))df 1)

and where here and onwards all logarithms are taken to theahdtase. Using this nota-
tion, a spectrum has a spectral decomposition:

, (2)

z:ejQTrf

S(e2) = P.(S) - A(2)A" <i)

Z*

'For arbitrary distributed sources with finite differentaitropyh (X), P.(X) £ 51-e2"*). For station-

e

ary Gaussian sources(X) = 1 log(2me) + 3 [ log(Sx (e/2™7))df from which (1) follows.



where the causal and moni z) is theoptimal predictorassociated with the spectrush

We consider the coding problem of this source under a meaarsdlerror (MSE)
distortion criterion.

We will be using entropy-constrained dithered (lattticequntizers (ECDQs) for which
itis known that the additive noise model is exact at all regsohs [13]. We will furthermore
assume the existence of a large numkeof identical and mutually independent sources
(or e.g. a single source which is divided inio long blocks and jointly encoded ds
parallel sources, see [6] for details). These sources eateti independently, except for
the actual ECDQ which processes them jointly. Thus we willy gresent the scheme
for one source, but the quantization noise has the propestia high-dimensional ECDQ
(cf. [6]). We provide an asymptotic analysis in the linkit — oo. In this asymptotic
case, the quantization noise becomes approximately Gaudstributed (in a divergence
sense) [14]. Thus, for analysis purposes, we can replacpidrgizer with a white additive
noise model where the noise is approximately Gaussiankistd.

3 TheQuadratic Gaussian Symmetric MD Rate Revisited

In this section we re-state known results about the quad&stussian MD achievable rate in
the symmetric case, in order to gain some insight and preparground for what follows.
In the high resolution limit, these results also hold forgehsources with finite differential
entropy rate [11].

For a white Gaussian source of variarmgg the minimum achievable symmetric side-
descriptions rate was given by Ozarow [1]: [5]):

al 0% (03 DC)
Runite(0%, De, D ~1 XX 3
as long asD— > DC = Dls — = Under high-resolution conditions, i.8s < 0%, the
max X
above rate becomes: 5
1 %
Rwhzte HR — log (4)

2¢/Dc(Ds — Dc)

A
as long a¢ < Depariir = 25

If the central decoder was to linearly combine two side dpsons of mutually inde-
pendent distortions of variancés, it would achieve exactly the distortiaDc ... This
gives the motivation to the model akgatively correlatedide distortions (see [4]). In the
high resolution limit, the relation between the side andr@istortions can be explained
by the side distortions having a correlation matrix:
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wherep = —£552P< < (). With this notation, (4) becomes:
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wheredy r is the high-resolution excess rate [11]. Still in the higisalution case, we take
another step: Without loss of generality, we can representorrelated noises as the sum

X+ 5HR (6)



Figure 1. A differential form of Ozarow’s double-branch test chanfioelhigh resolution coding.

of two mutually independent noises, one is added to bothdeswhile the other is added
to one branch and subtracted from the other, as depictedjinlFiNote that the averaging
eliminatesZ_ from the central description. If we denote the varianceseftoisesZ, and
Z_asO, andO_, respectively, then we can re-write (5) as:

0,+6. ©6,-06._ -
0,-0. 0,+6_ |

where the negative correlatign< 0 implies that®__ > ©,. In terms of these variances,
we can define a spectrum:

P —

é(€j27rf> A { 204, |f| < i (8)
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With the above definitions, we have that the entropy-powpo{® (e/2"/) is given by:

P.(0) = /|®] =2/6.6_
and consequently the MD rate is:

2
R= 1log ox
2 T P(O)

The following proposition states this formally:

(9)

Proposition 1. In the scheme of Fig. 1, let. > ©_ > ©,. The distortions are given by:

DS - @+—|—@_
De = O,. (10)

In the high resolution limit, for these distortions, the miaim rate(4) is given by(9).

Generalizing our view to all distortion levels, the equeraichannel is depicted in Fig.
2. A similar correlated-noises model to (5) can be obtaing@xtpressing in a rather
complicated form. However, we can greatly simplify such apression by proper use
of pre- and post-factors as we show next. In a point-to-p&tenario, it is convenient to
make these factors equal [15], [13]. However, this is gdhyenat possible in MD coding
because the optimal post-factors (Wiener coefficientsiidierent for the side and central
reconstructions. We choose the pre-factor to be equal tsitiepost-factor. While this
choice seems arbitrary, it will prove useful when we turndtmeed sources. Thus we have:
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Figure 2. Ozarow's test channel with pre and post factors.
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Proposition 2. In the scheme of Fig. 2, let; > ©_ > ©,. The distortions are given by:

DS - @+ + @_
02 @+

For these distortions, the minimum achievable rg@gis given by(9).

Note that at high resolution conditions > © _, so (12) reduces to (10).

Proof: BetweenU and{V;, V5, V-} we have exactly the high-resolution scheme of
Prop. 1, i.e. we hav®) = U + 71, Vo = U + Zy, Vo = U + Z¢, Where{Z,, Z5, Z¢}
are independent of/, and WhereE{ZZ} = F{Z3} = ©, +6_andE{Z(} = O,.
SinceX; = agV; and X, = acV it is, by use of (11), straightforward to show that
Ds = E{(X; — X)?} andD¢ = E{(Xc — X)2} are given by (12). Now substitute these
distortions in (3) to establish (9)m

We now turn to general (colored) stationary Gaussian ssurtethe high resolution
limit, it was shown in [4] that the minimum rate is given by @aa’s rate (3) with the
source variance? replaced by its entropy-powét.(X) (1). Recalling (9) we define:

Al P(X)
log — .
27 P,(6)
Proposition 3. In the high resolution limit, for any_ > ©,, the minimum achievable
rate for the distortiong10) is given by(13).

Rcolored (13)

For general resolution, the achievable colored Gaussiarrdf®region was found by
Chen et al. [2]. They prove, that the optimum rates for stetig Gaussian sources can
be expressed as the sum of rates of parallel channels, eaclepresenting a frequency
band. Each of these channels must be tuned to a minimum OzateW3) for some dis-
tortions. The working point at each frequency is determimga “water-filling” solution:



For all possible spectral distributions of the side andrelistortions satisfying the total
distortions, find the one which minimizes the side desaiggirate. No explicit solution
to this optimization problem is presented in [2], and thimiaéns an open problem. How-
ever, in terms of our representation for the white case, waeavrite the result of [2] (for
the symmetric case) in a parametric form. For given soureetspmSy (¢2*/) and noise
spectrad, (/™) andO_(e2™/), we generalize (8) to the forim

2@+ (6j47rf) ) |f| S i
By = { 20- (@MU} f <<y (14)
20_ (e"U+3)) | —l<fo -t

and define the distortion spectra:

Dg(e) 2 0, () + 6_(e2)

jonfy A SX(ejzwf)@Jr(ejzwf)
DC(ej ) - SX(€j27rf) _ @_(ejQWf)’ (15)

reflecting the use of pre- and post-filters. Then the resulRois equivalent in the sym-
metric case to the following Proposition and Corollary:

Proposition 4. For any spectra
Sx (™) > 0_(*) 2 0., () > 0 Vf,

the minimum achievable side-description rate in symme¥i2 coding of a Gaussian
source with spectrun’y (¢2*/) with the side and central distortion spect{s5) is given
by (13).

Corollary 1. The optimum symmetric MD side-description rate is giverhieyminimiza-
tion of (13) over all© . (¢727/), ©_(e2™/) such that the distortion spectfa5) satisfy:

3 .
Dg(e?™)df < Dg

=

D=,

De(e*™)df < De.

-3
Note that in the high resolution limit, the spectr@ge’?™/) becomes a two-step spec-

trum, as in [3].

4 Source Coding Subject to a Distortion M ask

We take a detour to a problem that is suggested by Propoditiooding of a source subject
to a maximum distortiomaskD (e72"/), rather than subject to a total distortion constraint.
This is an SD problem, but the solution will be extended tdutieproblem in the following

2Notice that the lowpass and highpass spectr@@f2"/) are formed byO , (¢/47/) and©_ (e7477),
which are compressed versions (by a factor of two) of thetsp€c_(e/2"/) andO, (e/2"/), respectively.



section. Without loss of generalftywe assume thad(e/?™/) < Sx(e/2™) Vf. Itis easy
to verify, that the minimum rate for this problem is given bgdall (13)):

, , 1 P.(X

R(Sx(eﬂ”f), D(eﬂ’ff)) S 1 C.ON (16)

2 P6<D(6j27rf>>
X[n] F(2) Uln] Vn] . F(2) X[n]
C(z)-1 Az) (=]
A

E[TL] —y
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Figure 3: A DSQ/DPCM equivalent channel for SD coding subject to adisin mask.

Fig. 3 presents dme domainscheme which achieves this rate. Motivated by the
ratio of entropy powers (16), we strive to achieve the optirage by the combination of
source predictionn order to present the quantizer with a prediction erroraer P.(.X),
and noise shapingn order to shape the white quantization noise of powgrD) into
the spectrumD(e/27/)4. These two tasks, we perform by a DPCM loop [6] and a noise-
prediction loop [3], respectively. In this schen#n] is AWGN of varianceP. (D), A(z)
andC(z) are the optimal predictors (2) of the source spectfune?>*/) and the equivalent
distortion spectrunD(e/2™/), respectively. Note thakt[n], the input to the noise-shaping
filter, is equal toZ[n]. The pre-filter’(e/?™/) satisfies:

B SX(6j27rf) _ D(ej27rf)

527 F\ 12
[F(e”)] Ry (17)
Theorem 1. The channel of Fig. 3 with the choices above, satisfies:
Sx_x (™) = Sy_y(*™) = D(e/*) (18)

with thescalamutual information/ (D[n]; Y[n]) = R(Sx(eﬂ”f), D(ejz’rf)> of (16).

Proof: Since E[n] = Z[n|, we have thal/[n] = Uln| + Z[n] * ¢[n] so V[n] and
Uln] are connected by an additive noise channel with noise spack(c>™/). From
here, using the pre/post filter given by (17), the distodidollow immediately. Since
Sy (e7*71) = Sx (e7%77), it also means that the mutual information rat€’[n]; V' [n]) equals
the desired rate (16). Sinégn] = A[n] + Z[n] the mutual information raté(A[n]; V'[n])
is the same. Applying [6, Thm.1], the scalar mutual inforiorafollows. m

3Otherwise, there is just wasted allowed distortion whichgloot serve to reduce the rate.

4An alternative time-domain approach, is to accommodatetferdistortion mask by changing the pre
and post-filters. However, we choose the noise-shapingpaphrfor the sake of extending this scheme to the
MD setting.



We remark that, in the special case of a white distortion miagk>"/), the constraint
becomes (by the water-filling principle) equivalent to auleg quadratic distortion con-
straint. Indeed, the channel collapses in this case to tpgst filtered DPCM channel
of [6]. Much of the analysis there remains valid for this desbh as well. In particular,
we can construct an optimal coding scheme using this chasuestituting the AWGN for
an ECDQ, and the scalar mutual informatidfD[n]; Y[n]) is also equal to the directed
mutual information/ (D[n] — Y'[n]).

5 Optimal Time-Domain Colored MD Coding

The similarity between the rates (13) and (16) is evident.a&l¥e note, that Thm. 1 deals
with achieving the minimum rate subject to a distortion memhkstraint, while Proposition
4 tells us that we must minimize the rate subjedito distortion mask constraints.

» LPF %@« G*(2) ﬁn]
) ra

dol| F(2) @ LPF

Figure4: A DSQ/DPCM equivalent channel for MD coding of a colored seur

Fig. 4 shows the adaptation of the distortion-mask equitalbannel to the MD prob-
lem? Following [3], we combine upsampling by a factor of two wittetnoise-prediction
loop, forming a DSQ loop.C(z) and A(z) are the optimal predictors (2) of the spectra
Sx(e7271) andO(e72m/), as before. Note that we apply an upsampled version of thesou
predictor, namelyA(2?). Since the two side descriptions consist of the even and dd i
stances oi/[m], this is equivalent to applying the predictd(z) to each description in the
original source rate. The DSQ loop, on the other hand, warkise upsampled rate. For a
white source A(z) = 0 and the channel reduces to the DSQ MD scheme of [3], while for
optimal side distortionC'(z) = 0, and the channel reduces to an upsampled version of the
DPCM equivalent channel of [6].

The filtersF(e/27/) andG(e72/) play the roles of pre/post filters and satisfy:

Sx (™) — 0., (™) —O_ (™)
Sx (e7?7f)
SX (6j27rf)
Sx(e7?f) — ©_(es?7f)
Theorem 2. The channel of Fig. 4 with the choices above, satisfies:
Stoox (@) = De(e*)
St x (€M) = Dg(e™) (20)

(e

G (e*"7) F(e7*™), (19)

SWe use the index for sequences which are “running” at the source rate, anhtfexm when referring
to the upsampled rate.



where the distortion spectra were defined(ib), while the scalarmutual information
I(DI[n]; Y[n]) equals twice the rat&..;o.q of (13).

The proof basically follows from Thm. 1 by taking appropeaare of rate changes.
However, due to lack of space, we omit the details here.
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Figure5: Nested DSQ/DPCM MD encoder.
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Figure 6: DSQ/DPCM MD decoder.

The encoder and decoder which materialize this equivalenrtreel are presented in Fig.
5 and Fig. 6, respectively. All of the switches in the encaatedt the decoder are synchro-
nized® The up sampling operation followed by lowpass filteringaaiices a half-sample
delay on the odd samples. This delay is corrected at the eéetydhe delay operatar
combined with the pair of up and downsamplers, see Fig. 6adhejuantizer block) is
taken to be a high-dimensional ECDQ with the required ratd,the two quantizer dither
sequences are mutually independent, then these quardizeesjuivalent to the additive
noiseZ[m| of the equivalent channel. Consequently, the two desonipli’ [n| andY;[n|

8]t is to be understood that the switches change their positidth the upsampled rateaj. Thus, in the

encoder shown in Fig. 5, the even samplasn] of B[m] will go on the upper branch and the odd samples
Bs[n] will go on the lower branch.



are equivalent to the odd and even samples, respectively|of in the equivalent chan-
nel, and finally the whole scheme from the source to the deartichside reconstructions is
equivalent to the channel frori[n] to X [n] and X ¢[n], respectively.

Since we see that this scheme achieves the optimal rate yochamce of spectra, it
will become globally optimal when its parameters are cha@smording to the minimizing
spectra of Proposition 4. Thus, the encoder/decoder pé&igsf 5 and 6 is able to achieve
the complete quadratic MD RDF for stationary Gaussian ssuat all resolutions and for
any desired side-to-central distortion ratio.
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