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Abstract— We consider a generalization of the Gaussian dirty-
paper problem to a multiple access setup. There are two additive
interferences, one known to each transmitter but none to the
receiver. We derive the rate region achievable using lattice
strategies and also derive an outer bound for the capacity region.
We find conditions under which the rate region achieved using
lattice strategies meets the outer bound. We observe that lattice
strategies offer an advantage over standard random binning
techniques for this problem. In fact, standard random binning
schemes fail to achieve any positive rate in this problem. We
also derive a lattice transmission scheme for the asymmetric
case, where there is only one interference which is known
to one of the users. In particular, when there is one user
which is ignorant of the interference and that wishes to send
information (the helper problem), we find conditions under which
lattice strategies are optimal. Furthermore, we show that lattice
strategies asymptotically achieve the capacity region in the single
interference problem in the limit of high SNR.

I. INTRODUCTION

We consider a two-user Gaussian multiple access channel
(MAC) with two known interferences as shown in Figure
1. The interference S; and So can be arbitrary and are
known non-causally to the transmitters of user 1 and user
2, respectively. Specifically, we consider the following dirty
MAC model

Y=X14+Xo+51+5+ 72, (1)

where Z ~ N(0,N) is independent of X7, X», 51,52, and
where user 1 and user 2 must satisfy the power constraints,
E[X?] < P and E[X5]?> < P, respectively. We define
the signal to noise ratio for each user as SNR; = % and
SNRy = £2.

This channel model generalizes Costa’s dirty-paper channel
[1] to a multiple access setup. In [1], Costa considered the
single-user case, Y = X + S + Z, where the interference is
assumed to be i.i.d. Gaussian. It was shown in [1] that in this
case, the capacity is 3log,(1 + SNR), where SNR = P/N.

The proof of Costa uses the general capacity formula
derived by Gelfand and Pinsker [4] for channels with (non-
causal) side information at the transmitter. The technique
of Gelfand and Pinsker falls in the framework of random
binning which is widely used in the analysis of multi-terminal
source and channel coding problems. They obtained a general
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capacity expression (originally derived for the DMC case)
which involves an auxiliary random variable U:

C= max {H(UI|S)—-H{U|Y)} )
P(u,x|s)
where the maximization is over all the joint distributions of

the form p(u, s,y,z) = p(s)p(u, z|s)p(y|z, s). Selecting the
auxiliary random variable u to be

U=X+asS, A3)

where X ~ N(0,P), S ~ N(0,Q), and taking o =
the random binning scheme is capacity achieving.
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Fig. 1. Dirty MAC with two interferences
S1
T {

V; X
y — Enc. 1 !

}_} Y

X
Vo 2

Enc. 2

z
Fig. 2. Dirty MAC with one interference (when T is off: the helper problem)

Another special case of the channel model (1) was consid-
ered by Gel’fand and Pinsker in [3]. They showed that in the
noiseless case (N = 0), arbitrary large rate pairs (R, R2)
are achievable. For the general case (N > 0) and Gaussian
interferences, i.e., S1 ~ N(0,Q1) and So ~ N(0,Q2) are
independent, they conjectured that the capacity region is the
same as that of the MAC with no interference. The outer bound
in Section II below shows that their conjecture is incorrect.
Moreover, in the limit of strong interferences (Q1, Q2 — 00)
“standard” random binning is not able to achieve any positive
rates.

To see that, consider for simplicity the limit of high SNR
where SNRy,SNRs > 1, and high power independent
Gaussian interferences, i.e., S1 ~ N(0,Q1) and So ~



N(0,Q2) where Q1,Q2 > max{P;, P>}. From (3), the
auxiliary random variables are U} = X; + S and U} =
X5 + S5, since Plpﬁ, P2P2N ~ 1 at high SNR, and X; ~
N(@O,P), Xo ~ N (O,P;S are independent. By letting the
transmitters to cooperate, from (2) the achievable sum rate
using the auxiliary random variables U7, U} is upper bounded

by (U}, U%|S1, So) — h(UR, UR|Y). Therefore, we have that

clearly upper bounds R; + Ro. Applying Fano’s inequality

to the common message rate R we have,
nR<HW)=HWI|Y")+I(W;Y") <ne, + I(W;Y"),

where €, — 0 as the error probability (Pe(") ) goes to zero.
The following chain of inequalities can be easily verified.

IW;Y™) =h(Y™) — (YW
Ryt Re < A(URUEISLS:) — A(UP,UEY) e
= h(Xy,X) — h(Y|UPF,UR — h(Ur, U} + h(Y) hEY”; hEYn:W’ Xi’ lm) LS YW, X2)
= h(X1,Xs) — h(Z) — (U} — WU + h(Y) X2, 51) — IS8T YW, X
<h(Y") = h(Z") - I(S1; YW, X3)
~  h(S1+ S2) — h(S1) — h(S2). n n n n -
=h(Y") = M(Z") — h(ST) + h(ST|W, X3, Y™) (6)
Since h(S1) + h(S2) > h(S1 + S2) for independent Gaussian = h(Y™) — R(Z™) — h(ST) + R(XT + Z"|W, X3, V™)
random variables S; and Sy with Q1,Q2 — o0, we can < B(Y™) — h(Z™) — h(S™) + h(XT + 2Z"), N

not achieve any positive sum rate using such random binning
scheme. Generally, it is not clear how to generalize random
binning in such a way that may achieve a positive rate in this
problem.

In contrast, lattice strategies can achieve positive rate.
Furthermore, under sufficient conditions we show that lattice
strategies are optimal. Thus, this coding problem is an instance
where linear codes are superior to any known random binning
technique. A similar situation was observed by Korner and
Marton [5] in a problem involving distributed lossless source
coding, where they showed that the achievable rate region
using linear codes is optimal.

We also consider the case where Sy = 0, i.e., the Gaussian
dirty MAC problem with one interference known non causally
to the transmitter of user 1

Y=X1+Xo0+5+72 )

as shown in Figure 2. For this case, random binning can
achieve positive rates as shown recently in [6].

In Section II we present an outer bound on the achievable
rates in this problem. Section III provides an optimal transmis-
sion scheme using lattice strategies for dirty MAC with two
interferences at high SNR. In Section IV we present lattice
strategies for any SNR and provides conditions for optimality.

II. OUTER BOUNDS

We first establish outer bounds on the capacity region of
the dirty MAC with one and two interferences.

Theorem 1: In the limit of strong interference, the outer
bound for the capacity region of the dirty MAC with one
interference (4) is:

N

P,

1
R2§510g2 <1+N

Strong interference can be either infinite power Gaussian
interference or an arbitrary interference similarly to [2].
Proof: Assume a genie reveals the message of user 1 to
user 2 and vice versa. Both users intend to transmit a common
message W. An upper bound on the rate of this message

1 P
R1+R2§§log2<l—|— 1)
©)

where the equality in (6) follows from the fact that ST
is independent of (XZ' W) and the two inequalities are a
consequence of the fact that conditioning reduces differential
entropy. Now observe that for 1 — oo (from Cauchy-
Schwartz inequality) h(Y™) < 2 log, 2me(N + (v Py ++/ P2+
VQ1)?) = Zlogy Q1 + no(1), and h(S?) = % log, 2meQ:.
Substituting in (7), and setting €, = €, + o(1) we have

P
nR <neé'+h(X{+2Z")—h(Z") < glog2 <1+NI>+H€;”

as stated in the sum-rate bound in (5). The bound on Ro
trivially follows by revealing ST to the decoder. |

The outer bound in Theorem 1 is specialized to the helper
problem below.

Corollary 1: Supposc that in the single interference
model (4), only user 2 intends to send the message i.e.,
Ry = 0. In the limit of strong interference, an upper bound
on the rate Ry is given by
mln{zl, P} ®)
The outer bound for the capacity region of dirty MAC with
one interference is also an outer bound for the capacity region
of the dirty MAC with two interferences, provided the two
interferences are independent. One can show a tighter outer
bound by taking the intersection of the outer bounds for dirty
MAC with one interference S; and dirty MAC with one
interference Ss.

Corollary 2: In the limit of strong interferences, the outer
bound for the capacity region of the dirty MAC with two
interferences (1) is given by

1

1 min{Pl, PQ}
3 log, —N )

Remark: The proof for Theorem 1, develops an upper bound
on the common message capacity of the MAC channel. After
developing our upper bound, we learned that the common
message MAC channel has been studied in an independent
parallel work in [7]. In particular, the authors provide (without
proof) an expression for the common message capacity in
dirty MAC with one interference. The problem of independent

Ry + Ry <



messages as well as the helper problem in dirty MAC, and the
problem of dirty MAC with two-interferences have not been
considered in [7].

III. LATTICE STRATEGIES FOR HIGH SNR

In this section, we show an achievable rate using lattice
strategies for the Dirty MAC with two interferences (1). We
consider the high SNR case, i.e., SNR;, SNRy > 1. The
transmission schemes in this Section and in Section IV are
based on lattice strategies which shown to be optimal for
“writing on dirty paper” problem [2].

In the following scheme we use k-dimensional lattice A. We
denote the normalized second moment and the basic cell of A
by G (A) and V, respectively. We consider that A has second
moment min{P;, P>}. Assume that the transmitters send

x1 = [vi—s1]modA
X9 = [Vg — SQ] mod A,
where vi,ve ~ U(V) carry the information for user 1 and
user 2, respectively. The received signal y is reduced modulo-
A which results the additive modulo MAC equivalent channel

y' = ymodA =[vy+ vy + 2z mod A.

In this MAC, the achievable sum rate is given by

Ri+Ry = %I(Vl,styl)
= ) - b ve))
= %logQ (%&;)&}) - %h(z mod A)
> %log2 (%&{)&}) — %logz (2meN)
_ % log, (@) _ %log2 (2reGi(A))

For optimal lattice with Gi(A) — 1/2me as k — oo, we can
approach the outer bound (9) at high SNR. The above result
is stated in the following Theorem.

Theorem 2: In the limit of strong interferences, the capacity
region of the dirty MAC with two interferences (1) at high
SNR, is given by

Ri1+ Re < %logé <1 + w> —o(1),

where o(1) — 0 as Py, P, — .

The reason that lattice strategies can achieve significant rate
is due to the linear structure of lattice codes as well as the ad-
ditive model of the dirty MAC problem. This structure enables
the users to use decentralized encoders which effectively (at
the receiver) have the same structure as in single user problem
with full side information S; + S at the transmitter.

IV. LATTICE STRATEGIES FOR GENERAL SNR

In this Section we show a transmission scheme based on
lattice strategies for the dirty MAC with two interferences
(1) for any SNR. We provide conditions that lattice strategies
are optimal. We also show a transmission scheme based on
lattice strategies for dirty MAC with one interference (4) and
condition for optimality as well.

A. Dirty MAC with Two Interferences

First, we show achievable rate for the point (0, Ra). We
denote the nearest neighbor quantizer associated with the
lattice A by Qa(+), that is [x] mod A = x — Qx(X).

Consider the case that P; > P,. User 1 and user 2 use
the lattices A; and A with second moments P; and P,
respectively. Specifically, the transmitters send

X = [_Sl + dl] mod Ay
Xo = [Vg — (9So + d2] mod As,

where vo ~ U(V2) carries the information of user 2. The
dither signals d; and d2 are common randomness, where d; ~
U(V1) is known at the encoder of user 1 and to the decoder,
and da ~ U(V2) is known at the encoder of user 2 and to
decoder as well. The receiver calculates y' = [a(y — d;) —
ds] mod As. It can be shown that the resulting channel is
given by

y =[ve — (1 — ag)us + asz — a2Qx, (d; —s1)] mod Ay,
where ug ~ U(V2) is independent of vy due to the dither
quantization property [8]. User 1 tries to eliminate the inter-
ference si, therefore it effectively uses oy = 1. However,
a residual interference remains at the receiver input which
consists of Aj-lattice point. User 2 send vs in presence of
the interference so. In order to achieve the maximal rate
the optimal MMSE factor is used, i.e., as = Pfﬁ. For
As = asAq, we have that OZQQAI (dl — Sl) € As. Such a
selection of lattices causes the element asQa,(d; — s1) to
disappear after the modulo Ao operation. However, it restricts
the user powers to the ratio P, = a%Pl. As a consequence,
the equivalent channel is given by

/

y = [va — (1 — az)us + a2z] mod As, (10)

The rate that user 2 can achieve is given by

%I(Vz;y/)
= % {h(y") — h(y'|v2))}

= % {h(y') = h([(1 — a2)us + asz] mod A2)}

Ry =

1 log <%) — h([(1 — a2)uz + asz] mod As)

082
1/ P\ 1 . ,
5 log, (—Gk(Az)) 5 log, (2me ((1 — a2)* P2 + a3N))



Using optimal lattices with G (A1), Gx(A2) — 1/27e as k —
00, and for ag = ngﬁ, we have that

1 P

Therefore, for P, = P» (P 2+N)2 the inner bound meets the
outer bound 9). For P, > PQ(P 2+N )2, the outer bound (9)
remains 3 log,(1 + P»/N) which i is also achievable.

Now we consider the case that P; < P». The encoders send
[—ags1 + di] mod A4
[Vg — SQ] mod AQ,

X1

Xo =

where vo ~ U(V2) carries the information of user 2, the dither
signal d; ~ U(V;) is known at the encoder of user 1 and to
the decoder. The receiver calculates y’ = [ayy —d;] mod A;.
It can be shown that the resulting channel is given by

y/ = [ava — (1 — al)ul + a1z — alQAQ (V2 — Sg)] mod Al,

where u; ~ U(V) is independent of v2 due to the dither.
User 2 send vy and eliminates the interference s; as well,
therefore it effectively uses as = 1. However, a residual
interference remains at the receiver input which consists of
Ao-lattice point. User 1 tries to minimizes the effective noise
((1 — a1)uy + aq2z) variance, therefore it uses the optimal
MMSE factor, ie., a1 = PliN' For A1 = ajA3, we have
that a1 Qa, (V2 —s2) € Ay. Such a selection of lattices causes
the element a3 Qp,(ve — s2) to disappear after the modulo
A1 operation. However, it restricts the user powers (o the ratio
P = a%PQ. As a consequence, we have that

Y

y = [a1ve — (1 — a1)ug + a1z] mod Aq,

The rate that user 2 can achieve is given by

1
EI(V%YI)

= (W) - b))
= % {A(y') = h([(1 — a1)u + a1z] mod A1)}

B llogg (min{Pl,a?Pg +(1—am)?P + a%N})
Gr(A1)
—h([(1 — a1)us + a1z] mod A;)
llogQ (min{Pl,ang +(1—m)*P + a%N})
Gr(A1)

2
1
3 log, (2me ((1 — a1)’*P1 + aiN)) .

Ry =

Y

12)

Using optimal lattices with G (A1), Gg(A2) — 1/2we as k —
00, and for a; = we have that

Py

Py

P +N>
1 . Py Py

R2—§log2(mln{1+N 1+W P1—|—N})‘ (13)

= Pl(%)2 we have that Wl < &

g
~ -

For P, thus

P+N’

1
Ry > 510%'2 <1

Therefore, for P, = Pl(P 1+N ) the inner bound meets the
outer bound 9). For P, > P (Bt 1+N )2, the outer bound (9)
remains 3 log,(1+ Py/N), therefore it is also achievable.

Until now we show that the achievable rate for the point
(0, R2) is given by

- |

Due to the symmetry between users in the dirty MAC with
two interferences, the same arguments can be used to show
the achievable rate for the point (Ry,0), which is

o |

As a consequence, any rate pair on the line Ry + Ry =
1logy(1+ min{ Py, P>}/N) is achievable by using time shar-
ing between (14) and (15), which meets the outer bound (9).

Theorem 3: Suppose that N < /P, Py — min{P;, P»}. In
the limit of strong interferences, the capacity region of the
dirty MAC with two interferences (1) is given by

min{ Py, Pg}) ‘

2
Llogy (1+ %), P> P (23Y)
2 2( N) P (14)

2
llog, (1+ %), P >P <—P2;;N)

2
Llogy (1+%), PP (22Y) as)

2
Llog, (1+ %), P> P (2Y)

1
R1+R2§§log2<1—l— N

B. Dirty MAC with One Interference

In the dirty MAC with one interference (4), it is easy to
verify that the point (R; = %logy(1 + Pi/N),0) can be
achicved when user 2 is silent, X9 = 0, while user 1 performs
point to point DPC scheme.

We first consider the point (0, R2) the helper problem. The
upper bound for this case is given in (8). Assume that the
transmitters send

[—a1s1 +dy] mod Ay

Vo,

X1 =

(16)

Xo =

where vo ~ U(Vs) carries the information and d; ~ U (V1)
is the dither. The receiver calculates y’ = [a;y —d1] mod A;.
It can be shown that the resulting channel is given by

vy =[a1ve — (1 — aj)ug + a1z)] mod Ay,

where u; ~ U(V;) and vo are independent due to the dither.
In fact, the resulting channel is like we have in dirty MAC
problem with two interferences (11). Therefore, using (13), for

PEN and Gi(A1) — 1/2me as k — oo, the achievable
rate is given by

P, P

¥ i)

Ry > L 1 in<l+— A , 1+
—log, | min —=

2 = B 089 N’
Unlike the dirty MAC with two interferences, user 2 does
not perform modulo operation. Therefore, we do not have any
power restrictions like we had in the two interferences case.
For P, > P; + N, we have that

P

~ )

1
Ry > ilog;2 (1 +



In this case the inner bound meets the outer bound (8).

Now, we use the same transmission scheme as in (16), but
with oy = 1. Using (12), for G(A1) — 1/2me as k — oo,
the achievable rate is given by

1 min{P;, P, + N
Ry > §log2< { N }>

For P, > P> + N, we have that

1 P
Ry > 510g2 <1+ FQ),
In this case the inner bound is tight (8).

We conclude the above results with formal statement on the
capacity for the helper problem.

Theorem 4: Suppose that N < |P; — Ps| in the dirty MAC
with one interference (4). In the limit of strong interference,
the capacity of the helper problem is given by
min{Pl, PQ}

N

Unfortunately, for the case that |P; — P»| < N, the inner
bound for the helper problem stated (without proof) in the
following Lemma is not tight.

Lemma 1: The achievable rate for the helper problem for
|P1 — P2| < N is given by

1
]3!2:§log2 1+

Ry = ~log, (1+ AL
27508 (P,— P+ N2 +4PN )"

For P = P, = P and SNR = P/N, the bound becomes

Ry — %logQ 1+ SNR (ﬁ%)) .

For high SNR where P, P> > N and in case that |P; —
Py| < N, the achievable rate for user 2 is Ry = 3 log,(1 +
min{P;, P,}/N) — o(1) where o(1) — 0 as P, P, — oo,
which meets asymptotically the helper problem outer bound
(8).

Now, we consider the achievability for the capacity region
using lattice strategies. We focus on the high SNR case, i.e.,
SNRy,SNRy > 1. We first introduce the following Lemma
without proof.

Lemma 2: Let

R = bioe, (25 )

PN
R3 = %IOgQ (1 + % ) Pllj:N) .

In the limit of strong interference, for any P;, P>, N the point
(R9, RS) lies on the boundary of the capacity region.
It is easy to verify that the point (R, R$) lies on the outer
bound (5), since RS + RS = $log,(1 + P1/N) where RS <
1logy(1+ P»/N) for any Py, P>, N. This point is achievable
using lattice strategies.

For P, < Py, the outer bound (5) becomes

1 P
R1+R2§510g2 <1+N>

On the other hand, the point (0, & log,(1 + P;/N)) is achiev-
able at high SNR as shown in the helper problem. Since the

point (3 log,(1+P1/N), 0) is achievable using DPC, therefore
at high SNR the inner bound meets the outer bound (5).
For P, > P,, and high SNR we have that

o 1 P+ N

By = 7 log, (P2 +N) o(l)
L1 Py

RS = §log2 (1 + _N> —o(1),

where o(1) — 0 as P;, P, — oo. This point is exactly
the corner point of the outer bound (5), since R + R$ =
1logy(1 + Py /N) — o(1). The point (0, 2 logy(1 + P»/N))
is achievable at high SNR as it was shown in the helper
problem. The point (1 log,(1 + Py/N),0) is achieved using
DPC. Therefore, at high SNR the inner bound meets the outer
bound (5). As a consequence for SNR1, SNRy > 1, the
lattice strategies are optimal.

Theorem 5: In the limit of strong interference, the capacity
region of dirty MAC with one interference (4) at high SNR,
is given by

1 Py
Ry < 3 log, (1 + N) —o(1)

1 P
Ri+ Ry < §log2 <1 + ﬁ) —o(1),

where o(1) — 0 as Py, P, — oo.

V. SUMMARY

In this work we studied the dirty Gaussian MAC with
two interferences, one known to each transmitter. We derived
sufficient conditions under which lattice strategies meet the
capacity region outer bound.

We also studied the asymmetric case, i.e., the dirty Gaussian
MAC with one interference known only at one transmitter.
In particular, for the helper problem we found sufficient
conditions under which lattice strategies are optimal.

In both setups, at high SNR lattice strategies asymptotically
achieve the capacity region.
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